JP4530607B2 - Manufacturing method of fluid processing apparatus with built-in honeycomb structure - Google Patents

Manufacturing method of fluid processing apparatus with built-in honeycomb structure Download PDF

Info

Publication number
JP4530607B2
JP4530607B2 JP2002236401A JP2002236401A JP4530607B2 JP 4530607 B2 JP4530607 B2 JP 4530607B2 JP 2002236401 A JP2002236401 A JP 2002236401A JP 2002236401 A JP2002236401 A JP 2002236401A JP 4530607 B2 JP4530607 B2 JP 4530607B2
Authority
JP
Japan
Prior art keywords
honeycomb structure
cylindrical member
diameter
axial
catalyst carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002236401A
Other languages
Japanese (ja)
Other versions
JP2004076631A (en
Inventor
入江  徹
彰信 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sango Co Ltd
Original Assignee
Sango Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sango Co Ltd filed Critical Sango Co Ltd
Priority to JP2002236401A priority Critical patent/JP4530607B2/en
Priority to US10/637,677 priority patent/US7111392B2/en
Priority to ZA200306276A priority patent/ZA200306276B/en
Priority to ES03018368T priority patent/ES2346198T3/en
Priority to DE60332197T priority patent/DE60332197D1/en
Priority to AT03018368T priority patent/ATE465330T1/en
Priority to EP03018368A priority patent/EP1389675B1/en
Priority to CNB031540171A priority patent/CN100339571C/en
Publication of JP2004076631A publication Critical patent/JP2004076631A/en
Application granted granted Critical
Publication of JP4530607B2 publication Critical patent/JP4530607B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • F01N3/2853Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • F01N13/1838Construction facilitating manufacture, assembly, or disassembly characterised by the type of connection between parts of exhaust or silencing apparatus, e.g. between housing and tubes, between tubes and baffles
    • F01N13/1844Mechanical joints
    • F01N13/185Mechanical joints the connection being realised by deforming housing, tube, baffle, plate, or parts thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • F01N3/2853Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing
    • F01N3/2857Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing the mats or gaskets being at least partially made of intumescent material, e.g. unexpanded vermiculite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2350/00Arrangements for fitting catalyst support or particle filter element in the housing
    • F01N2350/02Fitting ceramic monoliths in a metallic housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2450/00Methods or apparatus for fitting, inserting or repairing different elements
    • F01N2450/02Fitting monolithic blocks into the housing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49345Catalytic device making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49908Joining by deforming
    • Y10T29/49925Inward deformation of aperture or hollow body wall
    • Y10T29/49934Inward deformation of aperture or hollow body wall by axially applying force

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Buffer Packaging (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention is directed to a method of producing a container such as a catalytic converter for holding a fragile substrate in a cylindrical housing (4) with a shock absorbent member (3) wrapped around the substrate (2), with an appropriate holding force determined on the basis of frictional force between the shock absorbent member (3) and the one with the smaller coefficient of friction out of the substrate (2) and the cylindrical housing (4). The method comprises the steps of (1) inserting the substrate (2) with the shock absorbent member (3) wrapped around the substrate (2), into the cylindrical housing (4) loosely, (2) applying an axial load to the substrate (2) so as to move the substrate (2) along a longitudinal axis of the cylindrical housing (4) by a predetermined distance, monitoring the axial load applied to the substrate (2), and (3) reducing a diameter of at least a part of the cylindrical housing (4) with the substrate (2) held therein along the longitudinal axis of the cylindrical housing (4), with the shock absorbent member (3) being compressed, to such an extent that the axial load equals a predetermined value. <IMAGE>

Description

【0001】
【発明の属する技術分野】
本発明は、金属製筒状部材内に緩衝部材を介してハニカム構造体を保持する流体処理装置の製造方法に関し、例えば、同筒状部材内に緩衝マットを介してハニカム構造体の触媒担体を保持する触媒コンバータの製造方法として好適な製造方法に係る。
【0002】
【従来の技術】
近時の自動車には触媒コンバータやディーゼルパティキュレートフィルタ(以下、DPフィルタという)が搭載されており、その製造方法としては、セラミック製の脆弱な触媒担体(あるいはフィルタ)の外周に、シール機能を有する緩衝部材としてセラミック製の緩衝マットを巻回し、この緩衝マットを圧縮しながら筒状部材(ケーシング)内に圧入する方法が一般的である。
【0003】
例えば、特開2001−355438号公報には、外周に保持材が装着された触媒担体を保持筒に圧入するに際し、上記触媒担体の外径を計測し、この計測値に適合する内径を有する保持筒に保持材が装着された触媒担体を圧入する触媒コンバータの製造方法が提案されている。また、触媒担体の外周に装着された保持材の外径を計測し、この計測値に適合する内径を有する保持筒に保持材が装着された触媒担体を圧入する方法も提案されている。更に、保持材の外径を計測するに際し、所定の圧力を加えた状態で計測することも提案されている。そして、同公報においては、内径が異なる多数の保持筒の素材を予め準備しておき、その中から適正な内径を有するものを選択することが提案されている。
【0004】
これに対し、筒状部材内に触媒担体及びマットを緩やかに挿入した後、緩衝部材マットが最適圧縮量となる径まで筒状部材を縮径するサイジング(sizing又はcalibrating)と呼ばれる方法も提案され、例えば、特開昭64−60711号、特開平8−42333号、特開平9−170424号、特開平9−234377号、米国特許第5329698号、米国特許第5755025号等の公報に開示されている。
【0005】
例えば、特開平9−234377号公報においては、従来の特開平2−268834号には、管状ボディ(コーン一体型ケーシング)23の中央部分を半径方向に縮径して圧縮部bとし、支持マット22を圧縮してケーシング内にセラミックハニカム体21を支持する触媒コンバータが開示されているが、中央部分の圧縮部bの端部から縮径加工していないコーン8a,8b部方向ではハニカム体21外周とケーシング23内周との間隙9が大きいことが問題であるとして、ケーシングの全長に亘って縮径することが提案されている。
【0006】
【発明が解決しようとする課題】
前述の圧入による方法においては、一般的に、緩衝部材たる緩衝マットの充填密度(GBD値と呼ばれる)を基準に触媒担体の外径と筒状部材の内径との間隙が設定される。このGBD値は、緩衝マットの単位面積当り重量/充填間隙寸法であり、緩衝マットの充填密度に応じて面圧(単位:パスカル)が発生し、この面圧によって触媒担体が保持されるのであるが、面圧は、当然乍ら触媒担体の強度を超えない値に調整すると共に、振動や排気ガス圧力が加わる触媒担体に対し、これが筒状部材内を移動しないように保持し得る値に調整しなければならない。このためには、緩衝マットは設計範囲内のGBD値で圧入され、且つこのGBD値を製品のライフサイクルの間は維持しなければならない。
【0007】
しかし、前述の圧入による方法においては、製造上必然的に生ずる触媒担体の外径の誤差、筒状部材の内径の誤差、及びこれらの間に介装される緩衝マットの単位面積当り重量の誤差が重畳されてGBD値の誤差となる。従って、このGBD値の誤差を最小とするための各部材の最適組合せを見出すことは、量産のための現実的な解決とはなりえない。また、GBD値自体も、緩衝マットの特性や個体差に左右され、しかも平面上における測定値に依拠しており、触媒担体に対し緊密に巻回された状態における測定値を表すものではない。このため、従来のようにGBD値に依存することなく、触媒担体を適切に筒状部材内に収容することが望まれている。
【0008】
これに対し、サイジングによる方法においては、触媒担体の外径と筒状部材の内径を予め計測しておき、緩衝マットの適正圧縮量を求め、この圧縮量だけ縮径することが企図されるが、この方法では最終的に緩衝マットの圧縮量が最適か否かを判定することは困難である。これは、金属製の筒状部材を縮径する際には、筒状部材のスプリングバックを考慮して、目標とする径より予め小さく縮径加工(所謂オーバーシュート)する必要があるからである。このため、過剰な圧縮力が付与されるおそれがある。また、筒状部材の縮径加工時には板厚の変化が不可避であるため、真の内径(内壁面位置)、即ち正確な縮径量を設定することが一層困難になっている。
【0009】
上記のオーバーシュートに起因する問題を解決する方法として、前掲の米国特許第5755025号の明細書においては、予め触媒担体の外径を計測しておき、それに緩衝マットの圧縮量を加味して保持範囲の最適外径を算出し、それに基づいて筒状部材を全長に亘って数種類の径まで拡径して、その後選択した筒状部材内に、圧入方式と同様の治具を用いて触媒担体と緩衝マットを圧入することとしている。しかし、緩衝マットの単位面積当り重量の誤差については何等考慮されていないため、触媒担体に付与される面圧に誤差が生ずることは避けられない。
【0010】
ここで、触媒担体を筒状部材内の所定位置に保持するために必要とされる保持力について説明すると、筒状部材の径方向の保持力は、触媒担体の外面及び筒状部材の内面に対し直交する方向に働く緩衝マットの圧縮復元力である。一方、例えば自動車の排気装置に固定された筒状部材に対し、触媒担体及び緩衝マットには振動や排気ガス圧力によって軸方向の力が生ずるので、これに抗する力として筒状部材の軸方向(長手方向)の保持力が必要であり、これは緩衝マットと触媒担体との間の摩擦力、及び緩衝マットと筒状部材との間の摩擦力が資するところとなる。
【0011】
上記の緩衝マットと触媒担体との間の摩擦力、及び緩衝マットと筒状部材との間の摩擦力は夫々、触媒担体の外面と緩衝マットとの間の静摩擦係数を緩衝マットの圧縮復元力(面圧)に乗じた積、及び筒状部材の内面と緩衝マットとの間の静摩擦係数を緩衝マットの圧縮復元力(面圧)に乗じた積として表される。このとき、軸方向(長手方向)の保持力としては、静摩擦係数が低い方の部材と緩衝マットとの間の摩擦力が支配的となる。従って、静摩擦係数が判明している触媒担体及び筒状部材に関し、必要な摩擦力が明らかとなり、これを確保するためには緩衝マットに対する面圧を高くする必要があるが、触媒担体が脆弱な場合は径方向の荷重が過大となることを回避するためには、緩衝マットに対する面圧の限度内で、軸方向の保持力を確保し得るように設定する必要がある。
【0012】
而して、緩衝マットに対する面圧は、触媒担体の外面の静摩擦係数と筒状部材の内面の静摩擦係数のうちの低い方の部材の静摩擦係数に基づいて設定し、その面圧に応じて筒状部材を縮径するとよい。しかし、従来方法においては、前述のGBD値に基づく管理が一般的であり、いわば代用値による推定管理が行なわれているということになる。このため、推定要因が重畳されて誤差が不可避となるというだけでなく、結果的に、緩衝マットと触媒担体との間の摩擦力による保持力と、緩衝マットと筒状部材との間の摩擦力による保持力が混同されて、各部品の寸法関係が設定されている。
【0013】
結局、筒状部材内に緩衝マットを介して触媒担体を保持する際に最も適切な制御パラメータは、緩衝部材(緩衝マット)を介してハニカム構造体(触媒担体あるいはフィルタ)に付与される面圧である。従って、この面圧を直接検出し、その検出結果に基づいて筒状部材を縮径することが可能であれば、サイジングによっても良好な精度で筒状部材を縮径することができる。
【0014】
然し乍ら、上記の面圧そのものを測定することは非常に困難であり、特に、筒状部材内に緩衝マット及び触媒担体が収容され、緩衝マットの反力による面圧が発生している状態においては、計測装置を筒状部材内に挿入して測定し、測定後に同装置を取り出すことが必要になるが、このようなことは非常に困難であり、現実的ではない。これに対し、筒状部材の歪等を測定し面圧の代用値として用いることが考えられるが、測定精度の低下は否めず、正確な面圧値を把握することはできない。
【0015】
そこで、本発明は、金属製筒状部材内に緩衝部材を介してハニカム構造体を保持する際の保持力を監視しつつ、筒状部材を縮径し、ハニカム構造体を筒状部材内に適切に保持し得る流体処理装置の製造方法を提供することを課題とする。
【0016】
【課題を解決するための手段】
上記課題を解決するため、本発明のハニカム構造体内蔵流体処理装置の製造方法は、請求項1に記載のように、金属製筒状部材内に緩衝部材を介してハニカム構造体を保持するハニカム構造体内蔵流体処理装置の製造方法において、前記緩衝部材を前記ハニカム構造体周りに装着した状態で前記筒状部材内に収容し所定の位置に保持した後、少なくとも前記緩衝部材を収容する部分の前記筒状部材の軸方向所定範囲を縮径加工するときに、前記ハニカム構造体に軸方向荷重を付与して前記ハニカム構造体を前記筒状部材に対して軸方向に所定距離移動させたときの前記軸方向荷重の値を監視し、前記軸方向荷重の値が目標軸方向荷重に達するまで前記筒状部材の縮径加工を行うこととしたものである。尚、前記緩衝部材及び前記ハニカム構造体を前記筒状部材内に収容する場合には、緩やかに収容すればよいが、数回の縮径分を見込んで圧入に近い状態で収容することとしてもよい(以下、同様)。また、前記所定距離は、前記ハニカム構造体に対し最適な圧縮荷重が付与されている状態において、前記ハニカム構造体を軸方向に移動した場合において軸方向荷重が最大の値(これを「抜き荷重」と言い、前記所定値に相当する)となったときの軸方向移動距離以上の値に設定するとよい。
【0019】
また、請求項に記載のように、金属製筒状部材内に緩衝部材を介してハニカム構造体を保持するハニカム構造体内蔵流体処理装置の製造方法において、前記緩衝部材を前記ハニカム構造体周りに装着した状態で前記筒状部材内に収容し、少なくとも前記緩衝部材を収容する部分の前記筒状部材の軸方向所定範囲に対し第1回の縮径加工を行ったときの前記筒状部材の第1の縮径量を測定すると共に、前記ハニカム構造体に軸方向荷重を付与して前記ハニカム構造体を前記筒状部材に対して軸方向に所定距離移動させたときの第1の荷重を測定し、続いて、前記筒状部材の前記軸方向所定範囲に対し第2回の縮径加工を行ったときの前記筒状部材の第2の縮径量を測定すると共に、前記ハニカム構造体に軸方向荷重を付与して前記ハニカム構造体を前記筒状部材に対して軸方向に所定距離移動させたときの第2の荷重を測定し、前記第1及び第2の縮径量並びに前記第1及び第2の軸方向荷重の相関関係に基づき、前記ハニカム構造体を所定の目標保持力で前記筒状部材内に保持するときの前記筒状部材の目標縮径量を推定し、更に、該目標縮径量に至るまで前記筒状部材の縮径加工を行うこととしてもよい。
【0020】
更に、前記請求項記載の製造方法において、請求項に記載のように、前記2回の測定を、夫々同一の軸方向に、前記ハニカム構造体を前記筒状部材に対して所定距離移動させて行うこととするとよい。あるいは、前記請求項記載の製造方法において、請求項に記載のように、前記2回の測定を、相互に反対の軸方向に、前記ハニカム構造体を前記筒状部材に対して所定距離移動させて行うこととしてもよい。
【0021】
【発明の実施の形態】
上記のように金属筒状部材内に緩衝部材を介してハニカム構造体を保持する流体処理装置の製造方法に関し、その具体的一態様として、自動車用触媒コンバータの製造方法について図面を参照して説明する。尚、本発明の製造対象の流体処理装置としては、触媒コンバータのほか、例えばDPフィルタ装置や、浄化フィルタがあり、更に、特開2002−50383及び68709等に記載の燃料電池用改質器も包含される。
【0022】
筒状部材は外筒、ハウジングあるいはケーシングとも呼ばれ、触媒コンバータの場合には、ハニカム構造体は触媒担体に対応し、緩衝部材は触媒担体保持用の緩衝マットに対応する。また、DPフィルタ装置の場合には、ハニカム構造体はフィルタに対応し、緩衝部材はDPフィルタ用の緩衝マットに対応する。ハニカム構造体を構成する触媒担体あるいはDPフィルタは一般的には円柱状又は円筒状に形成され、円形断面を有するが、これに限らず、楕円形断面、長円断面、複数の曲率を有する面を組み合わせた断面、及び多角形断面等の非円形断面としてもよい。また、触媒担体あるいはDPフィルタの流路(セル)断面は、ハニカム(六角形)に限らず、正方形等、任意である。
【0023】
本実施形態においては、図1の中央部に示すように、触媒担体2の外周に、本発明の緩衝部材を構成する緩衝マット3が一層巻回され、必要に応じ可燃性テープ等によって固定される。この場合において、図示は省略するが、緩衝マット3の両端には凸部と凹部を形成しておき、これらが相互に嵌合する一般的な巻回方法を用いるとよい。また、予め円筒状に形成された緩衝部材も存在するので、その場合には円筒状の緩衝部材内に触媒担体2を収容するだけで、緩衝部材が触媒担体2周りに装着された状態となる。
【0024】
触媒担体2はセラミックス製ハニカム構造体で構成されており、各セル(流路)間の壁が薄く形成されており、従来品に比べて脆弱である。緩衝マット3は、本実施形態では熱による膨張が殆どないアルミナマットで構成されているが、熱膨張型のバーミキュライト式の緩衝マットや、それらを組み合わせた緩衝マットとしてもよい。また、バインダーが含浸されていない無機質繊維マットでもよい。尚、バインダーの有無及び含有量によって面圧が変わるので、面圧設定においてはこれを加味する必要がある。あるいは、金属細線を編成したワイヤメッシュ等を用いてもよいし、それをセラミックマットと組み合わせて使用してもよい。更に、それらと金属円環状のリテーナや、ワイヤメッシュ製のシールリング等と組み合わせてもよい。
【0025】
次に、上記のように緩衝マット3が装着された触媒担体2は、筒状部材4内に緩やかに収容され(あるいは、数回の縮径分を見込んで圧入に近い状態で収容され)、図1に示すサイジング装置SMによって、所定の位置に保持された後、筒状部材4の所定範囲が縮径される。本実施形態では、図1に示すように、ベース10を貫通し、これに垂直に触媒担体保持装置HMが配設され、これを囲繞するようにサイジング装置SMのコレットチャックがベース10上に配設されている。保持装置HMにおいては、ベース10に穿設された孔内に受台11及びシリンダ12が固定され、このシリンダ12に駆動されるシャフト13が、受台11を貫通し摺動自在に支持されている。また、シャフト13の先端面と対向する先端面を有するシャフト14が、シリンダ15によって鉛直方向に駆動可能に支持されている。シャフト14とシリンダ15との間にはロードセル16が介装されており、シリンダ15によってシャフト14を介して触媒担体に付与される軸方向荷重を測定し得るように構成されている。尚、ロードセル16はコントローラ30に電気的に接続されている。
【0026】
一方、サイジング装置SMにおいては、断面コ字状の環状枠部材20によって、複数の割型21がベース10上を径方向(軸芯方向)に摺動し得るように支持されている。割型21の内径側には金型(コレット)22が固定されており、各割型21の外径側(背面側)にはテーパ面が形成されている。これらの割型21を収容するように押型23が配設され、この内径側には、割型21のテーパ面に摺接するテーパ面が形成されている。尚、押型23は円筒状に形成しても、あるいは各割型21に当接するように分割してもよい。押型23は押板24に固定されており、この押板24は支持部材25を介してベース10に対して上下動可能に支持されている。而して、押板24によって押型23が鉛直方向に駆動され、例えば押型23が図1の下方に駆動されると、割型21が径方向(軸芯方向)に駆動されるように構成されている。押板24は油圧駆動装置(図示せず)によって駆動され、この油圧駆動装置はコントローラ30によって制御される。
【0027】
上記の構成になるサイジング装置SMの作動を説明すると、先ず、図1に示すように、受台11の上面に筒状部材4が載置される。このとき、シャフト13は筒状部材4の軸芯上に位置している。次に、緩衝マット3が装着された触媒担体2が、筒状部材4内に緩やかに収容され、シャフト13の先端面上に載置される。更に、シリンダ15によってシャフト14が下降駆動され、その先端面とシャフト13の先端面との間に触媒担体2が挟持される。そして、油圧駆動装置(図示せず)によって押板24が図1の下方に駆動される。これにより、押型23が図1の下方に駆動され、割型21が径方向(軸芯方向)に駆動される。この結果、図2に示すように、金型22によって筒状部材4の胴部(中間部)及び緩衝マット3が圧縮されて縮径される。このときの縮径量はコントローラ30による油圧駆動装置の制御によって正確に制御される。而して、触媒担体2が筒状部材4内で安定した状態で保持される。
【0028】
上記のようにサイジング装置SMの油圧駆動装置(図示せず)はコントローラ30によって制御され、特に、NC制御により任意量のサイジングを行なうことができるように構成されており、微細制御が可能である。更に、縮径時において、例えば逐次(随時)ワークを回転し、割り出し制御(インデックス制御)を行なうこととすれば、全周に亘って一層均一に縮径することができる。尚、サイジング装置SMの駆動及び制御媒体としては油圧に限るものではなく、その駆動及び制御形式については、機械式、電気式、空気圧式等、任意の駆動方法を用い、制御はCNCコントロールを用いることが好適である。
【0029】
次に、上記の構成になるサイジング装置SMを用い、複数回(本実施形態では2回)の縮径加工によって筒状部材4の胴部を緩衝マット3と共に縮径する縮径工程の具体例について、図2乃至図4を参照して説明する。図3は、緩衝マット3を触媒担体2の周りに装着した状態で筒状部材4内に収容し、筒状部材4の軸方向所定範囲を縮径して緩衝マット3を適切に圧縮して触媒担体2を保持した状態において、触媒担体2に対し軸方向荷重を付与したときの、触媒担体2の軸方向移動距離(ストローク)に対する関係を示したものである。ところで、緩衝マット3と触媒担体2との間の摩擦力、及び緩衝マット3と筒状部材4との間の摩擦力は夫々、触媒担体2の外面と緩衝マット3との間の静摩擦係数を緩衝マット3の圧縮復元力(面圧)に乗じた積、及び筒状部材4の内面と緩衝マット3との間の静摩擦係数を緩衝マット3の圧縮復元力(面圧)に乗じた積として表される。このとき、軸方向(長手方向)の保持力としては、静摩擦係数が低い方の部材と緩衝マット3との間の摩擦力が支配的となる。従って、静摩擦係数が判明している触媒担体2及び筒状部材4に関し、必要な摩擦力が明らかとなる。
【0030】
図3においては、触媒担体2の軸方向移動距離の増加にともない軸方向荷重が最大値(Fp、これは「抜き荷重」と呼ばれる)となった後、急減し、その後、緩減する特性を示している。このときの軸方向荷重は、触媒担体2及び筒状部材4のうちの静摩擦係数が低い方の部材と緩衝マット3との間の摩擦力に相当するので、軸方向荷重が抜き荷重(Fp)となる軸方向移動距離(Sp、例えば1.5mm)は、最大摩擦力が得られるストロークということになる。この軸方向移動距離(Sp)を特定することは種々の条件が絡み合い容易ではないが、少なくともこの値(Sp)以上の軸方向移動距離(Sx)だけ移動させれば、最大摩擦力、即ち抜き荷重(Fp)を検出することができる。そこで、軸方向移動距離(Sx)として例えば2mm(>Sp)を選択し、緩衝マット3に対し最適な圧縮荷重が付与されている状態において、軸方向荷重が最大となったときの値(抜き荷重(Fp))を検出し、この検出結果を目標軸方向荷重(Ft)として緩衝マット3の圧縮量(筒状部材4の縮径量)を調整すれば、触媒担体2及び筒状部材4のうちの静摩擦係数が低い方の部材と緩衝マット3との間に、所望の摩擦力を確保できることになる。
【0031】
尚、軸方向移動距離(Sx)より大の位置(図3のSxより右側の位置)での略安定した領域の動摩擦係数を監視することとしてもよい。即ち、上記のようにピーク値(最大静摩擦係数)に着目してサイジングの管理を行うか、最大動摩擦係数(動状態)に着目してサイジングの管理を行うかは、個々の設計上あるいは製造上の背景に応じて選択すればよい。何れにしても、緩衝マットと触媒担体との間の摩擦力、及び緩衝マットと筒状部材との間の摩擦力のうちの、摩擦力が小さく先に動き始める方の相対移動のみを監視すればよいので、この点でも本実施形態による製造の容易性が明らかである。
【0032】
一方、図4は、緩衝マット3に対し圧縮荷重を付与する筒状部材4の縮径量(横軸)と、触媒担体2に付与する軸方向荷重(縦軸)との関係を示すもので、2点鎖線で示す最大荷重時の特性と、破線で示す最小荷重時の特性の中央の実線が本実施形態の相関線であり、略直線を呈している。図4においては、上記のように図3の特性に基づいて設定した、緩衝マット3に対する圧縮荷重が最適な状態における目標軸方向荷重(Ft)と、この目標軸方向荷重(Ft)を付与し得る筒状部材4の目標縮径量(St)との関係を、以下のように特定することができる。
【0033】
先ず、第1回の縮径加工において、緩衝マット3を触媒担体2の周りに装着した状態で筒状部材4内に緩やかに収容し、緩衝マット3を収容する部分の筒状部材4の軸方向所定範囲に対し、第1回の縮径加工を行ったときの筒状部材4の第1の縮径量(S1)を測定すると共に、触媒担体2に軸方向荷重を付与して触媒担体2を筒状部材4に対して軸方向に所定距離(図3の軸方向移動距離(Sx)で、例えば2mm)移動させたときの第1の荷重(F1)を測定する。尚、図4のa点における第1の縮径量(S1)は、縮径前の筒状部材4の内側面(図4の0点)からの距離で、割型21の径方向移動距離、ひいては押板24の駆動用油圧駆動装置(図示せず)の油圧に基づいて求めることができる。
【0034】
続いて、第2回の縮径加工を行い、筒状部材4の軸方向所定範囲に対し第2回の縮径加工を行ったときの筒状部材4の第2の縮径量(S2)を測定すると共に、触媒担体2に軸方向荷重を付与して触媒担体2を筒状部材4に対して軸方向(例えば、第1回の縮径加工時の移動方向と同方向)に所定距離(例えば2mm)移動させたときの第2の荷重(F2)を測定する。尚、図4のb点における第2の縮径量(S2)も縮径前の筒状部材4の内側面(図4の0点)からの距離で、割型21の径方向移動距離、ひいては押板24の駆動用油圧駆動装置(図示せず)の油圧に基づいて求めることができる。従って、図4のa点からb点までの移動量は(S2−S1)ということになる。
【0035】
そして、第1及び第2の縮径量(S1,S2)並びに第1及び第2の軸方向荷重(F1,F2)の相関関係に基づき、触媒担体2を所定の目標保持力(これに対応する目標軸方向荷重をFtとする)にて筒状部材4内に保持するときの筒状部材4の縮径量(St)を推定する。即ち、図4に示すように予め設定された目標軸方向荷重(Ft)に対応する縮径量(St)となるまで筒状部材4を縮径する。尚、筒状部材4の内径の目標値(図4にRtで示す)を設定することとし、筒状部材4を縮径して第1及び第2の内径(R1,R2)に達したときの第1及び第2の軸方向荷重(F1,F2)との相関関係に基づき、筒状部材4の内径の目標値(Rt)を設定し、この目標値(Rt)となるまで筒状部材4の縮径加工を行うように構成してもよい。尚、筒状部材4の内径は、金型22の初期位置と触媒担体2の軸芯との間の所定距離から、金型22(割型21)の移動距離を差し引いて求めることができる。
【0036】
上記2回の測定は、触媒担体2を筒状部材4に対して、夫々同一の軸方向に、所定距離(2mm)移動させて行うこととしており、触媒担体2を合計4mm軸方向に移動させているので、この合計移動距離(4mm)を予め想定し、筒状部材4内に触媒担体2を配置する際の初期位置として、移動方向と逆方向に合計移動距離(4mm)だけ後退した位置に設定し、もしくは、縮径加工後に、移動方向と逆方向に合計移動距離だけ後退させればよい。
【0037】
あるいは、上記2回の測定は、触媒担体2を筒状部材4に対して、相互に反対の軸方向に、所定距離(2mm)移動させて行うこととしてもよい。即ち、1回の測定毎に、同じ距離(2mm)を反対の軸方向に移動させれば、2回の測定で移動距離が相殺されて触媒担体2は筒状部材4の初期位置に戻されることになる。しかし、緩衝マット3には一定方向の力が付与される状態で測定した方が、計測誤差が少ないので、本実施形態のように同じ方向に複数回移動させる方が好ましい。
【0038】
また、上記2回の測定後、更に図4のc点においても触媒担体2を移動させて軸方向荷重を測定することとしてもよいが、通常は、それまでの2点の測定結果から予測し得るので、3回の測定は量産工程では不要である。同様に、相関線が図4に示すように直線に回帰することが判明している場合には、図4のc点までに3点以上で測定する意義は殆どない。これに関し説明を加えると、推定する相関線は、厳密には、図4に示す直線を包含する上下二つの曲線間にある。従って、その線上で最適なc点を求めるためには、a点及びb点のほかに更に1点で測定し、これら3点の測定結果に基づき、最小2乗法等により2次曲線を求め、その曲線上でc点を求めることとすればよく、これにより一層精密な測定が可能となる。しかし、本願発明が対象とする触媒コンバータ等の量産には、上記の精度が要求されるものではないので、生産性を優先させ、2点の測定で済む図4の線形推測を採用し、上記の曲線に近似的な直線に置き換えることとしている。尚、縮径加工中に触媒担体2の軸方向移動と触媒担体2に対する軸方向荷重の測定が連続的に可能であれば、触媒担体2を移動させながら荷重測定を行うこととしてもよい。
【0039】
前述のように、触媒担体2及び筒状部材4のうちの静摩擦係数が低い方の部材と緩衝マット3との間に、所望の摩擦力を確保するためには緩衝マット3に対する面圧を高くする必要があるが、触媒担体2が脆弱な場合は径方向の荷重が過大となることを回避するためには、図5に示すように、緩衝マット3に対する面圧の限度内で、軸方向の保持力を確保し得るように設定する必要がある。このとき、触媒担体2の外径の誤差に起因する面圧のばらつきや経年変化を考慮し、あるいは、使用時における各種加速度による触媒担体2の軸方向移動を抑止し得る面圧(このときの必要最低面圧値をαとする)を考慮して、緩衝マット3の圧縮力をなるべく強く、且つ、周方向、軸方向ともに均一に付与するのが理想的である。これに対応すべく圧縮力を過大に設定すると、触媒担体2が破損するおそれがあるため、圧縮力は所定値より大きくすることはできない(このときの触媒担体2が破損する圧力(アイソスタティック強度)をβとする)。
【0040】
特に、近時の排気浄化性能向上の要請により、触媒担体2は一層の薄壁化が要求され、従来の触媒担体に比べ脆弱化(即ち、βの低下)が著しく、保持力設定の許容範囲(面圧に対する破損マージンで(β−α)で表すことができる)が一層狭められる。更に、排気ガス温度(触媒コンバータに導入される排気ガスの温度)の上昇を伴うため(約900℃にもなる)、緩衝マット3として高耐熱性を有するアルミナマットを組合せる必要がある。しかし、アルミナマットは熱的に非膨張性であることから、熱膨張性の金属製筒状部材の変形に追従させることが困難であり、このことからも必要最低面圧値αを既存の加工方法よりも大きい値に設定し、緩衝マット3の圧縮密度を大きく設定しなければならない。従って、従来のクラムシェル(通称、最中合せ)工法や圧入工法を用いる場合には、図5にAの範囲で示すように、広範な面圧バラツキ範囲(縮径量はSa1からSa2の範囲)を想定しなければならず、これは、必要最低面圧値α及びアイソスタティック強度βに対して殆ど安全猶予(マージン)がないことを意味している。従って、薄壁の触媒担体又はフィルタを従来のクラムシェル工法や圧入工法にて適正面圧を保って装填することは非常に困難である。
【0041】
上記の問題に対処するため、筒状部材4内に緩やかに触媒担体2及び緩衝マット3を挿入した後に、一定量だけ筒状部材4を縮径して緩衝マット3を圧縮する、所謂「見込みサイジング」が用いられるが、この方法でも、図5にBの範囲で示すように、依然としてかなり広範な面圧バラツキ範囲(縮径量はSb1からSb2の範囲)を想定しなければならず、薄壁の触媒担体又はフィルタへの適用に際しては容易ではない。
【0042】
これに対し、本実施形態における縮径工程によれば、図5にCの範囲で示すように、面圧バラツキ範囲は従来のAの範囲の30%程度まで小さくすることができ(縮径量はSc1からSc2の範囲)、結果として、必要最低面圧値αに対してはDという大きなマージンを確保できることになる。これにより、薄壁の触媒担体又はフィルタであっても、問題なくサイジングを行うことができる。しかも、マージンDの増大によって、面圧バラツキ範囲Cを下方へシフトさせることも可能となり、それによりアイソスタティック強度βに対するマージンも増加する。更に、面圧自体も小さいレベルで設定できるため、作業、管理が容易となり、緩衝マット3を薄く設定することができ、間隙を小さくすることができるので、軽量化、低コスト化にも寄与することになる。而して、本実施形態によれば、特に脆弱な触媒担体2に対しても、これを破壊することなく、常に安定した精度で、緩衝マット3を介して筒状部材4内に保持することができる。
【0043】
更に、本実施形態では、上記のように触媒担体2及び緩衝マット3が収容された筒状部材4の両端部に対し、以下のようにスピニングによるネッキング加工が行なわれる。先ず、図6に示すように、筒状部材4の胴部(縮径部)4aを、スピニング装置(図示せず)用のクランプ装置(図示せず)によって挟持し、回転不能且つ軸方向移動不能に固定する。そして、筒状部材4の一端部の外周回りを同径の円形軌跡にて公転する複数のスピニングローラSPによって、筒状部材4の一端部に対しスピニング加工を行なう。即ち、筒状部材4の外周回りに望ましくは等間隔で配置したスピニングローラSPを、筒状部材4の外周面に密着させて公転させると共に、径方向に駆動して公転軌跡を縮小しつつ軸方向(図6の右方向)に駆動してスピニング加工を行なう。
【0044】
而して、図6の右側に示すように、筒状部材4の胴部4aの縮径加工後に形成される段部を含み(重合して)スピニング加工が行なわれ、この重合加工部を介して胴部4aから連続して筒状部材4の径が急減するようにスピニング加工が行なわれ、筒状部材4の一端部にテーパ部4b及び首部(ボトルネック部)4cが形成される。これにより、胴部4aとテーパ部4bとの間に非加工部が残置されることなく、重合加工部を介して連続した面が形成される。
【0045】
更に、上記のように加工された筒状部材4を180度反転させて配置し、筒状部材4の他方の端部についても上記と同様にスピニングローラSPによるネッキング加工を行ない、胴部4aの中心軸に対して傾斜した軸を中心とするテーパ部4d及び首部4eを形成する。而して、図7に示すように触媒コンバータが形成される。この場合において、筒状部材4には、縮径加工によって胴部4aの外面に平行な複数の痕跡が形成されると共に、スピニング加工によってテーパ部4b及び4dの外面に複数の条痕が形成され、図7に破線で示すように縮径時の痕跡の両端部はテーパ部4b及び4dの形成時に消失し、スピニング加工時の条痕に交差する形態を呈している。尚、上記の痕跡は、図1に示すサイジング装置SMを用いた工法特有のものであり、また条痕はスピニング加工特有のものであるが、図7における痕跡及び条痕を示す線条は、説明の便宜上強調して描いたものであって、実際は薄く、できれば視認できない程度であることが望ましい。
【0046】
尚、特開2001−107725号に記載のように、筒状部材4の胴部の縮径工程にもスピニング加工を採用することとしてもよい。また、触媒担体2は必ずしも1個である必要はなく、軸方向に2個配置してタンデム型とし、あるいは3個以上を直列に配置してもよく、筒状部材4の胴部は、各ハニカム構造体に対応する部分毎に縮径してもよいし、連続して縮径してもよい。そして、最終製品としては、自動車の排気系部品に限らず、本発明の製造方法は、前述の燃料電池用の改質器等、種々の流体処理装置に適用することができる。
【0047】
【発明の効果】
本発明は上述のように構成されているので以下に記載の効果を奏する。即ち、請求項1記載のハニカム構造体内蔵流体処理装置の製造方法においては、少なくとも緩衝部材を収容する部分の筒状部材の軸方向所定範囲を縮径加工するときに、ハニカム構造体に軸方向荷重を付与してハニカム構造体を筒状部材に対して軸方向に所定距離移動させたときの軸方向荷重の値を監視し、前記軸方向荷重の値が目標軸方向荷重に達するまで筒状部材の縮径加工を行うこととしているので、常に安定した極めて良好な精度で筒状部材を縮径することができる。
【0048】
特に、代用値ではなく、ハニカム構造体の移動荷重そのものを直接監視することとしているので、誤差を最小限に抑え、高精度で、ハニカム構造体を所定の目標保持力で保持することができる。従って、ハニカム構造体の外径誤差、筒状部材の内径の誤差、緩衝部材の誤差等に影響されることなく、しかも前述のGBD値に代わる管理指標を必要とすることもなく、高精度で筒状部材を縮径することができる。更に、最終製品として要求されるハニカム構造体の移動荷重そのものを満足させることができるので、従来必要とされたハニカム構造体の移動(抜け)検査を省略することができ、それだけ製造時間を短縮することができる。而して、短時間で容易に流体処理装置を製造することができ、量産工程にも容易に適合することができる。
【0049】
また、請求項乃至に記載のハニカム構造体内蔵流体処理装置の製造方法においては、少なくとも緩衝部材を収容する部分の筒状部材の軸方向所定範囲に対し第1回の縮径加工を行ったときの筒状部材の第1の縮径量を測定すると共に、ハニカム構造体に軸方向荷重を付与してハニカム構造体を筒状部材に対して軸方向に所定距離移動させたときの第1の荷重を測定し、続いて同様に、第2の縮径量を測定すると共に第2の荷重を測定し、第1及び第2の縮径量並びに第1及び第2の軸方向荷重の相関関係に基づき、ハニカム構造体を所定の目標保持力で筒状部材内に保持するときの筒状部材の目標縮径量を推定し、更に、該目標縮径量に至るまで筒状部材の縮径加工を行うこととしているので、一層良好な精度で筒状部材を縮径することができる。また、前述の方法と同様、短時間で容易に流体処理装置を製造することができ、量産工程にも容易に適合することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る製造方法に供するサイジング装置を示す断面図である。
【図2】本発明の一実施形態に係る製造方法に供するサイジング装置によって、筒状部材を縮径している状態示す断面図である。
【図3】筒状部材の軸方向所定範囲を縮径して緩衝マットを適切に圧縮して触媒担体を保持した状態において、触媒担体に対し軸方向荷重を付与したときの、触媒担体の軸方向移動距離に対する関係を示すグラフである。
【図4】緩衝マットに対し圧縮荷重を付与する筒状部材の縮径量と、触媒担体に付与する軸方向荷重との関係を示すグラフである。
【図5】一般的な触媒コンバータに供する緩衝部材の一例に対する面圧許容範囲を示すグラフである。
【図6】本発明の一実施形態に係る製造方法において、スピニングローラによるネッキング加工を行う状態を示す断面図である。
【図7】本発明の一実施形態に係る製造方法によって製造した触媒コンバータの一例を示す断面図である。
【符号の説明】
2 触媒担体, 3 緩衝マット, 4 筒状部材, 4a 胴部,
4b,4d テーパ部, 4c,4e 首部, 11 受台,
16 ロードセル, 21 割型, 22 金型, 23 押型,
HM 触媒担体保持装置, SM サイジング装置, SP スピニングローラ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a fluid treatment apparatus that holds a honeycomb structure in a metallic cylindrical member via a buffer member, and for example, a catalyst carrier of the honeycomb structure is interposed in the cylindrical member via a buffer mat. The present invention relates to a production method suitable as a production method of a catalytic converter to be held.
[0002]
[Prior art]
Modern automobiles are equipped with catalytic converters and diesel particulate filters (hereinafter referred to as “DP filters”). The manufacturing method is to provide a sealing function on the outer periphery of a fragile ceramic catalyst carrier (or filter). A general method is to wind a ceramic buffer mat as the buffer member, and press-fit the buffer mat into a cylindrical member (casing) while compressing the buffer mat.
[0003]
For example, in Japanese Patent Laid-Open No. 2001-355438, the outer diameter of the catalyst carrier is measured when a catalyst carrier having a holding material attached to the outer periphery is press-fitted into a holding cylinder, and the holding member has an inner diameter suitable for the measured value. A method of manufacturing a catalytic converter in which a catalyst carrier having a holding member mounted on a cylinder is press-fitted has been proposed. There has also been proposed a method of measuring the outer diameter of the holding material mounted on the outer periphery of the catalyst carrier and press-fitting the catalyst carrier with the holding material mounted on a holding cylinder having an inner diameter suitable for the measured value. Furthermore, it has been proposed to measure the outer diameter of the holding material in a state where a predetermined pressure is applied. In this publication, it is proposed that materials for a large number of holding cylinders having different inner diameters are prepared in advance, and a material having an appropriate inner diameter is selected from them.
[0004]
On the other hand, a method called sizing or calibrating is also proposed in which after the catalyst carrier and the mat are gently inserted into the cylindrical member, the diameter of the cylindrical member is reduced to a diameter at which the cushioning member mat becomes the optimum compression amount. For example, it is disclosed in JP-A-64-60711, JP-A-8-42333, JP-A-9-170424, JP-A-9-234377, US Pat. No. 5,329,698, US Pat. Yes.
[0005]
For example, in Japanese Patent Application Laid-Open No. 9-234377, in the conventional Japanese Patent Application Laid-Open No. 2-268834, the central portion of the tubular body (cone-integrated casing) 23 is radially reduced in diameter to form a compression part b, and a support mat Although the catalytic converter which compresses 22 and supports the ceramic honeycomb body 21 in the casing is disclosed, the honeycomb body 21 is in the direction of the cones 8a and 8b which are not reduced in diameter from the end of the compression portion b in the central portion. Since the problem is that the gap 9 between the outer periphery and the inner periphery of the casing 23 is large, it has been proposed to reduce the diameter over the entire length of the casing.
[0006]
[Problems to be solved by the invention]
In the above-described press-fitting method, generally, the gap between the outer diameter of the catalyst carrier and the inner diameter of the cylindrical member is set based on the packing density (referred to as GBD value) of the buffer mat serving as the buffer member. This GBD value is the weight per unit area of the buffer mat / the size of the filling gap, and a surface pressure (unit: Pascal) is generated according to the packing density of the buffer mat, and the catalyst carrier is held by this surface pressure. However, the surface pressure is naturally adjusted to a value that does not exceed the strength of the catalyst carrier, and to a value that can be held so that it does not move in the cylindrical member against the catalyst carrier to which vibration or exhaust gas pressure is applied. Must. For this purpose, the buffer mat must be pressed in with a GBD value within the design range, and this GBD value must be maintained during the product life cycle.
[0007]
However, in the above-described method using press-fitting, an error in the outer diameter of the catalyst carrier, an error in the inner diameter of the cylindrical member, and an error in the weight per unit area of the buffer mat interposed between them are inevitably produced in the manufacturing process. Are superimposed on each other, which causes an error in the GBD value. Therefore, finding the optimum combination of each member for minimizing the error of the GBD value cannot be a realistic solution for mass production. Further, the GBD value itself depends on the characteristics of the buffer mat and individual differences, and depends on the measured value on the plane, and does not represent the measured value in a state of being tightly wound around the catalyst carrier. For this reason, it is desired that the catalyst carrier is appropriately accommodated in the cylindrical member without depending on the GBD value as in the prior art.
[0008]
On the other hand, in the sizing method, it is contemplated that the outer diameter of the catalyst carrier and the inner diameter of the cylindrical member are measured in advance, the appropriate compression amount of the buffer mat is obtained, and the diameter is reduced by this compression amount. In this method, it is difficult to finally determine whether or not the compression amount of the buffer mat is optimal. This is because when reducing the diameter of a metal cylindrical member, it is necessary to reduce the diameter in advance (so-called overshoot) smaller than the target diameter in consideration of the spring back of the cylindrical member. . For this reason, there exists a possibility that an excessive compressive force may be provided. Further, since a change in the plate thickness is unavoidable during the diameter reduction processing of the cylindrical member, it is more difficult to set a true inner diameter (inner wall surface position), that is, an accurate diameter reduction amount.
[0009]
As a method for solving the problem caused by the above-mentioned overshoot, in the above-mentioned specification of US Pat. No. 5,755,025, the outer diameter of the catalyst carrier is measured in advance, and the compression mat compression amount is taken into consideration. The optimum outer diameter of the range is calculated, and the cylindrical member is expanded to several kinds of diameters over the entire length based on the calculated outer diameter. Thereafter, the catalyst carrier is used in the selected cylindrical member using a jig similar to the press-fitting method. And we are going to press fit the buffer mat. However, since no consideration is given to the error in the weight per unit area of the buffer mat, it is inevitable that an error occurs in the surface pressure applied to the catalyst carrier.
[0010]
Here, the holding force required to hold the catalyst carrier at a predetermined position in the cylindrical member will be described. The holding force in the radial direction of the cylindrical member is applied to the outer surface of the catalyst carrier and the inner surface of the cylindrical member. It is the compression restoring force of the buffer mat that works in the direction perpendicular to the direction. On the other hand, for example, an axial force is generated by vibration or exhaust gas pressure in the catalyst carrier and the buffer mat with respect to the cylindrical member fixed to the exhaust device of the automobile, for example. A holding force in the (longitudinal direction) is necessary, and this is where the frictional force between the buffer mat and the catalyst carrier, and the frictional force between the buffer mat and the cylindrical member contribute.
[0011]
The frictional force between the buffer mat and the catalyst carrier, and the frictional force between the buffer mat and the cylindrical member, respectively, determine the coefficient of static friction between the outer surface of the catalyst carrier and the buffer mat, and the compression restoring force of the buffer mat. The product multiplied by (surface pressure) and the product obtained by multiplying the static friction coefficient between the inner surface of the cylindrical member and the buffer mat by the compression restoring force (surface pressure) of the buffer mat. At this time, as the holding force in the axial direction (longitudinal direction), the frictional force between the member having a lower static friction coefficient and the buffer mat is dominant. Therefore, the necessary frictional force is clarified for the catalyst carrier and the cylindrical member whose static friction coefficient is known, and in order to ensure this, it is necessary to increase the surface pressure against the buffer mat, but the catalyst carrier is fragile. In this case, in order to avoid an excessive radial load, it is necessary to set the axial holding force within the limit of the surface pressure against the buffer mat.
[0012]
Thus, the surface pressure with respect to the buffer mat is set based on the static friction coefficient of the lower member of the static friction coefficient of the outer surface of the catalyst carrier and the static friction coefficient of the inner surface of the cylindrical member, and the cylinder pressure is determined according to the surface pressure. The diameter of the member may be reduced. However, in the conventional method, the management based on the above-mentioned GBD value is general, that is, the estimation management based on the substitute value is performed. For this reason, not only the estimation factor is superimposed and the error is unavoidable, but as a result, the holding force due to the frictional force between the buffer mat and the catalyst carrier and the friction between the buffer mat and the cylindrical member are reduced. The holding force by force is confused, and the dimensional relationship of each part is set.
[0013]
After all, the most appropriate control parameter when holding the catalyst carrier in the tubular member via the buffer mat is the surface pressure applied to the honeycomb structure (catalyst carrier or filter) via the buffer member (buffer mat). It is. Therefore, if the surface pressure can be directly detected and the diameter of the cylindrical member can be reduced based on the detection result, the diameter of the cylindrical member can be reduced with good accuracy by sizing.
[0014]
However, it is very difficult to measure the above surface pressure itself, particularly in a state where the buffer mat and the catalyst carrier are accommodated in the cylindrical member and the surface pressure is generated by the reaction force of the buffer mat. It is necessary to insert the measuring device into the cylindrical member for measurement and take out the device after the measurement. However, this is very difficult and not practical. On the other hand, it is conceivable to measure the strain or the like of the cylindrical member and use it as a substitute value of the surface pressure. However, the measurement accuracy cannot be declined, and an accurate surface pressure value cannot be grasped.
[0015]
Therefore, the present invention monitors the holding force when holding the honeycomb structure in the metal cylindrical member via the buffer member, reduces the diameter of the cylindrical member, and places the honeycomb structure in the cylindrical member. It is an object of the present invention to provide a method for manufacturing a fluid treatment apparatus that can be appropriately held.
[0016]
[Means for Solving the Problems]
In order to solve the above-described problems, a method for manufacturing a fluid processing apparatus with a built-in honeycomb structure according to the present invention includes a honeycomb structure in which a honeycomb structure is held in a metal cylindrical member via a buffer member as described in claim 1. In the manufacturing method of the fluid processing apparatus with a built-in structure, the buffer member is housed in the cylindrical member in a state of being mounted around the honeycomb structure and held at a predetermined position, and then at least a portion of the buffer member is housed. When reducing the diameter of a predetermined range in the axial direction of the tubular member, when applying an axial load to the honeycomb structure and moving the honeycomb structure in the axial direction with respect to the cylindrical member The axial load value is monitored, and the axial load value is Target axial load The diameter reduction of the cylindrical member is performed until reaching the value. In addition, when the buffer member and the honeycomb structure are accommodated in the tubular member, they may be accommodated gently, but may be accommodated in a state close to press-fitting in anticipation of several diameter reductions. Good (hereinafter the same). In addition, the predetermined distance is a maximum value of the axial load when the honeycomb structure is moved in the axial direction in a state where an optimal compressive load is applied to the honeycomb structure (this is referred to as “extraction load”). It is good to set it to a value that is equal to or greater than the axial movement distance at the time.
[0019]
Claims 2 As described in the above, in the method for manufacturing a honeycomb structure built-in fluid processing apparatus in which the honeycomb structure is held in the metal cylindrical member via the buffer member, the buffer member is mounted around the honeycomb structure. The first reduction of the cylindrical member when the first diameter reduction processing is performed with respect to a predetermined range in the axial direction of the cylindrical member that is accommodated in the cylindrical member and at least a portion that accommodates the buffer member. Measures the first load when the honeycomb structure is moved by a predetermined distance in the axial direction with respect to the tubular member by measuring the diameter amount and applying an axial load to the honeycomb structure. And measuring a second diameter reduction amount of the cylindrical member when the second diameter reduction process is performed on the axially predetermined range of the cylindrical member, and applying an axial load to the honeycomb structure. To give the honeycomb structure the tubular shape Measure the second load when moved a predetermined distance in the axial direction relative to the material, based on the correlation between the first and second reduced diameter amount and the first and second axial load, Estimating a target diameter reduction amount of the cylindrical member when the honeycomb structure is held in the cylindrical member with a predetermined target holding force, and further reducing the diameter of the cylindrical member until the target diameter reduction amount is reached. It is good also as processing.
[0020]
Furthermore, the claim 2 In the manufacturing method described in claim 3 As described above, the two measurements may be performed by moving the honeycomb structure by a predetermined distance with respect to the tubular member in the same axial direction. Alternatively, the claim 2 In the manufacturing method described in claim 4 As described above, the two measurements may be performed by moving the honeycomb structure by a predetermined distance with respect to the cylindrical member in opposite axial directions.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a method for manufacturing a fluid treatment apparatus that holds a honeycomb structure in a metal cylindrical member via a buffer member, and as a specific embodiment thereof, a method for manufacturing a catalytic converter for automobiles will be described with reference to the drawings. To do. In addition to the catalytic converter, the fluid treatment device to be manufactured of the present invention includes, for example, a DP filter device and a purification filter. Further, a reformer for a fuel cell described in JP-A-2002-50383 and 68709 is also available. Is included.
[0022]
The cylindrical member is also called an outer cylinder, a housing, or a casing. In the case of a catalytic converter, the honeycomb structure corresponds to a catalyst carrier, and the buffer member corresponds to a buffer mat for holding the catalyst carrier. In the case of the DP filter device, the honeycomb structure corresponds to a filter, and the buffer member corresponds to a buffer mat for the DP filter. The catalyst carrier or DP filter constituting the honeycomb structure is generally formed in a columnar shape or a cylindrical shape, and has a circular cross section, but is not limited thereto, an elliptical cross section, an oval cross section, a surface having a plurality of curvatures. It is good also as non-circular cross sections, such as a cross-section which combined and polygonal cross-section. Further, the flow path (cell) cross section of the catalyst carrier or the DP filter is not limited to the honeycomb (hexagonal shape), and may be any square shape.
[0023]
In the present embodiment, as shown in the center portion of FIG. 1, the buffer mat 3 constituting the buffer member of the present invention is wound around the outer periphery of the catalyst carrier 2 and is fixed by a combustible tape or the like as necessary. The In this case, although not shown, it is preferable to use a general winding method in which convex portions and concave portions are formed at both ends of the buffer mat 3 and these are fitted to each other. Further, since there is also a buffer member formed in a cylindrical shape in advance, in this case, the buffer member is mounted around the catalyst carrier 2 simply by housing the catalyst carrier 2 in the cylindrical buffer member. .
[0024]
The catalyst carrier 2 is composed of a ceramic honeycomb structure, and the walls between the cells (flow paths) are formed thin, which is more fragile than the conventional product. The buffer mat 3 is composed of an alumina mat that hardly expands due to heat in the present embodiment, but may be a thermal expansion type vermiculite buffer mat or a buffer mat that combines them. Further, an inorganic fiber mat not impregnated with a binder may be used. Since the surface pressure varies depending on the presence and content of the binder, it is necessary to take this into consideration when setting the surface pressure. Or you may use the wire mesh etc. which knitted the metal fine wire, and may use it in combination with a ceramic mat. Further, they may be combined with a metal annular retainer, a wire mesh seal ring, or the like.
[0025]
Next, the catalyst carrier 2 on which the buffer mat 3 is mounted as described above is gently accommodated in the cylindrical member 4 (or accommodated in a state close to press-fitting in anticipation of several diameter reductions), After being held at a predetermined position by the sizing device SM shown in FIG. 1, the predetermined range of the cylindrical member 4 is reduced in diameter. In this embodiment, as shown in FIG. 1, a catalyst carrier holding device HM is disposed vertically through the base 10, and the collet chuck of the sizing device SM is disposed on the base 10 so as to surround it. It is installed. In the holding device HM, a cradle 11 and a cylinder 12 are fixed in a hole drilled in the base 10, and a shaft 13 driven by the cylinder 12 is slidably supported through the cradle 11. Yes. Further, a shaft 14 having a distal end surface facing the distal end surface of the shaft 13 is supported by a cylinder 15 so as to be driven in the vertical direction. A load cell 16 is interposed between the shaft 14 and the cylinder 15 so that the axial load applied to the catalyst carrier by the cylinder 15 via the shaft 14 can be measured. The load cell 16 is electrically connected to the controller 30.
[0026]
On the other hand, in the sizing device SM, a plurality of split molds 21 are supported by an annular frame member 20 having a U-shaped cross section so as to be able to slide on the base 10 in the radial direction (axial direction). A mold (collet) 22 is fixed to the inner diameter side of the split mold 21, and a tapered surface is formed on the outer diameter side (back side) of each split mold 21. A pressing die 23 is disposed so as to accommodate these split dies 21, and a tapered surface that is in sliding contact with the tapered surface of the split die 21 is formed on the inner diameter side. The pressing die 23 may be formed in a cylindrical shape or may be divided so as to abut on each split die 21. The pressing die 23 is fixed to a pressing plate 24, and the pressing plate 24 is supported via a support member 25 so as to be movable up and down. Thus, the pressing plate 24 drives the pressing die 23 in the vertical direction. For example, when the pressing die 23 is driven downward in FIG. 1, the split die 21 is driven in the radial direction (axial direction). ing. The push plate 24 is driven by a hydraulic drive device (not shown), and this hydraulic drive device is controlled by the controller 30.
[0027]
The operation of the sizing device SM configured as described above will be described. First, as shown in FIG. 1, the cylindrical member 4 is placed on the upper surface of the cradle 11. At this time, the shaft 13 is located on the axis of the cylindrical member 4. Next, the catalyst carrier 2 on which the buffer mat 3 is mounted is gently accommodated in the cylindrical member 4 and placed on the tip surface of the shaft 13. Further, the shaft 14 is driven downward by the cylinder 15, and the catalyst carrier 2 is sandwiched between the front end surface of the shaft 14 and the front end surface of the shaft 13. Then, the push plate 24 is driven downward in FIG. 1 by a hydraulic drive device (not shown). Thereby, the pressing die 23 is driven downward in FIG. 1, and the split die 21 is driven in the radial direction (axial direction). As a result, as shown in FIG. 2, the barrel 22 (intermediate portion) of the cylindrical member 4 and the buffer mat 3 are compressed and reduced in diameter by the mold 22. The amount of diameter reduction at this time is accurately controlled by the control of the hydraulic drive device by the controller 30. Thus, the catalyst carrier 2 is held in a stable state in the cylindrical member 4.
[0028]
As described above, the hydraulic drive device (not shown) of the sizing device SM is controlled by the controller 30, and is particularly configured to be able to perform an arbitrary amount of sizing by NC control, and can be finely controlled. . Further, when the diameter is reduced, for example, if the workpiece is rotated sequentially (at any time) and indexing control (index control) is performed, the diameter can be reduced more uniformly over the entire circumference. Note that the drive and control medium of the sizing device SM is not limited to hydraulic pressure, and any drive method such as mechanical, electric or pneumatic is used for the drive and control type, and control is performed using CNC control. Is preferred.
[0029]
Next, a specific example of a diameter reduction process for reducing the diameter of the body of the tubular member 4 together with the buffer mat 3 by a diameter reduction process a plurality of times (in this embodiment, twice) using the sizing device SM having the above-described configuration. Will be described with reference to FIGS. FIG. 3 shows that the buffer mat 3 is accommodated in the cylindrical member 4 with the catalyst carrier 2 mounted, and the buffer mat 3 is appropriately compressed by reducing the diameter of a predetermined range in the axial direction of the cylindrical member 4. The relationship with respect to the axial movement distance (stroke) of the catalyst carrier 2 when an axial load is applied to the catalyst carrier 2 with the catalyst carrier 2 held is shown. By the way, the frictional force between the buffer mat 3 and the catalyst carrier 2 and the frictional force between the buffer mat 3 and the cylindrical member 4 respectively have a static friction coefficient between the outer surface of the catalyst carrier 2 and the buffer mat 3. The product obtained by multiplying the compression restoring force (surface pressure) of the buffer mat 3 and the product obtained by multiplying the compression friction force (surface pressure) of the buffer mat 3 by the static friction coefficient between the inner surface of the tubular member 4 and the buffer mat 3. expressed. At this time, as the holding force in the axial direction (longitudinal direction), the frictional force between the member having the lower static friction coefficient and the buffer mat 3 is dominant. Therefore, the necessary frictional force becomes clear with respect to the catalyst carrier 2 and the cylindrical member 4 whose static friction coefficients are known.
[0030]
In FIG. 3, the axial load becomes a maximum value (Fp, which is referred to as “pull load”) as the axial movement distance of the catalyst carrier 2 increases, and then rapidly decreases and then gradually decreases. Show. The axial load at this time corresponds to the frictional force between the member having the lower static friction coefficient of the catalyst carrier 2 and the cylindrical member 4 and the buffer mat 3, so that the axial load is the extraction load (Fp). The axial movement distance (Sp, for example, 1.5 mm) becomes a stroke at which the maximum frictional force can be obtained. Specifying this axial movement distance (Sp) is not easy to be entangled with various conditions, but if it is moved at least by an axial movement distance (Sx) greater than this value (Sp), the maximum frictional force, that is, the removal force The load (Fp) can be detected. Accordingly, for example, 2 mm (> Sp) is selected as the axial movement distance (Sx), and the value when the axial load is maximized in the state where the optimum compressive load is applied to the buffer mat 3 (extraction) Load (Fp)), and the amount of compression of the buffer mat 3 (the amount of diameter reduction of the cylindrical member 4) is adjusted with the detection result as the target axial load (Ft), the catalyst carrier 2 and the cylindrical member 4 A desired frictional force can be secured between the member having the lower static friction coefficient and the buffer mat 3.
[0031]
The dynamic friction coefficient in a substantially stable region at a position larger than the axial movement distance (Sx) (a position on the right side of Sx in FIG. 3) may be monitored. That is, whether to manage sizing by focusing on the peak value (maximum static friction coefficient) or sizing management by focusing on the maximum dynamic friction coefficient (dynamic state) as described above depends on the individual design or manufacturing. It may be selected according to the background. In any case, of the frictional force between the buffer mat and the catalyst carrier and the frictional force between the buffer mat and the cylindrical member, only the relative movement in which the frictional force starts to move first is monitored. In this respect, the ease of manufacturing according to the present embodiment is clear.
[0032]
On the other hand, FIG. 4 shows the relationship between the reduced diameter (horizontal axis) of the cylindrical member 4 that applies a compressive load to the buffer mat 3 and the axial load (vertical axis) applied to the catalyst carrier 2. A solid line at the center of the maximum load characteristic indicated by a two-dot chain line and the minimum load characteristic indicated by a broken line is a correlation line of the present embodiment, and represents a substantially straight line. In FIG. 4, the target axial load (Ft) set based on the characteristics of FIG. 3 as described above and the compressive load on the cushioning mat 3 being optimal and the target axial load (Ft) are applied. The relationship with the target diameter reduction amount (St) of the cylindrical member 4 to be obtained can be specified as follows.
[0033]
First, in the first diameter reduction processing, the buffer mat 3 is gently housed in the tubular member 4 in a state where the buffer mat 3 is mounted around the catalyst carrier 2, and the shaft of the tubular member 4 in the portion for housing the buffer mat 3 is used. And measuring the first diameter reduction amount (S1) of the cylindrical member 4 when the first diameter reduction processing is performed for a predetermined range in the direction, and applying an axial load to the catalyst support 2 to thereby provide the catalyst support A first load (F1) is measured when 2 is moved in the axial direction with respect to the cylindrical member 4 by a predetermined distance (for example, 2 mm in the axial movement distance (Sx) in FIG. 3). The first diameter reduction amount (S1) at point a in FIG. 4 is the distance from the inner surface (point 0 in FIG. 4) of the cylindrical member 4 before diameter reduction, and the radial movement distance of the split mold 21 As a result, it can be obtained based on the hydraulic pressure of a hydraulic drive device (not shown) for driving the push plate 24.
[0034]
Subsequently, the second diameter reduction processing is performed, and the second diameter reduction amount (S2) of the cylindrical member 4 when the second diameter reduction processing is performed with respect to a predetermined axial range of the cylindrical member 4. Is measured, and an axial load is applied to the catalyst carrier 2 to place the catalyst carrier 2 in the axial direction with respect to the cylindrical member 4 (for example, in the same direction as the moving direction during the first diameter reduction process). The second load (F2) when moved (for example, 2 mm) is measured. The second diameter reduction amount (S2) at point b in FIG. 4 is also the distance from the inner side surface (point 0 in FIG. 4) of the cylindrical member 4 before the diameter reduction, and the radial movement distance of the split mold 21; As a result, it can obtain | require based on the oil_pressure | hydraulic of the hydraulic drive apparatus (not shown) for a drive of the push plate 24. FIG. Therefore, the amount of movement from point a to point b in FIG. 4 is (S2-S1).
[0035]
Then, based on the correlation between the first and second diameter reduction amounts (S1, S2) and the first and second axial loads (F1, F2), the catalyst carrier 2 is subjected to a predetermined target holding force (corresponding to this). The diameter reduction amount (St) of the cylindrical member 4 when it is held in the cylindrical member 4 at a target axial load to be Ft) is estimated. That is, as shown in FIG. 4, the cylindrical member 4 is reduced in diameter until a diameter reduction amount (St) corresponding to a preset target axial load (Ft) is reached. Note that the target value of the inner diameter of the cylindrical member 4 (indicated by Rt in FIG. 4) is set, and when the cylindrical member 4 is reduced in diameter and reaches the first and second inner diameters (R1, R2). Based on the correlation with the first and second axial loads (F1, F2), a target value (Rt) of the inner diameter of the cylindrical member 4 is set, and the cylindrical member until this target value (Rt) is reached. You may comprise so that 4 diameter reduction processing may be performed. The inner diameter of the cylindrical member 4 can be obtained by subtracting the moving distance of the mold 22 (split mold 21) from a predetermined distance between the initial position of the mold 22 and the axis of the catalyst carrier 2.
[0036]
The two measurements are performed by moving the catalyst carrier 2 with respect to the cylindrical member 4 in the same axial direction by a predetermined distance (2 mm), and moving the catalyst carrier 2 in the axial direction for a total of 4 mm. Therefore, assuming this total moving distance (4 mm) in advance, as an initial position when the catalyst carrier 2 is arranged in the cylindrical member 4, a position retracted by the total moving distance (4 mm) in the direction opposite to the moving direction. Or after the diameter reduction processing, the total movement distance may be retracted in the direction opposite to the movement direction.
[0037]
Alternatively, the two measurements may be performed by moving the catalyst carrier 2 with respect to the cylindrical member 4 in the opposite axial directions by a predetermined distance (2 mm). That is, if the same distance (2 mm) is moved in the opposite axial direction for each measurement, the movement distance is canceled by the two measurements and the catalyst carrier 2 is returned to the initial position of the cylindrical member 4. It will be. However, since the measurement error is smaller when the buffer mat 3 is measured in a state where a force in a certain direction is applied, it is preferable to move the buffer mat 3 a plurality of times in the same direction as in the present embodiment.
[0038]
In addition, after the above two measurements, the catalyst carrier 2 may be moved at the point c in FIG. 4 to measure the axial load. Usually, however, it is predicted from the measurement results of the two points so far. Therefore, three measurements are not necessary in the mass production process. Similarly, when it is known that the correlation line returns to a straight line as shown in FIG. 4, it is hardly meaningful to measure at three or more points up to point c in FIG. To further explain this, strictly speaking, the estimated correlation line is between two upper and lower curves including the straight line shown in FIG. Therefore, in order to obtain the optimum point c on the line, in addition to the points a and b, measurement is performed at one point, and a quadratic curve is obtained by the least square method based on the measurement results of these three points. What is necessary is just to obtain | require c point on the curve, and a more precise measurement is attained by this. However, since the above accuracy is not required for mass production of catalytic converters and the like targeted by the present invention, the productivity is prioritized and the linear estimation shown in FIG. It is supposed to be replaced with a straight line approximate to the curve. If the axial movement of the catalyst carrier 2 and the measurement of the axial load on the catalyst carrier 2 can be continuously performed during the diameter reduction processing, the load measurement may be performed while moving the catalyst carrier 2.
[0039]
As described above, in order to ensure a desired frictional force between the catalyst carrier 2 and the cylindrical member 4 having a lower coefficient of static friction and the buffer mat 3, the surface pressure on the buffer mat 3 is increased. However, when the catalyst support 2 is weak, in order to avoid an excessive radial load, the axial direction is within the limit of the surface pressure against the buffer mat 3 as shown in FIG. It is necessary to set so as to be able to secure a sufficient holding force. At this time, in consideration of variations in surface pressure due to errors in the outer diameter of the catalyst carrier 2 and changes over time, or surface pressure that can suppress axial movement of the catalyst carrier 2 due to various accelerations during use (at this time Ideally, the compressive force of the buffer mat 3 should be as strong as possible and uniformly applied in both the circumferential direction and the axial direction. If the compression force is set excessively to cope with this, the catalyst carrier 2 may be damaged, so the compression force cannot be greater than a predetermined value (the pressure at which the catalyst carrier 2 is damaged (isostatic strength) ) Is β).
[0040]
In particular, due to the recent demand for improved exhaust purification performance, the catalyst carrier 2 is required to have a thinner wall, and is significantly weaker (that is, lowering β) than the conventional catalyst carrier, and the allowable range for setting the holding force. (It can be expressed by (β−α) as a damage margin against the surface pressure) is further narrowed. Further, since the exhaust gas temperature (the temperature of the exhaust gas introduced into the catalytic converter) increases (becomes about 900 ° C.), it is necessary to combine an alumina mat having high heat resistance as the buffer mat 3. However, since the alumina mat is thermally non-expandable, it is difficult to follow the deformation of the heat-expandable metal cylindrical member. The compression density of the buffer mat 3 must be set larger than the method. Therefore, when using the conventional clamshell (commonly called mid-alignment) method or press-fitting method, as shown by the range A in FIG. 5, a wide surface pressure variation range (the diameter reduction range is Sa1 to Sa2. ), Which means that there is almost no safety margin (margin) for the required minimum surface pressure value α and isostatic strength β. Therefore, it is very difficult to load a thin-walled catalyst carrier or filter while maintaining an appropriate surface pressure by the conventional clamshell method or press-fitting method.
[0041]
In order to cope with the above problem, after the catalyst carrier 2 and the buffer mat 3 are gently inserted into the cylindrical member 4, the cylindrical member 4 is reduced in diameter by a certain amount to compress the buffer mat 3. In this method, as shown in the range B in FIG. 5, it is still necessary to assume a considerably wide surface pressure variation range (the diameter reduction range is Sb1 to Sb2). It is not easy to apply to a wall catalyst support or filter.
[0042]
On the other hand, according to the diameter reduction process in the present embodiment, as shown by a range C in FIG. 5, the surface pressure variation range can be reduced to about 30% of the conventional range A (the diameter reduction amount). Is a range from Sc1 to Sc2). As a result, a large margin of D can be secured for the necessary minimum surface pressure value α. Thereby, even a thin-walled catalyst carrier or filter can be sized without problems. In addition, as the margin D increases, the surface pressure variation range C can be shifted downward, thereby increasing the margin for the isostatic strength β. Furthermore, since the surface pressure itself can be set at a small level, work and management are facilitated, the buffer mat 3 can be set thin, and the gap can be reduced, contributing to weight reduction and cost reduction. It will be. Thus, according to the present embodiment, even the fragile catalyst carrier 2 is always held in the cylindrical member 4 via the buffer mat 3 with a stable accuracy without being destroyed. Can do.
[0043]
Further, in the present embodiment, as described above, the necking process by spinning is performed on both ends of the cylindrical member 4 in which the catalyst carrier 2 and the buffer mat 3 are accommodated as follows. First, as shown in FIG. 6, the trunk portion (reduced diameter portion) 4a of the cylindrical member 4 is sandwiched by a clamping device (not shown) for a spinning device (not shown), and cannot be rotated and moved in the axial direction. Fix impossible. Then, a spinning process is performed on one end portion of the cylindrical member 4 by a plurality of spinning rollers SP revolving around the outer periphery of the one end portion of the cylindrical member 4 along a circular locus having the same diameter. That is, the spinning rollers SP, which are preferably arranged at equal intervals around the outer periphery of the cylindrical member 4, are brought into close contact with the outer peripheral surface of the cylindrical member 4 and revolved, and the shaft is rotated in the radial direction while reducing the revolution locus. Spinning is performed by driving in the direction (right direction in FIG. 6).
[0044]
Thus, as shown on the right side of FIG. 6, a spinning process is performed (polymerized) including a stepped part formed after the diameter reduction process of the body part 4a of the cylindrical member 4, and through this polymerization process part, the spinning process is performed. Spinning is performed so that the diameter of the cylindrical member 4 is continuously reduced from the body portion 4a, and a tapered portion 4b and a neck portion (bottleneck portion) 4c are formed at one end portion of the cylindrical member 4. As a result, a continuous surface is formed through the polymerization processing portion without leaving a non-processing portion between the body portion 4a and the taper portion 4b.
[0045]
Further, the cylindrical member 4 processed as described above is arranged by being inverted 180 degrees, and the other end portion of the cylindrical member 4 is also necked by the spinning roller SP in the same manner as described above, and the cylindrical portion 4a A tapered portion 4d and a neck portion 4e are formed around an axis inclined with respect to the central axis. Thus, a catalytic converter is formed as shown in FIG. In this case, a plurality of traces parallel to the outer surface of the body portion 4a are formed on the cylindrical member 4 by the diameter reduction process, and a plurality of striations are formed on the outer surfaces of the tapered parts 4b and 4d by the spinning process. As shown by a broken line in FIG. 7, both end portions of the trace at the time of diameter reduction disappear when the tapered portions 4b and 4d are formed, and form a shape that intersects the stripe at the time of spinning. The above traces are specific to the construction method using the sizing device SM shown in FIG. 1, and the stripes are specific to spinning processing, but the traces and lines indicating the traces in FIG. It is drawn with emphasis for convenience of explanation, and it is desirable that it is actually thin and not visible if possible.
[0046]
In addition, as described in JP-A-2001-107725, spinning processing may be employed in the diameter reducing process of the body portion of the cylindrical member 4. Further, the number of catalyst carriers 2 is not necessarily one, but two may be arranged in the axial direction to form a tandem type, or three or more may be arranged in series. The diameter may be reduced for each portion corresponding to the honeycomb structure, or may be continuously reduced. And as a final product, it is not restricted to the exhaust system parts of a motor vehicle, The manufacturing method of this invention is applicable to various fluid processing apparatuses, such as the above-mentioned reformer for fuel cells.
[0047]
【The invention's effect】
Since this invention is comprised as mentioned above, there exists an effect as described below. That is, claim 1 In In the method for manufacturing a fluid processing apparatus with a built-in honeycomb structure, an axial load is applied to the honeycomb structure when the predetermined diameter range of the cylindrical member that accommodates at least the buffer member is reduced. The value of the axial load when the honeycomb structure is moved a predetermined distance in the axial direction with respect to the tubular member is monitored, and the value of the axial load is Target axial load Therefore, the cylindrical member can be reduced in diameter with a very good accuracy which is always stable.
[0048]
In particular, since the moving load of the honeycomb structure itself is directly monitored instead of the substitute value, the honeycomb structure can be held with a predetermined target holding force with high accuracy while minimizing the error. Therefore, it is not affected by the outer diameter error of the honeycomb structure, the inner diameter error of the cylindrical member, the error of the buffer member, etc., and without requiring a management index in place of the above GBD value, with high accuracy. The diameter of the cylindrical member can be reduced. Furthermore, since the movement load itself of the honeycomb structure required as a final product can be satisfied, the movement (missing) inspection of the honeycomb structure conventionally required can be omitted, and the manufacturing time can be shortened accordingly. be able to. Thus, the fluid processing apparatus can be easily manufactured in a short time, and can be easily adapted to the mass production process.
[0049]
Claims 2 Thru 4 In the method for manufacturing a fluid processing apparatus with a built-in honeycomb structure according to the above, the cylindrical member when the first diameter reduction process is performed on a predetermined range in the axial direction of the cylindrical member that accommodates at least the buffer member. While measuring the first amount of diameter reduction, applying an axial load to the honeycomb structure to measure the first load when the honeycomb structure is moved a predetermined distance in the axial direction with respect to the tubular member, Subsequently, similarly, the second reduced diameter amount and the second load are measured. Based on the correlation between the first and second reduced diameter amounts and the first and second axial loads, the honeycomb structure Estimating a target diameter reduction amount of the cylindrical member when the body is held in the cylindrical member with a predetermined target holding force, and further reducing the diameter of the cylindrical member until the target diameter reduction amount is reached. Therefore, the diameter of the cylindrical member can be reduced with better accuracy. Further, like the above-described method, the fluid processing apparatus can be easily manufactured in a short time, and can be easily adapted to the mass production process.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a sizing device used in a manufacturing method according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a state where a cylindrical member is reduced in diameter by a sizing device provided for a manufacturing method according to an embodiment of the present invention.
FIG. 3 shows a shaft of a catalyst carrier when an axial load is applied to the catalyst carrier in a state where a predetermined range in the axial direction of the cylindrical member is reduced and the buffer mat is appropriately compressed to hold the catalyst carrier. It is a graph which shows the relationship with respect to a direction moving distance.
FIG. 4 is a graph showing the relationship between the amount of diameter reduction of a cylindrical member that applies a compressive load to the buffer mat and the axial load applied to the catalyst carrier.
FIG. 5 is a graph showing an allowable surface pressure range for an example of a buffer member used in a general catalytic converter.
FIG. 6 is a cross-sectional view showing a state in which necking is performed by a spinning roller in the manufacturing method according to the embodiment of the present invention.
FIG. 7 is a cross-sectional view showing an example of a catalytic converter manufactured by a manufacturing method according to an embodiment of the present invention.
[Explanation of symbols]
2 catalyst carrier, 3 buffer mat, 4 cylindrical member, 4a body,
4b, 4d taper, 4c, 4e neck, 11 cradle,
16 load cells, 21 split molds, 22 molds, 23 press molds,
HM catalyst carrier holding device, SM sizing device, SP spinning roller

Claims (4)

金属製筒状部材内に緩衝部材を介してハニカム構造体を保持するハニカム構造体内蔵流体処理装置の製造方法において、前記緩衝部材を前記ハニカム構造体周りに装着した状態で前記筒状部材内に収容し所定の位置に保持した後、少なくとも前記緩衝部材を収容する部分の前記筒状部材の軸方向所定範囲を縮径加工するときに、前記ハニカム構造体に軸方向荷重を付与して前記ハニカム構造体を前記筒状部材に対して軸方向に所定距離移動させたときの前記軸方向荷重の値を監視し、前記軸方向荷重の値が目標軸方向荷重に達するまで前記筒状部材の縮径加工を行うことを特徴とするハニカム構造体内蔵流体処理装置の製造方法。In a manufacturing method of a honeycomb structure built-in fluid processing apparatus in which a honeycomb structure is held in a metal cylindrical member via a buffer member, the buffer member is mounted in the cylindrical member with the buffer member mounted around the honeycomb structure. After the housing and holding at a predetermined position, at the time of reducing the diameter in a predetermined axial range of the cylindrical member at least in the portion where the buffer member is housed, an axial load is applied to the honeycomb structure to provide the honeycomb structure. the value of the axial load when the structure by a predetermined distance in the axial direction with respect to the tubular member monitors, contraction of the tubular member until the value of the axial load reaches the target axial load A manufacturing method of a fluid processing apparatus with a built-in honeycomb structure, characterized by performing diameter processing. 金属製筒状部材内に緩衝部材を介してハニカム構造体を保持するハニカム構造体内蔵流体処理装置の製造方法において、前記緩衝部材を前記ハニカム構造体周りに装着した状態で前記筒状部材内に収容し、少なくとも前記緩衝部材を収容する部分の前記筒状部材の軸方向所定範囲に対し第1回の縮径加工を行ったときの前記筒状部材の第1の縮径量を測定すると共に、前記ハニカム構造体に軸方向荷重を付与して前記ハニカム構造体を前記筒状部材に対して軸方向に所定距離移動させたときの第1の荷重を測定し、続いて、前記筒状部材の前記軸方向所定範囲に対し第2回の縮径加工を行ったときの前記筒状部材の第2の縮径量を測定すると共に、前記ハニカム構造体に軸方向荷重を付与して前記ハニカム構造体を前記筒状部材に対して軸方向に所定距離移動させたときの第2の荷重を測定し、前記第1及び第2の縮径量並びに前記第1及び第2の軸方向荷重の相関関係に基づき、前記ハニカム構造体を所定の目標保持力で前記筒状部材内に保持するときの前記筒状部材の目標縮径量を推定し、更に、該目標縮径量に至るまで前記筒状部材の縮径加工を行うことを特徴とするハニカム構造体内蔵流体処理装置の製造方法。  In a manufacturing method of a honeycomb structure built-in fluid processing apparatus in which a honeycomb structure is held in a metal cylindrical member via a buffer member, the buffer member is mounted in the cylindrical member with the buffer member mounted around the honeycomb structure. And measuring a first diameter reduction amount of the cylindrical member when the first diameter reduction processing is performed on a predetermined axial range of the cylindrical member of the cylindrical member at least in a portion of the buffer member. Measuring a first load when an axial load is applied to the honeycomb structure and the honeycomb structure is moved a predetermined distance in the axial direction with respect to the tubular member, and then the tubular member is measured. Measuring the second diameter reduction amount of the tubular member when the second diameter reduction processing is performed on the predetermined range in the axial direction of the honeycomb structure and applying an axial load to the honeycomb structure. Axial structure with respect to the tubular member And measuring the second load when moved to a predetermined distance to the honeycomb structure based on a correlation between the first and second reduced diameter amounts and the first and second axial loads. Estimating a target diameter reduction amount of the cylindrical member when it is held in the cylindrical member with a target holding force, and further reducing the diameter of the cylindrical member until the target diameter reduction amount is reached. A method for manufacturing a honeycomb structure built-in fluid processing apparatus. 前記2回の測定を、夫々同一の軸方向に、前記ハニカム構造体を前記筒状部材に対して所定距離移動させて行うことを特徴とする請求項記載のハニカム構造体内蔵流体処理装置の製造方法。3. The honeycomb structure built-in fluid processing apparatus according to claim 2, wherein the two measurements are performed by moving the honeycomb structure by a predetermined distance with respect to the tubular member in the same axial direction. Production method. 前記2回の測定を、相互に反対の軸方向に、前記ハニカム構造体を前記筒状部材に対して所定距離移動させて行うことを特徴とする請求項記載のハニカム構造体内蔵流体処理装置の製造方法。3. The honeycomb structure built-in fluid processing apparatus according to claim 2, wherein the two measurements are performed by moving the honeycomb structure by a predetermined distance with respect to the tubular member in opposite axial directions. Manufacturing method.
JP2002236401A 2002-08-14 2002-08-14 Manufacturing method of fluid processing apparatus with built-in honeycomb structure Expired - Fee Related JP4530607B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2002236401A JP4530607B2 (en) 2002-08-14 2002-08-14 Manufacturing method of fluid processing apparatus with built-in honeycomb structure
US10/637,677 US7111392B2 (en) 2002-08-14 2003-08-11 Method of producing a fragile substrate container
ES03018368T ES2346198T3 (en) 2002-08-14 2003-08-13 PROCEDURE TO PRODUCE A CONTAINER THAT INCLUDES A FRAGILE SUBSTRATE.
DE60332197T DE60332197D1 (en) 2002-08-14 2003-08-13 Manufacturing method of a container for a fragile substrate
ZA200306276A ZA200306276B (en) 2002-08-14 2003-08-13 Method of producing a fragile substrate container.
AT03018368T ATE465330T1 (en) 2002-08-14 2003-08-13 METHOD OF PRODUCING A CONTAINER FOR A FRAGILE SUBSTRATE
EP03018368A EP1389675B1 (en) 2002-08-14 2003-08-13 Method of producing a fragile substrate container
CNB031540171A CN100339571C (en) 2002-08-14 2003-08-14 Method for mfg. fluid processing device with built-in honey comb structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002236401A JP4530607B2 (en) 2002-08-14 2002-08-14 Manufacturing method of fluid processing apparatus with built-in honeycomb structure

Publications (2)

Publication Number Publication Date
JP2004076631A JP2004076631A (en) 2004-03-11
JP4530607B2 true JP4530607B2 (en) 2010-08-25

Family

ID=30768045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002236401A Expired - Fee Related JP4530607B2 (en) 2002-08-14 2002-08-14 Manufacturing method of fluid processing apparatus with built-in honeycomb structure

Country Status (8)

Country Link
US (1) US7111392B2 (en)
EP (1) EP1389675B1 (en)
JP (1) JP4530607B2 (en)
CN (1) CN100339571C (en)
AT (1) ATE465330T1 (en)
DE (1) DE60332197D1 (en)
ES (1) ES2346198T3 (en)
ZA (1) ZA200306276B (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7900352B2 (en) * 2001-05-18 2011-03-08 Hess Engineering, Inc. Method and apparatus for manufacturing a catalytic converter
WO2004101967A1 (en) * 2003-05-13 2004-11-25 Hess Engineering, Inc. Method and apparatus for manufacturing a catalytic converter
JP2004353549A (en) * 2003-05-29 2004-12-16 Sango Co Ltd Method for producing fluid treatment device having honeycomb structure built therein
JP4549058B2 (en) * 2003-12-26 2010-09-22 株式会社三五 Method for manufacturing column holding device
JP3740154B2 (en) * 2004-03-25 2006-02-01 株式会社ユーメックス Catalytic converter manufacturing method and catalytic converter
JP2005315252A (en) * 2004-04-01 2005-11-10 Calsonic Kansei Corp Pressure fitting mounting method and device therefor for ceramic catalyst carrier wound with non-intumescent mat into accommodative outer cylinder
US20060156794A1 (en) * 2004-12-15 2006-07-20 Horn Tobin L Apparatus and method for measuring gap bulk density of a catalytic converter support mat
GB2436491B (en) * 2005-01-12 2010-01-06 Tenneco Automotive Operating Post calibration catalytic converter canning apparatus and method
US7377038B2 (en) * 2005-06-03 2008-05-27 Emcon Technologies, Llc Method for assembling a catalyic converter
BRPI0712442A8 (en) * 2006-05-31 2017-10-24 Unifrax I Llc SPARE THERMAL INSULATION PLATE
US8661671B2 (en) 2006-09-12 2014-03-04 Benteler Automotive Corporation Method for making catalytic converters with automated substrate crack detection
US20080066307A1 (en) * 2006-09-12 2008-03-20 Benteler Automotive Corporation Method for making catalytic converters with automated substrate crack detection
DE102006049236A1 (en) * 2006-10-18 2008-04-24 Arvinmeritor Emissions Technologies Gmbh Tool for producing exhaust gas-conducting devices
DE102007002376A1 (en) * 2007-01-16 2008-07-17 Arvinmeritor Emissions Technologies Gmbh Method for producing an exhaust-gas-conducting device and tool for producing an exhaust-gas-conducting device
JP4656533B2 (en) * 2007-02-20 2011-03-23 株式会社三五 Manufacturing method of fluid processing apparatus with built-in honeycomb structure
US7789929B2 (en) * 2007-04-04 2010-09-07 Ford Global Technologies Llc Diesel particulate filter and method for forming such filter
US8122602B2 (en) * 2007-04-25 2012-02-28 Hess Engineering, Inc. Sizing of mat material
JP5063484B2 (en) * 2007-06-01 2012-10-31 株式会社ユタカ技研 Exhaust gas purification device processing method
DE102007026810A1 (en) * 2007-06-06 2008-12-11 J. Eberspächer GmbH & Co. KG Production process for exhaust treatment devices, such as e.g. Catalytic converters and particle filters
US20090113709A1 (en) * 2007-11-07 2009-05-07 Eberspaecher North America, Inc. Method of manufacturing exhaust aftertreatment devices
US8201331B2 (en) * 2008-10-03 2012-06-19 Katcon Global S.A. De C.V. Catalytic converter and method of making the same
US8572846B2 (en) * 2008-11-05 2013-11-05 Faurecia Emissions Control Technologies LLC Hoop-stress controlled shrinking for exhaust component
CN102209842A (en) * 2008-11-11 2011-10-05 坦尼科汽车营业公司 Catalytic unit for treating an exhaust gas and manufacturing methods for such units
US20100288704A1 (en) * 2009-05-12 2010-11-18 Jeffrey Michael Amsden Flow-Through Substrate Assemblies and Methods for Making and Using Said Assemblies
DE102009021269A1 (en) 2009-05-14 2010-11-18 Volkswagen Ag Exhaust gas cleaning device manufacturing method for motor vehicle, involves tamping support mat and catalyzer body by opened end of cylindrical housing part for placing support mat and catalyzer body in housing part
CN102979607A (en) * 2012-12-14 2013-03-20 克康(上海)排气控制系统有限公司 Manufacturing method of three-way catalytic converter
CN104071367B (en) * 2014-07-03 2016-03-02 天津卡达克汽车高新技术公司 A kind of for catalyst encapsulation without adhesive tape Wrap device
US10598068B2 (en) 2015-12-21 2020-03-24 Emissol, Llc Catalytic converters having non-linear flow channels
CN109642097A (en) 2016-06-06 2019-04-16 尤尼弗瑞克斯 I 有限责任公司 Fire resistant covering material and its manufacturing method containing low biopersistence fiber
US20230019521A1 (en) * 2021-07-12 2023-01-19 Diesel Emission Technologies Llc System and process for replacing a core of diesel emission control device

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4969264A (en) * 1986-06-12 1990-11-13 Tennessee Gas Pipeline Company Catalytic converter and substrate support
GB2207615B (en) 1987-07-31 1991-06-19 Tenneco Inc Catalytic converter and substrate support
US5329698A (en) 1989-02-06 1994-07-19 Tennessee Gas Pipeline Company Method of assembling a catalytic converter
JP2829027B2 (en) 1989-04-11 1998-11-25 新日本製鐵株式会社 Method for producing metal carrier for automobile catalyst
DE59102502D1 (en) * 1991-01-03 1994-09-15 Scambia Ind Dev Ag Catalyst and process for making a catalyst.
JPH0842333A (en) 1994-06-06 1996-02-13 Ford Motor Co Preparation of catalyst exhaust treating device
DE4433974C1 (en) 1994-09-23 1996-03-28 Eberspaecher J Process for the production of catalysts
JP3765507B2 (en) 1995-10-19 2006-04-12 本田技研工業株式会社 Silencer and its manufacturing method
JP3400919B2 (en) 1995-12-27 2003-04-28 新日本製鐵株式会社 Method for producing catalyst carrier and exhaust system member
US5829132A (en) * 1996-08-07 1998-11-03 Arvin Industries, Inc. Methods of assembling an exhaust processor
US5937516A (en) * 1996-12-13 1999-08-17 General Motors Corporation Method for spin forming articles
IT1303635B1 (en) 1997-12-19 2001-02-21 Corning Inc METHOD OF MANUFACTURE OF A CATALYTIC CONVERTER TO BE USED IN AN INTERNAL COMBUSTION ENGINE
US6591497B2 (en) 1998-08-27 2003-07-15 Delphi Technologies, Inc. Method of making converter housing size based upon substrate size
US6317976B1 (en) * 1998-12-28 2001-11-20 Corning Incorporated Method of making a catalytic converter for use in an internal combustion engine
US6381843B1 (en) 1999-08-03 2002-05-07 Sango Co., Ltd. Method of producing a catalytic converter
JP3367939B2 (en) 1999-08-03 2003-01-20 株式会社三五 Manufacturing method of catalytic converter
JP2001355438A (en) 2000-06-16 2001-12-26 Sakamoto Industry Co Ltd Method of manufacturing catalytic converter
JP4747400B2 (en) 2000-08-02 2011-08-17 イビデン株式会社 Fuel cell reformer and manufacturing method thereof
JP4491939B2 (en) 2000-09-01 2010-06-30 イビデン株式会社 Fuel cell reformer
US6501042B2 (en) 2000-09-21 2002-12-31 Arvin Technologies, Inc. Apparatus and process for assembling exhaust processor components
JP4554062B2 (en) * 2000-12-19 2010-09-29 坂本工業株式会社 Spinning machine for catalytic converter
JP3679376B2 (en) * 2001-04-18 2005-08-03 株式会社三五 Method for manufacturing exhaust treatment apparatus for holding columnar body through buffer member in cylindrical member
ES2293448T3 (en) * 2001-05-18 2008-03-16 Hess Engineering, Inc. METHOD AND APPLIANCE FOR MANUFACTURING A CATALYTIC CONVERTER.
JP4363814B2 (en) * 2002-02-04 2009-11-11 株式会社三五 Method for manufacturing apparatus for holding columnar body through buffer member in cylindrical member
US6769281B2 (en) 2002-03-05 2004-08-03 Sango Co., Ltd. Method and apparatus of producing a columnar member container
JP2004353549A (en) * 2003-05-29 2004-12-16 Sango Co Ltd Method for producing fluid treatment device having honeycomb structure built therein
JP4549058B2 (en) * 2003-12-26 2010-09-22 株式会社三五 Method for manufacturing column holding device

Also Published As

Publication number Publication date
DE60332197D1 (en) 2010-06-02
EP1389675B1 (en) 2010-04-21
CN1495348A (en) 2004-05-12
EP1389675A3 (en) 2005-11-30
JP2004076631A (en) 2004-03-11
ZA200306276B (en) 2004-02-17
CN100339571C (en) 2007-09-26
US20040031149A1 (en) 2004-02-19
ES2346198T3 (en) 2010-10-13
US7111392B2 (en) 2006-09-26
EP1389675A2 (en) 2004-02-18
ATE465330T1 (en) 2010-05-15

Similar Documents

Publication Publication Date Title
JP4530607B2 (en) Manufacturing method of fluid processing apparatus with built-in honeycomb structure
US20070033804A1 (en) Method for producing a fluid treatment device having a honeycomb member
KR100826260B1 (en) Catalytic converter manufacturing method, catalytic converter and catalytic converter control method
US20030167854A1 (en) Method and apparatus of producing a columnar member container
US6484397B1 (en) Method of assembling a catalytic converter for use in an internal combustion engine
US7174635B2 (en) Method for producing a columnar member container
JP4303450B2 (en) Manufacturing method of purification device with built-in honeycomb structure
JP3844488B2 (en) Multi-point measuring device
CN101248259B (en) Method of producing exhaust-gas carrying devices, in particular exhaust-gas cleaning devices
JP2003286836A (en) Manufacturing method of pillar holding device
US8997352B2 (en) Method for manufacturing exhaust gas ducting device
US20050005446A1 (en) Method and apparatus for manufacturing a catalytic converter
JP4656533B2 (en) Manufacturing method of fluid processing apparatus with built-in honeycomb structure
JP4316248B2 (en) Method for manufacturing column body holding apparatus and apparatus for manufacturing the same
KR101198284B1 (en) Method for assembling a catalytic converter
JP4303455B2 (en) Manufacturing method of fluid processing apparatus with built-in honeycomb structure
JP4303457B2 (en) Manufacturing method of fluid processing apparatus with built-in honeycomb structure
JP2005155463A (en) Catalyst converter manufacturing method
JP2008267286A (en) Method for manufacturing exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090324

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090402

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4530607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees