JP4531553B2 - Polyvinyl alcohol resin and use thereof - Google Patents

Polyvinyl alcohol resin and use thereof Download PDF

Info

Publication number
JP4531553B2
JP4531553B2 JP2004369718A JP2004369718A JP4531553B2 JP 4531553 B2 JP4531553 B2 JP 4531553B2 JP 2004369718 A JP2004369718 A JP 2004369718A JP 2004369718 A JP2004369718 A JP 2004369718A JP 4531553 B2 JP4531553 B2 JP 4531553B2
Authority
JP
Japan
Prior art keywords
pva
polyvinyl alcohol
polymerization
resin
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004369718A
Other languages
Japanese (ja)
Other versions
JP2006176589A (en
Inventor
光夫 渋谷
昌宏 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP2004369718A priority Critical patent/JP4531553B2/en
Publication of JP2006176589A publication Critical patent/JP2006176589A/en
Application granted granted Critical
Publication of JP4531553B2 publication Critical patent/JP4531553B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、新規のポリビニルアルコール系樹脂及びその用途に関し、さらに詳しくは、水溶液の粘度安定性、架橋剤との反応性、フィルムとしたときの水溶性、延伸性、ガスバリヤー性、乳化剤とした時のエマルジョンの放置安定性に優れたポリビニルアルコール系樹脂及びその用途に関するものである。   The present invention relates to a novel polyvinyl alcohol resin and use thereof, and more specifically, viscosity stability of aqueous solution, reactivity with a crosslinking agent, water solubility when used as a film, stretchability, gas barrier property, and emulsifier. It is related with the polyvinyl alcohol-type resin excellent in the standing stability of the emulsion at the time, and its use.

従来より、ポリビニルアルコール系樹脂(以下、ポリビニルアルコールをPVAと略記する)は、その優れた水溶性、界面特性、皮膜特性(造膜性、強度、耐油性等)、等を利用して、分散剤、乳化剤、懸濁剤、繊維加工剤、紙加工剤、バインダー、接着剤、フィルム等に広く用いられている。そして、特殊な場合を除いて通常は、水溶液として使用に供せられている。
その目的に合わせて種々のケン化度のPVA系樹脂が使用されるが、比較的ケン化度の高いPVA系樹脂の場合、その水溶液は、水温の低い冬期等においては、時間と共に粘度が上昇し、極端な場合にはゲル化して流動性が全くなくなることもある。また、紙加工用途などの場合、近年、高速塗工性が重要な課題となっているが、かかる高ケン化度のPVA系樹脂水溶液は、高せん断速度下で増粘し、塗工性が低下するという問題点があった。
Conventionally, polyvinyl alcohol resins (hereinafter, polyvinyl alcohol is abbreviated as PVA) are dispersed using their excellent water solubility, interface properties, film properties (film forming properties, strength, oil resistance, etc.), etc. Widely used in agents, emulsifiers, suspending agents, fiber processing agents, paper processing agents, binders, adhesives, films and the like. And except for special cases, it is usually used as an aqueous solution.
Depending on the purpose, PVA resins with various saponification degrees are used. In the case of PVA resins with a relatively high saponification degree, the viscosity of the aqueous solution increases with time in winter when the water temperature is low. However, in extreme cases, it may gel and lose its fluidity at all. In recent years, high-speed coating properties have become an important issue for paper processing applications. However, such high-saponification degree PVA-based resin aqueous solutions are thickened at high shear rates and have high coating properties. There was a problem that it decreased.

一方、部分ケン化型のPVA系樹脂ではこのような問題点は少ないが、水溶液が発泡しやすかったり、フィルム等の成形材料として用いた場合に、残存アセチル基に由来する酢酸臭のため、食品や化粧品などの包装素材としては使用できないというの問題点があった。   On the other hand, the partially saponified PVA resin has few such problems. However, when the aqueous solution is easily foamed or used as a molding material such as a film, the food has an odor of acetic acid derived from residual acetyl groups. There is a problem that it cannot be used as packaging materials for cosmetics and cosmetics.

また、PVA系樹脂からなるフィルムは優れたガスバリヤー性を示し、この特徴は高ケン化度PVA系樹脂からなるフィルムを高度に延伸することによって、さらに向上させることが可能であるが、通常の高ケン化度PVA系樹脂は延伸性に乏しく、そのフィルムは柔軟性に欠けるという問題点があった。   In addition, a film made of a PVA-based resin exhibits excellent gas barrier properties, and this feature can be further improved by highly stretching a film made of a highly saponified PVA-based resin. The high saponification degree PVA resin has a problem that the stretchability is poor and the film lacks flexibility.

上述の問題点、特に、高ケン化度PVA系樹脂水溶液の低温粘度安定性および高速塗工性の改善を目的として、種々の変性PVAが検討されており、例えば、脂肪族ビニルエステルの重合の際に重合機内の圧力を大気圧よりも高い圧力に保ち、大気圧下での反応液の沸点温度より2〜80℃高い温度で重合し、得られた脂肪族ポリビニルエステルをケン化してなるPVA系樹脂(例えば、特許文献1参照。)、および、かかるPVA系樹脂を主成分とする高速塗工性に優れたPVA系紙コート剤(例えば、特許文献2参照。)が提案されている。
また、本出願人も、側鎖に1,2−グリコール成分を含有するPVA系樹脂を提案している(例えば、特許文献3、および特許文献4参照。)。
特開平11−279210号 特開平11−279986号 特開2002−284818号 特開2004−285143号
Various modified PVAs have been studied for the purpose of improving the low-temperature viscosity stability and high-speed coating properties of the above-mentioned problems, particularly high-saponification degree PVA-based resin aqueous solutions. For example, polymerization of aliphatic vinyl esters In this case, the pressure in the polymerization machine is maintained at a pressure higher than atmospheric pressure, polymerization is performed at a temperature 2-80 ° C. higher than the boiling point of the reaction solution under atmospheric pressure, and the resulting aliphatic polyvinyl ester is saponified. A PVA-based resin (see, for example, Patent Document 1) and a PVA-based paper coating agent that has such a PVA-based resin as a main component and is excellent in high-speed coating properties (for example, see Patent Document 2) have been proposed.
The present applicant has also proposed a PVA-based resin containing a 1,2-glycol component in the side chain (see, for example, Patent Document 3 and Patent Document 4).
JP-A-11-279210 JP-A-11-279986 JP 2002-284818 A JP 2004-285143 A

しかしながら、特許文献1および特許文献2の開示技術では、重合温度を上げるために加圧する必要があるため、製造上加圧設備を設けなければならないといった問題点があり、又、得られたPVA系樹脂は、その主鎖中に1,2−グリコール結合が存在するため、耐熱性に乏しく、着色し易いという欠点があった。更に、導入できる1,2−グリコール量の制御も容易ではなく、水溶液の粘度安定性や高速塗工時の塗工性についてもまだまだ満足のいくものではなく、更なる向上が求められており、また、存在する水酸基がすべて2級アルコールであるため、架橋剤等との反応性においても充分ではなかった。   However, in the disclosed techniques of Patent Document 1 and Patent Document 2, since it is necessary to pressurize in order to increase the polymerization temperature, there is a problem that a pressurization facility must be provided for the production, and the obtained PVA system Since the resin has a 1,2-glycol bond in its main chain, it has a drawback of poor heat resistance and easy coloration. Furthermore, the control of the amount of 1,2-glycol that can be introduced is not easy, and the viscosity stability of the aqueous solution and the coating property at the time of high-speed coating are still not satisfactory, and further improvement is required. Further, since all the hydroxyl groups present are secondary alcohols, the reactivity with a crosslinking agent or the like is not sufficient.

また、特許文献3および特許文献4に開示されたPVA系樹脂は、下記一般式(3)に示される構造単位を有する変性PVA系樹脂であり、水溶液の粘度安定性や粘度安定性に優れ、高速塗工時の高剪断速度下においても良好な流動性を有し、1級水酸基の存在によって架橋剤との反応性が高く、低結晶性であるにもかかわらず分子内および分子間の水素結合力が維持されており、耐水性に優れたフィルムを得ることができるものであるが、共重合によって導入された一般式(3)の構造単位あたりの1級水酸基がひとつであるため、所望の特性を得る為には、変性量を多くしなければならないという課題が残されているものであった。
In addition, the PVA resin disclosed in Patent Document 3 and Patent Document 4 is a modified PVA resin having a structural unit represented by the following general formula (3), which is excellent in viscosity stability and viscosity stability of an aqueous solution, Good fluidity even at high shear rates during high-speed coating, high reactivity with crosslinking agents due to the presence of primary hydroxyl groups, and intramolecular and intermolecular hydrogen despite low crystallinity Although the bonding strength is maintained and a film excellent in water resistance can be obtained, since there is one primary hydroxyl group per structural unit of the general formula (3) introduced by copolymerization, it is desirable. In order to obtain the above characteristics, there remains a problem that the amount of modification must be increased.

しかるに、本発明者はかかる事情に鑑み鋭意研究を重ねた結果、下記一般式(1)で表される構造単位を含有する新規PVA系樹脂が上記目的に合致することを見出し、本発明を完成した。
(式中、RおよびRはそれぞれ独立してアルキル基を有していてもよい炭素数1〜3のアルキレン基である)
However, as a result of intensive studies in view of such circumstances, the present inventor has found that a novel PVA-based resin containing a structural unit represented by the following general formula (1) meets the above purpose, and completed the present invention. did.
(Wherein R 1 and R 2 are each independently an alkylene group having 1 to 3 carbon atoms which may have an alkyl group)

本発明の新規PVA系樹脂は、特定の構造単位を有しており、高ケン化度品であっても低結晶性であるため、水溶性、水溶液の粘度安定性、高速塗工性に優れ、フィルムとしたときの延伸性に優れ、低結晶性にもかかわらず水素結合力が維持されている為、ガスバリヤー性に優れ、さらに各種架橋剤との反応性に優れるため、接着剤、成形物、包装材用水溶性フィルム、被覆剤、紙加工剤、乳化剤、懸濁剤、ガスバリヤー性フィルム、偏光フィルム等の用途に好適である。
また、一般式(1)で表される構造単位中に、1級水酸基が二個存在するため、比較的少ない変性量で上述の特徴が得られるため、経済的にもメリットが大きい。
The novel PVA-based resin of the present invention has a specific structural unit, and even if it is a highly saponified product, it has low crystallinity, so it is excellent in water solubility, aqueous solution viscosity stability, and high-speed coating property. Excellent stretchability when formed into a film, hydrogen bonding strength is maintained despite low crystallinity, excellent gas barrier properties, and excellent reactivity with various cross-linking agents. Adhesives and molding Suitable for applications such as products, water-soluble films for packaging materials, coating agents, paper processing agents, emulsifiers, suspending agents, gas barrier films and polarizing films.
Further, since two primary hydroxyl groups are present in the structural unit represented by the general formula (1), the above-mentioned characteristics can be obtained with a relatively small amount of modification, so that there is a great economic advantage.

以下、本発明について詳述する。
本発明の新規PVA系樹脂は、下記一般式(1)で示される構造単位を有するPVA系樹脂である。
上記一般式(1)において、R及びRはそれぞれ独立してアルキル基を有していてもよい炭素数1〜3のアルキレン基である。
Hereinafter, the present invention will be described in detail.
The novel PVA resin of the present invention is a PVA resin having a structural unit represented by the following general formula (1).
In the general formula (1), R 1 and R 2 are each independently an alkylene group having 1 to 3 carbon atoms which may have an alkyl group.

かかるPVA系樹脂を得るに当たっては、特に限定されないが、ビニルエステル系単量体と下記一般式(2)で示される化合物との共重合体をケン化する方法が好ましく用いられる。
[化4]
RO−R−CH=CH―R−OR (2)
上記一般式(2)において、R及びRはそれぞれ独立してアルキル基を有していてもよい炭素数1〜3のアルキレン基であり、R及びRは、それぞれ独立して水素原子または−CO−R基(式中、Rは、アルキル基、好ましくはメチル基、プロピル基、ブチル基、ヘキシル基またはオクチル基であり、かかるアルキル基は必要に応じて、ハロゲン基、水酸基、エステル基、カルボン酸基、スルホン酸基等の置換基を有していてもよい)である。
一般式(2)で示される具体的な化合物としては、1,4−ジヒドロキシ−2−ブテン、1,4−ジアシロキシ−2−ブテン、1−ヒドロキシ−4−アシロキシ−2−ブテン、1,4−ジアシロキシ−1−メチル−2−ブテン、1,5−ジアシロキシ−2−ペンテン、1,6−ジアシロキシ−2−ヘキセン、1,6−ジアシロキシ−3−ヘキセンなどが挙げられ、なかでも、共重合反応性および工業的な取り扱いにおいて優れるという点で、R、Rがメチレン基で、R、Rが−CO−Rで、Rがアルキル基である1,4−ジアシロキシ−2−ブテンが好ましく、そのなかでも特にRがメチル基である1,4−ジアセトキシ−2−ブテンがより好ましい。
In obtaining such a PVA-based resin, although not particularly limited, a method of saponifying a copolymer of a vinyl ester monomer and a compound represented by the following general formula (2) is preferably used.
[Chemical formula 4]
R 3 O—R 1 —CH═CH—R 2 —OR 4 (2)
In the general formula (2), R 1 and R 2 are each independently an alkylene group having 1 to 3 carbon atoms which may have an alkyl group, and R 3 and R 4 are each independently hydrogen. An atom or —CO—R 5 group (wherein R 5 is an alkyl group, preferably a methyl group, a propyl group, a butyl group, a hexyl group or an octyl group, and such an alkyl group is optionally a halogen group, And may have a substituent such as a hydroxyl group, an ester group, a carboxylic acid group, or a sulfonic acid group.
Specific examples of the compound represented by the general formula (2) include 1,4-dihydroxy-2-butene, 1,4-diacyloxy-2-butene, 1-hydroxy-4-acyloxy-2-butene, 1,4 -Diacyloxy-1-methyl-2-butene, 1,5-diacyloxy-2-pentene, 1,6-diacyloxy-2-hexene, 1,6-diacyloxy-3-hexene, among others, copolymerization 1,4-diasiloxy-2 in which R 1 and R 2 are methylene groups, R 3 and R 4 are —CO—R 5 , and R 5 is an alkyl group in that they are excellent in reactivity and industrial handling -Butene is preferable, and 1,4-diacetoxy-2-butene in which R 3 is a methyl group is particularly preferable.

ビニルエステル系単量体としては、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、バーサチック酸ビニル等が挙げられる。なかでも、経済的な点から酢酸ビニルが好ましく用いられる。   Examples of vinyl ester monomers include vinyl formate, vinyl acetate, vinyl propionate, vinyl valerate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, Examples include vinyl versatate. Of these, vinyl acetate is preferably used from the economical viewpoint.

また、本発明においては、上記の共重合成分以外にも本発明の目的を阻害しない範囲において、他の単量体を0.5〜10モル%程度共重合させることも可能で、例えばエチレン、プロピレン、イソブチレン、α−オクテン、α−ドデセン、α−オクタデセン等のオレフィン類、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、無水マレイン酸、イタコン酸等の不飽和酸類あるいはその塩あるいはモノ又はジアルキルエステル等、アクリロニトリル、メタアクリロニトリル等のニトリル類、ジアセトンアクリルアミド、アクリルアミド、メタクリルアミド等のアミド類、エチレンスルホン酸、アリルスルホン酸、メタアリルスルホン酸等のオレフィンスルホン酸あるいはその塩、アルキルビニルエーテル類、ジメチルアリルビニルケトン、N−ビニルピロリドン、塩化ビニル、塩化ビニリデン、ポリオキシエチレン(メタ)アリルエーテル、ポリオキシプロピレン(メタ)アリルエーテル等のポリオキシアルキレン(メタ)アリルエーテル、ポリオキシエチレン(メタ)アクリレート、ポリオキシプロピレン(メタ)アクリレート等のポリオキシアルキレン(メタ)アクリレート、ポリオキシエチレン(メタ)アクリルアミド、ポリオキシプロピレン(メタ)アクリルアミド等のポリオキシアルキレン(メタ)アクリルアミド、ポリオキシエチレン(1−(メタ)アクリルアミド−1,1−ジメチルプロピル)エステル、ポリオキシエチレンビニルエーテル、ポリオキシプロピレンビニルエーテル、ポリオキシエチレンアリルアミン、ポリオキシプロピレンアリルアミン、ポリオキシエチレンビニルアミン、ポリオキシプロピレンビニルアミン等が挙げられる。   Further, in the present invention, in addition to the above copolymerization component, other monomers can be copolymerized in an amount of about 0.5 to 10 mol% within a range that does not impair the object of the present invention. Olefins such as propylene, isobutylene, α-octene, α-dodecene, α-octadecene, unsaturated acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, maleic anhydride, itaconic acid or salts thereof, mono- or dialkyl Esters, nitriles such as acrylonitrile and methacrylonitrile, amides such as diacetone acrylamide, acrylamide and methacrylamide, olefin sulfonic acids such as ethylene sulfonic acid, allyl sulfonic acid and methallyl sulfonic acid, or salts thereof, alkyl vinyl ethers, Dimethylallyl vinyl ketone N-vinylpyrrolidone, vinyl chloride, vinylidene chloride, polyoxyethylene (meth) allyl ether, polyoxyalkylene (meth) allyl ether such as polyoxypropylene (meth) allyl ether, polyoxyethylene (meth) acrylate, polyoxypropylene Polyoxyalkylene (meth) acrylates such as (meth) acrylate, polyoxyalkylene (meth) acrylamides such as polyoxyethylene (meth) acrylamide, polyoxypropylene (meth) acrylamide, and polyoxyethylene (1- (meth) acrylamide- 1,1-dimethylpropyl) ester, polyoxyethylene vinyl ether, polyoxypropylene vinyl ether, polyoxyethylene allylamine, polyoxypropylene allylamine, poly Carboxymethyl ethylene vinyl amine, polyoxypropylene vinyl amine.

さらに、N−アクリルアミドメチルトリメチルアンモニウムクロライド、N−アクリルアミドエチルトリメチルアンモニウムクロライド、N−アクリルアミドプロピルトリメチルアンモニウムクロライド、2−アクリロキシエチルトリメチルアンモニウムクロライド、2−メタクリロキシエチルトリメチルアンモニウムクロライド、2−ヒドロキシ−3−メタクリロイルオキシプロピルトリメチルアンモニウムクロライド、アリルトリメチルアンモニウムクロライド、メタアリルトリメチルアンモニウムクロライド、3−ブテントリメチルアンモニウムクロライド、ジメチルジアリルアンモニウムクロライド、ジエチルジアリルアンモニウムクロライド等のカチオン基含有モノマー、アセトアセチル基含有モノマー、3,4−ジアセトキシ−1−ブテン、エチレンカーボネート、ビニルエチレンカーボネート、グリセリンモノアリルエーテル、酢酸イソプロペニル、1−メトキシビニルアセテート等も挙げられる。   Furthermore, N-acrylamidomethyltrimethylammonium chloride, N-acrylamidoethyltrimethylammonium chloride, N-acrylamidopropyltrimethylammonium chloride, 2-acryloxyethyltrimethylammonium chloride, 2-methacryloxyethyltrimethylammonium chloride, 2-hydroxy-3- Cationic group-containing monomers such as methacryloyloxypropyltrimethylammonium chloride, allyltrimethylammonium chloride, methallyltrimethylammonium chloride, 3-butenetrimethylammonium chloride, dimethyldiallylammonium chloride, diethyldiallylammonium chloride, acetoacetyl group-containing monomers, 3, 4 -Diacetoxy- - butene, ethylene carbonate, vinyl ethylene carbonate, glycerin monoallyl ether, isopropenyl acetate, also 1-methoxy-vinyl acetate, and the like.

上記のビニルエステル系単量体と一般式(2)で示される化合物(さらには他の単量体)を共重合する方法としては、特に制限はなく、塊状重合、溶液重合、懸濁重合、分散重合、またはエマルジョン重合等の公知の方法を採用することができるが、通常は溶液重合が行われる。
共重合時の単量体成分の仕込み方法としては特に制限されず、一括仕込み、分割仕込み、連続仕込み等任意の方法が採用されるが、一般式(1)で示される構造単位が共重合体の分子鎖中に均一に分布させられる点で、滴下重合が好ましく、特にはHANNA法に基づく重合方法が好ましい。
また、重合度調整や末端基を変性する目的で、アセトアルデヒド、プロピオンアルデヒド等のアルデヒド化合物や、チオ酢酸、ドデシルメルカプタン、ラウリルメルカプタン等のメルカプタン化合物などの各種連鎖移動剤を使用することも可能である。
The method for copolymerizing the above vinyl ester monomer and the compound represented by the general formula (2) (and other monomers) is not particularly limited, and includes bulk polymerization, solution polymerization, suspension polymerization, A known method such as dispersion polymerization or emulsion polymerization can be employed, but solution polymerization is usually performed.
The charging method of the monomer component at the time of copolymerization is not particularly limited, and any method such as batch charging, split charging, continuous charging and the like can be adopted, but the structural unit represented by the general formula (1) is a copolymer. In view of being uniformly distributed in the molecular chain, drop polymerization is preferable, and a polymerization method based on the HANNA method is particularly preferable.
In addition, various chain transfer agents such as aldehyde compounds such as acetaldehyde and propionaldehyde, and mercaptan compounds such as thioacetic acid, dodecyl mercaptan and lauryl mercaptan can be used for the purpose of adjusting the degree of polymerization and modifying the end group. .

かかる共重合で用いられる溶媒としては、通常、メタノール、エタノール、イソプロピルアルコール、n−プロパノール、ブタノール等の低級アルコールやアセトン、メチルエチルケトン等のケトン類等が挙げられ、工業的には、メタノールが好適に使用される。
溶媒の使用量は、目的とする共重合体の重合度に合わせて、溶媒の連鎖移動定数を考慮して適宜選択すればよく、例えば、溶媒がメタノールの時は、S(溶媒)/M(単量体)=0.01〜10(重量比)、好ましくは0.05〜3(重量比)程度の範囲から選択される。
Examples of the solvent used in such copolymerization include usually lower alcohols such as methanol, ethanol, isopropyl alcohol, n-propanol and butanol, and ketones such as acetone and methyl ethyl ketone, and industrially preferred is methanol. used.
The amount of the solvent used may be appropriately selected in consideration of the chain transfer constant of the solvent in accordance with the degree of polymerization of the target copolymer. For example, when the solvent is methanol, S (solvent) / M ( Monomer) = 0.01 to 10 (weight ratio), preferably 0.05 to 3 (weight ratio).

共重合に当たっては重合触媒が用いられ、かかる重合触媒としては、例えばアゾビスイソブチロニトリル、過酸化アセチル、過酸化ベンゾイル、過酸化ラウリル等の公知のラジカル重合触媒やアゾビスジメチルバレロニトリル、アゾビスメトキシジメチルバレロニトリル等の低温活性ラジカル重合触媒等が挙げられ、重合触媒の使用量は、触媒の種類により異なり一概には決められないが、重合速度に応じて任意に選択される。例えば、アゾイソブチロニトリルや過酸化アセチルを用いる場合、ビニルエステル系単量体に対して0.01〜0.2モル%が好ましく、特には0.02〜0.15モル%が好ましい。
また、共重合反応の反応温度は、30℃〜沸点程度で行われ、より具体的には、35〜150℃、好ましくは40〜75℃の範囲で行われる。
For the copolymerization, a polymerization catalyst is used. Examples of the polymerization catalyst include known radical polymerization catalysts such as azobisisobutyronitrile, acetyl peroxide, benzoyl peroxide, lauryl peroxide, azobisdimethylvaleronitrile, azo Examples include low-temperature active radical polymerization catalysts such as bismethoxydimethylvaleronitrile, and the amount of polymerization catalyst used varies depending on the type of catalyst and cannot be determined unconditionally, but is arbitrarily selected according to the polymerization rate. For example, when azoisobutyronitrile or acetyl peroxide is used, 0.01 to 0.2 mol% is preferable with respect to the vinyl ester monomer, and 0.02 to 0.15 mol% is particularly preferable.
The reaction temperature of the copolymerization reaction is about 30 ° C. to the boiling point, more specifically 35 to 150 ° C., preferably 40 to 75 ° C.

本発明においては、一般式(2)で示される化合物の共重合割合は特に限定されないが、後述の一般式(1)で示される構造単位の導入量に合わせて共重合割合を決定すればよい。   In the present invention, the copolymerization ratio of the compound represented by the general formula (2) is not particularly limited, but the copolymerization ratio may be determined in accordance with the introduction amount of the structural unit represented by the general formula (1) described later. .

得られた共重合体は、次いでケン化されるのであるが、かかるケン化にあたっては、上記で得られた共重合体をアルコール又は含水アルコールに溶解し、アルカリ触媒又は酸触媒を用いて行われる。アルコールとしては、メタノール、エタノール、プロパノール、tert−ブタノール等が挙げられるが、メタノールが特に好ましく用いられる。アルコール中の共重合体の濃度は系の粘度により適宜選択されるが、通常は10〜60重量%の範囲から選ばれる。ケン化に使用される触媒としては、水酸化ナトリウム、水酸化カリウム、ナトリウムメチラート、ナトリウムエチラート、カリウムメチラート、リチウムメチラート等のアルカリ金属の水酸化物やアルコラートの如きアルカリ触媒、硫酸、塩酸、硝酸、メタスルフォン酸、ゼオライト、カチオン交換樹脂等の酸触媒が挙げられる。   The obtained copolymer is then saponified. In such saponification, the copolymer obtained above is dissolved in an alcohol or a hydrous alcohol, and the reaction is carried out using an alkali catalyst or an acid catalyst. . Examples of the alcohol include methanol, ethanol, propanol, tert-butanol and the like, and methanol is particularly preferably used. The concentration of the copolymer in the alcohol is appropriately selected depending on the viscosity of the system, but is usually selected from the range of 10 to 60% by weight. Catalysts used for saponification include alkali catalysts such as alkali metal hydroxides and alcoholates such as sodium hydroxide, potassium hydroxide, sodium methylate, sodium ethylate, potassium methylate, lithium methylate, etc., sulfuric acid, Examples include acid catalysts such as hydrochloric acid, nitric acid, metasulfonic acid, zeolite, and cation exchange resin.

かかるケン化触媒の使用量については、ケン化方法、目標とするケン化度等により適宜選択されるが、アルカリ触媒を使用する場合は通常、ビニルエステル系単量体及び一般式(2)で示される化合物の合計量1モルに対して0.1〜30ミリモル、好ましくは2〜15ミリモルの割合が適当である。
また、ケン化反応の反応温度は特に限定されないが、10〜60℃(特には、20〜50℃)であることが好ましい。
The amount of the saponification catalyst used is appropriately selected depending on the saponification method, the target degree of saponification, and the like. When an alkali catalyst is used, the vinyl ester monomer and the general formula (2) are usually used. A ratio of 0.1 to 30 mmol, preferably 2 to 15 mmol, is suitable for 1 mol of the total amount of the compounds shown.
The reaction temperature for the saponification reaction is not particularly limited, but is preferably 10 to 60 ° C (particularly 20 to 50 ° C).

本発明のPVA系樹脂の平均重合度(JIS K6726に準拠して測定)は使用目的により適宜選択され、特に限定されないが、通常は300〜4000(さらには300〜2600、特には500〜2200)であることが好ましく、かかる平均重合度が300未満の場合、塗膜やフィルム強度が低くなる場合があるため好ましくなく、4000を超えると一般式(1)で示される構造単位の導入量を本発明の効果が得られる程度まで多くすることが困難となったり、重合速度が極端に遅くなったりする場合があるため好ましくない。   The average degree of polymerization (measured in accordance with JIS K6726) of the PVA-based resin of the present invention is appropriately selected depending on the purpose of use and is not particularly limited, but is usually 300 to 4000 (more preferably 300 to 2600, particularly 500 to 2200). When the average degree of polymerization is less than 300, the coating film and the film strength may be lowered, which is not preferable. When it exceeds 4000, the introduction amount of the structural unit represented by the general formula (1) is not limited. This is not preferable because it may be difficult to increase the amount to the extent that the effect of the invention can be obtained, or the polymerization rate may become extremely slow.

また、かかるPVA系樹脂のケン化度は特に限定されず、使用目的により適宜選択されるが、通常は60モル%以上(さらには70モル%以上、特には80モル%以上)であることが好ましく、かかるケン化度が60モル%未満では水溶性が低くなるため、好ましくない。   Further, the degree of saponification of the PVA-based resin is not particularly limited and is appropriately selected depending on the purpose of use, but is usually 60 mol% or more (further 70 mol% or more, particularly 80 mol% or more). Preferably, when the saponification degree is less than 60 mol%, the water solubility becomes low, which is not preferable.

また、本発明のPVA系樹脂における一般式(1)で示される構造単位の含有量は、特に限定されないが、0.1〜20モル%(さらには0.5〜15モル%、特には1〜10モル%)であることが好ましい。かかる一般式(1)で示される構造単位の含有量が0.1モル%未満である場合、本発明の効果が充分に得られなず、逆に20モル%を超えると、PVA系樹脂の重合度が低くなり、その結果充分な塗膜強度やフィルム強度が得られなかったり、耐水性が不足する場合があるため好ましくない。   In addition, the content of the structural unit represented by the general formula (1) in the PVA resin of the present invention is not particularly limited, but is 0.1 to 20 mol% (more preferably 0.5 to 15 mol%, particularly 1). 10 mol%). When the content of the structural unit represented by the general formula (1) is less than 0.1 mol%, the effect of the present invention cannot be sufficiently obtained. The degree of polymerization is lowered, and as a result, sufficient coating strength and film strength cannot be obtained, and water resistance may be insufficient.

かくして得られた一般式(1)で示される構造単位を含有するPVA系樹脂は高ケン化度であっても低結晶性であるため、水への溶解速度が大きく、水溶液の粘度安定性にも優れており、高速塗工時の高せん断速度下においても増粘することなく良好な塗工性を有するものである。   The PVA-based resin containing the structural unit represented by the general formula (1) thus obtained has a low crystallinity even if it has a high saponification degree. Therefore, the dissolution rate in water is large and the viscosity stability of the aqueous solution is improved. It has excellent coating properties without thickening even at high shear rates during high-speed coating.

また、本発明のPVA系樹脂は種々の有機系および無機系架橋剤を併用することで、耐水性を付与することが可能である。かかる有機系架橋剤としてはアルデヒド系化合物(ホルムアルデヒド、グリオキザール、グルタルジアルデヒド等)、アミノ樹脂(尿素樹脂、グアナミン樹脂、メラミン系樹脂)、メチロール化合物(メチロール化メラミン、メチロール化尿素、メチロール化ビスフェノールS等)、エポキシ系化合物(水溶性エポキシ樹脂、ポリアミドポリアミンエピクロルヒドリン等)、ヒドラジド化合物(アジピン酸ジヒドラジド、カルボジヒドラジド、ポリヒドラジド等)、イソシアネート系化合物などが挙げられる。また、無機系架橋剤としては、ホウ酸、ホウ酸塩(ホウ砂等)、チタニウム化合物(テトラアルコキシチタネート等)、アルミニウム化合物(硫酸アルミニウム、塩化アルミニウム、硝酸アルミニウム等)、リン化合物(亜リン酸エステル、ビスフェノールA変性ポリリン酸等)、アルコキシ基やグリシジル基などの反応性官能基を有するシリコーン化合物、ジルコニウム化合物などの金属系架橋剤が有効であり、中でもイソシアネート系化合物やジルコニウム化合物が好適である。   The PVA resin of the present invention can impart water resistance by using various organic and inorganic crosslinking agents in combination. Such organic crosslinking agents include aldehyde compounds (formaldehyde, glyoxal, glutardialdehyde, etc.), amino resins (urea resins, guanamine resins, melamine resins), methylol compounds (methylolated melamine, methylolated urea, methylolated bisphenol S). Etc.), epoxy compounds (water-soluble epoxy resin, polyamide polyamine epichlorohydrin, etc.), hydrazide compounds (adipic acid dihydrazide, carbodihydrazide, polyhydrazide, etc.), isocyanate compounds and the like. Examples of inorganic crosslinking agents include boric acid, borates (borax, etc.), titanium compounds (tetraalkoxy titanate, etc.), aluminum compounds (aluminum sulfate, aluminum chloride, aluminum nitrate, etc.), phosphorus compounds (phosphorous acid) Esters, bisphenol A-modified polyphosphoric acid, etc.), silicone compounds having reactive functional groups such as alkoxy groups and glycidyl groups, and metal-based cross-linking agents such as zirconium compounds are effective. Of these, isocyanate compounds and zirconium compounds are preferred. .

かかるイソシアネート系化合物としては、トリレンジイソシアネート(TDI)、水素化TDI、トリメチロールプロパン−TDIアダクト(例えばバイエル社製、「Desmodur L」)、トリフェニルメタントリイソシアネート、メチレンビスジフェニルイソシアネート(MDI)、水素化MDI、重合MDI、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、4,4−ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート等が挙げられる。その他、ポリオールに過剰のポリイソシアネートで予めポリマー化した、末端基がイソシアネート基を持つプレポリマーも挙げられる。かかるイソシアネート系化合物の配合割合としては、イソシアネート基と水酸基のモル比(NCO/OH)が0.1〜2であることが好ましい。   Examples of the isocyanate compound include tolylene diisocyanate (TDI), hydrogenated TDI, trimethylolpropane-TDI adduct (for example, “Desmodur L” manufactured by Bayer), triphenylmethane triisocyanate, methylenebisdiphenyl isocyanate (MDI), Examples include hydrogenated MDI, polymerized MDI, hexamethylene diisocyanate, xylylene diisocyanate, 4,4-dicyclohexylmethane diisocyanate, and isophorone diisocyanate. In addition, a prepolymer having a terminal group having an isocyanate group, which is previously polymerized with an excess of polyisocyanate in a polyol, is also included. As a blending ratio of the isocyanate compound, it is preferable that the molar ratio of isocyanate group to hydroxyl group (NCO / OH) is 0.1 to 2.

また、かかるジルコニウム化合物としては、塩化ジルコニウム、酢酸ジルコニウム、酢酸ジルコニル、硝酸ジルコニウム、硝酸ジルコニル、硫酸ジルコニウム、硫酸ジルコニル、ジルコニウムアセチルアセトネート、炭酸ジルコニウムアンモニウム、炭酸ジルコニウムカリウム、オクチル酸ジルコニル、オキシ塩化ジルコニウム、ヒドロキシ塩化ジルコニウム、ヒドロキシ塩化ジルコニル等が上げられる。中でも炭酸ジルコニウムアンモニウム、炭酸ジルコニルカリウムが好ましい。
本発明のPVA系樹脂と架橋剤による耐水性を利用した応用例としては、イソシアネート系化合物を架橋剤として用いた水性ビニルウレタン型接着剤、感熱記録用媒体の保護層、インクジェット記録用媒体(インク受容層、光沢層)などが挙げられる。
Examples of the zirconium compound include zirconium chloride, zirconium acetate, zirconyl acetate, zirconium nitrate, zirconyl nitrate, zirconium sulfate, zirconyl sulfate, zirconium acetylacetonate, ammonium zirconium carbonate, potassium zirconium carbonate, zirconyl octylate, zirconium oxychloride, Examples include hydroxy zirconium chloride and hydroxy zirconyl chloride. Of these, zirconium ammonium carbonate and potassium zirconyl carbonate are preferable.
Examples of applications utilizing water resistance by the PVA resin and the crosslinking agent of the present invention include an aqueous vinyl urethane type adhesive using an isocyanate compound as a crosslinking agent, a protective layer for a thermal recording medium, an inkjet recording medium (ink) Receiving layer, gloss layer) and the like.

さらに、本発明のPVA系樹脂を製膜して得られるフィルムは水溶性に優れるため、農薬、洗剤、洗濯用衣類、土木用添加剤、殺菌剤、染料、顔料等の各種物品に対する水溶性包装材として有用である。かかる水溶性包装用途に用いるときのPVA系樹脂のケン化度は、65〜98モル%が好ましい。ただし、酸性物質、あるいはアルカリ性物質を包装する場合には、そのケン化度は98.1〜100モル%が好ましく、更には99〜100モル%が好ましい。これは、かかるケン化度が98.1モル%未満では、酸性物質やアルカリ性物質を包装し保管する際に、フィルムの水溶解性が経時により低下する恐れがあるためである。   Furthermore, since the film obtained by forming the PVA resin of the present invention is excellent in water solubility, water-soluble packaging for various articles such as agricultural chemicals, detergents, laundry clothes, civil engineering additives, bactericides, dyes, pigments, etc. Useful as a material. The saponification degree of the PVA resin when used for such water-soluble packaging is preferably 65 to 98 mol%. However, when packaging an acidic substance or an alkaline substance, the saponification degree is preferably 98.1 to 100 mol%, and more preferably 99 to 100 mol%. This is because if the degree of saponification is less than 98.1 mol%, the water solubility of the film may decrease over time when an acidic substance or an alkaline substance is packaged and stored.

さらに、かかるPVA系樹脂フィルムは延伸性に優れており、その一軸延伸フィルムは、柔軟性とガスバリヤー性を兼ね備えているため、衣類、食品などの包装材料素材等に好適である。
また、かかるPVA系樹脂フィルムを、プロトン酸などの脱水促進剤によって脱水処理を施した後、乾熱延伸、湿式延伸、などの公知の方法で延伸し、さらにホウ素化合物によって固定処理することで、ポリビニレン構造を有するPVAフィルムが得られ、かかるPVAフィルムは偏光フィルムとして有用である。
Further, such a PVA-based resin film is excellent in stretchability, and the uniaxially stretched film has flexibility and gas barrier properties, and is therefore suitable for packaging material materials such as clothing and food.
In addition, the PVA-based resin film is subjected to a dehydration treatment with a dehydration accelerator such as a protonic acid, then stretched by a known method such as dry heat stretching or wet stretching, and further fixed with a boron compound. A PVA film having a polyvinylene structure is obtained, and such a PVA film is useful as a polarizing film.

また、本発明のPVA系樹脂は、各種無機粒子の分散剤として優れており、かかる特性を利用した用途として、紙の顔料コーティング用バインダーや、インクジェット記録用媒体の無機微粒子バインダーが挙げられる。かかるインクジェット記録用媒体は、本発明のPVA系樹脂と無機微粒子を含有する塗工液を紙、フィルム、レジンコーティッドペーパーなどの支持基材上に塗工してなるもので、インク受理層、光沢層のいずれに対しても適用が可能であり、その際の無機微粒子としては、インク受理層の場合には非晶質シリカが、光沢層の場合には気相法シリカ、コロイダルシリカ、アルミナゾルなどが好適であり、特に光沢層に用いた場合、優れた光沢性が得られる。   The PVA-based resin of the present invention is excellent as a dispersant for various inorganic particles. Examples of applications utilizing such properties include binders for paper pigment coating and inorganic fine particle binders for inkjet recording media. Such an ink jet recording medium is obtained by coating a coating liquid containing the PVA resin of the present invention and inorganic fine particles on a supporting substrate such as paper, film, resin-coated paper, an ink receiving layer, It can be applied to any of the glossy layers, and the inorganic fine particles in this case include amorphous silica in the case of the ink receiving layer, and vapor phase silica, colloidal silica, alumina sol in the case of the glossy layer. In particular, when used in the gloss layer, excellent gloss can be obtained.

本発明のPVA系樹脂はその特性を利用して各種用途に使用することができ、一部の用途については前述したが、さらにその他の具体例として以下のものが挙げられる。
(1)接着剤関係
木材、紙、アルミ箔、プラスチック等の接着剤、粘着剤、再湿剤、不織布用バインダー、石膏ボードや繊維板等の各種建材用バインダー、各種粉体造粒用バインダー、セメントやモルタル用添加剤、ホットメルト型接着力、感圧接着剤、アニオン性塗料の固着剤、等。
The PVA-based resin of the present invention can be used for various applications by utilizing its characteristics, and some of the applications have been described above, but other specific examples include the following.
(1) Adhesive-related adhesives such as wood, paper, aluminum foil, plastics, adhesives, rehumidifiers, binders for non-woven fabrics, binders for various building materials such as gypsum boards and fiber boards, various binders for granulating powder, Additives for cement and mortar, hot melt adhesive, pressure sensitive adhesive, anionic paint fixing agent, etc.

(2)成形物関係
繊維、フィルム、シート、パイプ、チューブ、防漏膜、暫定皮膜、ケミカルレース用水溶性繊維、低結晶化や延伸性向上を目的とした各種フィルムの改質用添加剤、等。
(2) Molded fibers, films, sheets, pipes, tubes, leak-proof membranes, temporary coatings, water-soluble fibers for chemical lace, additives for modifying various films for the purpose of reducing crystallization and improving stretchability, etc. .

(3)被覆剤関係
紙のクリアーコーティング剤、紙のサイジング剤、繊維製品用サイズ剤、経糸糊剤、繊維加工剤、皮革仕上げ剤、塗料、防曇剤、金属腐食防止剤、亜鉛メッキ用光沢剤、帯電防止剤、導電剤、船底塗料、スケーリング防止剤、等。
(3) Coating-related paper clear coating agent, paper sizing agent, textile product sizing agent, warp glue, fiber processing agent, leather finishing agent, paint, antifogging agent, metal corrosion inhibitor, gloss for galvanizing Agent, antistatic agent, conductive agent, ship bottom paint, anti-scaling agent, etc.

(4)乳化剤関係
エチレン性不飽和化合物、ブタジエン性化合物、各種アクリル系モノマーの乳化重合用乳化剤、ポリオレフィン、ポリエステル樹脂等の疎水性樹脂、エポキシ樹脂、パラフィン、ビチューメン等の後乳化剤、等。
(4) Emulsifier relationship Ethylenically unsaturated compounds, butadiene compounds, emulsifiers for emulsion polymerization of various acrylic monomers, hydrophobic resins such as polyolefins and polyester resins, post-emulsifiers such as epoxy resins, paraffin and bitumen, and the like.

(5)懸濁剤関係
塗料、墨汁、水性カラー、接着剤等の顔料分散安定剤、塩化ビニル、塩化ビニリデン、スチレン、(メタ)アクリレート、酢酸ビニル等の各種ビニル化合物の懸濁重合用分散安定剤、等。
(5) Suspension-related dispersion stability for various types of vinyl compounds such as paint dispersion stabilizers such as paints, ink, water color, adhesives, vinyl chloride, vinylidene chloride, styrene, (meth) acrylate, vinyl acetate Agents, etc.

(6)疎水性樹脂用ブレンド剤関係
疎水性樹脂の帯電防止剤、及び親水性付与剤、複合繊維、フィルムその他成形物用添加剤、等。
(7)凝集剤関係
水中懸濁物及び溶存物の凝集剤、パルプ、スラリーの濾水剤、等。
(8)増粘剤関係
各種水溶液やエマルジョンの増粘剤、等。
(6) Hydrophobic resin blending agent-related hydrophobic resin antistatic agent, hydrophilicity-imparting agent, composite fiber, film and other additives for molded articles, and the like.
(7) Coagulant-related suspensions in water and coagulants for dissolved substances, pulp, slurries, etc.
(8) Thickener-related various aqueous solutions and emulsion thickeners, etc.

(9)土壌改良剤関係
(10)感光剤、感電子関係、感光性レジスト樹脂、等。
(11)その他イオン交換樹脂、イオン交換膜関係、キレート交換樹脂、等。
上記の中でも、(1)〜(7)の用途に特にその有用性が期待される。
(9) Soil improver-related (10) Photosensitizer, electrosensitive relationship, photosensitive resist resin, etc.
(11) Other ion exchange resins, ion exchange membrane relations, chelate exchange resins, etc.
Among the above, its usefulness is particularly expected for the uses (1) to (7).

なお、各種用途に適用するに当たっては、必要に応じて、可塑剤を添加することが好ましく、該可塑剤としては3価〜6価の多価アルコール(グリセリン、トリメチロールプロパン、ジグリセリン、ペンタエリスリトール、キシロール、アラビノース、リブロース、ソルビトール等)、各種アルキレンオキサイド(エチレンオキサイド、プロピレンオキサイド、エチレンオキサイドとプロピレンオキサイドの混合付加体等)が挙げられる。
In addition, when applying to various uses, it is preferable to add a plasticizer as necessary. As the plasticizer, trivalent to hexavalent polyhydric alcohols (glycerin, trimethylolpropane, diglycerin, pentaerythritol). Xylol, arabinose, ribulose, sorbitol, etc.) and various alkylene oxides (ethylene oxide, propylene oxide, mixed adducts of ethylene oxide and propylene oxide, etc.).

以下、実施例を挙げて本発明を具体的に説明する。尚、例中、「部」、「%」とあるのは、断りのない限り重量基準を意味する。
実施例1
還流冷却器、滴下漏斗、撹拌機を備えた反応缶に、酢酸ビニル1300g、メタノール520g、1,4−ジアセトキシ−2−ブテン(R、Rがメチレン基、R、Rが−CO−Rで、Rがメチル基)52.0g(2モル%)を仕込み、アゾビスイソブチロニトリルを0.1モル%(対仕込み酢酸ビニル)投入し、撹拌しながら窒素気流下で温度を上昇させ重合を行った。
その後、酢酸ビニルの重合率が83.6%となった時点で重合禁止剤を仕込み、重合を終了した。続いて、メタノール蒸気を吹き込む方法により未反応の酢酸ビニル単量体を系外に除去し共重合体のメタノール溶液を得た。
Hereinafter, the present invention will be specifically described with reference to examples. In the examples, “parts” and “%” mean weight basis unless otherwise specified.
Example 1
To a reaction vessel equipped with a reflux condenser, a dropping funnel and a stirrer, 1300 g of vinyl acetate, 520 g of methanol, 1,4-diacetoxy-2-butene (R 1 and R 2 are methylene groups, R 3 and R 4 are —CO in -R 5, R 5 is charged methyl group) 52.0 g (2 mol%), 0.1 mol% of azobisisobutyronitrile (vs. the charged vinyl acetate) were charged, under a nitrogen stream at stirring Polymerization was carried out at an elevated temperature.
Thereafter, when the polymerization rate of vinyl acetate reached 83.6%, a polymerization inhibitor was added to complete the polymerization. Subsequently, unreacted vinyl acetate monomer was removed out of the system by a method of blowing methanol vapor to obtain a methanol solution of the copolymer.

次いで、該溶液をメタノールで希釈して濃度40%に調整してニーダーに仕込み、溶液温度を40℃に保ちながら、水酸化ナトリウムの2%メタノール溶液を共重合体中の酢酸ビニル1モルに対して8ミリモルとなる割合で加えてケン化を行った。ケン化が進行すると共にケン化物が析出し、遂には粒子状となった。生成したPVA系樹脂を濾別し、メタノールでよく洗浄して熱風乾燥機中で乾燥し、目的物を得た。   Next, the solution was diluted with methanol to a concentration of 40% and charged into a kneader. While maintaining the solution temperature at 40 ° C., a 2% methanol solution of sodium hydroxide was added to 1 mol of vinyl acetate in the copolymer. Saponification was carried out at a rate of 8 mmol. Saponification progressed as saponification progressed, and finally became particulate. The produced PVA-based resin was separated by filtration, washed well with methanol, and dried in a hot air dryer to obtain the desired product.

得られたPVA系樹脂のケン化度は、残存酢酸ビニル単位の加水分解に要するアルカリ消費量で分析を行ったところ、99.7モル%であり、重合度は、JIS K 6726に準じて分析を行ったところ、840であった。又、該PVA系樹脂(I)の4%水溶液の粘度は、ヘプラー粘度計により測定したところ、8.9mPa・s(20℃)であり、変性量はNMR測定より算出したところ2.0モル%であった。   The saponification degree of the obtained PVA-based resin was 99.7 mol% when analyzed by the alkali consumption required for hydrolysis of the residual vinyl acetate unit, and the polymerization degree was analyzed according to JIS K 6726. Was 840. The viscosity of a 4% aqueous solution of the PVA-based resin (I) was 8.9 mPa · s (20 ° C.) as measured by a Heppler viscometer, and the amount of modification was 2.0 mol as calculated from NMR measurement. %Met.

得られたPVA系樹脂のIRスペクトル、H−NMR(溶媒:DMSO−d6)スペクトルの帰属は以下の通りであった。IRチャートを図1に、H−NMRチャートを図2に示す。 Assignment of IR spectrum and 1 H-NMR (solvent: DMSO-d6) spectrum of the obtained PVA resin was as follows. The IR chart is shown in FIG. 1, and the 1 H-NMR chart is shown in FIG.

[IR](図1参照)
3360cm−1:OH(strong)
2950、2910cm−1:メチレン(strong)
1440cm−1:メチレン(strong)
1240cm−1:メチン(weak)
1144cm−1:結晶バンド(HとOH間、strong)
1100cm−1:C−O(medium)
850cm−1:メチレン(medium)
660cm−1:OH(medeium broad)
[IR] (see FIG. 1)
3360 cm −1 : OH (strong)
2950, 2910 cm −1 : methylene (strong)
1440 cm −1 : methylene (strong)
1240 cm −1 : methine (weak)
1144 cm −1 : Crystal band (between H and OH, strong)
1100 cm −1 : C—O (medium)
850 cm −1 : methylene (medium)
660 cm −1 : OH (medium broadcast)

H−NMR](図2参照)
1.2〜1.6ppm:メチレンプロトン、メチンプロトン(変性種に起因)
3.4〜3.5ppm:メチレンプロトン(変性種に起因)
3.8〜3.9ppm:メチンプロトン
4.1〜4.6ppm:水酸基
[ 1 H-NMR] (see FIG. 2)
1.2-1.6 ppm: Methylene proton, methine proton (due to modified species)
3.4-3.5 ppm: Methylene proton (due to modified species)
3.8 to 3.9 ppm: Methine proton 4.1 to 4.6 ppm: Hydroxyl group

得られたPVA系樹脂について以下の評価を行った。結果を表1〜4に示す。   The following evaluation was performed about the obtained PVA-type resin. The results are shown in Tables 1-4.

[水溶液の粘度安定性]
PVA系樹脂の8%水溶液をガラス容器に入れ、水溶液の温度を20℃とした。次に、ガラス容器を5℃の恒温水槽内に放置して、1時間及び24時間放置後の粘度を測定し、増粘倍率を求め以下の通り評価した。
○・・・増粘倍率が1.5倍未満
△・・・増粘倍率が1.5倍以上、2.5倍未満
×・・・増粘倍率が2.5倍以上
尚、増粘倍率は下式より算出される。
増粘倍率=(5℃で24時間後の粘度)/(5℃で1時間後の粘度)
[Viscosity stability of aqueous solution]
An 8% aqueous solution of PVA-based resin was placed in a glass container, and the temperature of the aqueous solution was 20 ° C. Next, the glass container was left in a constant temperature water bath at 5 ° C., the viscosity after being left for 1 hour and 24 hours was measured, the thickening ratio was determined and evaluated as follows.
○ ・ ・ ・ Thickening ratio is less than 1.5 times △ ・ ・ ・ Thickening ratio is 1.5 times or more and less than 2.5 times × ・ ・ ・ Thickening ratio is 2.5 times or more Is calculated from the following equation.
Thickening factor = (viscosity after 24 hours at 5 ° C.) / (Viscosity after 1 hour at 5 ° C.)

[水溶液の発泡性]
PVA系樹脂の1%水溶液250mlを容量1Lのメスシリンダーに入れ、40℃に調温後、ディフューザーストーンを液底部に入れ、空気を0.2L/minで通気して発泡させ、5分後の水溶液と泡沫を合わせた容積を測定し、以下の通り評価した。
○・・・容積が400ml未満
△・・・容積が400ml以上、1000ml未満
×・・・容積が1000ml以上
[Foaming properties of aqueous solution]
Place 250 ml of 1% aqueous solution of PVA resin in a 1 L capacity graduated cylinder, adjust the temperature to 40 ° C., place a diffuser stone in the bottom of the liquid, and blow it with air at 0.2 L / min. The combined volume of the aqueous solution and foam was measured and evaluated as follows.
○ ... Volume is less than 400 ml Δ: Volume is 400 ml or more, less than 1000 ml × ... Volume is 1000 ml or more

[高速塗工性]
PVA系樹脂の10%水溶液の30℃における高剪断速度下での粘度上昇を測定し、下記の通り評価した。尚、測定装置としては島津製作所社製のフローテスターCFT−500Cを用いた。
○・・・剪断速度が6×10/s以上で粘度上昇が極大値を示す場合
×・・・剪断速度が6×10/s未満で粘度上昇が極大値を示す場合
[High speed coatability]
The increase in viscosity of a 10% aqueous solution of PVA resin under a high shear rate at 30 ° C. was measured and evaluated as follows. As a measuring device, a flow tester CFT-500C manufactured by Shimadzu Corporation was used.
○: When the shear rate is 6 × 10 6 / s or more and the viscosity increase shows a maximum value ×… When the shear rate is less than 6 × 10 6 / s and the viscosity increase shows a maximum value

[木材接着性能]
PVA系樹脂を80℃の蒸留水中で撹拌し完全に溶解した後、約15%濃度の水溶液を調製し、テフロン製の型に、かかるPVA系樹脂水溶液と架橋剤としてのイソシアネート化合物(MDI、イソシアネート基量:6.71×10−3mol/g)を入れ接着剤を作製した。
尚、イソシアネート化合物とPVA系樹脂の配合割合は、イソシアネート基とPVA系樹脂中の水酸基の割合が1:5となるように配合した。
得られた接着剤を、被着材(マカバ:平均比重0.73、含水率約12%)に塗布量が220g/mとなるように塗布し、塗布後は約1MPaで20℃×1日圧締し、その後120℃×2時間熱処理行い、シングルラップ引っ張り剪断型の試験片として、クロスヘッドスピード10mm/分で、引っ張り試験を行い、以下の通り評価した。
○・・・接着強さが40Kgf/cm以上
△・・・接着強さが30kgf/cm以上、40kgf/cm未満
×・・・接着強さが30Kgf/cm未満
[Wood adhesion performance]
After the PVA resin is stirred and completely dissolved in distilled water at 80 ° C., an aqueous solution with a concentration of about 15% is prepared, and the PVA resin aqueous solution and an isocyanate compound (MDI, isocyanate as a crosslinking agent) are prepared in a Teflon mold. Base amount: 6.71 × 10 −3 mol / g) was added to prepare an adhesive.
In addition, the compounding ratio of the isocyanate compound and the PVA resin was blended so that the ratio of the hydroxyl group in the isocyanate group and the PVA resin was 1: 5.
The obtained adhesive was applied to an adherend (merkaba: average specific gravity 0.73, moisture content about 12%) so that the application amount was 220 g / m 2, and after application, 20 ° C. × 1 at about 1 MPa. The sample was clamped by day and heat-treated at 120 ° C. for 2 hours. A single lap tensile shear type test piece was subjected to a tensile test at a crosshead speed of 10 mm / min and evaluated as follows.
○ ··· adhesive strength is 40Kgf / cm 2 or more △ ··· adhesive strength is 30kgf / cm 2 or more, 40kgf / cm 2 less than × ··· adhesive strength is less than 30Kgf / cm 2

[エマルジョンの放置安定性]
攪拌機、還流冷却器、滴下漏斗、温度計を備えたセパラブルフラスコに水140部、PVA系樹脂10部、pH調整剤として酢酸ナトリウム0.02部、重合モノマー(メタクリル酸メチル/アクリル酸n−ブチル=60/40(重量比))12.5部を仕込み、攪拌しながらフラスコ内の温度を60℃に上げた。その間、窒素ガスでフラスコ内を置換しながら1%の過硫酸アンモニウム水溶液5部を添加して重合を開始した。初期重合を30分間行ない、残りの重合モノマー112.5部を4時間かけて滴下し、さらに1%の過硫酸アンモニウム水溶液5部を1時間毎に4回添加し、重合を行った。その後、75℃で1時間熟成した後、冷却して、固形分45%のメタクリル酸メチル/アクリル酸n−ブチル共重合体の水性エマルジョンを得た。
450mlマヨネーズ瓶に得られたエマルジョン300gを入れ、BROOKFIELD型粘度計にて、25℃でのエマルジョン粘度(V)を測定し、さらに、60℃の恒温槽内に10日間放置した後、25℃でのエマルジョン粘度(V10)を測定して、その粘度比(V10/V)を求めた。
[Left stability of emulsion]
In a separable flask equipped with a stirrer, reflux condenser, dropping funnel, thermometer, 140 parts of water, 10 parts of PVA resin, 0.02 part of sodium acetate as pH adjuster, polymerization monomer (methyl methacrylate / n-acrylic acid n- 12.5 parts of butyl = 60/40 (weight ratio) was charged, and the temperature in the flask was raised to 60 ° C. while stirring. Meanwhile, while replacing the inside of the flask with nitrogen gas, 5 parts of a 1% ammonium persulfate aqueous solution was added to initiate polymerization. Initial polymerization was performed for 30 minutes, 112.5 parts of the remaining polymerization monomer was added dropwise over 4 hours, and 5 parts of a 1% ammonium persulfate aqueous solution was further added 4 times every hour for polymerization. Then, after aging at 75 ° C. for 1 hour, the mixture was cooled to obtain an aqueous emulsion of a methyl methacrylate / n-butyl acrylate copolymer having a solid content of 45%.
After putting 300 g of the obtained emulsion into a 450 ml mayonnaise bottle, the emulsion viscosity (V 0 ) at 25 ° C. was measured with a BROOFIELD type viscometer, and further left in a constant temperature bath at 60 ° C. for 10 days. The viscosity of the emulsion (V 10 ) was measured and the viscosity ratio (V 10 / V 0 ) was determined.

[インクジェット記録用媒体の光沢性]
PVA系樹脂15部を水85部に溶解させたものに、コロイダルシリカ(WRグレース社製「Ludox AS−40」、粒径20nm、固形分40%)をPVA系樹脂/コロイダルシリカ=1/2(固形分重量比)となるように混合し、ホモジナイザー(特殊機化工業社製「T.K.ROBOMICS」)にて5000rpmで5分間攪拌し、固形分15%の塗工液を作製した。
かかる水分散液を坪量270g/mの上質紙上に50μmのアプリケーターにて塗工し、105℃の熱風乾燥機中で5分間乾燥させて厚み7.5μmの塗工層を形成してインクジェット記録用媒体を得た。
得られたインクジェット記録用媒体の法線に対して60度の光沢度を、変角光度計(日本電色工業社製「VG−Σ80」)を使用し測定した。
[Glossiness of inkjet recording medium]
Colloidal silica ("Ludox AS-40" manufactured by WR Grace Co., Ltd., particle size 20 nm, solid content 40%) is dissolved in 85 parts of water by dissolving 15 parts of PVA resin in PVA resin / colloidal silica = 1/2. (Solid content weight ratio) The mixture was mixed, and stirred at 5000 rpm for 5 minutes with a homogenizer (“TK ROBOMICS” manufactured by Tokushu Kika Kogyo Co., Ltd.) to prepare a coating solution having a solid content of 15%.
The aqueous dispersion is coated on high-quality paper having a basis weight of 270 g / m 2 with a 50 μm applicator and dried in a hot air dryer at 105 ° C. for 5 minutes to form a coating layer having a thickness of 7.5 μm. A recording medium was obtained.
The glossiness of 60 degrees with respect to the normal line of the obtained inkjet recording medium was measured using a goniophotometer (“VG-Σ80” manufactured by Nippon Denshoku Industries Co., Ltd.).

[フィルムの水溶性]
PVA系樹脂の10%水溶液を60℃の熱ロールに流延し厚さ30μmのキャストフィルムを作成した。フィルムを40mm×40mmに切り、これをスライドマウントにはさみ、20℃で攪拌している水中に浸漬し、フィルムが完全に溶解するまで時間(秒数)を測定し以下の基準で評価した。
○・・・30秒以内
△・・・30秒以上、60秒未満
×・・・60秒以上
[Water solubility of film]
A cast film having a thickness of 30 μm was prepared by casting a 10% aqueous solution of a PVA resin on a hot roll at 60 ° C. The film was cut into 40 mm × 40 mm, sandwiched between slide mounts, immersed in water stirred at 20 ° C., the time (seconds) until the film was completely dissolved was measured and evaluated according to the following criteria.
○ ... 30 seconds or less △ ... 30 seconds or more, less than 60 seconds × ... 60 seconds or more

[フィルムの延伸性]
PVA系樹脂の10%水溶液を60℃の熱ロールに流延し、厚さ100μmのキャストフィルムを作製した。かかるフィルムより200mm×40mmの試験片を切り出し、精密万能試験機(島津製作所社製「オートグラフIS−5000」)により、150℃で200mm/minの速度で6倍の長さになるまで延伸し、以下の基準で評価した。
○・・・フィルムが破断せず
×・・・フィルムが破断
[Film stretchability]
A 10% aqueous solution of PVA resin was cast on a hot roll at 60 ° C. to prepare a cast film having a thickness of 100 μm. A 200 mm × 40 mm test piece was cut out from the film and stretched by a precision universal testing machine (“Autograph IS-5000” manufactured by Shimadzu Corporation) at 150 ° C. at a speed of 200 mm / min until the length became 6 times. The evaluation was based on the following criteria.
○ ・ ・ ・ The film does not break ×× The film breaks

[フィルムのガスバリヤー性]
PVA系樹脂の10%水溶液をPETフィルム上に流延し、23℃、50%RHの雰囲気下で48時間放置後、五酸化リン入りデシケーター中に2週間静置して乾燥させ、厚さ3μmおよび20μmのキャストフィルムを作製した。厚さ3μmのフィルムを用い、湿度0%RHの酸素透過度を酸素透過度測定装置(MOCON社製「OXTRAN2/20」)を用いて測定、湿度37%RHおよび52%RHの酸素透過度を酸素透過度測定装置(MOCON社製「OXTRAN TWIN」)を用いて測定した。また、厚さ20μmのフィルムを用い、湿度81%RHの酸素透過度を酸素透過度測定装置(MOCON社製「OXTRAN TWIN」)を用いて測定し、厚さ3μmの値に換算した。
[Gas barrier properties of film]
A 10% aqueous solution of PVA resin was cast on a PET film, allowed to stand for 48 hours in an atmosphere of 23 ° C. and 50% RH, left to stand in a desiccator containing phosphorus pentoxide for 2 weeks, and dried to a thickness of 3 μm. And a 20 μm cast film was prepared. Using a film with a thickness of 3 μm, the oxygen permeability at 0% RH was measured using an oxygen permeability measuring device (“OXTRAN 2/20” manufactured by MOCON). The oxygen permeability at 37% RH and 52% RH was measured. It measured using the oxygen permeability measuring apparatus ("OXTRAN TWIN" by MOCON). Further, using a 20 μm-thick film, the oxygen permeability at a humidity of 81% RH was measured using an oxygen permeability measuring device (“OXTRAN TWIN” manufactured by MOCON) and converted to a value of 3 μm thickness.

実施例2
還流冷却器、滴下漏斗、撹拌機を備えた反応缶に、酢酸ビニル1300g、メタノール104g、1,4−ジアセトキシ−2−ブテン(R、Rがメチレン基、R、Rが−CO−Rで、Rがメチル基)27.6g(1.06モル%)を仕込み、アゾビスイソブチロニトリルを0.1モル%(対仕込み酢酸ビニル単量体)投入し、撹拌しながら窒素気流下で温度を上昇させ、67℃で重合を開始したと同時に1,4−ジアセトキシ−2−ブテンの20%メタノール溶液の仕込みをHANNA法に従って開始し、重合率80.5%までに46ml仕込んだ。
酢酸ビニルの重合率が80.5%となった時点で、重合を終了し、続いて、メタノール蒸気を吹き込む方法により未反応の酢酸ビニル単量体を系外に除去し共重合体のメタノール溶液を得た。
Example 2
To a reaction vessel equipped with a reflux condenser, a dropping funnel and a stirrer, 1300 g of vinyl acetate, 104 g of methanol, 1,4-diacetoxy-2-butene (R 1 and R 2 are methylene groups, R 3 and R 4 are —CO in -R 5, R 5 is charged methyl group) 27.6 g (1.06 mol%), 0.1 mol% of azobisisobutyronitrile (vs. the charged vinyl acetate monomer) were charged, stirred and While raising the temperature under a nitrogen stream, the polymerization was started at 67 ° C., and at the same time, charging of a 20% methanol solution of 1,4-diacetoxy-2-butene was started according to the HANNA method, and the polymerization rate reached 80.5%. 46 ml was charged.
When the polymerization rate of vinyl acetate reaches 80.5%, the polymerization is terminated, and then unreacted vinyl acetate monomer is removed out of the system by blowing methanol vapor to a methanol solution of the copolymer. Got.

次いで、該溶液をメタノールで希釈して濃度40%に調整してニーダーに仕込み、溶液温度を40℃に保ちながら、水酸化ナトリウムの2%メタノール溶液を共重合体中の酢酸ビニル1モルに対して7ミリモルとなる量を加えてケン化を行った。ケン化が進行すると共にケン化物が析出し、遂には粒子状となった。生成したPVA系樹脂を濾別し、メタノールでよく洗浄して熱風乾燥機中で乾燥し、目的物を得た。   Next, the solution was diluted with methanol to a concentration of 40% and charged into a kneader. While maintaining the solution temperature at 40 ° C., a 2% methanol solution of sodium hydroxide was added to 1 mol of vinyl acetate in the copolymer. Saponification was carried out by adding an amount of 7 mmol. Saponification progressed as saponification progressed, and finally became particulate. The produced PVA-based resin was separated by filtration, washed well with methanol, and dried in a hot air dryer to obtain the desired product.

得られたPVA系樹脂のケン化度は、残存酢酸ビニル単位の加水分解に要するアルカリ消費量で分析を行ったところ、99.2モル%であり、重合度は、JIS K 6726に準して分析を行ったところ、1290であった。又、該PVA系樹脂の4%水溶液の粘度は、ヘプラー粘度計により測定したところ、17.0mPa・s(20℃)であり、変性量はNMR測定より算出したところ1.5モル%であった。
得られたPVA系樹脂について実施例1と同様の評価を行った。結果を表1〜4に示す。
The degree of saponification of the obtained PVA-based resin was 99.2 mol% when analyzed by the alkali consumption required for hydrolysis of the residual vinyl acetate units, and the degree of polymerization was in accordance with JIS K 6726. It was 1290 when the analysis was conducted. The viscosity of a 4% aqueous solution of the PVA resin was 17.0 mPa · s (20 ° C.) as measured with a Heppler viscometer, and the amount of modification was 1.5 mol% as calculated from NMR measurement. It was.
Evaluation similar to Example 1 was performed about the obtained PVA-type resin. The results are shown in Tables 1-4.

実施例3
還流冷却器、滴下漏斗、撹拌機を備えた反応缶に、酢酸ビニル1300g、メタノール65g、1,4−ジアセトキシ−2−ブテン(R、Rメチレン基、R、Rが−CO−Rで、Rがメチル基)154.6g(6モル%)を仕込み、アゾビスイソブチロニトリルを0.1モル%(対仕込み酢酸ビニル)投入し、撹拌しながら窒素気流下で温度を上昇させ重合を行った。
その後、酢酸ビニルの重合率が65.2%となった時点で重合禁止剤を仕込み、重合を終了した。続いて、メタノール蒸気を吹き込む方法により未反応の酢酸ビニル単量体を系外に除去し共重合体のメタノール溶液を得た。
Example 3
To a reaction vessel equipped with a reflux condenser, a dropping funnel and a stirrer, 1300 g of vinyl acetate, 65 g of methanol, 1,4-diacetoxy-2-butene (R 1 , R 2 methylene group, R 3 and R 4 are —CO— in R 5, R 5 is charged methyl group) 154.6 g (6 mol%), azobisisobutyronitrile and 0.1 mol% (relative to charged vinyl acetate) turned temperature under a nitrogen stream while stirring Was raised to carry out polymerization.
Thereafter, when the polymerization rate of vinyl acetate reached 65.2%, a polymerization inhibitor was added to complete the polymerization. Subsequently, unreacted vinyl acetate monomer was removed out of the system by a method of blowing methanol vapor to obtain a methanol solution of the copolymer.

次いで、該溶液をメタノールで希釈して濃度40%に調整してニーダーに仕込み、溶液温度を40℃に保ちながら、水酸化ナトリウムの2%メタノール溶液を共重合体中の酢酸ビニル1モルに対して7ミリモルとなる割合で加えてケン化を行った。ケン化が進行すると共にケン化物が析出し、遂には粒子状となった。生成したPVA系樹脂を濾別し、メタノールでよく洗浄して熱風乾燥機中で乾燥し、目的物を得た。   Next, the solution was diluted with methanol to a concentration of 40% and charged into a kneader. While maintaining the solution temperature at 40 ° C., a 2% methanol solution of sodium hydroxide was added to 1 mol of vinyl acetate in the copolymer. Saponification was carried out at a rate of 7 mmol. Saponification progressed as saponification progressed, and finally became particulate. The produced PVA-based resin was separated by filtration, washed well with methanol, and dried in a hot air dryer to obtain the desired product.

得られたPVA系樹脂のケン化度は、残存酢酸ビニル単位の加水分解に要するアルカリ消費量で分析を行ったところ、99.3モル%であり、重合度は、JIS K 6726に準じて分析を行ったところ、690であった。又、該PVA系樹脂(I)の4%水溶液の粘度は、ヘプラー粘度計により測定したところ、6.9mPa・s(20℃)であり、変性量はNMR測定より算出したところ5.9モル%であった。   The saponification degree of the obtained PVA-based resin was analyzed by the alkali consumption required for hydrolysis of the residual vinyl acetate unit. As a result, it was 99.3 mol%, and the polymerization degree was analyzed according to JIS K 6726. Was 690. The viscosity of a 4% aqueous solution of the PVA-based resin (I) was 6.9 mPa · s (20 ° C.) as measured with a Heppler viscometer, and the amount of modification was calculated as 5.9 mol from NMR measurement. %Met.

比較例1
実施例1において、1,4−ジアセトキシ−2−ブテンを仕込まないで、酢酸ビニルのみを重合(S/M=0.8、S:メタノール、M:酢酸ビニル)し、ケン化を行った以外は同様に行い、PVA系樹脂を得た。
得られたPVA系樹脂のケン化度は、残存酢酸ビニル単位の加水分解に要するアルカリ消費量で分析を行ったところ、99.5モル%であり、重合度は、JIS K 6726に準じて分析を行ったところ、860であった。又、該PVA系樹脂(I)の4%水溶液の粘度は、ヘプラー粘度計により測定したところ、9.1mPa・s(20℃)であった。
得られたPVA系樹脂について実施例1と同様の評価を行った。結果を表1〜4に示す。
Comparative Example 1
In Example 1, except that 1,4-diacetoxy-2-butene was not charged and only vinyl acetate was polymerized (S / M = 0.8, S: methanol, M: vinyl acetate), and saponification was performed. Was carried out in the same manner to obtain a PVA resin.
The degree of saponification of the obtained PVA-based resin was 99.5 mol% when analyzed by the alkali consumption required for hydrolysis of the remaining vinyl acetate units, and the degree of polymerization was analyzed according to JIS K 6726. Was 860. The viscosity of a 4% aqueous solution of the PVA resin (I) was 9.1 mPa · s (20 ° C.) as measured by a Heppler viscometer.
Evaluation similar to Example 1 was performed about the obtained PVA-type resin. The results are shown in Tables 1-4.

比較例2
実施例1において、メタノールの仕込み量を845gとし、1,4−ジアセトキシ−2−ブテンに替えて、3,4−ジアセトキシ−1−ブテンを用い、アゾビスイソブチロニトリルを0.08モル%(対仕込み酢酸ビニル)投入し、酢酸ビニルの重合率が91.2%となった時点で重合禁止剤を仕込んだ以外は実施例1と同様に重合及びケン化を行いPVA系樹脂を得た。
得られたPVA系樹脂のケン化度は、残存酢酸ビニル単位の加水分解に要するアルカリ消費量で分析を行ったところ、99.6モル%であり、重合度は、JIS K 6726に準じて分析を行ったところ、850であった。又、該PVA系樹脂(I)の4%水溶液の粘度は、ヘプラー粘度計により測定したところ、9.0mPa・s(20℃)であり、変性量はNMR測定より算出したところ2.1モル%であった。
得られたPVA系樹脂について実施例1と同様の評価を行った。結果を表1〜4に示す。
Comparative Example 2
In Example 1, the amount of methanol charged was 845 g, 3,4-diacetoxy-1-butene was used instead of 1,4-diacetoxy-2-butene, and azobisisobutyronitrile was 0.08 mol%. (Various charged vinyl acetate) was charged, and polymerization and saponification were carried out in the same manner as in Example 1 except that a polymerization inhibitor was charged when the polymerization rate of vinyl acetate reached 91.2% to obtain a PVA resin. .
The saponification degree of the obtained PVA-based resin was 99.6 mol% when analyzed by the alkali consumption required for hydrolysis of the residual vinyl acetate unit, and the polymerization degree was analyzed according to JIS K 6726. Was 850. The viscosity of a 4% aqueous solution of the PVA-based resin (I) was 9.0 mPa · s (20 ° C.) as measured with a Heppler viscometer, and the amount of modification was 2.1 mol as calculated from NMR measurement. %Met.
Evaluation similar to Example 1 was performed about the obtained PVA-type resin. The results are shown in Tables 1-4.


本発明のPVA系樹脂は、水溶性、水溶液の粘度安定性、高速塗工性に優れ、フィルムとしたときの延伸性、柔軟性、ガスバリヤー性に優れ、さらに各種架橋剤との反応性に優れるため、接着剤、成形物、包装材用水溶性フィルム、被覆剤、紙加工剤、インクジェット記録用媒体用無機微粒子バインダー、乳化剤、懸濁剤、ガスバリヤー性フィルム、偏光フィルム等の用途に有用である。   The PVA-based resin of the present invention is excellent in water solubility, aqueous solution viscosity stability, high-speed coating properties, excellent stretchability, flexibility and gas barrier properties when made into a film, and further reactive with various crosslinking agents. Useful for applications such as adhesives, molded products, water-soluble films for packaging materials, coating agents, paper processing agents, inorganic fine particle binders for inkjet recording media, emulsifiers, suspending agents, gas barrier films, polarizing films, etc. is there.

実施例1で得られたPVA系樹脂のIRスペクトルチャートである。2 is an IR spectrum chart of the PVA resin obtained in Example 1. FIG. 実施例1で得られたPVA系樹脂のH−NMRスペクトルチャートである。1 is a 1 H-NMR spectrum chart of a PVA resin obtained in Example 1. FIG.

Claims (10)

一般式(1)で示される構造単位を含有することを特徴とするポリビニルアルコール系樹脂。

(式中、RおよびRはそれぞれ独立してアルキル基を有していてもよい炭素数1〜3のアルキレン基である)
A polyvinyl alcohol-based resin comprising a structural unit represented by the general formula (1).

(Wherein R 1 and R 2 are each independently an alkylene group having 1 to 3 carbon atoms which may have an alkyl group)
ビニルエステル系単量体と一般式(2)で示される化合物との共重合体をケン化してなることを特徴とする請求項1記載のポリビニルアルコール系樹脂。
(式中、R及びRはそれぞれ独立してアルキル基を有していてもよい炭素数1〜3のアルキレン基であり、R及びRは、それぞれ独立して水素原子または−CO−R基であって、Rはアルキル基を示す)
The polyvinyl alcohol resin according to claim 1, wherein the copolymer is a saponified copolymer of a vinyl ester monomer and a compound represented by the general formula (2).
(In the formula, R 1 and R 2 are each independently an alkylene group having 1 to 3 carbon atoms which may have an alkyl group, and R 3 and R 4 are each independently a hydrogen atom or —CO 2. a -R 5 group, R 5 represents an alkyl group)
一般式(1)で示される構造単位の含有量が0.1〜20モル%であることを特徴とする請求項1または2記載のポリビニルアルコール系樹脂。   The polyvinyl alcohol resin according to claim 1 or 2, wherein the content of the structural unit represented by the general formula (1) is 0.1 to 20 mol%. 請求項1〜3いずれか記載の新規ポリビニルアルコール系樹脂を用いることを特徴とする接着剤。   An adhesive comprising the novel polyvinyl alcohol resin according to any one of claims 1 to 3. 請求項1〜3いずれか記載の新規ポリビニルアルコール系樹脂を用いることを特徴とする成形物。   A molded article using the novel polyvinyl alcohol resin according to any one of claims 1 to 3. 請求項1〜3いずれか記載のポリビニルアルコール系樹脂を用いることを特徴とする水溶性フィルム。   A water-soluble film using the polyvinyl alcohol resin according to claim 1. 請求項1〜3いずれか記載のポリビニルアルコール系樹脂を用いることを特徴とする被覆剤。 The coating agent characterized by using the polyvinyl alcohol-type resin in any one of Claims 1-3. 請求項1〜3いずれか記載のポリビニルアルコール系樹脂を用いることを特徴とする紙加工剤。   The paper processing agent characterized by using the polyvinyl alcohol-type resin in any one of Claims 1-3. 請求項1〜3いずれか記載のポリビニルアルコール系樹脂を用いることを特徴とする乳化剤。   The polyvinyl alcohol-type resin in any one of Claims 1-3 is used, The emulsifier characterized by the above-mentioned. 請求項1〜3いずれか記載のポリビニルアルコール系樹脂を用いることを特徴とする懸濁剤。 A suspending agent comprising the polyvinyl alcohol resin according to any one of claims 1 to 3.
JP2004369718A 2004-12-21 2004-12-21 Polyvinyl alcohol resin and use thereof Active JP4531553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004369718A JP4531553B2 (en) 2004-12-21 2004-12-21 Polyvinyl alcohol resin and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004369718A JP4531553B2 (en) 2004-12-21 2004-12-21 Polyvinyl alcohol resin and use thereof

Publications (2)

Publication Number Publication Date
JP2006176589A JP2006176589A (en) 2006-07-06
JP4531553B2 true JP4531553B2 (en) 2010-08-25

Family

ID=36730993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004369718A Active JP4531553B2 (en) 2004-12-21 2004-12-21 Polyvinyl alcohol resin and use thereof

Country Status (1)

Country Link
JP (1) JP4531553B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5369521B2 (en) * 2008-07-15 2013-12-18 東京電力株式会社 Composite membrane for oil-filled transformer conservator
JP2016097538A (en) * 2014-11-20 2016-05-30 日本合成化学工業株式会社 Coating liquid for thermosensitive coloring layer and thermosensitive recording medium
JP6626369B2 (en) * 2016-02-29 2019-12-25 三菱鉛筆株式会社 Aqueous ink composition for writing implements
JP7068617B2 (en) * 2017-09-29 2022-05-17 東洋紡株式会社 Gas barrier laminated film
WO2020195896A1 (en) * 2019-03-28 2020-10-01 東洋紡株式会社 Gas-barrier laminated film
JP7124238B1 (en) 2021-06-30 2022-08-23 サカタインクス株式会社 Anti-migration coating agent

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09136916A (en) * 1995-11-15 1997-05-27 Kuraray Co Ltd Binder for molding ceramics
JPH10139820A (en) * 1996-11-12 1998-05-26 Kuraray Co Ltd Production of microcapsule

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09136916A (en) * 1995-11-15 1997-05-27 Kuraray Co Ltd Binder for molding ceramics
JPH10139820A (en) * 1996-11-12 1998-05-26 Kuraray Co Ltd Production of microcapsule

Also Published As

Publication number Publication date
JP2006176589A (en) 2006-07-06

Similar Documents

Publication Publication Date Title
JP3916941B2 (en) New vinyl alcohol resin and its use
JP4079806B2 (en) Polyvinyl alcohol resin having 1,2-glycol bond in side chain and method for producing the same
JP2002241433A (en) Novel vinyl alcohol resin and its use
JP5191096B2 (en) Resin composition, aqueous coating solution using the same, and multilayer structure
US7928166B2 (en) Polyvinyl alcohol having 1,2-glycol bond in side chain and process for preparing the same
EP2030997B1 (en) Polyvinyl alcohol resin and use thereof
US20090253865A1 (en) Acetoacetic Ester Group-Containing Polyvinyl Alcohol-Based Resin, Resin Composition, and Uses Thereof
WO2014112625A1 (en) Silyl group-containing poly(vinyl alcohol)-based resin and use thereof
CA2217011C (en) Water resistant composition
WO2021200755A1 (en) Aqueous dispersion, aqueous emulsion, coating agent, coated paper, multilayer structure, packing material, adhesive agent, and aqueous emulsion production method
US20200392364A1 (en) Ethylene-vinylalcohol copolymer aqueous solution
JP4531553B2 (en) Polyvinyl alcohol resin and use thereof
JP6282059B2 (en) Polyvinyl alcohol resin composition
JP4531538B2 (en) Polyvinyl alcohol resin and use thereof
JP2005120115A (en) Polyvinyl alcohol resin composition
JP5795111B2 (en) Cross-linking agent, cross-linked polymer
JP4632453B2 (en) Method for producing vinyl alcohol resin, vinyl alcohol resin produced by the method, and use thereof
JPH059448A (en) Adhesive
JP6418930B2 (en) Polyvinyl alcohol resin composition
JP2004143309A (en) Polyvinyl alcohol-based resin composition and inkjet printing medium using the same
JP2005120114A (en) Thin film-like item and its use
KR101043497B1 (en) Polyvinyl alcohol having 1,2-glycol bond in side chain and process for producing the same
JP2006052244A (en) 2-pot type curable aqueous adhesive
JP3883425B2 (en) Water resistant polyvinyl alcohol copolymer and synthetic resin emulsion obtained using the same
JP5886133B2 (en) Vinyl alcohol polymer and aqueous solution containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100609

R150 Certificate of patent or registration of utility model

Ref document number: 4531553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350