JP4532683B2 - Plant growth medium materials - Google Patents

Plant growth medium materials Download PDF

Info

Publication number
JP4532683B2
JP4532683B2 JP2000198745A JP2000198745A JP4532683B2 JP 4532683 B2 JP4532683 B2 JP 4532683B2 JP 2000198745 A JP2000198745 A JP 2000198745A JP 2000198745 A JP2000198745 A JP 2000198745A JP 4532683 B2 JP4532683 B2 JP 4532683B2
Authority
JP
Japan
Prior art keywords
plant
soil
water purification
growth medium
plant growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000198745A
Other languages
Japanese (ja)
Other versions
JP2002017158A (en
Inventor
真一 角田
浩一 大志万
裕隆 佐藤
英和 小堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Forestry Co Ltd
Original Assignee
Sumitomo Forestry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Forestry Co Ltd filed Critical Sumitomo Forestry Co Ltd
Priority to JP2000198745A priority Critical patent/JP4532683B2/en
Publication of JP2002017158A publication Critical patent/JP2002017158A/en
Application granted granted Critical
Publication of JP4532683B2 publication Critical patent/JP4532683B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、浄水場発生土を利用した植物育成培地用資材に関する。更に詳細には、浄水場発生土に有機物資材を添加して得られる混合物のC/N比を10以上30以下に調整し、次いで該混合物を堆積し、堆積内部の温度を40℃以上50℃未満に維持して、堆積発酵して得られる植物育成培地用資材であって、この資材を植物育成培地に用いた場合には、ピシウム属菌等の植物病原菌による植物の病害を防ぎ、アンモニア過剰障害及び窒素肥料の極端な有機化による植物の窒素欠乏症を防ぐことができる優れた植物育成培地用資材に関するものである。
【0002】
【従来の技術】
浄水場発生土は、浄水場に流入した河川水、又は湖沼に含まれる微細な粘土粒子を沈殿池で沈殿させ、このヘドロ状の沈殿物を機械脱水してなる低水分の板状の土壌であるため、有機性の肥料分を多く含んでおり、農業用、緑化用の培養土の原料として有効性は高い。しかし、浄水場から排出された直後の浄水場発生土は、原水由来のピシウム属菌等の植物病原菌を含有している場合が多く、浄水場発生土の農業利用はあまり進んでいない。
ピシウム属菌は、ツユカビ目に属する菌で、土壌中にある卵胞子や球形胞子のうは根の残査(根の屑)などの栄養分と水がある条件下で速やかに発芽し、菌糸が伸長して植物の根に感染する。また土壌水分が多量に供給されたり、水中などの好適な条件になると、遊走子嚢と呼ばれる器官を形成し、遊走子のうから出た遊走子が植物の根にたどりつくと菌糸を伸長させ、植物の根のなかに進入して感染する。卵胞子や球形胞子から伸長した菌糸や遊走子からの菌糸は植物体内で旺盛に生長し、植物細胞を分解させて養分を摂取する。このため、感染した植物の根は褐色や黒色に変化して死に至る。このようにピシウム属菌は、卵胞子や球形胞子などの耐久生存器官、発芽、遊走子の形成、遊泳、感染という過程で、常に水を必要とし、水媒感染する。また、高温性であるピシウム属菌の場合、30〜35℃で最も高い菌糸の伸長がみられ、25〜30℃で著しい遊走子の発生が認められる。しかし、温熱条件において42℃以上に長期間さらすとピシウム属菌は不活化するとされている。
【0003】
ピシウム属菌を殺菌する手段としては、蒸気消毒、乾熱殺菌、殺菌剤等の利用があげられるが、以上のことを踏まえると、最も経済的な方法としては発酵熱を利用した方法が考えられる。これに該当する技術としては、浄水場発生土に有機物資材を混合し、堆肥発酵させる特開平5−207816号公報、特開平9−299991号公報に記載の技術がある。これは、浄水場発生土に有機物資材を添加することにより、水分含量を約50%に調整し、有機物分解に伴う発酵温度を50℃以上に維持することで、マンガン酸化菌が有機物分解に伴い増殖し、農作物のマンガン過剰障害の原因である2価のマンガンが無害な4価のマンガンに酸化するため、農作物のマンガン過剰障害を回避することを特徴としている。
しかし、堆積内温度が50℃以上で維持された場合、得られた浄水場発生土を植物育成用培地として使用すると、アンモニア過剰を引き起こす場合があった。その理由として、硝酸化成菌の活動は一般的に25〜30℃で行われ、15℃以下あるいは40℃以上では活動が著しく抑制され、50℃では全く停止する(土の微生物;土壌微生物研究会編、博友社;P362〜368;1981)。このため、堆積内部の温度を50℃に維持すると、硝酸化成が停止し、アンモニアから硝酸への酸化が充分に行われないため、堆積内部に過剰のアンモニアが蓄積すると予想される。稲以外の農作物の多くは好硝酸性植物であり、アンモニアが過剰に存在する場合、アンモニアの過剰吸収、および拮抗作用によるCaおよび微量要素等の吸収阻害によって、生育阻害および枯死にいたる。また、土壌にアンモニアが過剰に存在する状態で温度が上昇すると、アンモニアがガス化する。アンモニアガスが植物体内に入ると細胞の酸素を奪うため、被害は急激であり、被害葉は黒ずんで萎凋する(作物の要素欠乏過剰症;(社)農山漁村文化協会;P262〜264、P213;1990)。また、培養土中に過剰に蓄積したアンモニアは、徐々に硝酸化され、硝酸態窒素の増加に伴いECが上昇するため、培養土の保存期間中に化学性が変化し、その培養土を用いて植物を栽培すると場合によっては植物が高塩類障害を起こすことから、培養土の品質安定化の面からも好ましくない。
【0004】
堆積発酵に影響する要因としては、C/N比が上げられ、一般的には、C/N比が約20前後を境にその性質が異なり、20以下であると、有機物の無機化が進むが、これ以上であると無機態窒素の有機化が進む。しかし、これらの堆積発酵特性は含水率、酸素供給量とも関連しており、浄水場発生土は物理的に土壌に類似していることから、含水率と気相率の変動が大きく、一般的な有機物資材と異なる。特開平9−299991号公報において、浄水場発生土に添加する有機物資材はバークに特定されているが、C/N比については特に言及していない。また、バーク等の木質物主体の有機物資材はC/N比が100〜数100あり、木質系有機物に多く含まれるリグニン等の難分解性炭素は、かなり高温下で分解発酵すること、さらに完全に分解発酵させるためには、長期間を要する。このため、C/N比の高い有機物資材を浄水場発生土の堆積発酵に使用する際には、ある程度分解させるか、窒素肥料を添加することにより、C/N比を調整することが望ましい(バーク樹皮堆肥 製造・利用の理論と実際;博友社;P41〜48)。
【0005】
【発明が解決しようとする課題】
浄水場発生土にはピシウム属菌等の植物病原菌が混入していることがあるため、有機物を添加し堆積発酵処理により、堆積内部温度を50℃以上に維持すると、以下のような問題点があげられる。
1. 堆積内部温度を50℃以上に維持した場合、硝酸化成菌の不活性化によりアンモニアが過剰に蓄積する。
2. 浄水場発生土を堆積発酵させるために有機物を添加するが、有機物のC/N比が高い場合、または混合後の堆積物のC/N比が高い場合には、窒素の過剰な有機化により、植物の生長に必要な無機態窒素が欠乏する。
【0006】
【課題を解決するための手段】
本発明は、浄水場発生土に有機物資材を添加し堆積発酵させる際、浄水場発生土と有機物資材との混合物のC/N比が10以上30以下になるように調整し、且つ堆積内部温度を40℃以上50℃未満に維持して、堆積発酵して得られる資材が、植物育成培地として用いた場合に、ピシウム属菌等の植物病原菌による植物の病害を防ぎ、アンモニア過剰障害及び窒素の極端な有機化による植物の窒素欠乏症を防ぐことができるという、新たな知見に基づくものである。
従って、本発明は、浄水場発生土に有機物資材を添加して得られる混合物のC/N比を10以上30以下に調整し、次いで該混合物を堆積し、堆積内部の温度を40℃以上50℃未満に維持して、堆積発酵して得られる植物育成培地用資材である。
【0007】
【発明の実施の形態】
本発明で用いる浄水場発生土は、浄水処理過程で発生する沈積泥土を濃縮脱水したものである。本発明で用いる浄水場発生土は無薬注処理法により処理された凝集剤としてポリ塩化アルミニウムや硫酸アルミニウムを添加し、加圧法により脱水処理したものが好ましい。また、本発明で用いる浄水場発生土は、含水率が30から60重量%、特に40から60重量%に調整されたものが好ましい。
本発明では、浄水場発生土の堆積開始時に、浄水場発生に有機物資材を添加してその混合物のC/N比が10以上30以下、好ましくは15以上25以下になるように調節する。これにより、堆積発酵終了後に得られる資材のC/N比が安定し、これを植物育成培地に用いた場合に、植物育成に必要な肥料分の過剰な有機化による植物の窒素欠乏を抑え、安定的に植物に肥料を供給することができる。
【0008】
本発明においては、浄水場発生土に添加する有機物資材は、そのC/N比が20以上100以下が好ましく、特に30以上80以下が好ましい。これに適合する有機物資材としては、バーク、おが屑、剪定枝チップ等が当てはまる。バーク、おが屑等のように難分解性炭素を含有し、C/N比が通常100〜数100以上である有機物資材を使用する場合には、該有機物資材を窒素源を添加しない状態で、1〜10年の期間堆積させ、C/N比を好ましくは20以上100以下、特に好ましくは30以上80以下に調整したものが用いられる。窒素源を添加しない状態で、1〜10年の期間堆積することにより、C/N比が20〜100であるバーク、おが屑等の有機物資材を得ることができる。これを浄水場発生土に添加することにより、安定した発酵条件にすることが可能となる。
【0009】
本発明では、浄水場発生土に有機物資材を添加して得られる混合物を、堆積発酵させる。堆積発酵は、通常、高さ1.5から3.5m、望ましくは2.5から3mで、広さ10から1000m2に堆積し、通常、4週間から30週間程度、好ましくは4から12週間程度放置することにより、実施される。また、ショベル式発酵槽、うねみぞ式発酵層、横型発酵層などの通常の装置を利用して実施することもできる。
本発明では、このようにして堆積発酵させる際に、堆積内の温度を、40℃以上50℃未満に、好ましくは45℃以上48℃以下維持する。堆積内温度は、例えば、堆積山の表層から50cm程度の深さに熱電対を設置して測定される温度である。温度を40℃以上50℃未満に維持するには、例えば、切り返しを行うことにより達成できる。切り返しは、通常、2から6週間の間隔で行うのが好ましい。切り返しを行うことにより、発酵温度の下降及び過剰な上昇を防ぎ、温度を維持することができる。
かくして、ピシウム属菌等の植物病原菌による植物の病害を防ぎ、アンモニア過剰障害及び窒素肥料の極端な有機化による植物の窒素欠乏症を防ぐことができる本発明の植物育成培地用資材が得られる。本発明の資材は、そのまま植物育成培地として用いることもでき、また、通常使用される肥料、土壌改良剤などを添加して、植物育成培地として利用することもできる。
【0010】
【実施例】
以下、本発明を実施例及び比較例に基づいて更に詳細に説明する。
実施例1
堆積温度条件の検討
1)方法
本実施例では浄水場発生土の堆積発酵する際、適正な発酵温度について検討するため、インキュベーターを用い、異なる温度条件で浄水場発生土を保存し、浄水場発生土中の植物病原菌密度、浄水場発生土の化学性、植物育成用培地として用いた場合の品質について調査した。
浄水場より発生した直後の浄水場発生土は、最大容水量の60%に調整した後、約2リットル容のポリエチレン袋に約1リットルずつ入れ試料とした。小分けにされた浄水場発生土は、植物育成用チャンバーに入れ、暗黒条件下で温度が35、38、41、44、47、49、50、53、56、59℃の条件で3ヶ月間保管した。個々の袋にはあらかじめ植物病原菌であるPythium aphanidermatumの汚染土をナイロンメッシュシートで包含したものを入れ、処理開始から1ヶ月後に試料を取り出し菌密度を測定した。また、発酵終了時の培地について、pH、EC、アンモニア態窒素、水溶性マンガン含有量を測定した。さらに、植物育成培地として使用し、ユウガオによる植物検定試験を行った。ユウガオはバーミキュライトを詰めた稲用育苗箱に播種後、子葉展開時に個々の植物育成用培地に移植した。移植後2週間目に生体重、マンガン過剰障害、アンモニア過剰障害の有無について調査した。植物育成用培地の組成は浄水場発生土を原土とし、原土:50容量%、バーク堆肥:30容量%、ピートモス:15容量%、ココファイバー:5容量%とした。
【0011】
2) 結果
表1に、処理開始1ヶ月後のピシウム属菌菌密度の測定結果を示した。表1から明らかなように、処理開始から1ヶ月後において、35、38℃ではかなり高い密度でピシウム属菌が検出された。41℃では若干検出されたものの、44℃以上では検出されなかった。
【0012】
【表1】

Figure 0004532683
【0013】
表2に、チャンバーに保管後、1ヶ月目の浄水場発生土の化学性の測定結果を示した。表2から明らかなように、浄水場発生土の化学性について、pH、ECには処理区間の差はみられなかった。アンモニア態窒素は温度が49℃になるまで緩やかに増加し、50℃以上では急激な上昇がみられた。水溶性マンガン含有量は35、38℃でかなり高い値となったが、41℃以上ではほとんど検出されなかった。
【0014】
【表2】
Figure 0004532683
【0015】
表3に、ユウガオによる植物検定試験の結果を示した。表3から明らかなように、ユウガオによる植物検定について、38℃以下、50℃以上で生育が劣り、50℃以上では温度の上昇に伴い、生体重は減少した。マンガン過剰障害は35℃、38℃で著しく、41℃以上ではみられなかった。アンモニア過剰障害は50℃以上でみられ、56℃、59℃で著しかった。
【0016】
【表3】
Figure 0004532683
【0017】
以上から、ピシウム属菌の殺菌、水溶性マンガンの不溶化のためには約40℃以上の温度が必要であるものの、50℃以上では硝酸化成菌の活性が抑制されるため、浄水場発生土にアンモニアが過剰に蓄積し、植物育成培土として利用した際に植物にアンモニア過剰障害を引き起こし、生育を停滞させることが明らかとなった。従って、浄水場発生土を堆積発酵する際の適正な発酵温度は、40℃以上50℃未満であることが判った。
【0018】
実施例2
有機物資材の添加と堆積温度条件の検討
本実施例では浄水場発生土の堆積発酵処理における有機物資材の添加と堆積温度管理が病原菌密度、浄水場発生土の化学性、又これを植物育成用培養土として用いた場合のユウガオの生育に与える影響について検討した。
1)方法
処理は、混合物全体に対する容積比として、浄水場発生土に有機物資材としてバークを30容量%混合したものを二つ設置し、対照区として有機物資材を加えない浄水場発生土のみのものを、それぞれ全体の容積が50m3以上になるように堆積した。個々の堆積山には表層から50cmの深さに熱電対を設置し、発酵温度を測定し、浄水場発生土と有機物資材の混合物について、一つは堆積内部温度が50℃になる前にショベルローダーにより切り返し作業を行い(40〜50℃管理区)、もう片方は切り返し作業は行わなかった(放任区)。また、対照区も切り返し作業を行わなかった。
調査は堆積内部の発酵温度を経時的に調査し、また、植物病原菌であるPythium aphanidermatumの汚染土(5200cfu/g乾土)をナイロンメッシュシートで包含し、個々の堆積内部の表層から50cmの深さに埋設し、堆積2週間後に埋設したピシウム属菌の菌密度を測定した。また、発酵終了後の培地について、硝酸態窒素、アンモニア態窒素、水溶性マンガン含有量を測定した。また、試験終了後の浄水場発生土を主体とした植物育成用培地を作成し、ユウガオを用いた植物検定試験を行った。植物育成用培地の組成は浄水場発生土を原土として、原土:50容量%、バーク堆肥:30容量%、ピートモス:15容量%、ココファイバー:5容量%で実施した。
【0019】
2) 結果
表4に、堆積内部温度の経時的変化の測定結果を示した。表4から明らかなように、堆積内部温度について、40〜50℃管理区は堆積期間中40℃以上50℃未満を推移し、放任区は堆積1週間目までに急激な温度上昇がみられ、堆積から6週間目までは50〜60℃を推移した。対照区はほとんど温度が高まらず、30℃前後を推移した。
【0020】
【表4】
Figure 0004532683
【0021】
表5に、処理開始1ヶ月後のピシウム属菌菌密度を測定した結果を示した。表5から明らかなように、堆積開始から2週間目に埋設したピシウム属菌を掘り出し、菌密度を調査したところ、放任区、40〜50℃管理区では検出されず、対照区では高い菌密度であった。
【0022】
【表5】
Figure 0004532683
【0023】
表6に、処理開始1ヶ月後の浄水場発生土の化学性を調べた結果を示した。表6の結果から明らかなように、pHは放任区>40〜50℃管理区>対照区であり、ECは対照区>放任区>40〜50℃管理区であった。アンモニア態窒素含有量は放任区>対照区>40〜50℃管理区となり、40〜50℃で管理区が最も低い値となった。水溶性マンガンは、対照区のみ522mg/kgと高い値となった。
【0024】
【表6】
Figure 0004532683
【0025】
表7に、堆積終了後の浄水場発生土を主体とした植物育成用培地を作成し、ユウガオを用い植物検定試験を行った結果を示した。表7の結果から明らかなとおり、放任区、対照区では発芽2週間後の苗の生育に停滞がみられ、葉色の褐変、萎縮症状等のアンモニア過剰障害がみられたが、40〜50℃管理区では順調に生育し、アンモニア過剰障害もみられなかった。また、対照区ではマンガン過剰症がみられたが、40〜50℃管理区、放任区ではみられなかった。
【0026】
【表7】
Figure 0004532683
【0027】
以上から、本発明では植物育成用培地として利用する浄水場発生土は、有機物資材を添加し、堆積発酵させる際、堆積内部の温度を40℃以上50℃未満に維持し、切り返し作業をして管理することが望ましいことが判った。
【0028】
実施例3
堆積発酵における適正なC/N比に関する検討
本実施例では、有機物の堆積発酵条件が、C/N比によって左右されることから、浄水場発生土に添加する有機物資材の混合割合を変えることにより、適正なC/N比について検討した。
1) 方法
含水率50重量%に調整された浄水場発生土に、バーク堆肥を混合物全体の容積比として、0、10、20、30、40、50容量%混合し、それぞれについて全体の容積が50m3以上になるように堆積した。使用したバーク堆肥は鶏糞等の窒素肥料を添加せず、約5年間野積みした広葉樹と針葉樹のバーク混合品とした。堆積後の管理は堆積内部温度が40℃以上50℃未満になるように、50℃になる前にショベルローダーにより切り返し作業を行った。調査は発酵終了時に、個々の処理区の浄水場発生土のpH、EC、無機態窒素含有量を測定し、さらに浄水場発生土を主体とした植物育成用培地を作成し、ユウガオを用いた植物検定試験を行った。植物育成用培地の組成は浄水場発生土を原土として、原土:50容量%、バーク堆肥:30容量%、ピートモス:15容量%、ココファイバー:5容量%とした。
【0029】
2) 結果
表8に、堆積時の浄水場発生土のC/N比を示した。表8から明らかなように、C/N比はバークの混合割合が増すに従い高まった。
【0030】
【表8】
Figure 0004532683
【0031】
表9に、堆積後の浄水場発生土の化学性の測定結果を示した。表9の結果から明らかなように、堆積後にはEC、バークの混合割合が増すに従い低下し、混合割合が50%では無機態窒素含有量は0mg/kg乾土であった。
【0032】
【表9】
Figure 0004532683
【0033】
表10に、ユウガオを用い植物検定試験を行った結果を示した。表10の結果から明らかなように、バーク混合割合20、30容量%区の生育が最もよく、50容量%区では生体重が小さく、葉色が薄く、子葉は黄化した。0容量%区は葉色が濃く、生育が停滞し、一部に葉の褐変等のマンガン過剰障害がみられた。
【0034】
【表10】
Figure 0004532683
【0035】
以上から、本発明では浄水場発生土に有機物を混合し堆積発酵させる場合、堆積時における混合物のC/N比が10以上30以下になるように混合割合を調節する事が望ましいことが判った。
【0036】
実施例4
堆積発酵における適正な有機物資材のC/N比に関する検討
本実施例ではバークやおが屑等のC/N比の高い有機物資材が堆積期間、堆積発酵方法等によって化学的な性状が大きく異なることから、浄水場発生土の堆積発酵に好適な有機物資材の性状について調査した。
1) 方法
供試したバークの前歴、C/N比等は表11に示した通りであり、個々の処理区のバークと浄水場発生土を混合し、全体の容積が50m3以上となるように堆積した。浄水場発生土に対するバークの混合割合は、混合時のC/N比が20〜30になるように調節した。切り返し作業はすべての処理区で40〜50℃になるように管理した。調査は堆積表面から50cmの深さに熱電対を設置し、経時的な温度データを測定した。植物病原菌であるPythium aphanidermatumの汚染土をナイロンメッシュシートで包含し、個々の堆積内部の表層から50cmの深さに埋設し、堆積2週間後に埋設した培養土を掘り出し、ピシウム属菌属の菌密度を測定した。また、試験終了後の浄水場発生土について、pH、EC、無機態窒素含有量と水溶性マンガン含有量を調査した。また、浄水場発生土を主体とした植物育成用培養土を作成し、ユウガオによる植物検定を行った。培養土の組成は浄水場発生土を原土とし、原土:50容量%、バーク堆肥:30容量%、ピートモス:15容量%、ココピート:5容量%とした。
【0037】
【表11】
Figure 0004532683
【0038】
2) 結果
表12に、堆積期間中の堆積内部温度の変化を測定した結果を示した。表12に示した結果から、堆積内部温度はバーク(6)を除いたすべての区で温度上昇がみられた。
【0039】
【表12】
Figure 0004532683
【0040】
表13に、処理開始から2週間後のピシウム属菌菌密度の測定結果を示した。表13の結果から明らかように、バーク(6)を除いて検出されなかったが、バーク(6)では高い値となった。
【0041】
【表13】
Figure 0004532683
【0042】
表14、堆積発酵後の化学性ついて測定した結果を示した。表14の結果から明らかなように、pHはバーク(6)が他区に比べ低く、その他は6.0〜6.5とほぼ適正であった。また、ECはバーク(1)で0.1と低く、バークのC/N比の低下とともに上昇し、バーク(6)では2.0と最も高い値となった。無機態窒素もECとほぼ同様の傾向を示した。また、水溶性マンガン含有量はバーク(1)、(2)では検出されなかったのに対し、バーク中のC/N比の低下とともに増加し、バーク(6)では顕著に高い値となった。
【0043】
【表14】
Figure 0004532683
【0044】
表15に、ユウガオを用いた植物検定の結果について示した。表15の結果から明らかなように、播種後2週間目の生体重はバーク(2)、(3)、(4)、(5)が、バーク(1)、(6)に比べ高く、中でも(3)、(4)が最も高かった。また、バーク(6)では葉縁の褐変等のマンガン過剰障害がみられ、バーク(1)では子葉が黄化し、生育が著しく抑制されるなどの窒素欠乏症状がみられた。
【0045】
【表15】
Figure 0004532683
【0046】
以上から、本発明では浄水場発生土を充分堆積発酵させるとともに、植物育成用培養土として使用した場合、植物に窒素欠乏症、マンガン過剰症等が生じることなく、肥沃度の安定した浄水場発生土を得るために、堆積発酵の際、浄水場発生土に添加する有機物資材が窒素を添加しない状態で、1〜10年、より好ましくは5〜10年の期間堆積され、C/N比が20以上100以下、好ましくは30以上80以下に調整されていることが望ましいことが判った。
【0047】
【発明の効果】
本発明では、浄水場発生土に有機物資材添加して得られる混合物を堆積させたとき、内部温度を40℃以上50℃未満で管理することにより、微生物による有機物分解を維持しつつ、ピシウム属菌等の植物病原菌及び雑草種子を死滅させ、さらに、植物育成培地用資材として利用した場合、植物のアンモニア過剰症が回避でき、また、微生物の窒素消費による植物の窒素欠乏を回避することができる。
さらに本発明では、浄水場発生土に有機物資材を添加して得られる混合物のC/N比を10以上30以下に管理することで、堆積発酵終了後のC/N比が安定し、植物育成に必要な肥料分の過剰な有機化による植物の窒素欠乏を抑え、安定的に植物に肥料を供給することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plant growth medium material using water generated from a water purification plant. More specifically, the C / N ratio of the mixture obtained by adding the organic material to the soil generated from the water purification plant is adjusted to 10 or more and 30 or less, then the mixture is deposited, and the temperature inside the deposition is set to 40 ° C. or more and 50 ° C. It is a plant growth medium material obtained by sedimentation and fermentation, and when this material is used in the plant growth medium, it prevents plant diseases caused by plant pathogens such as Psium and prevents excess ammonia. The present invention relates to an excellent plant growth medium material that can prevent nitrogen deficiency in plants due to damage and extreme organic fertilization of nitrogen fertilizer.
[0002]
[Prior art]
Sewage generation soil is low-moisture plate-like soil that is obtained by precipitating fine clay particles contained in river water or lakes flowing into the water purification plant in a sedimentation basin and mechanically dehydrating the sludge-like sediment. Therefore, it contains a large amount of organic fertilizer and is highly effective as a raw material for cultivation soil for agriculture and greening. However, the wastewater generation soil immediately after being discharged from the water treatment plant often contains plant pathogenic bacteria such as Psium genus derived from raw water, and the agricultural use of the water purification plant generation soil has not progressed much.
The genus Psium is a fungus belonging to the order of the fungus, and germinates quickly in the presence of nutrients and water, such as oviospores and spherical spores in the soil (root scraps) and water. Elongates and infects plant roots. In addition, when soil moisture is supplied in a large amount or under suitable conditions such as underwater, an organ called a zoospore sac forms, and when the zoospore that emerges from the zoospore reaches the root of the plant, the hyphae are elongated, It enters the roots of the tree and becomes infected. Mycelia from hyphae and spore and hyphae from zoospores grow vigorously in the plant body, decompose plant cells and ingest nutrients. For this reason, the roots of infected plants turn brown or black and die. Thus, the genus Psium always requires water in the process of durable viable organs such as egg spores and spherical spores, germination, formation of zoospores, swimming and infection, and is waterborne. In the case of Psium spp. Which is high temperature, the highest hyphal elongation is observed at 30 to 35 ° C., and significant zoospores are observed at 25 to 30 ° C. However, it is said that the genus Psium is inactivated when exposed to a temperature of 42 ° C. or higher for long periods of time under thermal conditions.
[0003]
As a means for sterilizing the genus Psium, steam sterilization, dry heat sterilization, use of a bactericidal agent, and the like can be mentioned. However, based on the above, the most economical method is considered to use fermentation heat. . As a technique corresponding to this, there are techniques described in Japanese Patent Application Laid-Open Nos. 5-207816 and 9-299991 in which organic materials are mixed with soil generated from a water purification plant and fertilized and fermented. This is because by adding organic materials to the soil generated from the water purification plant, the water content is adjusted to about 50%, and the fermentation temperature accompanying the decomposition of organic matter is maintained at 50 ° C. or higher, so that the manganese-oxidizing bacteria are accompanied by the decomposition of organic matter. It is characterized by avoiding manganese excess damage in crops because divalent manganese that proliferates and causes manganese damage to crops is oxidized to harmless tetravalent manganese.
However, when the temperature in the sedimentation is maintained at 50 ° C. or higher, when the obtained water purification plant-generated soil is used as a plant growth medium, excessive ammonia may be caused. The reason for this is that the activity of nitrifying bacteria is generally carried out at 25-30 ° C., the activity is remarkably suppressed below 15 ° C. or above 40 ° C., and stops at 50 ° C. (Soil microorganisms; Hakutosha; P362-368; 1981). For this reason, if the temperature inside the deposition is maintained at 50 ° C., nitrification is stopped and oxidation from ammonia to nitric acid is not sufficiently performed, so that it is expected that excessive ammonia accumulates inside the deposition. Many crops other than rice are nitrite plants, and when ammonia is present in excess, growth and death occur due to excessive absorption of ammonia and absorption inhibition of Ca and trace elements due to antagonism. Moreover, when temperature rises in the state where ammonia exists excessively in the soil, ammonia is gasified. When ammonia gas enters the plant body, it takes oxygen away from the cells, so the damage is rapid, and the damaged leaves are darkened and dwarfed (Crop element deficiency hypersensitivity; Agricultural and Mountain Fishing Village Cultural Association; P262-264, P213; 1990). In addition, ammonia accumulated excessively in the culture soil is gradually nitrated, and EC increases as nitrate nitrogen increases, so the chemistry changes during the storage period of the culture soil. When plants are cultivated, the plants cause high salt damage, which is not preferable in terms of stabilizing the quality of the culture soil.
[0004]
As a factor affecting sedimentary fermentation, the C / N ratio is increased. Generally, the C / N ratio is different from about 20 at the boundary, and if it is 20 or less, the mineralization of organic matter proceeds. However, when it is more than this, the organic nitrogen becomes more organic. However, these sedimentation fermentation characteristics are also related to the water content and oxygen supply, and the water generated from the water treatment plant is physically similar to the soil. Different from organic materials. In Japanese Patent Laid-Open No. 9-299991, the organic material to be added to the soil generated from the water purification plant is specified as bark, but the C / N ratio is not particularly mentioned. In addition, organic materials mainly composed of woody materials such as bark have a C / N ratio of 100 to several hundreds, and refractory carbon such as lignin contained in a large amount of woody organic materials can be decomposed and fermented at considerably high temperatures. It takes a long time to decompose and ferment. For this reason, when using organic material with a high C / N ratio for sedimentation fermentation of water purification plant generated soil, it is desirable to adjust the C / N ratio by decomposing to some extent or adding nitrogen fertilizer ( Bark bark compost Theory and practice of production and use; Hirotomo; P41-48).
[0005]
[Problems to be solved by the invention]
Since plant pathogens such as Psium spp. May be mixed in the water generation plant soil, if organic matter is added and the sedimentation temperature is maintained at 50 ° C or higher by sedimentation fermentation, the following problems will occur. can give.
1. When the deposition internal temperature is maintained at 50 ° C. or higher, ammonia accumulates excessively due to inactivation of nitrifying bacteria.
2. When organic matter is added to deposit and ferment the soil generated from the water treatment plant, if the organic matter has a high C / N ratio, or if the sediment after mixing has a high C / N ratio, excessive organication of nitrogen It lacks the inorganic nitrogen necessary for plant growth.
[0006]
[Means for Solving the Problems]
The present invention adjusts the C / N ratio of the mixture of the water purification plant generation soil and the organic material to be 10 or more and 30 or less when the organic material is added to the water purification plant generation soil for sediment fermentation, and the internal temperature of the deposition Is maintained at 40 ° C. or higher and lower than 50 ° C., and when the material obtained by sedimentation fermentation is used as a plant growth medium, it prevents plant diseases caused by plant pathogenic bacteria such as Pythium sp. It is based on new knowledge that it can prevent nitrogen deficiency of plants due to extreme organicization.
Therefore, the present invention adjusts the C / N ratio of the mixture obtained by adding organic materials to the water purification plant generated soil to 10 or more and 30 or less, and then deposits the mixture. It is a plant growth medium material obtained by sedimentation and fermentation while maintaining the temperature below ℃.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The water purification plant generated soil used in the present invention is obtained by concentrating and dewatering sedimentary mud generated in the water purification process. The water generated from the water purification plant used in the present invention is preferably one obtained by adding polyaluminum chloride or aluminum sulfate as a flocculant treated by the non-chemical injection treatment method and dehydrating by the pressurization method. Moreover, the water purification plant generated soil used in the present invention preferably has a water content adjusted to 30 to 60% by weight, particularly 40 to 60% by weight.
In the present invention, at the start of deposition of water purification plant generated soil, an organic material is added to the generation of the water purification plant, and the C / N ratio of the mixture is adjusted to 10 to 30 and preferably 15 to 25. As a result, the C / N ratio of the material obtained after the end of sedimentary fermentation is stabilized, and when this is used for the plant growth medium, the nitrogen deficiency of the plant due to excessive organication of the fertilizer necessary for plant growth is suppressed, Fertilizer can be stably supplied to plants.
[0008]
In the present invention, the C / N ratio of the organic material added to the water purification plant generating soil is preferably 20 or more and 100 or less, particularly preferably 30 or more and 80 or less. Bark, sawdust, pruned branch chips, etc. are applicable as organic materials suitable for this. When using an organic material that contains hardly decomposable carbon such as bark and sawdust and has a C / N ratio of usually 100 to several hundreds or more, the organic material is added with no nitrogen source added. Deposited for a period of 10 to 10 years, and the C / N ratio is preferably 20 or more and 100 or less, particularly preferably 30 or more and 80 or less. By depositing for 1 to 10 years without adding a nitrogen source, it is possible to obtain organic materials such as bark and sawdust having a C / N ratio of 20 to 100. By adding this to the water purification plant generated soil, it becomes possible to achieve stable fermentation conditions.
[0009]
In the present invention, a mixture obtained by adding an organic material to water purification plant-generated soil is subjected to sedimentation fermentation. Sedimentation fermentation is usually 1.5 to 3.5 m in height, desirably 2.5 to 3 m and is deposited in an area of 10 to 1000 m 2 , usually for about 4 to 30 weeks, preferably 4 to 12 weeks. It is implemented by leaving it to a certain extent. Moreover, it can also implement using normal apparatuses, such as an excavator type fermenter, a ridge type fermentation layer, and a horizontal type fermentation layer.
In the present invention, the temperature in the deposition is maintained at 40 ° C. or higher and lower than 50 ° C., preferably 45 ° C. or higher and 48 ° C. or lower when performing sedimentation fermentation in this way. The temperature in the deposition is, for example, a temperature measured by installing a thermocouple at a depth of about 50 cm from the surface layer of the deposition mountain. In order to maintain the temperature at 40 ° C. or higher and lower than 50 ° C., for example, it can be achieved by turning back. In general, it is preferable to perform the cut-back at intervals of 2 to 6 weeks. By performing the turnover, the fermentation temperature can be prevented from falling and excessively rising, and the temperature can be maintained.
Thus, the plant growth medium material of the present invention can be obtained, which can prevent plant diseases caused by plant pathogens such as Psium, and can prevent plant nitrogen deficiency due to excessive ammonia damage and nitrogen fertilizer extreme organication. The material of the present invention can be used as it is as a plant growth medium, or can be used as a plant growth medium by adding commonly used fertilizers, soil improvers and the like.
[0010]
【Example】
Hereinafter, the present invention will be described in more detail based on examples and comparative examples.
Example 1
Examination of deposition temperature conditions
1) Method In this example, in order to examine the appropriate fermentation temperature when depositing and fermenting soil generated from a water purification plant, the water generated from the water purification plant is stored under different temperature conditions using an incubator, and the plant pathogens in the soil generated from the water purification plant The density, chemistry of the water treatment plant soil, and quality when used as a plant growth medium were investigated.
The soil generated from the water purification plant immediately after it was generated from the water purification plant was adjusted to 60% of the maximum water capacity, and then placed in a polyethylene bag of about 2 liters to make a sample. The subdivided water purification plant soil is placed in a plant growth chamber and stored for 3 months under dark conditions at temperatures of 35, 38, 41, 44, 47, 49, 50, 53, 56, and 59 ° C. did. Each bag was previously filled with a nylon mesh sheet containing contaminated soil of Phythium aphanidermatum, which is a phytopathogenic fungus. One month after the start of treatment, the sample was taken out and the bacterial density was measured. Moreover, about the culture medium at the time of completion | finish of fermentation, pH, EC, ammonia nitrogen, and water-soluble manganese content were measured. Furthermore, it was used as a plant growth medium, and a plant assay test was conducted using Yugao. Yugao was sown in a rice seedling box filled with vermiculite, and then transplanted to each plant growing medium during cotyledon development. Two weeks after transplantation, the body weight, manganese excess disorder, and ammonia excess disorder were examined. The composition of the plant-growing medium was the soil generated from the water purification plant, and the raw soil was 50% by volume, the bark compost was 30% by volume, the peat moss was 15% by volume, and the coco fiber was 5% by volume.
[0011]
2) Results Table 1 shows the results of measuring the density of Psium bacteria one month after the start of treatment. As is clear from Table 1, Pisium spp. Were detected at a fairly high density at 35 and 38 ° C. one month after the start of treatment. Although it was slightly detected at 41 ° C, it was not detected at 44 ° C or higher.
[0012]
[Table 1]
Figure 0004532683
[0013]
Table 2 shows the chemical measurement results of the water purification plant generated soil in the first month after storage in the chamber. As is clear from Table 2, regarding the chemical properties of the water treatment plant generated soil, there was no difference in pH and EC between treatment sections. Ammonia nitrogen gradually increased until the temperature reached 49 ° C., and rapidly increased above 50 ° C. The water-soluble manganese content was considerably high at 35 and 38 ° C, but was hardly detected at 41 ° C or higher.
[0014]
[Table 2]
Figure 0004532683
[0015]
Table 3 shows the results of the plant assay test with Yugao. As is clear from Table 3, in the plant assay using the fish, the growth was inferior at 38 ° C. or lower and 50 ° C. or higher, and at 50 ° C. or higher, the living weight decreased with increasing temperature. Manganese excess damage was significant at 35 ° C and 38 ° C, and was not observed at 41 ° C or higher. Excessive ammonia damage was observed at 50 ° C or higher, and was remarkable at 56 ° C and 59 ° C.
[0016]
[Table 3]
Figure 0004532683
[0017]
From the above, although the temperature of about 40 ° C or higher is necessary for the sterilization of the genus Psium and the insolubilization of water-soluble manganese, the activity of nitrifying bacteria is suppressed at 50 ° C or higher. It has been clarified that ammonia accumulates excessively, and when used as a plant cultivation soil, it causes excessive ammonia damage to the plant, causing growth to stagnate. Therefore, it was found that the appropriate fermentation temperature when depositing and fermenting the soil generated from the water purification plant is 40 ° C. or more and less than 50 ° C.
[0018]
Example 2
Addition of organic materials and examination of sedimentation temperature conditions In this example, the addition of organic materials and the deposition temperature control in the sedimentation fermentation treatment of the soil generated from the water treatment plant are the pathogen density, the chemistry of the soil generated from the water purification plant, and this. The effect on the growth of Yugao when used as a soil for plant cultivation was examined.
1) As for the method treatment, as a volume ratio with respect to the whole mixture, two soils containing 30% by volume of bark as an organic material are installed in the water generated from the water purification plant. Were deposited so that the total volume was 50 m 3 or more. At each sedimentary mountain, a thermocouple is installed at a depth of 50 cm from the surface layer, the fermentation temperature is measured, and for the mixture of the soil generated from the water purification plant and organic materials, one is a shovel before the internal temperature of the sediment reaches 50 ° C. The turn-back work was performed by a loader (40-50 ° C. control zone), and the other was not turned back (dismissal zone). In addition, the control section did not carry out turnover work.
The survey investigates the fermentation temperature inside the sediment over time, and also includes a contaminated soil (5200 cfu / g dry soil) of the phytopathogenic fungus Pythium aphanidermatum with a nylon mesh sheet, 50 cm deep from the surface layer inside each sediment. The bacterial density of the genus Psium that was buried in the soil and buried two weeks later was measured. Moreover, about the culture medium after completion | finish of fermentation, nitrate nitrogen, ammonia nitrogen, and water-soluble manganese content were measured. In addition, a plant growth medium mainly composed of the soil generated from the water purification plant after completion of the test was prepared, and a plant test using Yugao was conducted. The composition of the culture medium for plant growth was set to 50% by volume of raw soil generated from the water treatment plant, 30% by volume of bark compost, 15% by volume of peat moss, and 5% by volume of coco fiber.
[0019]
2) Results Table 4 shows the measurement results of changes in the internal temperature of the deposition over time. As is clear from Table 4, the temperature of the 40-50 ° C. control zone transitioned from 40 ° C. to less than 50 ° C. during the deposition period, and the discharge zone showed a rapid temperature rise by the first week of deposition, The temperature changed from 50 to 60 ° C. until 6 weeks after the deposition. In the control group, the temperature hardly increased, and it remained around 30 ° C.
[0020]
[Table 4]
Figure 0004532683
[0021]
Table 5 shows the results of measuring the density of Psium bacteria one month after the start of treatment. As is clear from Table 5, when Pisium genus buried in the second week from the start of deposition was excavated and the bacterial density was investigated, it was not detected in the discharge zone and the 40-50 ° C. control zone, but the bacterial density was high in the control zone. Met.
[0022]
[Table 5]
Figure 0004532683
[0023]
Table 6 shows the results of examining the chemical properties of the water purification plant generated soil one month after the start of treatment. As is clear from the results in Table 6, the pH was the disposal zone> 40-50 ° C. control zone> control zone, and the EC was the control zone> dismissal zone> 40-50 ° C. zone. The ammonia nitrogen content was as follows: discharge zone> control zone> 40-50 ° C. control zone, with the control zone having the lowest value at 40-50 ° C. Water-soluble manganese was as high as 522 mg / kg only in the control group.
[0024]
[Table 6]
Figure 0004532683
[0025]
Table 7 shows the results of the plant certification test using Yugao, which is a plant growth medium made mainly from the soil generated from the water purification plant after completion of deposition. As is apparent from the results in Table 7, growth of seedlings was stagnate in the dismissal and control groups, and there was an ammonia excess disorder such as leaf color browning and atrophy, but it was 40-50 ° C. In the management area, it grew smoothly and there was no excess ammonia damage. Moreover, although manganese excess was seen in the control plot, it was not seen in the 40-50 ° C control zone and the discharge zone.
[0026]
[Table 7]
Figure 0004532683
[0027]
From the above, in the present invention, the water purification plant generated soil used as a plant growing medium is maintained at a temperature of 40 ° C. or more and less than 50 ° C. when the organic material is added and deposited and fermented. I found it desirable to manage.
[0028]
Example 3
Examination on proper C / N ratio in sedimentation fermentation In this example, the sedimentation fermentation condition of organic matter depends on the C / N ratio, so the mixing ratio of the organic matter material added to the water purification plant generated soil The appropriate C / N ratio was examined by changing
1) Method Water content adjusted to 50% by weight of water treatment plant mixed with bark compost as a volume ratio of the entire mixture, 0, 10, 20, 30, 40, 50% by volume. Deposited to be 50 m 3 or more. The bark compost used was a bark mixture of hardwood and conifers that had been piled up for about 5 years without adding nitrogen fertilizer such as chicken manure. Management after the deposition was performed by a shovel loader before the temperature reached 50 ° C. so that the temperature inside the deposition would be 40 ° C. or higher and lower than 50 ° C. At the end of the fermentation, the pH, EC, and inorganic nitrogen content of the water treatment plant soil in each treatment area were measured, and a plant growth medium consisting mainly of the water treatment plant soil was created, using Yugao. A plant test was conducted. The composition of the plant growth medium was defined as 50% by volume of soil generated from the water purification plant, 30% by volume of bark compost, 15% by volume of peat moss, and 5% by volume of coco fiber.
[0029]
2) Results Table 8 shows the C / N ratio of the water purification plant soil at the time of deposition. As apparent from Table 8, the C / N ratio increased as the mixing ratio of bark increased.
[0030]
[Table 8]
Figure 0004532683
[0031]
Table 9 shows the measurement results of the chemical properties of the generated water purification plant soil after deposition. As is clear from the results in Table 9, after deposition, the EC and bark mixing ratios decreased as the mixing ratio increased, and the inorganic nitrogen content was 0 mg / kg dry soil when the mixing ratio was 50%.
[0032]
[Table 9]
Figure 0004532683
[0033]
Table 10 shows the results of a plant assay test using Yugao. As is clear from the results in Table 10, the growth at the bark mixing ratio of 20 and 30% by volume was the best, and at 50% by volume, the living weight was small, the leaf color was light, and the cotyledon was yellowed. In the 0% by volume group, the leaf color was dark, growth was stagnant, and some manganese excess damage such as browning of the leaves was observed.
[0034]
[Table 10]
Figure 0004532683
[0035]
From the above, in the present invention, when mixing and fermenting organic matter to the water purification plant generated soil, it was found that it is desirable to adjust the mixing ratio so that the C / N ratio of the mixture at the time of deposition is 10 or more and 30 or less. .
[0036]
Example 4
Examination of C / N ratio of organic material suitable for sedimentation fermentation In this example, organic material with high C / N ratio such as bark and sawdust has a large chemical property depending on the deposition period, sedimentation fermentation method, etc. Because of the differences, we investigated the properties of organic materials suitable for sedimentation fermentation of the soil generated from water purification plants.
1) The previous history of bark, C / N ratio, etc., as shown in Table 11 are as shown in Table 11, and the total volume of the bark in each treatment zone is mixed with the soil generated from the water treatment plant so that the total volume becomes 50 m 3 or more. Deposited on. The mixing ratio of the bark with respect to the water purification plant generating soil was adjusted so that the C / N ratio at the time of mixing was 20-30. The turnover operation was controlled so as to be 40 to 50 ° C. in all the treatment sections. In the investigation, a thermocouple was installed at a depth of 50 cm from the deposition surface, and temperature data over time was measured. Containing contaminated soil of Phythium aphanidermatum, a plant pathogen, with a nylon mesh sheet, buried at a depth of 50 cm from the surface layer inside each pile, excavating the buried soil two weeks after the deposition, and the density of Psium Was measured. In addition, the pH, EC, inorganic nitrogen content, and water-soluble manganese content of the water purification plant generated soil after the test were investigated. In addition, plant cultivation culture soil mainly composed of water purification plant soil was prepared, and plant certification by Yugao was conducted. The composition of the culture soil was the soil generated from the water purification plant, and the raw soil was 50% by volume, the bark compost was 30% by volume, the peat moss was 15% by volume, and the cocopyt was 5% by volume.
[0037]
[Table 11]
Figure 0004532683
[0038]
2) Results Table 12 shows the results of measuring changes in the internal temperature of the deposition during the deposition period. From the results shown in Table 12, the internal temperature of the deposition increased in all sections except Bark (6).
[0039]
[Table 12]
Figure 0004532683
[0040]
In Table 13, the measurement result of the density | concentration of Psium-genus microbe 2 weeks after a process start was shown. As is clear from the results in Table 13, no detection was made except for bark (6), but a higher value was obtained for bark (6).
[0041]
[Table 13]
Figure 0004532683
[0042]
Table 14 shows the results of measuring the chemistry after sedimentation fermentation. As is clear from the results in Table 14, the pH of bark (6) was lower than that of the other sections, and the other values were 6.0 to 6.5, which was almost appropriate. EC was as low as 0.1 for Burke (1), increased with a decrease in Burke's C / N ratio, and reached the highest value at 2.0 for Burke (6). Inorganic nitrogen showed the same tendency as EC. The water-soluble manganese content was not detected in bark (1) and (2), but increased with a decrease in the C / N ratio in bark and was significantly higher in bark (6). .
[0043]
[Table 14]
Figure 0004532683
[0044]
Table 15 shows the results of the plant assay using Yugao. As can be seen from the results in Table 15, the weight of bark (2), (3), (4), (5) is higher than bark (1), (6), (3) and (4) were the highest. Also, bark (6) showed manganese excess damage such as browning of the leaf edge, and bark (1) showed nitrogen deficiency symptoms such as cotyledon yellowing and markedly suppressed growth.
[0045]
[Table 15]
Figure 0004532683
[0046]
As described above, in the present invention, when the water purification plant generated soil is sufficiently deposited and fermented and used as a plant growing culture soil, the plant does not cause nitrogen deficiency, manganese excess, etc., and the water purification plant generated soil with stable fertility is produced. In order to obtain, the organic material added to the water purification plant generation soil during the sedimentation fermentation is deposited for a period of 1 to 10 years, more preferably 5 to 10 years without adding nitrogen, and the C / N ratio is 20 It has been found that it is desirable to adjust to 100 or less, preferably 30 or more and 80 or less.
[0047]
【The invention's effect】
In the present invention, when depositing a mixture obtained by adding organic materials to the soil generated from a water purification plant, the internal temperature is controlled at 40 ° C. or more and less than 50 ° C., thereby maintaining the decomposition of organic matter by microorganisms and maintaining the decomposition of organic matter by microorganisms. When plant pathogens such as the above and weed seeds are killed and further used as a material for plant growth medium, excess ammonia in plants can be avoided and nitrogen deficiency in plants due to nitrogen consumption by microorganisms can be avoided.
Furthermore, in the present invention, the C / N ratio of the mixture obtained by adding the organic material to the water generation plant soil is controlled to be 10 or more and 30 or less, so that the C / N ratio after the completion of the sedimentation fermentation is stabilized and the plant is grown. It is possible to suppress the nitrogen deficiency of the plant due to excessive organication of the fertilizer necessary for supplying the fertilizer to the plant stably.

Claims (5)

浄水場発生土に有機物資材を添加して得られる混合物のC/N比を10以上30以下に調整し、次いで該混合物を堆積し、堆積内部の温度を40℃以上50℃未満に維持して、堆積発酵して得られる植物育成培地用資材。Adjust the C / N ratio of the mixture obtained by adding organic materials to the water generated from the water purification plant to 10 or more and 30 or less, then deposit the mixture, and maintain the temperature inside the deposition at 40 ° C or more and less than 50 ° C. Plant growth medium material obtained by sedimentation fermentation. 添加する有機物資材は、C/N比が20以上100以下である請求項1の植物育成培地用資材。The plant growth medium material according to claim 1, wherein the organic material to be added has a C / N ratio of 20 to 100. 添加する有機物資材が、窒素源を添加しないで1から10年間堆積したバーク、おが屑及び剪定枝チップから選ばれる木質系資材である請求項1または2の植物育成培地用資材。The plant growth medium material according to claim 1 or 2, wherein the organic material to be added is a wood-based material selected from bark, sawdust and pruned branch chips accumulated for 1 to 10 years without adding a nitrogen source. 浄水場発生土に有機物資材を添加して得られる混合物を堆積発酵させる際に、切り返しを行う請求項1から3のいずれかの植物育成培地用資材。The plant growth medium material according to any one of claims 1 to 3, wherein when the mixture obtained by adding an organic material to the water purification plant soil is subjected to sedimentation and fermentation, turning is performed. 植物育成培地用に用いた場合に、植物病原菌障害、植物のアンモニア過剰症及び/又は窒素欠乏症が軽減される請求項1から4のいずれかの植物育成培地用資材。The plant growth medium material according to any one of claims 1 to 4, wherein when used for a plant growth medium, plant pathogen damage, plant ammonia excess and / or nitrogen deficiency are reduced.
JP2000198745A 2000-06-30 2000-06-30 Plant growth medium materials Expired - Fee Related JP4532683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000198745A JP4532683B2 (en) 2000-06-30 2000-06-30 Plant growth medium materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000198745A JP4532683B2 (en) 2000-06-30 2000-06-30 Plant growth medium materials

Publications (2)

Publication Number Publication Date
JP2002017158A JP2002017158A (en) 2002-01-22
JP4532683B2 true JP4532683B2 (en) 2010-08-25

Family

ID=18696864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000198745A Expired - Fee Related JP4532683B2 (en) 2000-06-30 2000-06-30 Plant growth medium materials

Country Status (1)

Country Link
JP (1) JP4532683B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031007A (en) * 2010-07-30 2012-02-16 Sumitomo Forestry Co Ltd Method for efficiently producing bark compost

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56120595A (en) * 1980-02-22 1981-09-21 Hitachi Chemical Co Ltd Method of composting hard fermentation organic matter
JPS6385080A (en) * 1986-09-26 1988-04-15 川崎製鉄株式会社 Method of composting water filtration sludge
JPH05207816A (en) * 1992-01-28 1993-08-20 Fujimi Kogyo Kk Production of gradated culture soil of microorganism treatment of water cleaning cake
JPH067029A (en) * 1992-06-09 1994-01-18 Yasuyuki Miyamoto Material for growth of plant and its production
JPH10155358A (en) * 1996-12-02 1998-06-16 Sumitomo Forestry Co Ltd Manufacture of culture medium for growing plant by accumulation and turning of water purification processing generated soil
JP2000041479A (en) * 1998-08-04 2000-02-15 Hokuriku Regional Constr Bureau Ministry Of Constr Treatment of dehydrated cake and culture material made thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56120595A (en) * 1980-02-22 1981-09-21 Hitachi Chemical Co Ltd Method of composting hard fermentation organic matter
JPS6385080A (en) * 1986-09-26 1988-04-15 川崎製鉄株式会社 Method of composting water filtration sludge
JPH05207816A (en) * 1992-01-28 1993-08-20 Fujimi Kogyo Kk Production of gradated culture soil of microorganism treatment of water cleaning cake
JPH067029A (en) * 1992-06-09 1994-01-18 Yasuyuki Miyamoto Material for growth of plant and its production
JPH10155358A (en) * 1996-12-02 1998-06-16 Sumitomo Forestry Co Ltd Manufacture of culture medium for growing plant by accumulation and turning of water purification processing generated soil
JP2000041479A (en) * 1998-08-04 2000-02-15 Hokuriku Regional Constr Bureau Ministry Of Constr Treatment of dehydrated cake and culture material made thereof

Also Published As

Publication number Publication date
JP2002017158A (en) 2002-01-22

Similar Documents

Publication Publication Date Title
Roger et al. Blue-green algae and rice
Kundu et al. Efficient management of soil and biologically fixed N2 in intensively-cultivated rice fields
CN101445405B (en) Compound bio-organic fertilizer and manufacturing method thereof
US20030066322A1 (en) Microbiologically accelerated humus and method and apparatus for producing same
CN109626766A (en) A kind of ecology of urban river is regulated and stored the construction method in lake
US3969844A (en) Soil treatment methods
CN102992877A (en) Flower seedling wood cutting medium
CN112889606A (en) Rice straw full-amount direct returning cultivation method suitable for western Jilin area
CN106912215A (en) A kind of method for carrying out facility agricultural soil disease control using anaerobic fermentation mode in situ
CN112425476A (en) Mangrove plant seedling raising substrate and seedling raising method
JP4532683B2 (en) Plant growth medium materials
CN114275903A (en) River sediment ecological restoration method
Bhatia et al. Greenhouse gas emission and carbon sequestration in conservation agriculture
Van Gent et al. The Balanta rice farming system in Guinea-Bissau
Biddlestone et al. A review of aerobic biodegradation of solid wastes
CN114671528A (en) Method for treating aquaculture wastewater by using aquatic plants
Javeed et al. Soil Biodiversity and Climate Change
Buck Ráb: A unique system of cultivating rice in western India
CA1047784A (en) Soil treatment method
Fazliev et al. EFFICIENCY OF USE OF CLAY WATER WITH DROP IRRIGATION
Krishnapriya et al. The Beneficial Effect of Thermochemical Organic Fertilizer and Root Endophytic Fungi on the Growth of Tomato (Solanum lycopersicum L.)
Winchester et al. Methane and nitrogen gases from rice fields of China—possible effects of microbiology, benthic fauna, fertilizer, and agricultural practice
Soil Climate change mitigation through soil carbon sequestration K. Srinivas Principal Scientist, CRIDA, Hyderabad K. Srinivas1@ icar. gov. in
Hoitink Compost use for disease suppression
Sipayung et al. The influence of biochar with pH, CEC, C organic on paddy field

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100604

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100611

R150 Certificate of patent or registration of utility model

Ref document number: 4532683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees