JP2003286836A - Manufacturing method of pillar holding device - Google Patents

Manufacturing method of pillar holding device

Info

Publication number
JP2003286836A
JP2003286836A JP2003010918A JP2003010918A JP2003286836A JP 2003286836 A JP2003286836 A JP 2003286836A JP 2003010918 A JP2003010918 A JP 2003010918A JP 2003010918 A JP2003010918 A JP 2003010918A JP 2003286836 A JP2003286836 A JP 2003286836A
Authority
JP
Japan
Prior art keywords
cushioning member
manufacturing
diameter
pressing
cushioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003010918A
Other languages
Japanese (ja)
Inventor
Toru Irie
入江  徹
Shinji Ota
真志 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sango Co Ltd
Original Assignee
Sango Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sango Co Ltd filed Critical Sango Co Ltd
Priority to JP2003010918A priority Critical patent/JP2003286836A/en
Publication of JP2003286836A publication Critical patent/JP2003286836A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To adjust the inside diameter of a part for holding at least a cushioning member of a cylindrical member appropriately, and hold appropriately by press-inserting a pillar wounded with the cushioning member into the cylindrical member. <P>SOLUTION: The cushioning member is compressed by pressing the cushioning member in the direction perpendicular to the axis of the pillar by a pressing body 9 in a state of winding the cushioning member (cushion mat 3) at the outer periphery of the pillar (catalyst carrier 2), the surface pressure of the cushioning member against the pillar is detected, and the predetermined distance between the axis of the pillar and the end of the pressing body is measured when the surface pressure reaches a predetermined value. The pillar wounded with the cushioning member is press-inserted into the cylindrical member of which the diameter is previously contradicted or expanded so that the actual diameter of the inside of the part holding at least the cushioning member becomes the predetermined distance. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、筒状部材内に緩衝
部材を介して柱体を保持する柱体保持装置の製造方法に
関し、例えば、筒状部材内に緩衝マットを介して柱体の
触媒担体を保持する触媒コンバータの製造方法として好
適な製造方法に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a columnar body holding device for retaining a columnar body in a tubular member via a cushioning member. The present invention relates to a manufacturing method suitable for manufacturing a catalytic converter that holds a catalyst carrier.

【0002】[0002]

【従来の技術】流体に対してフィルタ機能を有するハニ
カム構造の柱体を、金属製筒状部材内に緩衝部材を介し
て保持する柱体保持装置が流体処理装置として用いら
れ、種々の流体の浄化に供されている。例えば、自動車
の排気系においては触媒コンバータやディーゼルパティ
キュレートフィルタ(以下、DPFという)が搭載され
ており、触媒担体あるいはフィルタ等(総称して担体と
いい、以下、触媒担体いうときはこれらを代表する)と
してセラミック製の脆弱なハニカム構造の柱体が用いら
れている。このハニカム構造の柱体はセラミックマット
等の緩衝部材を介して金属製筒状部材内に保持されて流
体処理装置が構成され、その一例として触媒コンバータ
がある。そして、この触媒コンバータのような柱体保持
装置の製造方法としては、触媒担体の外周に緩衝部材を
巻回し、この緩衝部材を圧縮しながら筒状部材内に収容
する圧入による製造方法が一般的である。
2. Description of the Related Art A column body holding device for holding a columnar body having a honeycomb structure having a filter function for fluids in a tubular member made of metal via a cushioning member is used as a fluid treatment device. It is used for purification. For example, a catalytic converter or a diesel particulate filter (hereinafter referred to as DPF) is installed in an exhaust system of an automobile, and a catalyst carrier, a filter, or the like (collectively referred to as a carrier, and hereinafter, referred to as a catalyst carrier is representative of these. As a result, a fragile honeycomb structure made of ceramic is used. The columnar body having the honeycomb structure is held in a metallic cylindrical member through a cushioning member such as a ceramic mat to constitute a fluid treatment device. An example thereof is a catalytic converter. As a method of manufacturing a columnar holding device such as this catalytic converter, a manufacturing method is generally used in which a buffer member is wound around the outer periphery of a catalyst carrier, and the buffer member is compressed and accommodated in a cylindrical member. Is.

【0003】例えば、下記の特許文献1(特開2001
−355438)には、外周に保持材が装着された触媒
担体を保持筒に圧入するに際し、触媒担体の外径を計測
し、この計測値に適合する内径を有する保持筒に保持材
が装着された触媒担体を圧入する触媒コンバータの製造
方法が提案されている。また、触媒担体の外周に装着さ
れた保持材の外径を計測し、この計測値に適合する内径
を有する保持筒に保持材が装着された触媒担体を圧入す
る方法も提案されている。更に、保持材の外径を計測す
るに際し、所定の圧力を加えた状態で計測することも提
案されている。そして、同特許文献1においては、内径
が異なる多数の保持筒の素材を予め準備しておき、その
中から適正な内径を有するものを選択することが提案さ
れている。
For example, the following Patent Document 1 (Japanese Patent Laid-Open No. 2001-2001)
-355438), the outer diameter of the catalyst carrier is measured when press-fitting the catalyst carrier having the holding material mounted on the outer periphery into the holding cylinder, and the holding material is mounted on the holding cylinder having an inner diameter conforming to the measured value. There has been proposed a method of manufacturing a catalytic converter in which the catalyst carrier is press-fitted. A method has also been proposed in which the outer diameter of a holding material mounted on the outer periphery of a catalyst carrier is measured, and the catalyst carrier with the holding material is press-fitted into a holding cylinder having an inner diameter that matches the measured value. Further, it has been proposed to measure the outer diameter of the holding material while applying a predetermined pressure. Then, in Patent Document 1, it is proposed that materials of a large number of holding cylinders having different inner diameters are prepared in advance and a material having an appropriate inner diameter is selected from them.

【0004】尚、特許文献1において従来技術として引
用された下記の特許文献2には、スピニングによる縮径
加工が開示されている。更に、圧入後の筒状部材の端部
に対するネッキング加工として、下記の特許文献3に偏
芯スピニング加工が開示され、下記の特許文献4に傾斜
スピニング加工が開示されている。
Incidentally, the following Patent Document 2 cited as a conventional technique in Patent Document 1 discloses a diameter reducing process by spinning. Further, as necking processing for the end portion of the tubular member after press fitting, eccentric spinning processing is disclosed in Patent Document 3 below, and inclined spinning processing is disclosed in Patent Document 4 below.

【0005】[0005]

【特許文献1】特開2001−355438号公報[Patent Document 1] Japanese Patent Laid-Open No. 2001-355438

【特許文献2】特開2000−45762号公報[Patent Document 2] Japanese Patent Laid-Open No. 2000-45762

【特許文献3】特許第2957153号公報[Patent Document 3] Japanese Patent No. 2957153

【特許文献4】特許第2957154号公報[Patent Document 4] Japanese Patent No. 2957154

【0006】[0006]

【発明が解決しようとする課題】前掲の特許文献1に
は、「触媒担体2を保持筒1に圧入したときに保持材3
に加わる圧力(以下、保持圧という。)と同等の圧力を
保持材3に作用させた状態で保持材3の外径を計測する
のが望ましい」と記載されているが、このような圧入方
法において、後工程で保持材に加えられる圧力を推定す
ることは不可能であり、この点に関する説明も見あたら
ない。即ち、触媒担体2を保持筒1に圧入したときに保
持材3に加わる圧力と同等の圧力を保持材3に作用させ
た状態とする旨の記載は願望の域を脱しておらず、ほか
に実現可能と解し得る開示は見あたらない。
[Patent Document 1] Japanese Patent Application Laid-Open No. 2003-187242 discloses that when a catalyst carrier 2 is press-fitted into a holding cylinder 1, a holding material 3 is used.
It is desirable to measure the outer diameter of the holding material 3 in a state where a pressure equivalent to the pressure applied to the holding material (hereinafter referred to as holding pressure) is applied to the holding material 3. " In, it is impossible to estimate the pressure applied to the holding material in the subsequent step, and no explanation is found on this point. That is, the description that the pressure equal to the pressure applied to the holding material 3 when the catalyst carrier 2 is press-fitted into the holding cylinder 1 is applied to the holding material 3 does not depart from the desired range. I can't find any disclosure that could be considered feasible.

【0007】更に、前掲の特許文献1には、「保持筒1
の素材としては、圧入後の保持材3に触媒担体2に適正
な圧力を作用させることができるような内径を有するも
のが用いられる。これは、内径が異なる多数の素材を予
め準備しておき、その中から適正な内径を有するものを
選択することによって達成することができる」旨記載さ
れていることに鑑みると、圧入したときに保持材3に加
わる圧力と同等の圧力を保持材3に作用させた状態で保
持材3の外径を計測(これは上記のように不可能である
が、仮に可能であるとして)した結果に応じて、保持筒
1の内径を調整するものでもないことは明らかである。
結局、どのように圧力を作用させた状態で保持材3の外
径を計測し、どのような計測結果をどのように利用して
いるかについては定かではない。
Further, in the above-mentioned patent document 1, "holding cylinder 1
As the material of the above, a material having an inner diameter such that an appropriate pressure can be applied to the catalyst carrier 2 on the holding material 3 after press fitting is used. This can be achieved by preparing in advance a large number of materials having different inner diameters and selecting one having an appropriate inner diameter from among them. '' As a result of measuring the outer diameter of the holding material 3 in a state where a pressure equivalent to the pressure applied to the holding material 3 is applied to the holding material 3 (this is impossible as described above, but temporarily possible). Accordingly, it is obvious that the inner diameter of the holding cylinder 1 is not adjusted.
After all, it is not clear how the pressure is applied to measure the outer diameter of the holding material 3 and what measurement result is used and how.

【0008】これに対し、従前の圧入による製造方法に
おいては、一般的に、緩衝部材たる緩衝マットの充填密
度(GBD値と呼ばれる)を基準に触媒担体の外径と筒
状部材の内径との間隙が設定される。このGBD値は、
単位面積当り重量/充填間隙寸法であり、緩衝マットの
充填密度に応じて面圧(単位:パスカル)が発生し、こ
の面圧によって触媒担体が保持されるのであるが、面圧
は、当然乍ら触媒担体の強度を超えない値に調整すると
共に、振動や排気ガス圧力が加わる触媒担体に対し、こ
れが筒状部材内を移動しないように保持し得る値に調整
しなければならない。このためには、緩衝部材は設計範
囲内のGBD値で圧入され、且つこのGBD値を製品の
ライフサイクルの間は維持しなければならない。
On the other hand, in the conventional press-fitting manufacturing method, the outer diameter of the catalyst carrier and the inner diameter of the tubular member are generally based on the packing density (called GBD value) of the cushioning mat as the cushioning member. The gap is set. This GBD value is
It is the weight per unit area / filling gap size, and a surface pressure (unit: Pascal) is generated according to the packing density of the buffer mat, and this surface pressure holds the catalyst carrier. In addition to adjusting the strength of the catalyst carrier so that it does not exceed the strength of the catalyst carrier, the catalyst carrier to which vibration or exhaust gas pressure is applied must be adjusted to a value that can hold the catalyst carrier so that it does not move in the tubular member. For this purpose, the cushioning member has to be press-fit with a GBD value within the design range and this GBD value must be maintained during the life cycle of the product.

【0009】しかし、上記の一般的な圧入による製造方
法においては、製造上必然的に生ずる触媒担体の外径の
誤差、筒状部材の内径の誤差、及びこれらの間に介装さ
れる緩衝部材(緩衝マット)の単位面積当り重量の誤差
が重畳されてGBD値の誤差となる。従って、このGB
D値の誤差を最小とするための各部材の最適組合せを見
い出すことは、量産のための現実的な解決とはなりえな
い。また、GBD値自体も、緩衝部材の特性や個体差に
左右され、しかも平面上における測定値に依拠してお
り、触媒担体に対し緊密に巻回された状態における測定
値を表すものではない。このため、従来のようにGBD
値に依存することなく、触媒担体を適切に筒状部材内に
圧入することが望まれている。
However, in the above-mentioned general press-fitting manufacturing method, an error in the outer diameter of the catalyst carrier, an error in the inner diameter of the cylindrical member, and a buffer member interposed between them are inevitably generated in the manufacturing process. The error of the weight per unit area of the (buffer mat) is superposed and becomes the error of the GBD value. Therefore, this GB
Finding the optimum combination of each member for minimizing the error of the D value cannot be a realistic solution for mass production. Also, the GBD value itself depends on the characteristics and individual differences of the cushioning member, and also depends on the measured value on the plane, and does not represent the measured value in a state in which it is tightly wound around the catalyst carrier. Therefore, GBD
It is desired to press-fit the catalyst carrier properly into the tubular member without depending on the value.

【0010】ここで、触媒担体を筒状部材内の所定位置
に保持するために必要とされる保持力について説明する
と、筒状部材の径方向の保持力は、触媒担体の外面及び
筒状部材の内面に対し直交する方向に働く緩衝部材の圧
縮復元力である。一方、例えば自動車の排気装置に固定
された筒状部材に対し、触媒担体及び緩衝部材には振動
や排気ガス圧力によって軸方向の力が生ずるので、これ
に抗する力として筒状部材の軸方向(長手方向)の保持
力が必要であり、これは緩衝部材と触媒担体との間の摩
擦力、及び緩衝部材と筒状部材との間の摩擦力が資する
ところとなる。
The holding force required to hold the catalyst carrier at a predetermined position in the tubular member will be described below. The holding force in the radial direction of the tubular member is the outer surface of the catalyst carrier and the tubular member. Is the compressive restoring force of the cushioning member that acts in a direction orthogonal to the inner surface of the. On the other hand, for example, with respect to a tubular member fixed to an exhaust system of an automobile, an axial force is generated in the catalyst carrier and the cushioning member due to vibration and exhaust gas pressure. A holding force in the (longitudinal direction) is required, and this is where the frictional force between the cushioning member and the catalyst carrier and the frictional force between the cushioning member and the tubular member contribute.

【0011】上記の緩衝部材と触媒担体との間の摩擦
力、及び緩衝部材と筒状部材との間の摩擦力は夫々、触
媒担体の外面と緩衝部材との間の静摩擦係数を緩衝部材
の圧縮復元力(面圧)に乗じた積、及び筒状部材の内面
と緩衝部材との間の静摩擦係数を緩衝部材の圧縮復元力
(面圧)に乗じた積として表される。このとき、軸方向
(長手方向)の保持力としては、静摩擦係数が低い方の
部材と緩衝部材との間の摩擦力が支配的となる。従っ
て、静摩擦係数が判明している触媒担体及び筒状部材に
関し、必要な摩擦力が明らかとなり、これを確保するた
めには緩衝部材に対する面圧を高くする必要があるが、
触媒担体が脆弱な場合は径方向の荷重が過大となること
を回避するためには、緩衝部材に対する面圧の限度内
で、軸方向の保持力を確保し得るように設定する必要が
ある。
The frictional force between the cushioning member and the catalyst carrier and the frictional force between the cushioning member and the tubular member respectively change the static friction coefficient between the outer surface of the catalyst carrier and the cushioning member. The product obtained by multiplying the compression restoring force (contact pressure) and the coefficient of static friction between the inner surface of the tubular member and the cushioning member are multiplied by the compression restoring force (contact pressure) of the cushioning member. At this time, the holding force in the axial direction (longitudinal direction) is dominated by the frictional force between the member having the lower static friction coefficient and the cushioning member. Therefore, regarding the catalyst carrier and the tubular member whose static friction coefficient is known, the necessary friction force becomes clear, and in order to secure this, it is necessary to increase the surface pressure on the buffer member,
In order to avoid an excessive radial load when the catalyst carrier is fragile, it is necessary to set the axial holding force to be secured within the limit of the surface pressure on the buffer member.

【0012】而して、緩衝部材に対する面圧は、触媒担
体の外面の静摩擦係数と筒状部材の内面の静摩擦係数の
うちの低い方の部材の静摩擦係数に基づいて設定し、そ
の面圧に応じて、筒状部材の少なくとも緩衝部材保持部
分の内径を設定すればよい。即ち、筒状部材内に緩衝部
材を介して触媒担体を保持するに際し、最も適切な制御
パラメータは、緩衝部材(緩衝マット)を介して触媒担
体に付与される面圧(単位:パスカル)であり、この面
圧を直接検出し、あるいはこれに一義的に対応する値も
しくは近似した値を検出し、その検出結果に基づいて、
圧入すべき筒状部材の少なくとも緩衝部材保持部分の内
径を設定することが望ましい。
The surface pressure on the buffer member is set based on the static friction coefficient of the lower one of the static friction coefficient of the outer surface of the catalyst carrier and the static friction coefficient of the inner surface of the tubular member. Accordingly, the inner diameter of at least the buffer member holding portion of the tubular member may be set. That is, when holding the catalyst carrier in the tubular member via the buffer member, the most appropriate control parameter is the surface pressure (unit: Pascal) applied to the catalyst carrier via the buffer member (buffer mat). , The surface pressure is directly detected, or a value uniquely corresponding to this or an approximate value is detected, and based on the detection result,
It is desirable to set the inner diameter of at least the buffer member holding portion of the tubular member to be press-fitted.

【0013】しかし、従来方法においては、前述のGB
D値に基づく管理が一般的であり、いわば代用値による
推定管理が行なわれているということになる。このた
め、推定要因が重畳されて誤差が不可避となるというだ
けでなく、結果的に、緩衝部材と触媒担体との間の摩擦
力による保持力と、緩衝部材と筒状部材との間の摩擦力
による保持力が混同されて、各部品の寸法関係が設定さ
れている。また、前掲の特許文献1における計測におい
ても必然的に、後工程に対する推定要因が重畳されて誤
差が生ずることから、何らかの対策を講ずる必要があ
る。
However, in the conventional method, the above-mentioned GB is used.
The management based on the D value is general and, so to speak, the estimation management based on the substitute value is performed. Therefore, not only the estimation factor is superposed and the error becomes unavoidable, but as a result, the holding force due to the frictional force between the cushioning member and the catalyst carrier and the friction between the cushioning member and the tubular member are caused. The holding force by force is confused, and the dimensional relationship of each component is set. Also, in the measurement in the above-mentioned Patent Document 1, inevitably, an estimation factor for the subsequent process is superimposed and an error occurs, so it is necessary to take some measures.

【0014】そこで、本発明は、筒状部材内に緩衝部材
を介して柱体を保持する柱体保持装置の製造方法におい
て、筒状部材の少なくとも緩衝部材を保持する部分の内
径を適切に調整し、この筒状部材内に、緩衝部材を巻回
した柱体を圧入して適切に保持し得るようにすることを
課題とする。
Therefore, in the present invention, in the method of manufacturing a column body holding device for holding a column body in a tubular member via a cushioning member, the inside diameter of at least the portion of the tubular member that holds the cushioning member is appropriately adjusted. It is an object of the present invention to press-fit a cylindrical body around which a cushioning member is wound into this cylindrical member so that the cylindrical member can be appropriately held.

【0015】[0015]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、請求項1に記載のように、筒状部材内に
緩衝部材を介して柱体を保持する柱体保持装置の製造方
法において、前記柱体の外周に前記緩衝部材を巻回した
状態で、押圧体によって前記柱体の軸芯に対して直交す
る方向に前記緩衝部材を押圧して前記緩衝部材を圧縮す
ると共に、前記柱体に対する前記緩衝部材の面圧を検出
し、該面圧が所定の値となるときの前記柱体の軸芯と前
記押圧体の先端との間の所定距離を測定し、前記緩衝部
材を巻回した前記柱体を、少なくとも前記緩衝部材を保
持する部分の内側の実質的な半径が前記所定距離となる
ように予め縮径又は拡径した前記筒状部材に対し、前記
緩衝部材を前記柱体の外周に巻回した状態で、圧入する
こととしたものである。
In order to solve the above-mentioned problems, according to the present invention, as described in claim 1, manufacture of a pillar holding device for holding a pillar in a tubular member via a buffer member. In the method, in a state in which the buffer member is wound around the outer periphery of the columnar body, while pressing the buffering member in a direction orthogonal to the axis of the columnar body by a pressing body to compress the buffering member, Detecting the surface pressure of the buffer member with respect to the column body, measuring a predetermined distance between the axis of the column body and the tip of the pressing body when the surface pressure reaches a predetermined value, and the buffer member The columnar member wound around the buffer member with respect to the tubular member whose diameter is reduced or expanded in advance so that the substantial radius inside at least the portion holding the buffer member is the predetermined distance. It is intended to be press-fitted in a state of being wound around the outer periphery of the pillar. .

【0016】上記の柱体保持装置の製造方法において、
請求項2に記載のように、前記所定の値は、前記柱体の
外面の静摩擦係数及び前記筒状部材の内面の静摩擦係数
と、前記押圧体の前記緩衝部材に対する押圧力に基づい
て設定するように構成するとよい。
In the method for manufacturing the above-mentioned column holding device,
As described in claim 2, the predetermined value is set based on the static friction coefficient of the outer surface of the column body, the static friction coefficient of the inner surface of the tubular member, and the pressing force of the pressing body against the buffer member. It is good to configure as follows.

【0017】上記の柱体保持装置の製造方法において、
請求項3に記載のように、前記押圧体を前記緩衝部材の
全周に亘って複数個並設し、該複数個の押圧体の少なく
とも一つによって前記柱体の軸芯に対して直交する方向
に前記緩衝部材を押圧して前記緩衝部材を圧縮すると共
に、前記柱体に対する前記緩衝部材の面圧を検出するよ
うに構成するとよい。更に、前記複数個の押圧体は、請
求項4に記載のように、前記筒状部材の少なくとも前記
緩衝部材を保持する部分に相当する長さの長尺部材で構
成すると共に、該長尺部材の押圧体を前記緩衝部材の全
周に亘って並設するとよい。
In the method for manufacturing the above-mentioned column holding device,
As described in claim 3, a plurality of the pressing bodies are arranged side by side over the entire circumference of the cushioning member, and at least one of the plurality of pressing bodies is orthogonal to the axis of the column body. The cushioning member may be pressed in a direction to compress the cushioning member, and the surface pressure of the cushioning member with respect to the column may be detected. Further, as described in claim 4, the plurality of pressing bodies are composed of an elongated member having a length corresponding to at least a portion of the tubular member holding the cushioning member, and the elongated member. It is advisable to arrange the pressing bodies in parallel along the entire circumference of the cushioning member.

【0018】上記請求項4に記載の柱体保持装置の製造
方法において、請求項5に記載のように、前記面圧が所
定の値となるときの圧縮状態から圧縮前の状態に復元す
るまでの状態にある前記緩衝部材を巻回して成る前記柱
体を、前記筒状部材に圧入することとしてもよい。これ
により、前記緩衝部材を巻回して成る前記柱体を、前記
筒状部材内に圧入した後に、前記緩衝部材が完全に復元
し初期の圧縮状態となるので、容易に圧入することがで
きる。尚、前記緩衝部材が圧縮前の状態に復元した後
に、前記筒状部材内に圧入する場合にも、前記筒状部材
は、少なくとも前記緩衝部材を保持する部分の内側の実
質的な半径が前記所定距離となるように予め縮径又は拡
径されたものであるので、過大に圧縮されることなく適
切に圧入される。
In the method of manufacturing the column holding device according to the fourth aspect, as described in the fifth aspect, from the compressed state when the surface pressure reaches a predetermined value to the restoration to the state before the compression. The columnar body formed by winding the cushioning member in the above state may be press-fitted into the tubular member. Accordingly, after the columnar body formed by winding the cushioning member is press-fitted into the tubular member, the cushioning member is completely restored to the initial compressed state, so that the columnar body can be easily press-fitted. Even when the cushioning member is pressed into the tubular member after the cushioning member is restored to the state before the compression, the tubular member has at least a substantial radius inside the portion holding the cushioning member. Since the diameter has been reduced or expanded in advance so that the distance becomes a predetermined distance, it is appropriately press-fitted without being excessively compressed.

【0019】[0019]

【発明の実施の形態】上記の筒状部材内に緩衝部材を介
して柱体を保持する柱体保持装置の製造方法に関し、そ
の具体的一態様として、触媒コンバータの製造方法につ
いて図面を参照して説明する。先ず、図1に示すよう
に、本発明の柱体を構成する触媒担体2の外周に、本発
明の緩衝部材を構成する緩衝マット3を一層巻回し、必
要に応じ可燃性テープ等によって固定する。これによっ
て、図1の一体品4が構成される。この場合において、
緩衝マット3の両端には図1に示すように凸部と凹部を
形成しておき、これらが相互に嵌合する一般的な巻回方
法を用いるとよい。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a method of manufacturing a columnar body holding device for holding a columnar body in a tubular member via a cushioning member. Explain. First, as shown in FIG. 1, a cushioning mat 3 constituting a cushioning member of the present invention is further wound around the outer periphery of a catalyst carrier 2 constituting a pillar of the present invention, and fixed by a flammable tape or the like as necessary. . Thereby, the integrated product 4 of FIG. 1 is configured. In this case,
It is advisable to use a general winding method in which convex portions and concave portions are formed on both ends of the cushioning mat 3 as shown in FIG. 1 and these are fitted to each other.

【0020】本実施形態においては、触媒担体2はセラ
ミックス製ハニカム構造の柱体で構成されているが、金
属製でもよく、材質、製法は問わない。緩衝マット3
は、本実施形態では熱による膨張が殆どないアルミナマ
ットで構成されているが、熱膨張型のバーミキュライト
式の緩衝マットや、それらを組み合わせた緩衝マットと
してもよい。また、バインダーが含浸されていない無機
質繊維マットでもよい。尚、バインダーの有無及び含有
量によって面圧が変わるので、後述の面圧設定において
はこれを加味する必要がある。あるいは、金属細線を編
成したワイヤメッシュ等を用いてもよいし、それをセラ
ミックマットと組み合わせて使用してもよい。更に、そ
れらと金属円環状のリテーナや、ワイヤメッシュ製のシ
ールリング等と組み合わせてもよい。
In the present embodiment, the catalyst carrier 2 is made of a ceramic honeycomb structure columnar body, but may be made of metal, and the material and manufacturing method are not limited. Cushion mat 3
In the present embodiment, is made of an alumina mat which hardly expands due to heat, but a thermal expansion type vermiculite type buffer mat or a combination of these may be used. Alternatively, an inorganic fiber mat not impregnated with a binder may be used. Since the surface pressure changes depending on the presence or absence of the binder and the content thereof, it is necessary to take this into consideration in the surface pressure setting described later. Alternatively, a wire mesh formed by knitting fine metal wires may be used, or it may be used in combination with a ceramic mat. Further, these may be combined with a metal annular retainer, a wire mesh seal ring, or the like.

【0021】次に、図2に示すように、上記の一体品4
を一対のクランプ装置5間に把持し、測定装置DTの押
圧体9によって、緩衝マット3を介して触媒担体2をそ
の軸芯Zに対して直交する方向に押圧すると共に、触媒
担体2に付与される面圧を検出し、該面圧が所定の値と
なるときの、触媒担体2の軸芯Zと押圧体9との間の距
離Lを測定する。そして、測定後、押圧体9を原位置に
復帰させた後、クランプ装置5による把持を解除する。
尚、この測定行程において、触媒担体2及び緩衝マット
3自体の寸法及び特性値を測定する必要はない。以下、
本実施形態で用いるクランプ装置5及び測定装置DTに
ついて説明する。
Next, as shown in FIG. 2, the above-mentioned integrated product 4
Is clamped between the pair of clamp devices 5, and the catalyst support 2 is pressed by the pressing body 9 of the measuring device DT in the direction orthogonal to the axis Z of the catalyst support 2 via the cushioning mat 3 and applied to the catalyst support 2. The surface pressure applied is detected, and the distance L between the axis Z of the catalyst carrier 2 and the pressing body 9 when the surface pressure reaches a predetermined value is measured. After the measurement, the pressing body 9 is returned to the original position, and then the holding by the clamp device 5 is released.
In this measurement step, it is not necessary to measure the dimensions and characteristic values of the catalyst carrier 2 and the buffer mat 3 themselves. Less than,
The clamp device 5 and the measuring device DT used in this embodiment will be described.

【0022】クランプ装置5は、例えばコレットチャッ
クで構成され、これによって触媒担体2の上下端部が挟
持されてその軸芯Zが所定の測定位置にセットされる。
本実施形態の測定装置DTは、モータ11駆動のボール
スクリュー式アクチュエータ10と、その先端にロード
セル8を介して支持された押圧体9と、後端に配置され
た位置検出手段たるロータリエンコーダ12を備えてい
る。ロードセル8及びロータリエンコーダ12の検出信
号は電子制御装置(以下、コントローラという)CTに
入力され、後述の各種データに変換されてメモリ(図示
せず)に記憶されると共に、モータ11はコントローラ
CTによって駆動制御されるように構成されている。
The clamp device 5 is composed of, for example, a collet chuck, by which the upper and lower ends of the catalyst carrier 2 are clamped and the axis Z thereof is set at a predetermined measurement position.
The measuring apparatus DT of the present embodiment includes a ball screw type actuator 10 driven by a motor 11, a pressing body 9 supported at its tip via a load cell 8, and a rotary encoder 12 as a position detecting means arranged at the rear end. I have it. The detection signals of the load cell 8 and the rotary encoder 12 are input to an electronic control unit (hereinafter referred to as a controller) CT, converted into various data described below and stored in a memory (not shown), and the motor 11 is controlled by the controller CT. It is configured to be drive-controlled.

【0023】押圧体9は触媒担体2の軸芯Zに対して直
交する方向(図2の左右方向)に進退し、緩衝マット3
に当接後これを圧縮し得るように配置される。押圧体9
の当接面積は既知であるので、この押圧体9によって測
定対象たる触媒担体2及び緩衝マット3が押圧されたと
きの反力が、触媒担体2に対する面圧としてロードセル
8によって検出され、コントローラCTに入力される。
コントローラCTにおいては、ロードセル8の検出信号
が面圧値に換算されてメモリに記憶され、別途予め入力
された所定の面圧値と比較される。また、ロータリエン
コーダ12によって押圧体9の進退量及び停止位置がボ
ールスクリュー(図示せず)の回転情報として検出さ
れ、コントローラCTに入力される。コントローラCT
においては、ロータリエンコーダ12の検出信号がリア
ルタイムで押圧体9の進退量及び停止位置の値に変換さ
れてメモリに記憶される。尚、これらの検出手段とコン
トローラCTとの間は電気的に接続してもよいし光学的
に接続してもよい。
The pressing body 9 moves back and forth in the direction orthogonal to the axis Z of the catalyst carrier 2 (left and right direction in FIG. 2), and the buffer mat 3
It is arranged so that it can be compressed after it comes into contact with. Pressing body 9
Since the contact area of the catalyst carrier 2 is known, the reaction force when the catalyst carrier 2 and the buffer mat 3 to be measured are pressed by the pressing body 9 is detected by the load cell 8 as the surface pressure on the catalyst carrier 2, and the controller CT Entered in.
In the controller CT, the detection signal of the load cell 8 is converted into a surface pressure value, stored in the memory, and compared with a predetermined surface pressure value separately input in advance. Further, the amount of advancement / retraction of the pressing body 9 and the stop position are detected by the rotary encoder 12 as rotation information of a ball screw (not shown) and input to the controller CT. Controller CT
In the above, the detection signal of the rotary encoder 12 is converted into the values of the amount of advance and retreat of the pressing body 9 and the stop position in real time and stored in the memory. The detection means and the controller CT may be electrically or optically connected.

【0024】上記のように構成された測定装置DTを以
下のように駆動することによって、触媒担体2の軸芯Z
と押圧体9との間の距離と、そのときに触媒担体2に付
与される面圧との関係を測定することができる。即ち、
押圧体9を初期位置から前進(図2の左方向に移動)さ
せて緩衝マット3の一部を押圧し、図3に示すように、
押圧部における緩衝マット3の圧縮反力をロードセル8
によって検出し、この検出結果が所定の値に到達したと
きの位置(図3に示す軸芯Zから距離Lの位置SP)を
検出する。この位置(軸芯Zから距離Lの位置)は、製
品となった後の緩衝マット3の面圧が所定の値となると
きの、後述する筒状部材の(縮径加工後の)緩衝マット
3保持部分の内壁面の位置に相当する。従って、触媒担
体2に付与される押圧力とそれによって生ずる反力(面
圧)との関係を、予めコントローラCTのメモリに記憶
しておき、この関係に基づきロードセル8の検出信号
(反力)を面圧値に変換し、これと所定の面圧値とを比
較しながら押圧体9を上記の位置(軸芯Zから距離Lの
位置)まで前進させ、押圧体9の移動距離を求める。
The axis Z of the catalyst carrier 2 is driven by driving the measuring device DT constructed as described above as follows.
The relationship between the distance between the pressing body 9 and the pressing body 9 and the surface pressure applied to the catalyst carrier 2 at that time can be measured. That is,
The pressing body 9 is moved forward from the initial position (moved to the left in FIG. 2) to press a part of the cushioning mat 3, and as shown in FIG.
The compression reaction force of the cushioning mat 3 at the pressing portion is applied to the load cell 8
The position (a position SP at a distance L from the axis Z shown in FIG. 3) when the detection result reaches a predetermined value is detected. This position (position at a distance L from the axis Z) is a cushioning mat of a cylindrical member (after diameter reduction processing) described later when the surface pressure of the cushioning mat 3 after being a product has a predetermined value. 3 Corresponds to the position of the inner wall surface of the holding portion. Therefore, the relationship between the pressing force applied to the catalyst carrier 2 and the reaction force (surface pressure) generated thereby is stored in the memory of the controller CT in advance, and the detection signal (reaction force) of the load cell 8 is based on this relationship. Is converted into a surface pressure value, and the pressing body 9 is advanced to the above position (position of a distance L from the axis Z) while comparing the surface pressure value with a predetermined surface pressure value, and the moving distance of the pressing body 9 is obtained.

【0025】而して、押圧体9の先端の初期位置と触媒
担体2の軸芯Zとの間の所定距離から、ロータリエンコ
ーダ12によって検出される押圧体9の移動距離を差し
引けば押圧体9の先端の位置(即ち、軸芯Zからの距離
L)を判定することができ、この位置が、製品状態(即
ち、後述する筒状部材内で触媒担体2に対する面圧が所
定の面圧値で保持されている状態)における、筒状部材
の(縮径加工後の)緩衝マット3保持部分の内壁面の位
置ということになる。このように、本実施形態によれば
触媒担体2及び緩衝マット3の寸法や特性値を個別に測
定することなく、また前述のGBD値を用いることな
く、所定の面圧値となる位置(図3に示す軸芯Zから距
離Lの位置SP)を判定することができる。即ち、上記
の触媒担体2の軸芯Zと押圧体9の先端との間の距離L
は、結果的に触媒担体2の外径誤差のみならず緩衝マッ
ト3の単位面積当り重量の誤差をも考慮した値となるの
で、これらの誤差を別途測定する必要はない。
Thus, if the moving distance of the pressing body 9 detected by the rotary encoder 12 is subtracted from the predetermined distance between the initial position of the tip of the pressing body 9 and the axis Z of the catalyst carrier 2, the pressing body 9 is deducted. The position of the tip of 9 (that is, the distance L from the axis Z) can be determined, and this position is the product state (that is, the surface pressure on the catalyst carrier 2 in the cylindrical member described later is a predetermined surface pressure). It is the position of the inner wall surface of the buffer mat 3 holding portion (after the diameter reduction processing) of the tubular member in the state of being held at a value. As described above, according to the present embodiment, a position where a predetermined surface pressure value is obtained without individually measuring the dimensions and characteristic values of the catalyst carrier 2 and the buffer mat 3 and using the above-mentioned GBD value (see FIG. The position SP) of the distance L from the axis Z shown in 3 can be determined. That is, the distance L between the axis Z of the catalyst carrier 2 and the tip of the pressing body 9 is
Since, as a result, the value takes into consideration not only the outer diameter error of the catalyst carrier 2 but also the error of the weight per unit area of the buffer mat 3, it is not necessary to separately measure these errors.

【0026】尚、上記の距離Lは、次工程に備え、コン
トローラCTのメモリに記憶されるが、必要に応じて表
示するように構成してもよい。また、押圧体9は、必ず
しも所定の位置(図3に示す軸芯Zから距離Lの位置)
で停止させる必要はなく、この位置を検出後そのまま連
続して後退させ、更に、この押圧体9の後退に同期して
クランプ装置5による把持を解除させるように構成して
もよい。
The distance L is stored in the memory of the controller CT in preparation for the next step, but it may be displayed if necessary. In addition, the pressing body 9 is not always at a predetermined position (position at a distance L from the axis Z shown in FIG. 3).
It is not necessary to stop at this position, and it is possible to continuously retreat after detecting this position and further to release the grip by the clamp device 5 in synchronization with the retreat of the pressing body 9.

【0027】更に、図4に示すように、触媒担体2の軸
芯Zの回りに放射状に複数の押圧体9xを配置し、これ
らを含む複数の測定装置DTによる多点測定を行ない、
あるいは、軸芯Zの回りにクランプ装置5及び一体品4
を回動(割り出し)させて多点測定を行なうように構成
し、各測定値の平均を求めることとしてもよい。特に、
触媒担体2が円形断面でない場合には、触媒担体2の形
状に応じて多点測定を行なう必要があるので、複数の測
定装置DTを配置することが望ましい。尚、図4におけ
る複数の押圧体9xは、少なくとも緩衝マット3の軸方
向長さより長尺の部材で構成され、これらの押圧体9x
が緩衝マット3の全周に亘って、略隙間無く並設されて
いるが、これらの一部を用いることとしてもよい。以
下、多点測定を行ない得る測定装置の実施例について、
図5乃至図11を参照して説明する。
Further, as shown in FIG. 4, a plurality of pressing bodies 9x are arranged radially around the axis Z of the catalyst carrier 2, and a plurality of measuring devices DT including them are used to perform multipoint measurement.
Alternatively, the clamp device 5 and the integrated product 4 are provided around the axis Z.
It may be configured to rotate (index) to perform multipoint measurement, and obtain the average of each measurement value. In particular,
If the catalyst carrier 2 does not have a circular cross section, it is necessary to perform multipoint measurement according to the shape of the catalyst carrier 2, so it is desirable to arrange a plurality of measuring devices DT. It should be noted that the plurality of pressing bodies 9x in FIG. 4 are composed of members that are at least longer than the axial length of the cushioning mat 3, and these pressing bodies 9x are provided.
Are arranged side by side over the entire circumference of the cushioning mat 3 with substantially no gap, but a part of these may be used. Hereinafter, about the embodiment of the measuring device capable of performing multi-point measurement,
This will be described with reference to FIGS. 5 to 11.

【0028】図5及び図6は多点測定装置の第1実施例
を示すもので、水平なベースBS上に所謂スクロールチ
ャック50とその駆動装置60が載置されている。スク
ロールチャック50には、放射方向に同時に移動可能な
チャック爪51が等角度で三箇所に配置されている。こ
れらのチャック爪51は、駆動装置60のモータ61に
よるシャフト62の回転駆動に応じて、同量だけ放射方
向又は求心方向へ移動するように構成されている。即
ち、駆動装置60によって、三つのチャック爪51が任
意に開閉又は固定可能に構成されている。各チャック爪
51上には、L字型のホルダ70が載置固定され、各測
定装置DTが構成されている。即ち、各ホルダ70の上
部にはロードセル80が固定されており、各ロードセル
80の下部には長尺の押圧体90が固定されている。
尚、スクロールチャック50のバックラッシュによる各
チャック爪51のガタつきを防止するため、各ホルダ7
0は、ベースBS上に固定されたエアシリンダ71によ
って、常に求心方向あるいは放射方向に付勢されてい
る。
FIGS. 5 and 6 show a first embodiment of the multipoint measuring device, in which a so-called scroll chuck 50 and its driving device 60 are mounted on a horizontal base BS. On the scroll chuck 50, chuck claws 51 that can move simultaneously in the radial direction are arranged at three positions at equal angles. These chuck claws 51 are configured to move in the radial direction or the centripetal direction by the same amount according to the rotational drive of the shaft 62 by the motor 61 of the drive device 60. That is, the three chuck claws 51 can be arbitrarily opened and closed or fixed by the drive device 60. An L-shaped holder 70 is placed and fixed on each chuck claw 51, and each measuring device DT is configured. That is, the load cell 80 is fixed to the upper portion of each holder 70, and the elongated pressing body 90 is fixed to the lower portion of each load cell 80.
In order to prevent the backlash of the scroll chuck 50 from rattling each chuck claw 51, each holder 7
Zero is always urged in the centripetal direction or the radial direction by the air cylinder 71 fixed on the base BS.

【0029】測定時には、駆動装置60によって、三つ
のチャック爪51及びこれに固定されたホルダ70が同
時に同量だけ求心方向へ移動し、触媒担体2に巻回され
た緩衝マット3に対し各押圧体90が同時に当接する。
各押圧体90が更に触媒担体2方向に移動すると、緩衝
マット3を放射方向から(触媒担体2の軸芯に対し直角
方向から)押圧することになる。このときの各押圧部に
おける緩衝マット3の圧縮反力を(各押圧体90を介し
て)各ロードセル80にて検出し、この検出結果が所定
の値に到達したときの位置(図3に示す軸芯Zから距離
Lの位置SPに対応)を検出する。そして、この位置に
達したときの各押圧体90と(触媒担体2の)軸芯との
間の距離を求め、これらの平均値を求める。
At the time of measurement, the driving device 60 simultaneously moves the three chuck claws 51 and the holder 70 fixed thereto by the same amount in the centripetal direction, and presses the buffer mat 3 wound around the catalyst carrier 2 against each other. The body 90 abuts at the same time.
When each pressing body 90 further moves in the direction of the catalyst carrier 2, the buffer mat 3 is pressed in the radial direction (from the direction perpendicular to the axis of the catalyst carrier 2). The compression reaction force of the cushioning mat 3 at each pressing portion at this time is detected by each load cell 80 (via each pressing body 90), and the position when the detection result reaches a predetermined value (shown in FIG. 3). The position SP corresponding to the distance L from the axis Z) is detected. Then, the distance between each pressing body 90 and the axial core (of the catalyst carrier 2) when reaching this position is obtained, and the average value thereof is obtained.

【0030】この場合において、例えばモータ61の回
転数に基づき各押圧体90の先端位置を特定することが
できるので、各押圧体90と(触媒担体2の)軸芯との
間の距離を求めることができる。あるいは、図5に示す
ように、デジタル側長システム(例えば、ソニープレシ
ジョンテクノロジー株式会社製の商品名「マグネスケー
ル」)を用いた位置測定装置72により、直接ホルダ7
0等の移動量を検出することができるので、本実施例で
はこの方法によって各押圧体90の移動距離を直接検出
することとしている。
In this case, for example, the tip position of each pressing body 90 can be specified based on the number of rotations of the motor 61, so that the distance between each pressing body 90 and the axial center (of the catalyst carrier 2) is obtained. be able to. Alternatively, as shown in FIG. 5, the holder 7 is directly moved by a position measuring device 72 using a digital side length system (for example, a product name “Magnescale” manufactured by Sony Precision Technology Co., Ltd.).
Since the amount of movement such as 0 can be detected, in this embodiment, the moving distance of each pressing body 90 is directly detected by this method.

【0031】更に、スクロールチャック50上には、各
測定装置DTの間に等間隔で三つの保持装置40が載置
固定されている。これは、測定前に触媒担体2及び緩衝
マット3の一体品4に対し位置決め(センタリング)を
行なうと共に、測定中に補助的な保持を行なう装置で、
エアシリンダ41によって保持体42を求心方向又は放
射方向に付勢するように構成されている。而して、測定
工程に先立ち、各保持装置40が求心方向へ移動して一
体品4の位置決めが行なわれる。そして、その状態で軽
く求心方向への力が付与されて保持される。この保持状
態中に、測定装置DTによる一連の測定が行なわれ、測
定終了後はエアシリンダ41によって保持体42が放射
方向に駆動されて緩衝マット3から離隔し、初期位置に
戻る。
Further, on the scroll chuck 50, three holding devices 40 are mounted and fixed between the measuring devices DT at equal intervals. This is a device that performs positioning (centering) on the integrated product 4 of the catalyst carrier 2 and the buffer mat 3 before measurement, and also performs auxiliary holding during measurement.
The air cylinder 41 is configured to urge the holder 42 in the centripetal direction or the radial direction. Thus, prior to the measuring step, each holding device 40 moves in the centripetal direction to position the integrated product 4. Then, in that state, a force in the centripetal direction is lightly applied and held. During this holding state, a series of measurement is performed by the measuring device DT, and after the measurement is completed, the holding body 42 is radially driven by the air cylinder 41 to be separated from the cushioning mat 3 and return to the initial position.

【0032】図7及び図8は多点測定装置の第2実施例
を示すもので、上記の第1実施例における各測定装置D
Tの同時駆動に代えて、個別駆動を行なうこととしたも
のである。ベースBSと各ホルダ70との間には、夫々
ボールスクリュー74及びレール75が配置されてい
る。ベースBS上に固定された各モータ73によってボ
ールスクリュー74が回転駆動されると、これに螺合す
る各スライダ76(図8に示す)が求心方向又は放射方
向へ駆動され、この結果、各スライダ76に固定された
各ホルダ70が求心方向又は放射方向へ移動するように
構成されている。各測定装置DTはコントローラ(図2
のCTに対応)により同時に同量だけ移動するように制
御され、第1実施例と同様の測定が行なわれる。
FIG. 7 and FIG. 8 show a second embodiment of the multipoint measuring device, and each measuring device D in the above first embodiment.
Instead of simultaneous driving of Ts, individual driving is performed. A ball screw 74 and a rail 75 are arranged between the base BS and each holder 70. When the ball screw 74 is rotationally driven by each motor 73 fixed on the base BS, each slider 76 (shown in FIG. 8) screwed to this is driven in the centripetal direction or the radial direction, and as a result, each slider is driven. Each holder 70 fixed to 76 is configured to move in the centripetal direction or the radial direction. Each measuring device DT is a controller (Fig. 2
(Corresponding to the CT of 1) and the same amount of movement is controlled at the same time, and the same measurement as in the first embodiment is performed.

【0033】図9及び図10は多点測定装置の第3実施
例を示すもので、メカニカルなアーム式の求心機構を利
用した装置である。図9に示すように、ケース30内で
ピボット31にて二つのアーム32が回動自在に軸支さ
れ、夫々の先端にヘッド33が回動自在に軸支されてい
る。そして、各ヘッド33の先端には、他の実施例と同
様の押圧体90及びロードセル80が装着されている。
各アーム32の他端には、ローラフォロア34がケース
30内で回転自在に軸支されており、各ローラフォロア
34はカム35の外面(カム面)に当接し、その反力で
各アーム32を揺動させるように構成されている。更
に、カム35の先端にも、ヘッド33が回動自在に軸支
され、その先端に押圧体90及びロードセル80が装着
されている。そして、カム35は、エアシリンダ36に
よって図9の上下方向に駆動されるように構成されてい
る。
FIGS. 9 and 10 show a third embodiment of a multipoint measuring apparatus, which is an apparatus utilizing a mechanical arm type centripetal mechanism. As shown in FIG. 9, two arms 32 are rotatably supported by a pivot 31 in a case 30, and a head 33 is rotatably supported at each tip. Then, a pressing body 90 and a load cell 80 similar to those of the other embodiments are attached to the tip of each head 33.
At the other end of each arm 32, a roller follower 34 is rotatably supported in the case 30, and each roller follower 34 abuts on the outer surface (cam surface) of the cam 35, and the reaction force of each roller 32 causes each arm 32 to rotate. Is configured to swing. Further, the head 33 is rotatably supported by the tip of the cam 35, and the pressing body 90 and the load cell 80 are attached to the tip thereof. The cam 35 is configured to be driven in the vertical direction of FIG. 9 by the air cylinder 36.

【0034】而して、カム35がエアシリンダ36によ
って図9の上方に駆動されると、カム35の先端と共に
二つのアーム32の先端が相互に近接する方向に揺動
し、三つの押圧体90及びロードセル80は求心方向へ
移動する。これにより、触媒担体2及び緩衝マット3の
一体品4が軸芯にセンタリングされた後に緩衝マット3
が圧縮されるので、前記実施例と同様の測定が可能とな
る。尚、図10は、三つの押圧体90によって緩衝マッ
ト3が圧縮されている状態を示す。
When the cam 35 is driven upward in FIG. 9 by the air cylinder 36, the tips of the two arms 32 swing together with the tips of the cams 35 in the directions in which they approach each other. 90 and the load cell 80 move in the centripetal direction. As a result, after the integrated product 4 of the catalyst carrier 2 and the buffer mat 3 is centered on the shaft center, the buffer mat 3
Is compressed, it is possible to perform the same measurement as in the above embodiment. Note that FIG. 10 shows a state in which the cushioning mat 3 is compressed by the three pressing bodies 90.

【0035】上記図9および図10に示す実施例では、
押圧体90の当接面は全て凹曲面に形成されているが、
図11に示すように当接面が凸曲面の押圧体91として
もよい。このほか、緩衝マット3に当接する部分の面積
が把握できれば、当接面の形状は任意に設定することが
できる。尚、各実施例におけるシリンダはエアシリンダ
としたが、これに限らず、油圧式あるいは電気式等任意
である。
In the embodiment shown in FIGS. 9 and 10,
Although the abutting surface of the pressing body 90 is formed into a concave curved surface,
As shown in FIG. 11, a pressing body 91 whose contact surface is a convex curved surface may be used. In addition, if the area of the portion that abuts on the cushioning mat 3 can be grasped, the shape of the abutting surface can be set arbitrarily. The cylinder in each embodiment is an air cylinder, but the cylinder is not limited to this, and may be a hydraulic type or an electric type.

【0036】次に、上記の測定結果に基づき、筒状部材
に対し縮径加工又は拡径加工を行い、緩衝マット3の保
持部分を形成する工程から、緩衝マット3の圧入工程、
及び端部に対するネッキング加工工程を経て製品とする
までの工程について図12及び図13を参照して説明す
る。尚、加工対象の管素材たる筒状部材15(加工後は
外筒あるいはハウジングと呼ばれる)は、本実施形態で
はステンレススチール管で形成されているが、これに限
定するものではない。また、適宜、前工程にて板材から
造管してもよく、既成のパイプ材を切断することとして
もよい。管素材の板厚も任意であるが、触媒コンバータ
用としては、1乃至3mm程度の板厚が望ましい。
Next, based on the above measurement results, the tubular member is subjected to diameter reduction processing or diameter expansion processing to form the holding portion of the cushioning mat 3, from the step of press-fitting the cushioning mat 3,
The process from the necking process to the end and the process to the product will be described with reference to FIGS. 12 and 13. It should be noted that the tubular member 15 (referred to as an outer cylinder or housing after processing) which is a pipe material to be processed is formed of a stainless steel tube in the present embodiment, but is not limited to this. Further, the pipe material may be appropriately formed in the previous step, or the existing pipe material may be cut. The thickness of the tube material is also arbitrary, but a thickness of about 1 to 3 mm is desirable for a catalytic converter.

【0037】先ず、図12は、管素材の筒状部材15に
対し縮径加工を行なって一体品4(少なくとも緩衝マッ
ト3)の保持部分を形成する工程を含むもので、筒状部
材15の必要内径は、当然乍ら、後述する縮径加工後の
内径よりも大径に設定される。縮径加工の工程(A)で
は、筒状部材15に対してスエージング加工、スピニン
グ加工、プレス加工等公知の塑性加工を行い、略中央の
緩衝マット3保持部分(予定範囲)の全長に亘って、内
径調整部たる緩衝マット3保持部分の内側の実質的な半
径(L)の縮径部16を有する鼓状に形成する。この縮
径加工においては、必要に応じて半径Lの芯金(マンド
レル)を用いれば、オーバーシュートが発生し難くな
り、縮径精度が向上する。更に、軸方向の保持力向上の
ため、上記の縮径加工と同時に、縮径部16に対し、内
側あるいは外側に突出した環状リブ(図示せず)を形成
することとしてもよい。
First, FIG. 12 includes a step of reducing the diameter of the tubular member 15 of the tube material to form a holding portion for the integrated product 4 (at least the cushioning mat 3). The required inner diameter is, of course, set to be larger than the inner diameter after the diameter reduction processing described later. In the step (A) of the diameter reduction processing, known plastic processing such as swaging, spinning or pressing is performed on the tubular member 15 to cover the entire length of the buffer mat 3 holding portion (planned range) at the substantially center. To form a drum shape having a reduced diameter portion 16 having a substantial radius (L) inside the cushioning mat 3 holding portion which is the inner diameter adjusting portion. In this diameter reduction processing, if a core metal (mandrel) having a radius L is used as necessary, overshoot is less likely to occur, and the diameter reduction accuracy is improved. Further, in order to improve the holding force in the axial direction, an annular rib (not shown) protruding inward or outward may be formed on the reduced diameter portion 16 at the same time as the diameter reduction processing.

【0038】ここで重要な点は、縮径部16における内
側の半径がLであるという点である。即ち、内側の半径
がLとなるように縮径部16を形成することにより、前
述の測定工程でシミュレートした所定の面圧値となる緩
衝マット3保持部分の内側の半径を、図3に示す軸芯Z
からの距離Lを媒介として再現したことになる。縮径加
工においては、測定工程にてコントローラCT内に記憶
された距離Lの値を用いて自動的に縮径装置(図示せ
ず)を制御するように構成してもよいし、コントローラ
CTによって表示された距離Lの値を見て縮径装置の目
標値として入力するように構成してもよい。あるいは、
直接作業者によって縮径作業を行なうこととしてもよ
い。
An important point here is that the inner radius of the reduced diameter portion 16 is L. That is, by forming the diameter-reduced portion 16 so that the inner radius becomes L, the inner radius of the buffer mat 3 holding portion having a predetermined surface pressure value simulated in the above-described measurement step is shown in FIG. Axis Z shown
The distance L from is reproduced as a medium. In the diameter reducing process, the diameter reducing device (not shown) may be automatically controlled by using the value of the distance L stored in the controller CT in the measuring process. You may comprise so that the value of the displayed distance L may be seen and input as a target value of a diameter reducing device. Alternatively,
The diameter reduction work may be directly performed by the operator.

【0039】尚、本実施形態では筒状部材15が円筒で
あるため距離Lを内側の半径としたが、楕円断面である
場合には距離Lは長径又は短径として設定すればよく、
その他の断面の場合も軸芯と内壁面との距離をLに設定
すればよい。即ち、緩衝部材保持部分の内側の半径は、
円筒体における狭義の半径のみを意味するものではな
く、あらゆる断面における広義の半径(軸芯と内壁面と
の距離)を意味する。尚、本実施形態では測定結果の距
離(L)と緩衝マット3保持部分の内側の半径を一致さ
せたが、必ずしも完全に一致させる必要はなく、測定結
果の距離(L)に基づき所定の範囲内で緩衝マット3保
持部分の内側の半径(軸芯と内壁面との距離)を適宜調
整して設定することとしてもよい。即ち、所望の面圧値
を勘案して、測定結果の距離(L)に対する上記の半径
(軸芯と内壁面との距離)を所定範囲内で任意に設定す
ることとしてもよい。
In this embodiment, since the tubular member 15 is a cylinder, the distance L is set to the inner radius. However, in the case of an elliptical cross section, the distance L may be set to the major axis or the minor axis.
In the case of other cross sections, the distance between the shaft center and the inner wall surface may be set to L. That is, the inner radius of the cushioning member holding portion is
It does not mean only the narrowly defined radius of the cylindrical body, but the broadly defined radius (distance between the axis and the inner wall surface) in all cross sections. In the present embodiment, the distance (L) of the measurement result and the inner radius of the holding portion of the cushioning mat 3 are made to coincide, but it is not always necessary to make them completely coincide with each other, and a predetermined range based on the distance (L) of the measurement result The inside radius (distance between the shaft core and the inner wall surface) of the buffer mat 3 holding portion may be appropriately adjusted and set. That is, in consideration of a desired surface pressure value, the radius (distance between the shaft core and the inner wall surface) with respect to the distance (L) of the measurement result may be arbitrarily set within a predetermined range.

【0040】また、本実施形態ではコレット式シュリン
カー装置によって縮径加工を行なったため、鼓状に形成
されているが、最終的に縮径部16が形成されるのであ
れば、管素材たる筒状部材15の形状は問わない。もち
ろん本実施形態において、図12に示すテーパ部17及
び18あるいは大径の開口部23及び24が不要であれ
ば、これらを縮径してもよく、全長に亘って縮径加工す
ることとしてもよい。何れの場合にも、緩衝マット3保
持部分の内側の半径(軸芯と内壁面との距離)そのもの
を把握することが肝要である。
Further, in this embodiment, since the diameter-reducing process is performed by the collet type shrinker device, the shape is formed like an hourglass, but if the diameter-reduced portion 16 is finally formed, it is a tubular material. The shape of the member 15 does not matter. Of course, in the present embodiment, if the tapered portions 17 and 18 or the large-diameter openings 23 and 24 shown in FIG. 12 are unnecessary, they may be reduced in diameter, or may be reduced over the entire length. Good. In any case, it is important to grasp the inner radius (distance between the shaft core and the inner wall surface) of the buffer mat 3 holding portion itself.

【0041】次に、圧入工程(B)では、筒状部材15
の大径の開口部23又は24から一体品4を挿入し、所
定位置に至るまで圧入するのであるが、縮径部16の両
端に形成されたテーパ部17又は18が圧入ガイドとし
て機能するため、従来の圧入法のような圧入治具を用い
る必要がなく、圧入治具の利用に伴う不具合は発生しな
い。もちろん、テーパ部17及び18を形成することな
く従来の圧入治具を用いて圧入することとしてもよい。
特に、前述の測定行程において、図4に示すような略全
周に亘って並設した複数の押圧体9xによって緩衝マッ
ト3を圧縮して測定した場合には、圧縮状態では全体の
外径が小さくなっているので、この圧縮状態から圧縮前
の状態に復元するまでの状態にある一体品4を筒状部材
15に圧入する際に、摩擦抵抗が少なく容易に圧入する
ことができる。
Next, in the press-fitting step (B), the tubular member 15
The integrated product 4 is inserted through the large-diameter opening 23 or 24 and press-fitted until reaching a predetermined position. However, since the taper parts 17 or 18 formed at both ends of the reduced-diameter part 16 function as press-fitting guides. Since there is no need to use a press-fitting jig as in the conventional press-fitting method, problems associated with the use of the press-fitting jig do not occur. Of course, the tapered portions 17 and 18 may not be formed, and they may be press-fitted using a conventional press-fitting jig.
In particular, in the above-mentioned measurement process, when the buffer mat 3 is compressed by a plurality of pressing bodies 9x arranged side by side over substantially the entire circumference as shown in FIG. Since the size is small, when the one-piece product 4 in the state where the compressed state is restored to the state before the compression is press-fitted into the tubular member 15, the frictional resistance is small and the press-fitting can be easily performed.

【0042】而して、圧入工程(B)による一体品4の
保持完了後は、縮径部16内で緩衝マット3が設計面圧
値を保って触媒担体2を保持する状態が実現されたこと
となる。ここで、実際の面圧値は、構成品の公差累積に
より上限値と下限値を有する一定の数値幅(以下、面圧
レンジという)があり、例えば、超薄壁の2mil90
0cpsiの触媒担体においては、従来は面圧レンジと
して0.05MPa〜0.7MPaという広い範囲を設
定せざるを得ず、触媒担体の破損や保持不可能となる限
界値に対して、許容マージンが殆どなく、工程上のリス
クが大きかった。これに対し、本発明の製造方法におい
ては実質的に面圧そのものを測定しているので、理論上
は面圧レンジをゼロにでき、測定誤差を見込むとして
も、極めて狭い面圧レンジを設定すればよく、上記と同
じ触媒担体における面圧レンジは例えば0.2MPa〜
0.3MPaという極めて狭い範囲の設定で済むことに
なる。
Thus, after the completion of holding the integrated product 4 in the press-fitting step (B), the state in which the buffer mat 3 holds the designed surface pressure value and holds the catalyst carrier 2 in the reduced diameter portion 16 is realized. It will be. Here, the actual surface pressure value has a certain numerical range (hereinafter referred to as a surface pressure range) having an upper limit value and a lower limit value by accumulating tolerances of components, and for example, an ultra-thin wall 2 mil 90
In the case of a catalyst carrier of 0 cpsi, conventionally, a wide range of 0.05 MPa to 0.7 MPa has to be set as a surface pressure range, and an allowable margin is set against a limit value at which the catalyst carrier is damaged or cannot be retained. There were few, and there was a large risk in the process. On the other hand, in the manufacturing method of the present invention, since the surface pressure itself is substantially measured, the surface pressure range can theoretically be set to zero, and even if a measurement error is taken into consideration, an extremely narrow surface pressure range can be set. The surface pressure range of the same catalyst carrier as above is, for example, 0.2 MPa to
A very narrow range of 0.3 MPa will suffice.

【0043】これにより、上記の許容マージンが増加す
ることはもちろん、設計の自由度も格段に大きくなる。
つまり、従来の面圧レンジである0.05MPa〜0.
7MPaの範囲内であれば、本発明の製造方法における
面圧レンジ(0.2MPa〜0.3MPa)を自由にシ
フトさせることができるので、例えば触媒担体保持の信
頼性向上を狙うのであれば、面圧レンジごと高面圧方向
にシフトさせて、例えば面圧レンジを0.3MPa〜
0.4MPaに設定することとしてもよい。これを実現
するためには、本発明においては、測定結果の距離Lの
値を基に設定する縮径量(あるいは、後述する拡径量)
を修正して、特定の範囲内で目標とする面圧値に修正し
て設定すればよく、具体的には、上記の半径(軸芯と内
壁面との距離)を距離Lの値に対して特定量だけ小さ
く、あるいは大きく設定すればよい。
As a result, the permissible margin is increased, and the degree of freedom in design is significantly increased.
That is, the conventional surface pressure range of 0.05 MPa to 0.
If it is within the range of 7 MPa, the surface pressure range (0.2 MPa to 0.3 MPa) in the production method of the present invention can be freely shifted, so, for example, if the reliability of holding the catalyst carrier is improved, By shifting each surface pressure range in the high surface pressure direction, for example, the surface pressure range from 0.3 MPa to
It may be set to 0.4 MPa. In order to realize this, in the present invention, the diameter reduction amount (or the diameter expansion amount described later) set based on the value of the distance L of the measurement result.
Can be corrected to a target surface pressure value within a specific range and set. Specifically, the above radius (distance between the shaft core and the inner wall surface) can be set with respect to the value of the distance L. Therefore, it may be set smaller or larger by a specific amount.

【0044】次に、触媒コンバータ製品とする製品化工
程(C)においては、縮径工程(B)にて得られた両端
部に対し、スエージング加工、スピニング加工、プレス
加工等の塑性加工を行い、ネッキング部20及び21を
一体的に形成する。この工程(C)においては、ワーク
固定式(ロール公転式)のスピニング加工を用いれば、
効率よく所望の形状を得ることができる。特に、ネッキ
ング部21のような傾斜状のネッキング部を形成する場
合には、前掲の特許文献4に記載の傾斜スピニング加工
を用いることが望ましい。あるいは、偏芯状のネッキン
グ部(図示せず)を形成する場合には、前掲の特許文献
3に記載の偏芯スピニング加工を用いることが望まし
い。このようなスピニング加工を用いれば、前工程
(A)で形成されたテーパ部17及び18並びに大径の
開口部23及び24が同時に消失するように加工するこ
とができるので、加工効率が一層高くなると共に、形状
自由度も大きくなる。
Next, in the commercializing step (C) for producing a catalytic converter product, plastic working such as swaging, spinning, pressing is applied to both ends obtained in the diameter reducing step (B). Then, the necking portions 20 and 21 are integrally formed. In this step (C), if a fixed work (roll revolution type) spinning process is used,
A desired shape can be efficiently obtained. In particular, when forming an inclined necking portion such as the necking portion 21, it is desirable to use the inclined spinning process described in the above-mentioned Patent Document 4. Alternatively, when forming an eccentric necking portion (not shown), it is desirable to use the eccentric spinning process described in the above-mentioned Patent Document 3. If such a spinning process is used, the tapered parts 17 and 18 and the large-diameter openings 23 and 24 formed in the previous step (A) can be processed so as to disappear at the same time, so that the processing efficiency is further improved. In addition, the degree of freedom in shape also increases.

【0045】図13は、管素材の筒状部材15に対し拡
径加工を行なって一体品4(少なくとも緩衝マット3)
の保持部分を形成する工程を含むもので、管素材の筒状
部材15は図12の縮径加工の場合と同様であるが、筒
状部材15の必要内径は、後述する拡径加工後の内径よ
りも小径に設定される。拡径加工の工程(a)では、筒
状部材15に対し、メカニカル、弾性体、液圧等による
エキスパンディング加工、拡径スピニング加工等の塑性
加工を行い、略中央の緩衝マット3保持部分(予定範
囲)の全長に亘って、内径調整部たる拡径部22、テー
パ部19及び大径の開口部25を有する形状に成形す
る。この拡径加工においても、必要に応じて外側拘束型
を使用するとオーバーシュート問題が発生し難く、拡径
精度が一層向上する。
FIG. 13 shows an integral product 4 (at least the cushioning mat 3) obtained by expanding the diameter of the tubular member 15 of the pipe material.
The tubular member 15 of the tube material is similar to the case of the diameter reduction processing of FIG. 12, but the necessary inner diameter of the tubular member 15 is The diameter is set smaller than the inner diameter. In the step (a) of expanding the diameter, the cylindrical member 15 is subjected to plastic processing such as expanding, mechanical expansion, hydraulic expansion or the like, expanding spinning, etc. It is molded into a shape having an enlarged diameter portion 22 serving as an inner diameter adjusting portion, a tapered portion 19, and an opening portion 25 having a large diameter over the entire length of the (planned range). Also in this diameter expansion processing, if an outer restraint die is used as necessary, the overshoot problem does not easily occur, and the diameter expansion accuracy is further improved.

【0046】ここでも、拡径部22における内側の半径
がLであるという点が重要であり、内側の半径がLとな
るように拡径部22を形成するものである。また、この
拡径加工においても、測定工程にてコントローラCT内
に記憶された距離Lの値を用いて自動的に拡径装置(図
示せず)を制御するように構成してもよいし、コントロ
ーラCTによって表示された距離Lの値を見て拡径装置
の目標値として入力するように構成してもよい。あるい
は、直接作業者によって拡径作業を行なうこととしても
よい。尚、拡径部22が形成されるのであれば、その残
部形状および全体形状は問わない。本実施形態において
も、テーパ部19及び大径の開口部25が不要であれば
全長に亘って一様に拡径することとしてもよい。
Here again, it is important that the inside radius of the enlarged diameter portion 22 is L, and the enlarged diameter portion 22 is formed so that the inside radius becomes L. Also in this diameter expansion processing, the diameter expansion device (not shown) may be automatically controlled by using the value of the distance L stored in the controller CT in the measurement step. You may comprise so that the value of the distance L displayed by the controller CT may be viewed and input as the target value of the diameter expanding device. Alternatively, the diameter expansion work may be performed directly by the operator. If the expanded diameter portion 22 is formed, the shape of the remaining portion and the overall shape are not limited. Also in this embodiment, if the tapered portion 19 and the large-diameter opening 25 are unnecessary, the diameter may be uniformly expanded over the entire length.

【0047】次いで圧入工程(b)に移り、大径の開口
部25から一体品4を挿入し、所定位置に至るまで圧入
する。この場合も、テーパ部19が圧入ガイドとして機
能するため、従来の圧入法のような圧入治具を用いる必
要がなく、圧入治具にまつわる不具合は発生しない。而
して、圧入工程(b)による一体品4の保持完了後は、
拡径部22内に緩衝マット3が設計GBD値を保って圧
縮挟持され、設計面圧にて触媒担体2が保持される状態
が実現されたこととなる。この後、触媒コンバータ製品
とする製品化工程(c)が行なわれるが、これは図12
の工程(C)と同様であるので、説明は省略する。
Next, in the press-fitting step (b), the integrated product 4 is inserted through the large-diameter opening 25 and press-fitted until reaching a predetermined position. In this case as well, since the taper portion 19 functions as a press-fitting guide, it is not necessary to use a press-fitting jig as in the conventional press-fitting method, and no problems related to the press-fitting jig occur. After the completion of holding the integrated product 4 in the press-fitting step (b),
This means that the cushioning mat 3 is compressed and sandwiched in the expanded diameter portion 22 while maintaining the designed GBD value, and the catalyst carrier 2 is held at the designed surface pressure. Thereafter, a commercialization step (c) for producing a catalytic converter product is performed, which is shown in FIG.
Since it is the same as the step (C), the description thereof will be omitted.

【0048】尚、上記のネッキング部20及び21は、
必ずしも筒状部材15と一体的に形成する必要はなく、
別部品を溶接等で接続することとしてもよく、螺合締結
とし脱着可能にしてもよい。また、上記の縮径加工及び
拡径加工は、触媒コンバータにおける製造方法における
工程例であるが、前述のDPFを製造する場合には、触
媒担体に代わり、柱体としてフィルタ(図示せず)が用
いられることになるだけで、工程自体には殆ど差異はな
い。更に、前述の測定工程と圧入工程は必ずしも連続し
て行なう必要はなく、時間及び場所を異にして行なうこ
ととしてもよい。例えば、ある工場で測定工程が行なわ
れた一体品4を、別の工場で筒状部材15内に圧入する
こととしてもよい。
The necking portions 20 and 21 are
It does not necessarily have to be formed integrally with the tubular member 15,
Separate parts may be connected by welding or the like, or may be detachable by screwing. Further, the diameter reduction processing and the diameter expansion processing are examples of steps in the manufacturing method of the catalytic converter, but in the case of manufacturing the above-mentioned DPF, a filter (not shown) is used as a pillar instead of the catalyst carrier. There is almost no difference in the process itself, as it will be used. Furthermore, the above-described measurement step and press-fitting step do not necessarily have to be performed continuously, and may be performed at different times and locations. For example, the integrated product 4 that has undergone the measurement process in one factory may be press-fitted into the tubular member 15 in another factory.

【0049】[0049]

【発明の効果】本発明は上述のように構成されているの
で以下に記載の効果を奏する。即ち、請求項1乃至4に
記載の柱体保持装置の製造方法においては、柱体の外径
の誤差、筒状部材の内径の誤差、緩衝部材の誤差等に影
響されることなく、筒状部材の少なくとも緩衝部材を保
持する部分を縮径又は拡径して適切な内径に調整するこ
とができる。特に、最終的には、変数が、柱体の軸芯と
筒状部材との間の距離のみということになり、必ず最適
値を設定することができ、これを筒状部材の縮径又は拡
径に反映することができる。従って、筒状部材内に緩衝
部材を介して柱体を適切に保持した柱体保持装置を、迅
速且つ容易に製造することができ、製造コストも低減す
ることができる。
Since the present invention is constructed as described above, it has the following effects. That is, in the method for manufacturing the column body holding device according to any one of claims 1 to 4, the cylindrical body is not affected by an error in the outer diameter of the column body, an error in the inner diameter of the tubular member, an error in the cushioning member, and the like. At least a portion of the member that holds the cushioning member can be reduced in diameter or expanded in diameter to be adjusted to an appropriate inner diameter. In particular, in the end, the variable is only the distance between the axis of the column and the tubular member, and it is always possible to set the optimum value, which is reduced or expanded. Can be reflected in the diameter. Therefore, it is possible to quickly and easily manufacture the pillar body holding device in which the pillar body is properly held in the tubular member via the cushioning member, and it is possible to reduce the manufacturing cost.

【0050】また、請求項5に記載の柱体保持装置の製
造方法によれば、上記の効果に加え、緩衝部材を巻回し
た柱体を筒状部材に容易に圧入することができ、製造時
間を大幅に短縮することができるので、一層迅速且つ容
易に製造することができる。
According to the manufacturing method of the column body holding device of the fifth aspect, in addition to the above effects, the column body around which the buffer member is wound can be easily press-fitted into the cylindrical member, and the manufacturing Since the time can be greatly shortened, it is possible to manufacture more quickly and easily.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態に係る製造方法が対象とす
る触媒コンバータにおける触媒担体とこれに巻回される
緩衝マットを示す斜視図である。
FIG. 1 is a perspective view showing a catalyst carrier and a cushioning mat wound around the catalyst carrier in a catalytic converter targeted by a manufacturing method according to an embodiment of the present invention.

【図2】本発明の一実施形態に係る製造方法の測定工程
を示す側面図である。
FIG. 2 is a side view showing a measuring step of the manufacturing method according to the embodiment of the present invention.

【図3】本発明の一実施形態に係る製造方法における測
定状態を示す側面図である。
FIG. 3 is a side view showing a measurement state in the manufacturing method according to the embodiment of the present invention.

【図4】本発明の一実施形態に係る製造方法の測定工程
の別の例を示す斜視図である。
FIG. 4 is a perspective view showing another example of measurement steps of the manufacturing method according to the embodiment of the present invention.

【図5】本発明の一実施形態に係る製造方法の測定工程
に供する多点測定装置の第1実施例を示す平面図であ
る。
FIG. 5 is a plan view showing a first example of a multipoint measuring apparatus used in a measuring step of a manufacturing method according to an embodiment of the present invention.

【図6】本発明の一実施形態に係る製造方法の測定工程
に供する多点測定装置の第1実施例を示す正面図であ
る。
FIG. 6 is a front view showing a first example of the multipoint measuring apparatus used in the measuring step of the manufacturing method according to the embodiment of the present invention.

【図7】本発明の一実施形態に係る製造方法の測定工程
に供する多点測定装置の第2実施例を示す平面図であ
る。
FIG. 7 is a plan view showing a second example of the multipoint measuring apparatus used in the measuring step of the manufacturing method according to the embodiment of the present invention.

【図8】本発明の一実施形態に係る製造方法の測定工程
に供する多点測定装置の第2実施例を示す正面図であ
る。
FIG. 8 is a front view showing a second example of the multipoint measuring device used in the measuring step of the manufacturing method according to the embodiment of the present invention.

【図9】本発明の一実施形態に係る製造方法の測定工程
に供する多点測定装置の第3実施例を示す平面図であ
る。
FIG. 9 is a plan view showing a third example of the multipoint measuring apparatus used in the measuring step of the manufacturing method according to the embodiment of the present invention.

【図10】本発明の一実施形態に係る製造方法の測定工
程に供する多点測定装置の第3実施例における一部の作
動状態を示す平面図である。
FIG. 10 is a plan view showing a part of the operating state in the third example of the multipoint measuring apparatus used in the measuring step of the manufacturing method according to the embodiment of the present invention.

【図11】本発明の一実施形態に係る製造方法の測定工
程に供する多点測定装置の第3実施例における押圧体の
別の例を示す平面図である。
FIG. 11 is a plan view showing another example of the pressing body in the third example of the multipoint measuring device used in the measuring step of the manufacturing method according to the embodiment of the present invention.

【図12】本発明の一実施形態に係る製造方法における
縮径工程、圧入工程及び製品化工程を示す一部断面図で
ある。
FIG. 12 is a partial cross-sectional view showing a diameter reducing step, a press-fitting step, and a commercialization step in the manufacturing method according to the embodiment of the present invention.

【図13】本発明の他の実施形態に係る製造方法におけ
る拡径工程、圧入工程及び製品化工程を示す一部断面図
である。
FIG. 13 is a partial cross-sectional view showing a diameter expanding step, a press-fitting step, and a commercialization step in the manufacturing method according to another embodiment of the present invention.

【符号の説明】 2 触媒担体, 3 緩衝マット, 4 一体品, D
T 測定装置,5 クランプ装置, 8 ロードセル,
9 押圧体,10 アクチュエータ, 12 ロータ
リエンコーダ,16 縮径部, 22拡径部
[Explanation of symbols] 2 catalyst carrier, 3 buffer mat, 4 integrated product, D
T measuring device, 5 clamp device, 8 load cell,
9 pressing body, 10 actuator, 12 rotary encoder, 16 reduced diameter portion, 22 enlarged diameter portion

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3G091 AA02 AB01 BA39 GA06 HA27 HA28 4D048 AA14 BA10X BB02 CA01 CC02 CC03 CC04 CC05 CC06 4G069 AA08 BA13B CA02 CA03 CA18 EA19 FA01 FB69 FB70 FB79    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 3G091 AA02 AB01 BA39 GA06 HA27                       HA28                 4D048 AA14 BA10X BB02 CA01                       CC02 CC03 CC04 CC05 CC06                 4G069 AA08 BA13B CA02 CA03                       CA18 EA19 FA01 FB69 FB70                       FB79

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 筒状部材内に緩衝部材を介して柱体を保
持する柱体保持装置の製造方法において、前記柱体の外
周に前記緩衝部材を巻回した状態で、押圧体によって前
記柱体の軸芯に対して直交する方向に前記緩衝部材を押
圧して前記緩衝部材を圧縮すると共に、前記柱体に対す
る前記緩衝部材の面圧を検出し、該面圧が所定の値とな
るときの前記柱体の軸芯と前記押圧体の先端との間の所
定距離を測定し、前記緩衝部材を巻回した前記柱体を、
少なくとも前記緩衝部材を保持する部分の内側の実質的
な半径が前記所定距離となるように予め縮径又は拡径し
た前記筒状部材に対し、前記緩衝部材を前記柱体の外周
に巻回した状態で、圧入することを特徴とする柱体保持
装置の製造方法。
1. A method for manufacturing a columnar body holding device for retaining a columnar body in a tubular member via a cushioning member, wherein the columnar body is wound around the outer periphery of the columnar body, and the columnar body is pressed by a pressing body. When the cushioning member is pressed in a direction orthogonal to the axis of the body to compress the cushioning member, and the surface pressure of the cushioning member with respect to the column is detected, and the surface pressure reaches a predetermined value. Measuring a predetermined distance between the axis of the column body and the tip of the pressing body, the column body around which the buffer member is wound,
The cushioning member is wound around the outer periphery of the columnar body with respect to the tubular member that has been reduced in diameter or expanded in advance so that the substantial radius inside at least the portion holding the cushioning member is the predetermined distance. A method for manufacturing a column body holding device, comprising press-fitting in a state.
【請求項2】 前記所定の値は、前記柱体の外面の静摩
擦係数及び前記筒状部材の内面の静摩擦係数と、前記押
圧体の前記緩衝部材に対する押圧力に基づいて設定する
ことを特徴とする請求項1記載の柱体保持装置の製造方
法。
2. The predetermined value is set based on a static friction coefficient of an outer surface of the column body, a static friction coefficient of an inner surface of the tubular member, and a pressing force of the pressing body against the cushioning member. The method for manufacturing a column body holding device according to claim 1.
【請求項3】 前記押圧体を前記緩衝部材の全周に亘っ
て複数個並設し、該複数個の押圧体の少なくとも一つに
よって前記柱体の軸芯に対して直交する方向に前記緩衝
部材を押圧して前記緩衝部材を圧縮すると共に、前記柱
体に対する前記緩衝部材の面圧を検出することを特徴と
する請求項1記載の柱体保持装置の製造方法。
3. A plurality of the pressing bodies are arranged side by side over the entire circumference of the cushioning member, and at least one of the plurality of pressing bodies is used to cushion the cushion in a direction orthogonal to the axis of the column. The method for manufacturing a columnar body holding device according to claim 1, wherein a member is pressed to compress the cushioning member, and a surface pressure of the cushioning member against the columnar body is detected.
【請求項4】 前記複数個の押圧体は、前記筒状部材の
少なくとも前記緩衝部材を保持する部分に相当する長さ
の長尺部材で構成すると共に、該長尺部材の押圧体を前
記緩衝部材の全周に亘って並設して成ることを特徴とす
る請求項3記載の柱体保持装置の製造方法。
4. The plurality of pressing members are composed of long members having a length corresponding to at least a portion of the tubular member that holds the buffer member, and the pressing members of the long members are buffered. The method for manufacturing a column body holding device according to claim 3, wherein the members are arranged side by side over the entire circumference of the member.
【請求項5】 前記面圧が所定の値となるときの圧縮状
態から圧縮前の状態に復元するまでの状態にある前記緩
衝部材を巻回して成る前記柱体を、前記筒状部材に圧入
することを特徴とする請求項4に記載の柱体保持装置の
製造方法。
5. The column body, which is formed by winding the buffer member in a state from a compressed state when the surface pressure reaches a predetermined value to a state before the compression, is press-fitted into the tubular member. The method for manufacturing a column body holding device according to claim 4, wherein
JP2003010918A 2002-01-24 2003-01-20 Manufacturing method of pillar holding device Pending JP2003286836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003010918A JP2003286836A (en) 2002-01-24 2003-01-20 Manufacturing method of pillar holding device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002-54959 2002-01-24
JP2002054959 2002-01-24
JP2003010918A JP2003286836A (en) 2002-01-24 2003-01-20 Manufacturing method of pillar holding device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006103192A Division JP3844488B2 (en) 2002-01-24 2006-04-04 Multi-point measuring device

Publications (1)

Publication Number Publication Date
JP2003286836A true JP2003286836A (en) 2003-10-10

Family

ID=29253505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003010918A Pending JP2003286836A (en) 2002-01-24 2003-01-20 Manufacturing method of pillar holding device

Country Status (1)

Country Link
JP (1) JP2003286836A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005315252A (en) * 2004-04-01 2005-11-10 Calsonic Kansei Corp Pressure fitting mounting method and device therefor for ceramic catalyst carrier wound with non-intumescent mat into accommodative outer cylinder
WO2006008855A1 (en) * 2004-03-25 2006-01-26 Yumex Corporation Catalytic converter manufacturing method, catalytic converter and catalytic converter control method
US7174635B2 (en) 2003-12-26 2007-02-13 Sango Co., Ltd. Method for producing a columnar member container
JP2007260656A (en) * 2006-03-27 2007-10-11 Sango Co Ltd Method for manufacturing exhaust gas treatment apparatus
JP2008267286A (en) * 2007-04-20 2008-11-06 Yutaka Giken Co Ltd Method for manufacturing exhaust emission control device
JP2009008073A (en) * 2007-06-01 2009-01-15 Yutaka Giken Co Ltd Processing method of exhaust emission control device
JP2009522494A (en) * 2005-12-28 2009-06-11 テネコ オートモティブ オペレーティング カンパニー インコーポレイテッド Fluid bearing auxiliary assembly for exhaust treatment equipment
JP2009167985A (en) * 2008-01-18 2009-07-30 Komatsu Ltd Method for manufacturing exhaust gas treatment device
JP2013083253A (en) * 2011-10-11 2013-05-09 Benteler Automobiltechnik Gmbh Method for sealing monolith having pivot mat into housing by packing it therein
JP2014062728A (en) * 2012-08-30 2014-04-10 Ngk Insulators Ltd Heat conduction member and manufacturing method of the same
CN104071367A (en) * 2014-07-03 2014-10-01 天津卡达克汽车高新技术公司 Adhesive-tape-free packaging device for catalyst packaging
CN111644518A (en) * 2019-03-04 2020-09-11 埃贝斯佩歇排气技术有限公司 Compression jaw structure assembly

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7174635B2 (en) 2003-12-26 2007-02-13 Sango Co., Ltd. Method for producing a columnar member container
CN100389897C (en) * 2003-12-26 2008-05-28 株式会社三五 Method for producing a columnar member container
WO2006008855A1 (en) * 2004-03-25 2006-01-26 Yumex Corporation Catalytic converter manufacturing method, catalytic converter and catalytic converter control method
US8146251B2 (en) 2004-03-25 2012-04-03 Hirotec Corporation Method of manufacturing catalytic converters
KR100826260B1 (en) * 2004-03-25 2008-04-29 유멕스 코퍼레이션 Catalytic converter manufacturing method, catalytic converter and catalytic converter control method
JP2005315252A (en) * 2004-04-01 2005-11-10 Calsonic Kansei Corp Pressure fitting mounting method and device therefor for ceramic catalyst carrier wound with non-intumescent mat into accommodative outer cylinder
JP2009522494A (en) * 2005-12-28 2009-06-11 テネコ オートモティブ オペレーティング カンパニー インコーポレイテッド Fluid bearing auxiliary assembly for exhaust treatment equipment
JP2007260656A (en) * 2006-03-27 2007-10-11 Sango Co Ltd Method for manufacturing exhaust gas treatment apparatus
JP2008267286A (en) * 2007-04-20 2008-11-06 Yutaka Giken Co Ltd Method for manufacturing exhaust emission control device
JP2009008073A (en) * 2007-06-01 2009-01-15 Yutaka Giken Co Ltd Processing method of exhaust emission control device
JP2009167985A (en) * 2008-01-18 2009-07-30 Komatsu Ltd Method for manufacturing exhaust gas treatment device
JP2013083253A (en) * 2011-10-11 2013-05-09 Benteler Automobiltechnik Gmbh Method for sealing monolith having pivot mat into housing by packing it therein
JP2014062728A (en) * 2012-08-30 2014-04-10 Ngk Insulators Ltd Heat conduction member and manufacturing method of the same
CN104071367A (en) * 2014-07-03 2014-10-01 天津卡达克汽车高新技术公司 Adhesive-tape-free packaging device for catalyst packaging
CN111644518A (en) * 2019-03-04 2020-09-11 埃贝斯佩歇排气技术有限公司 Compression jaw structure assembly
US11890733B2 (en) 2019-03-04 2024-02-06 Purem GmbH Compression jaw assembly unit

Similar Documents

Publication Publication Date Title
US6769281B2 (en) Method and apparatus of producing a columnar member container
US20070033804A1 (en) Method for producing a fluid treatment device having a honeycomb member
JP4530607B2 (en) Manufacturing method of fluid processing apparatus with built-in honeycomb structure
KR100826260B1 (en) Catalytic converter manufacturing method, catalytic converter and catalytic converter control method
US6381843B1 (en) Method of producing a catalytic converter
JP2003286836A (en) Manufacturing method of pillar holding device
JP4303450B2 (en) Manufacturing method of purification device with built-in honeycomb structure
JP3844488B2 (en) Multi-point measuring device
US7174635B2 (en) Method for producing a columnar member container
JP2003225834A (en) Manufacturing method for device for retaining column body via shock absorbing member inside cylindrical member
JP2007260656A (en) Method for manufacturing exhaust gas treatment apparatus
JP4656533B2 (en) Manufacturing method of fluid processing apparatus with built-in honeycomb structure
JP3679376B2 (en) Method for manufacturing exhaust treatment apparatus for holding columnar body through buffer member in cylindrical member
JP4303457B2 (en) Manufacturing method of fluid processing apparatus with built-in honeycomb structure
JP4316248B2 (en) Method for manufacturing column body holding apparatus and apparatus for manufacturing the same
JP4303455B2 (en) Manufacturing method of fluid processing apparatus with built-in honeycomb structure
KR101198284B1 (en) Method for assembling a catalytic converter
JP2004154820A (en) Method and device for expanding inside diameter of tubular member
JP2004076590A (en) Fluid treating system with built-in honeycomb structure and method of manufacturing this system
JP4047665B2 (en) Method for producing catalytic converter
JP2003343255A (en) Method for manufacturing purifying device containing honeycomb structure
JP2005282385A (en) Device and method for manufacturing catalyst converter
JP2005171829A (en) Catalytic converter and its manufacturing method
JP2006090292A (en) Method for manufacturing exhaust gas treatment device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061117