JP4528019B2 - Temperature control device for molecular pump - Google Patents

Temperature control device for molecular pump Download PDF

Info

Publication number
JP4528019B2
JP4528019B2 JP2004130815A JP2004130815A JP4528019B2 JP 4528019 B2 JP4528019 B2 JP 4528019B2 JP 2004130815 A JP2004130815 A JP 2004130815A JP 2004130815 A JP2004130815 A JP 2004130815A JP 4528019 B2 JP4528019 B2 JP 4528019B2
Authority
JP
Japan
Prior art keywords
temperature
stator
rotor
molecular pump
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004130815A
Other languages
Japanese (ja)
Other versions
JP2005315090A (en
Inventor
充 桜井
康禎 石森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Vacuum Ltd
Original Assignee
Osaka Vacuum Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Vacuum Ltd filed Critical Osaka Vacuum Ltd
Priority to JP2004130815A priority Critical patent/JP4528019B2/en
Publication of JP2005315090A publication Critical patent/JP2005315090A/en
Application granted granted Critical
Publication of JP4528019B2 publication Critical patent/JP4528019B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/584Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Description

本発明はエッチング装置やCVD装置の排気用等として使用される分子ポンプの温度制御装置に関する。   The present invention relates to a temperature control device for a molecular pump used for exhausting an etching apparatus or a CVD apparatus.

この種の分子ポンプにおいて、ポンプ内に付着堆積する反応生成物の生成を阻止する対策として、軸方向に交互に配列された複数の回転翼及び固定翼を有するターボ分子ポンプにおいて、ポンプ内部のガス流路に伝熱体からなる隔壁を設け、同隔壁とポンプ外部に位置する加熱部とを熱の良導体により連結し、上記加熱部を加熱する電気ヒータ等の加熱手段を同加熱部に設けてターボ分子ポンプの全体を外部から加熱する方式(引用特許文献1参照)、又は吸気口と排気口を有する筐体内に、吸気側からターボ分子ポンプ部及びねじ溝ポンプ部を順次配設した複合分子ポンプにおいて、該ねじ溝ポンプ部のステータを断熱材からなる支持体により固定し、生成物が付着するポンプ内部のステータ温度を効率よく昇温させる方式(引用特許文献2参照)、又は複合型真空ポンプにおいて、ロータのねじ溝ポンプ部を円筒に形成し、該円筒の外側と内側とに近接して外側ステータと内側ステータをそれぞれ配設すると共に、該内側ステータ及び該外側ステータ或いはケーシングに加熱手段と測温手段とをそれぞれ設け、且つベースに冷却手段を設け、円筒の外側を通過するガス及び内側を通過するガスを、加熱手段と測温手段とによりそれぞれ個別に加温制御する方式(引用特許文献3参照)が知られている。
特許第2865959号公報 特許第3098140号公報 実開平6−12794号公報
In this type of molecular pump, as a measure for preventing the formation of reaction products that adhere and accumulate in the pump, in a turbo molecular pump having a plurality of rotary blades and fixed blades alternately arranged in the axial direction, the gas inside the pump Provide a partition made of a heat transfer body in the flow path, connect the partition and the heating unit located outside the pump with a good heat conductor, and provide heating means such as an electric heater for heating the heating unit in the heating unit. A system that heats the entire turbo molecular pump from the outside (see Patent Document 1), or a composite molecule in which a turbo molecular pump unit and a thread groove pump unit are sequentially arranged from the intake side in a housing having an intake port and an exhaust port. In the pump, a system in which the stator of the thread groove pump portion is fixed by a support made of a heat insulating material to efficiently raise the temperature of the stator inside the pump to which the product adheres (cited patent document) In the composite vacuum pump, the thread groove pump portion of the rotor is formed in a cylinder, and an outer stator and an inner stator are disposed in the vicinity of the outer side and the inner side of the cylinder, respectively, The outer stator or casing is provided with heating means and temperature measuring means, and the base is provided with cooling means. The gas passing through the outside of the cylinder and the gas passing through the inside are separately supplied by the heating means and the temperature measuring means, respectively. A method for controlling heating (see Patent Document 3) is known.
Japanese Patent No. 2865959 Japanese Patent No. 3098140 Japanese Utility Model Publication No. 6-12794

ねじ溝真空ポンプ部を有する分子ポンプにおいて、凝着性を有するガスの排気では、ステータの温度が高いほど、排気の生成物付着防止に効果的であり、このため、ステータに加熱手段を備えたものが多い。   In the molecular pump having a thread groove vacuum pump part, in the exhaust of gas having adhesion, the higher the stator temperature, the more effective the prevention of product adhesion of the exhaust. For this reason, the stator is provided with heating means. There are many things.

分子ポンプの起動時には、前記ステータの加熱によりロータの温度よりもステータの温度が高くなり、ロータとステータの間に70℃以上の逆温度差ΔTを生ずることがある。   When the molecular pump is started, the stator temperature becomes higher than the rotor temperature due to the heating of the stator, and an inverse temperature difference ΔT of 70 ° C. or more may be generated between the rotor and the stator.

前記引用文献3の如く、ロータの内周側にもステータが配置されているねじ溝真空ポンプの設計に当っては、この逆温度差ΔTによるロータとステータの熱膨張差を考慮して、内側ステータとロータとの間の隙間(ギャップ)を充分広くしておく必要があった。   In the design of the thread groove vacuum pump in which the stator is also arranged on the inner peripheral side of the rotor as in the cited document 3, considering the difference in thermal expansion between the rotor and the stator due to this reverse temperature difference ΔT, It was necessary to keep the gap (gap) between the stator and the rotor sufficiently wide.

しかし、このギャップを大きくすることは、ねじ溝真空ポンプのポンプ性能を悪化させるという問題があった。   However, increasing the gap has a problem of deteriorating the pump performance of the thread groove vacuum pump.

又、前記逆温度差ΔTの設計上の見込みが低く、更に前記ステータに生成物が付着した場合には、図5に示す分子ポンプ断面図の、内側ステータの先端部X付近でのロータロックにより、分子ポンプが起動不良を起こすことがあるという問題点があった。   In addition, when the design of the reverse temperature difference ΔT is low and the product adheres to the stator, the rotor lock near the tip X of the inner stator in the sectional view of the molecular pump shown in FIG. There was a problem that the molecular pump may cause startup failure.

尚、図5において、aは外側ステータ、bは内側ステータ、cはロータ、又、dは加熱手段を示す。   In FIG. 5, a is an outer stator, b is an inner stator, c is a rotor, and d is a heating means.

本発明は、これらの問題点を解消し、分子ポンプのポンプ性能が低下せず、又、起動不良を起こすことのないようなねじ溝真空ポンプ部を有する分子ポンプの温度制御装置を提供することを目的とする。   The present invention eliminates these problems, and provides a temperature control device for a molecular pump having a thread groove vacuum pump portion that does not cause deterioration in pump performance of the molecular pump and does not cause a starting failure. With the goal.

本発明は前記の目的を達成すべく、互に連設されている外側ステータと内側ステータとの対向面間に形成される円筒状の空隙部に円筒状のロータを介入配置し、ロータとステータの対向面のいずれか一方の面にねじ溝を形成したねじ溝真空ポンプ部を有する分子ポンプにおいて、前記ステータの温度を検出する温度検出手段と、前記ステータを加熱する加熱手段と、該温度検出手段からの検出信号を入力して前記ステータを設定温度に制御する制御信号を前記加熱手段に出力する制御手段とを具備し、該制御手段はポンプの運転開始後前記ステータ温度が所定の温度以上になったときに一定時間内に限り該ステータ温度が所定の温度勾配で上昇するように前記ステータを加熱制御することを特徴とする。   In order to achieve the above-mentioned object, the present invention arranges a cylindrical rotor in a cylindrical gap formed between opposed surfaces of an outer stator and an inner stator that are connected to each other, and the rotor and stator In a molecular pump having a thread groove vacuum pump portion in which a thread groove is formed on any one of the opposing surfaces of the above, a temperature detection means for detecting the temperature of the stator, a heating means for heating the stator, and the temperature detection And a control means for inputting a detection signal from the means to output a control signal for controlling the stator to a set temperature to the heating means, and the control means is configured so that the stator temperature is equal to or higher than a predetermined temperature after the pump starts operating. The stator is heated and controlled so that the stator temperature rises with a predetermined temperature gradient only within a predetermined time when

ロータの内側にステータを有するねじ溝真空ポンプ部からなる分子ポンプにおいて、分子ポンプのポンプ性能が低下することなく、又、分子ポンプの起動不良も起こさないような分子ポンプの温度制御装置を提供できる効果を有する。   In a molecular pump comprising a thread groove vacuum pump portion having a stator inside the rotor, a temperature control device for the molecular pump can be provided such that the pump performance of the molecular pump does not deteriorate and the molecular pump does not start up poorly. Has an effect.

本発明の最良の実施の形態である実施例を以下に説明する。   An example which is the best mode of the present invention will be described below.

本発明の実施例1を図面に従って説明する。   A first embodiment of the present invention will be described with reference to the drawings.

図1は本発明を適用した複合分子ポンプ1の縦断面図である。   FIG. 1 is a longitudinal sectional view of a complex molecular pump 1 to which the present invention is applied.

該複合分子ポンプ1はターボ分子ポンプ部2とねじ溝真空ポンプ部3とからなる。   The composite molecular pump 1 includes a turbo molecular pump unit 2 and a thread groove vacuum pump unit 3.

排気は吸気口1aから吸入され、ターボ分子ポンプ部2、ねじ溝真空ポンプ部3を経て、排気口1bから排出される。   Exhaust gas is sucked from the intake port 1a and is discharged from the exhaust port 1b through the turbo molecular pump unit 2 and the thread groove vacuum pump unit 3.

4はロータで、略有蓋円筒状に形成されている。   A rotor 4 is formed in a substantially covered cylindrical shape.

前記ねじ溝真空ポンプ部3は、内側に円筒面を有する外側ステータ3a1と、外側に円筒面を有する内側ステータ3b1との対向面間に形成された円筒状の空間部に、前記ロータ4の円筒状部4aを介入配置し、該円筒状部4aの外側に形成の外側ねじ溝真空ポンプ部3aと該円筒状部4aの内側に形成の内側ねじ溝真空ポンプ部3bとからなる。   The thread groove vacuum pump section 3 is formed by a cylindrical space portion formed between the opposed surfaces of an outer stator 3a1 having a cylindrical surface on the inner side and an inner stator 3b1 having a cylindrical surface on the outer side. An outer thread groove vacuum pump part 3a formed outside the cylindrical part 4a and an inner thread groove vacuum pump part 3b formed inside the cylindrical part 4a.

本実施例では、外側ねじ溝真空ポンプ部3aのねじ溝は前記ロータ4の円筒状部4aの外周面に刻設されており、又、内側ねじ溝真空ポンプ部3bのねじ溝は前記内側ステータ3b1の外周面に刻設されている。   In this embodiment, the thread groove of the outer thread groove vacuum pump part 3a is carved on the outer peripheral surface of the cylindrical part 4a of the rotor 4, and the thread groove of the inner thread groove vacuum pump part 3b is the inner stator. It is engraved on the outer peripheral surface of 3b1.

前記外側ステータ3a1の内周面と前記ロータ4の円筒状部4aの外周面との間には隙間(ギャップ)3a2が設けられており、又、前記内側ステータ3b1の外周面と前記ロータ4の円筒状部4aの内周面との間には隙間(ギャップ)3b2が設けられている。これらギャップ3a2及び3b2は、外側ステータ3a1とロータ4との最大温度差、及び又は、内側ステータ3b1とロータ4との最大温度差に基づく各熱膨張の違いを見込んで、安全な寸法のギャップとなるように設計されている。   A gap (gap) 3a2 is provided between the inner peripheral surface of the outer stator 3a1 and the outer peripheral surface of the cylindrical portion 4a of the rotor 4, and the outer peripheral surface of the inner stator 3b1 and the rotor 4 A gap (gap) 3b2 is provided between the inner peripheral surface of the cylindrical portion 4a. These gaps 3a2 and 3b2 are assumed to be safe sized gaps in consideration of differences in thermal expansion based on the maximum temperature difference between the outer stator 3a1 and the rotor 4 and / or the maximum temperature difference between the inner stator 3b1 and the rotor 4. Designed to be

尚、前記外側ステータ3a1と内側ステータ3b1とは互いに接続して一体に形成されているため、両ステータ3a1、3b1は常に略等しい温度となる。   Since the outer stator 3a1 and the inner stator 3b1 are integrally connected to each other, the stators 3a1, 3b1 always have substantially the same temperature.

前記外側ステータ3a1の外周部には、該外側ステータ3a1を取り囲むように加熱手段(ヒータ)5が設けられていて、後述する制御手段6によって該加熱手段(ヒータ)5の発熱量を制御するようになっている。   A heating means (heater) 5 is provided on the outer peripheral portion of the outer stator 3a1 so as to surround the outer stator 3a1, and the amount of heat generated by the heating means (heater) 5 is controlled by the control means 6 described later. It has become.

図2に該制御手段6による制御系のブロック線図を示した。   FIG. 2 shows a block diagram of a control system by the control means 6.

即ち、温度検出手段7はステータの温度を検出する第1温度センサー7aとロータの温度を検出する第2温度センサー7bとからなり、該第1温度センサー7aはシース熱電対の感熱部からなり、該感熱部7aは前記内側ステータ3b1の後端部等に取付けられている。又前記第2温度センサー7bは放射温度計からなり、ロータの外周面に対向する外側ステータ3aの内周面に設けられ、該ロータの放射熱より該ロータの温度を計測するようにしている。尚、前記第2温度センサー7bは、後述する理由により無くてもよい。   That is, the temperature detecting means 7 comprises a first temperature sensor 7a for detecting the temperature of the stator and a second temperature sensor 7b for detecting the temperature of the rotor. The first temperature sensor 7a comprises a heat sensitive part of a sheath thermocouple, The heat sensitive portion 7a is attached to the rear end portion of the inner stator 3b1. The second temperature sensor 7b comprises a radiation thermometer and is provided on the inner peripheral surface of the outer stator 3a facing the outer peripheral surface of the rotor, and measures the temperature of the rotor from the radiant heat of the rotor. The second temperature sensor 7b may not be provided for the reason described later.

加熱手段5は電熱ヒータからなり、前記外側ステータ3a1の外周部を取り巻くように設置されている。   The heating means 5 comprises an electric heater and is installed so as to surround the outer peripheral portion of the outer stator 3a1.

又、制御手段6はCPUからなる制御装置であり、該制御装置6は分子ポンプ1の外部に設けられており、該制御装置6の入力側に前記第1、第2温度センサー7a、7bをA/D変換器8aを介して接続すると共に、該制御装置6の出力側に前記ヒータ5をD/A変換器8bを介して接続した。   The control means 6 is a control device composed of a CPU. The control device 6 is provided outside the molecular pump 1, and the first and second temperature sensors 7a and 7b are provided on the input side of the control device 6. While being connected via an A / D converter 8a, the heater 5 was connected to the output side of the control device 6 via a D / A converter 8b.

そして制御装置6は、通常の運転時には前記温度検出手段7からの信号を入力して、通常のPID制御を行い、この制御信号を入力したヒータ5が外側ステータ3a1の加熱を行なっている。   The control device 6 receives a signal from the temperature detecting means 7 during normal operation and performs normal PID control, and the heater 5 receiving the control signal heats the outer stator 3a1.

尚、ロータ4の熱容量は外側ステータ3a1と内側ステータ3b1の合計熱容量よりも大きいため、この加熱によりステータ3a1、3b1はロータ4よりも先に温度上昇する。   Since the heat capacity of the rotor 4 is larger than the total heat capacity of the outer stator 3a1 and the inner stator 3b1, the temperature of the stators 3a1, 3b1 rises before the rotor 4 due to this heating.

このため該制御装置6は、分子ポンプ起動時に、前記第1温度センサー7aによってステータ温度が所定の温度以上になった場合や、前記第1温度センサー7aと前記第2温度センサー7bを用いてその温度差が定常運転時の逆温度差以上になった場合は、一定時間に限りステータ温度の温度上昇勾配がロータ温度の温度上昇勾配と同じくなるようなヒータ制御に切替えられる。   For this reason, the control device 6 uses the first temperature sensor 7a and the second temperature sensor 7b when the stator temperature becomes higher than a predetermined temperature by the first temperature sensor 7a. When the temperature difference is greater than or equal to the reverse temperature difference during steady operation, the heater control is switched so that the temperature increase gradient of the stator temperature is the same as the temperature increase gradient of the rotor temperature only for a fixed time.

このステータ温度の温度上昇勾配の制御について、図3のグラフを用いて説明する。   The control of the temperature rise gradient of the stator temperature will be described using the graph of FIG.

図3は、分子ポンプを常温から起動すると同時にステータ加熱を開始した場合の、ロータ及びステータの温度変化の実験値を示し、横軸が時間で、縦軸が温度℃である。   FIG. 3 shows the experimental values of the temperature change of the rotor and the stator when the molecular pump is started from room temperature and the stator heating is started at the same time. The horizontal axis is time, and the vertical axis is temperature ° C.

図3において、実線の曲線ABCは、通常のPID制御によりステータの加熱制御を行なった場合のステータ温度の変化を示し、これは円弧状の温度上昇曲線を示している。又、略直線状の実線の曲線Gはロータ温度の変化を示す。   In FIG. 3, a solid curve ABC indicates a change in the stator temperature when the stator heating control is performed by the normal PID control, and this indicates an arc-shaped temperature rise curve. Further, a substantially straight solid curve G indicates a change in the rotor temperature.

又、実線の曲線DEFは、該ロータ温度と前記ステータ温度との逆温度差の変化を示す逆温度曲線である。   A solid curve DEF is an inverse temperature curve showing a change in an inverse temperature difference between the rotor temperature and the stator temperature.

このように、通常のPID制御では、前記逆温度曲線DEFの最大値は、起動3時間後に約70℃の逆温度差となる。   Thus, in normal PID control, the maximum value of the reverse temperature curve DEF becomes a reverse temperature difference of about 70 ° C. after 3 hours of startup.

この逆温度差で分子ポンプを設計した場合、内側ステータ3b1とロータ4とのギャップ3b2を相当大きな値とする必要がある。   When the molecular pump is designed with this reverse temperature difference, the gap 3b2 between the inner stator 3b1 and the rotor 4 needs to have a considerably large value.

これに対し、本発明のステータ温度制御方法は、運転開始後の一定時間内に限り、所定の温度勾配で加熱制御するようにした。   On the other hand, in the stator temperature control method of the present invention, heating control is performed with a predetermined temperature gradient only within a fixed time after the start of operation.

本実施例では、通常のPID制御によって前記逆温度差DEFが約50℃となった時点でステータ加熱の制御方法を切替えて、図3の破線B´で示す温度勾配でステータを昇温させるようにした。   In the present embodiment, the stator heating control method is switched when the reverse temperature difference DEF reaches about 50 ° C. by normal PID control, and the stator is heated at a temperature gradient indicated by a broken line B ′ in FIG. I made it.

即ち、図3のグラフより、内側ステータ温度が70℃になったときに逆温度差が約50℃になるので、運転開始直後はPID制御を実行し、第1温度センサー7aにより内側ステータ温度が70℃になったことを検出したときに、該第1温度センサー7aからの出力信号により制御装置6はPID制御から切換えて図3の破線B´で示す温度勾配10℃/hでステータを上昇させ、内側ステータ温度が定常運転の最高温度即ち図3の115℃になったときに第1温度センサー7aからの出力信号により制御装置6は前記温度勾配でのステータの温度上昇からPID制御の実行にもどす。この温度制御方式においては、第2温度センサー7bは不必要となる。   That is, as shown in the graph of FIG. 3, when the inner stator temperature reaches 70 ° C., the reverse temperature difference becomes about 50 ° C. Therefore, PID control is executed immediately after the start of operation, and the inner stator temperature is detected by the first temperature sensor 7a. When it is detected that the temperature has reached 70 ° C., the control device 6 switches from the PID control by the output signal from the first temperature sensor 7a and raises the stator at a temperature gradient of 10 ° C./h shown by the broken line B ′ in FIG. When the inner stator temperature reaches the maximum temperature of steady operation, that is, 115 ° C. in FIG. 3, the control device 6 executes the PID control from the temperature rise of the stator at the temperature gradient by the output signal from the first temperature sensor 7a. Return. In this temperature control method, the second temperature sensor 7b is unnecessary.

尚、複合分子ポンプ1が第1温度センサー7aと共に第2温度センサー7bも具備している場合には、ロータ温度Gとステータ温度Cとを同時に実測して逆温度差Eを算出し、運転開始後に該逆転温度差Eが所定値(50℃)を超えそうになったときには、制御装置6はPID制御から切換えて図3の破線B´で示す温度勾配10℃/hでステータを昇温させ、内側ステータ温度が定常値Cになったときに元のPID制御に戻すようにする。   When the complex molecular pump 1 includes the first temperature sensor 7a and the second temperature sensor 7b, the rotor temperature G and the stator temperature C are simultaneously measured to calculate the reverse temperature difference E, and the operation is started. When the reverse temperature difference E is likely to exceed a predetermined value (50 ° C.) later, the control device 6 switches from PID control to raise the temperature of the stator at a temperature gradient of 10 ° C./h shown by the broken line B ′ in FIG. When the inner stator temperature reaches the steady value C, the original PID control is restored.

このように、ステータ温度と共にロータ温度を計測すると、制御装置6による制御の精度向上が期待される。   As described above, when the rotor temperature is measured together with the stator temperature, an improvement in control accuracy by the control device 6 is expected.

尚、本実施例ではこの温度勾配は毎時10℃程度としたが、これはロータ温度曲線Gの温度上昇勾配と略同じである。このように一定時間ステータの温度上昇が所定の温度勾配となるように制御すると、この間の逆温度差は図3の破線E´の如く、55℃の略一定に保たれる。   In this embodiment, the temperature gradient is about 10 ° C. per hour, which is substantially the same as the temperature increase gradient of the rotor temperature curve G. When the temperature rise of the stator is controlled to have a predetermined temperature gradient for a certain period of time as described above, the reverse temperature difference therebetween is kept substantially constant at 55 ° C. as indicated by a broken line E ′ in FIG.

こうして分子ポンプ起動時のロータとステータの最大逆温度差を引き下げることにより、分子ポンプ設計時に前記ギャップ3b2を小さく設定することができるので、これは分子ポンプの性能向上につながる。   By reducing the maximum reverse temperature difference between the rotor and the stator when the molecular pump is started, the gap 3b2 can be set small when designing the molecular pump. This leads to an improvement in the performance of the molecular pump.

本発明の実施例2を図4により説明する。   A second embodiment of the present invention will be described with reference to FIG.

ここで図4は、分子ポンプを常温から起動すると同時にステータ加熱を開始した場合の、ロータ及びステータの温度変化の実験値を示す。   FIG. 4 shows experimental values of temperature changes of the rotor and the stator when the molecular pump is started from room temperature and the stator heating is started at the same time.

本実施例では、前記実施例1におけるのと略同様の制御手段6において、通常のPID制御による加熱によって逆温度差DEFが約37℃となった処でステータ加熱の制御方法を切替えて、図4の破線B´で示す温度勾配でステータを昇温させるようにした。   In this embodiment, in the control means 6 substantially the same as in the first embodiment, the control method of the stator heating is switched when the reverse temperature difference DEF becomes about 37 ° C. by the heating by the normal PID control. The stator is heated at a temperature gradient indicated by a broken line B ′ in FIG.

本実施例では、この温度勾配を毎時8℃としたが、これはロータ温度曲線Gの温度上昇勾配と略同じである。又、この時の逆温度差は図4の破線E´の如くなり、分子ポンプ起動時に存在していたロータとステータの逆温度差のピークを無くして、最高でも定常運転時に生じている40℃の逆温度差とすることができた。   In this embodiment, this temperature gradient is set to 8 ° C. per hour, which is substantially the same as the temperature increase gradient of the rotor temperature curve G. Further, the reverse temperature difference at this time is as shown by a broken line E ′ in FIG. 4, eliminating the peak of the reverse temperature difference between the rotor and the stator that existed at the time of starting the molecular pump, and at most 40 ° C. occurring during steady operation The reverse temperature difference could be obtained.

これにより、ロータとステータ間のギャップを小さくできるので、分子ポンプの性能向上につながる。   As a result, the gap between the rotor and the stator can be reduced, leading to improved performance of the molecular pump.

尚、分子ポンプ起動時のロータ4の温度上昇は、図3及び図4におけるロータ温度曲線Gの如く、略一定の割合で直線的に変化している。このため、起動後の時間によりロータ4の温度を推定できることから、ロータ4の温度センサー7bを省略して、ステータの温度センサー7aの検出値のみを用いて前記ヒータ制御を行なうようにしてもよい。   Note that the temperature rise of the rotor 4 at the time of starting the molecular pump linearly changes at a substantially constant rate as indicated by the rotor temperature curve G in FIGS. Therefore, since the temperature of the rotor 4 can be estimated from the time after startup, the temperature sensor 7b of the rotor 4 may be omitted, and the heater control may be performed using only the detected value of the stator temperature sensor 7a. .

本発明の分子ポンプの温度制御装置はエッチング装置やCVD装置の排気用として使用する複合分子ポンプ等に利用される。   The temperature control device for the molecular pump of the present invention is used for a complex molecular pump used for exhausting an etching device or a CVD device.

本発明の実施例1の複合分子ポンプの縦断面図である。It is a longitudinal cross-sectional view of the complex molecular pump of Example 1 of this invention. 制御系のブロック線図である。It is a block diagram of a control system. 実施例1の制御における温度変化を説明するグラフである。6 is a graph for explaining a temperature change in the control of the first embodiment. 実施例2の制御における温度変化を説明するグラフである。It is a graph explaining the temperature change in control of Example 2. FIG. 従来の複合分子ポンプの一例の一部縦断面図である。It is a partial longitudinal cross-sectional view of an example of the conventional complex molecular pump.

符号の説明Explanation of symbols

1 分子ポンプ(複合分子ポンプ)
3 ねじ溝真空ポンプ部
3a1 外側ステータ
3b1 内側ステータ
4 ロータ
5 加熱手段(ヒータ)
6 制御手段(制御装置)
7a、7b 温度検出手段(温度センサー)


















1 Molecular pump (complex molecular pump)
3 thread groove vacuum pump 3a1 outer stator 3b1 inner stator 4 rotor 5 heating means (heater)
6 Control means (control device)
7a, 7b Temperature detection means (temperature sensor)


















Claims (4)

互に連設されている外側ステータと内側ステータとの対向面間に形成される円筒状の空隙部に円筒状のロータを介入配置し、ロータとステータの対向面のいずれか一方の面にねじ溝を形成したねじ溝真空ポンプ部を有する分子ポンプにおいて、前記ステータ温度を検出する温度検出手段と、前記ステータを加熱する加熱手段と、該温度検出手段からの検出信号を入力して前記ステータを設定温度に制御する制御信号を前記加熱手段に出力する制御手段とを具備し、該制御手段はポンプの運転開始後前記ステータ温度が所定の温度以上になったときに一定時間内に限りステータ温度が所定の温度勾配で上昇するように前記ステータを加熱制御することを特徴とする分子ポンプの温度制御装置。 A cylindrical rotor is interposed in a cylindrical gap formed between opposing surfaces of the outer stator and the inner stator that are connected to each other, and a screw is provided on one of the opposing surfaces of the rotor and the stator. In a molecular pump having a thread groove vacuum pump section in which grooves are formed, a temperature detecting means for detecting the stator temperature, a heating means for heating the stator, and a detection signal from the temperature detecting means are inputted to the stator. a control signal for controlling the set temperature and a control means for outputting to said heating means, said control means said stator only within a predetermined time when the start of operation after the stator temperature of the pump is equal to or higher than a predetermined temperature temperature control of molecular pump temperature is characterized in that the heating control said stator to rise at a predetermined temperature gradient. 前記ステータ温度の所定の温度勾配がロータ温度の温度上昇勾配と略同じである請求項1に記載の分子ポンプの温度制御装置。 The temperature control device for a molecular pump according to claim 1, wherein the predetermined temperature gradient of the stator temperature is substantially the same as the temperature increase gradient of the rotor temperature . 前記ステータの所定の温度上昇勾配による加熱は、通常のPID制御による円弧状の温度上昇曲線の一部を勾配を有する直線で置き換える制御としたことを特徴とする請求項1に記載の分子ポンプの温度制御装置。 2. The molecular pump according to claim 1, wherein the heating of the stator with a predetermined temperature increase gradient is a control in which a part of the arc-shaped temperature increase curve by normal PID control is replaced with a straight line having a gradient. Temperature control device. 前記ステータ温度の温度上昇勾配を、毎時8℃又は毎時10℃としたことを特徴とする請求項1又は請求項2に記載の温度制御装置。 The temperature increase gradient of the stator temperature, a temperature control device according to claim 1 or claim 2, characterized in that the hour 8 ° C. or per hour 10 ° C..
JP2004130815A 2004-04-27 2004-04-27 Temperature control device for molecular pump Expired - Lifetime JP4528019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004130815A JP4528019B2 (en) 2004-04-27 2004-04-27 Temperature control device for molecular pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004130815A JP4528019B2 (en) 2004-04-27 2004-04-27 Temperature control device for molecular pump

Publications (2)

Publication Number Publication Date
JP2005315090A JP2005315090A (en) 2005-11-10
JP4528019B2 true JP4528019B2 (en) 2010-08-18

Family

ID=35442794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004130815A Expired - Lifetime JP4528019B2 (en) 2004-04-27 2004-04-27 Temperature control device for molecular pump

Country Status (1)

Country Link
JP (1) JP4528019B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2986921B1 (en) * 2012-02-10 2015-01-16 Renault Sas SYSTEM AND METHOD FOR CONTROLLING THE POWER SUPPLY OF AN ELECTRIC MACHINE IN ACCORDANCE WITH THE TEMPERATURE.
GB2553374B (en) * 2016-09-06 2021-05-12 Edwards Ltd Temperature sensor for a high speed rotating machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03290092A (en) * 1990-02-28 1991-12-19 Shimadzu Corp Turbo-molecular pump
JPH08338394A (en) * 1995-06-13 1996-12-24 Japan Atom Energy Res Inst Molecular pump
JP2001329991A (en) * 2000-05-18 2001-11-30 Alps Electric Co Ltd Turbo-molecular pump
JP2002070788A (en) * 2000-09-05 2002-03-08 Shimadzu Corp Temperature control circuit for turbo-molecular pump
JP2004076622A (en) * 2002-08-13 2004-03-11 Osaka Vacuum Ltd Seal structure of molecular pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03290092A (en) * 1990-02-28 1991-12-19 Shimadzu Corp Turbo-molecular pump
JPH08338394A (en) * 1995-06-13 1996-12-24 Japan Atom Energy Res Inst Molecular pump
JP2001329991A (en) * 2000-05-18 2001-11-30 Alps Electric Co Ltd Turbo-molecular pump
JP2002070788A (en) * 2000-09-05 2002-03-08 Shimadzu Corp Temperature control circuit for turbo-molecular pump
JP2004076622A (en) * 2002-08-13 2004-03-11 Osaka Vacuum Ltd Seal structure of molecular pump

Also Published As

Publication number Publication date
JP2005315090A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
US6416290B1 (en) Turbo molecular pump
JP4235273B2 (en) Vacuum pump
JP6666696B2 (en) Vacuum pump
CN109642826B (en) Infrared temperature sensor for high-speed rotary machine
JP2002520540A5 (en)
JP6096718B2 (en) Electric motor overheat detection device having a plurality of PTC thermistors
KR102214001B1 (en) Vacuum pump and heat insulating spacer used for said vacuum pump
JP4594689B2 (en) Vacuum pump
JP4528019B2 (en) Temperature control device for molecular pump
TW200303393A (en) O2 sensor, apparatus for and method of controlling air-fuel ratio, and recording medium storing air-fuel ratio control program
US10917940B2 (en) Vacuum pump and pump-integrated power source device
JP2009074512A (en) Turbo-molecular pump
US10221863B2 (en) Vacuum pump
CN114008300B (en) steam turbine
CN103068470B (en) Electrically heated catalyst
JP4673011B2 (en) Temperature control device for turbo molecular pump
JP2012172871A (en) Heat treatment apparatus and temperature measuring method of heat treatment apparatus
JP2005240967A (en) Magnetic bearing device and turbo-type vacuum pump
JP2005083271A (en) Vacuum pump
JP2003197552A (en) Heater for heat-treating furnace
JP2006037739A (en) Turbo-molecular pump device
JP2930015B2 (en) Turbo molecular pump
JP2564038B2 (en) Turbo molecular pump
JP3084622B2 (en) Turbo molecular pump
JP5374249B2 (en) Microwave leakage suppression member and hybrid heating furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4528019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250