JP4526770B2 - Biaxially stretched EVOH film - Google Patents

Biaxially stretched EVOH film Download PDF

Info

Publication number
JP4526770B2
JP4526770B2 JP2003033550A JP2003033550A JP4526770B2 JP 4526770 B2 JP4526770 B2 JP 4526770B2 JP 2003033550 A JP2003033550 A JP 2003033550A JP 2003033550 A JP2003033550 A JP 2003033550A JP 4526770 B2 JP4526770 B2 JP 4526770B2
Authority
JP
Japan
Prior art keywords
evoh
film
layer
biaxially stretched
polypropylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003033550A
Other languages
Japanese (ja)
Other versions
JP2004243562A (en
Inventor
高広 栗山
裕之 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunze Ltd
Original Assignee
Gunze Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunze Ltd filed Critical Gunze Ltd
Priority to JP2003033550A priority Critical patent/JP4526770B2/en
Publication of JP2004243562A publication Critical patent/JP2004243562A/en
Application granted granted Critical
Publication of JP4526770B2 publication Critical patent/JP4526770B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Wrappers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は2軸延伸積層EVOHフィルムに関し、より詳しくは、接着性樹脂層を介してEVOH層の両面に炭化水素樹脂を含むポリプロピレン層が積層された2軸延伸積層EVOHフィルムに関する。
【0002】
【従来の技術】
EVOH(エチレン−酢酸ビニル共重合体ケン化物)フィルム、特に2軸延伸EVOHフィルムは酸素透過度が小さく、保香性にも優れているが、吸湿するとこれらの特性が大幅に低下するという欠点がある。又、耐衝撃性に欠けるという欠点もある。
これらの欠点を解消するために、防湿性に優れ耐衝撃性にも優れるポリプロピレン層を積層することが考えられるが、この積層フィルムを高倍率で2軸延伸しようとすると、フィルムの破断、EVOH層の白化、フィブリル化、網状化等が発生し、良好な2軸延伸フィルムを得ることができない。
【0003】
そこで良好な2軸延伸フィルムを得るための提案が種々なされている。その1つは、高エチレン含有量のEVOHを使用するものである(例えば、特許文献1参照)。
また、高エチレン含有量及び/又は低ケン化度のEVOHを低エチレン含有量高ケン化度のEVOHに混合して延伸性の改良を図るものもある(例えば、特許文献2、特許文献3参照)。
また、低融点のEVOHを高融点のEVOHに混合して延伸性の改良を図るものもある(例えば、特許文献4参照)。
また、ポリプロピレン層として高立体規則性、高結晶性のポリプロピレンを使用し、EVOH層として低融点のEVOHと高融点のEVOHとの混合物を使用して延伸性の改良を図るものもある(例えば、特許文献5参照)。
また、EVOH層は1軸延伸ではあるが、ポリプロピレン/炭化水素系樹脂含有ポリプロピレン層/ポリプロピレン層/接着性樹脂層/EVOH層/接着性樹脂層の構成とし、防湿性に優れる炭化水素系樹脂含有ポリプロピレン層を設けることによって酸素透過度を小さくするというものもある(例えば、特許文献6参照)。
【0004】
【特許文献1】
特開平1−159232号公報(第3頁左上欄5〜7行)
【特許文献2】
特開平8−311276号公報(第3頁右欄20〜27行、実施例)
【特許文献3】
特開2001−277352号公報(第3頁右欄27〜44行、実施例)
【特許文献4】
特開2000−318095号公報(第3頁右欄22〜31行、第3頁右欄48〜第4頁左欄4行、実施例)
【特許文献5】
特開2000−351181号公報(第4頁右欄19〜26行、第5頁右欄40〜42行、第6頁左欄8〜21行、実施例)
【特許文献6】
特開2000−168008号公報(請求項1、3、実施例)
【0005】
【発明が解決しようとする課題】
しかしながら、前記の各提案は効果の点で未だ不十分であり、結局のところエチレン含有量の多いEVOHを使用せざるを得ないものであるので、得られた2軸延伸フィルムの酸素透過度が大きいという欠点を有す。
例えば、特許文献2の実施例のEVOH層の厚さは約2μmで、フィルムの酸素透過度は10〜30cc/m・day・atm(20℃×65%RH)である。
また、特許文献3の実施例では、EVOH層の厚さが5μmであるフィルムの酸素透過度は3.0cc/m・day・atm(20℃×50%RH)、EVOH層の厚さが4μmであるフィルムの酸素透過度は3.7〜4.1cc/m・day・atm(20℃×50%RH)、EVOH層の厚さが3μmであるフィルムの酸素透過度は4.7cc/m・day・atm(20℃×50%RH)である(測定時の湿度が50%RHと低いことに注意。湿度が低いと酸素透過度は小さくなる)。
また、特許文献4の同時共押出成形の実施例では、EVOH層の厚さを20μmに換算したときのフィルムの酸素透過度は1.5〜2.9cc/m・day・atm(20℃×85%RH)である。
また、特許文献5の同時共押出成形の実施例では、EVOH層の厚さを20μmに換算したときのフィルムの酸素透過度は7〜25cc/m・day・atm(20℃×85%RH)である。
また、特許文献6の実施例では、EVOH層の厚さが3μmであるフィルムの酸素透過度は9.4cc/m・day・atm(20℃×80%RH)、EVOH層の厚さが4μmであるフィルムの酸素透過度は9.0cc/m・day・atm(20℃×80%RH)、EVOH層の厚さが5μmであるフィルムの酸素透過度は6.5cc/m・day・atm(20℃×80%RH)である。なお、特許文献1の実施例の延伸後の積層フィルム厚さは計算上0.37〜0.63μmであり、とても製造することのできない薄さである。又、実施例で使用したEVOHがどのようなものであるかの記載もない。しかしながら、発明の詳細な説明にはエチレン含有量が少なくとも45モル%のEVOHが好ましいとある。そこで45モル%のEVOHを使用して製造可能な通常の厚さのフィルムを製造したとすれば、EVOHの内容、延伸条件等から、その酸素透過度は特許文献4とほぼ同様の値になると推測される。
【0006】
本発明の課題は、従来技術品よりも酸素透過度がさらに小さく、透明性(ヘーズ)に優れ、且つ、層間剥離強度に優れる2軸延伸積層EVOHフィルムを提供することにある。
また本発明は、2軸延伸積層EVOHフィルムにヒートシール性を付与することを課題とする。
さらに本発明は、2軸延伸積層EVOHフィルムを用いた包装体を提供することを課題とする。
【0007】
【課題を解決するための手段】
前記の課題を解決するため本発明は、炭化水素樹脂を含むポリプロピレン層(A)と接着性樹脂層(B)とEVOH層(C)とが(A)/(B)/(C)/(B)/(A)の順に積層された2軸延伸積層EVOHフィルムであって、ポリプロピレン層(A)がポリプロピレン/炭化水素樹脂=90〜75重量%/10〜25重量%のブレンド物からなり、EVOH層(C)がエチレン含有量26〜36モル%で、ケン化度98%以上のEVOHからなり、縦方向に110〜125℃、横方向に130〜145℃で延伸することにより得られることを特徴とする。
【0008】
【発明の実施の形態】
本発明者らは前記の従来技術に係る欠点に鑑み鋭意研究の結果、ポリプロピレン層に炭化水素樹脂をブレンドすると、エチレン含有量が少なく、且つ、ケン化度が大きいEVOHであっても、驚くべきことに高倍率の2軸延伸積層EVOHフィルムが低温延伸で良好に得られることを見出し、本発明を完成するに至った。
【0009】
本発明のポリプロピレンとは、好ましくは13C−NMRで測定したペンタッド分率(%mmmm)が95%以上、より好ましくは96%以上の高アイソタクチック構造を有するものである。ペンタッド分率(%mmmm)が95%未満ではフィルムの剛性が劣る傾向にあるので、用途によっては好ましくない場合もある。
【0010】
前記のポリプロピレンにブレンドされる炭化水素樹脂とは、脂肪族系炭化水素樹脂、芳香族系炭化水素樹脂、脂肪族−芳香族系炭化水素樹脂、脂環族系炭化水素樹脂、又はそれらの水素添加物等の一般に炭化水素樹脂と呼称されるもの(石油樹脂と呼称される場合もある)、あるいはロジン、ロジンエステル、テルペン樹脂等をいい、これらの中でも、脂環族系炭化水素樹脂の水素添加物が好ましく、特に軟化点が120℃以上のジシクロペンタジエン系炭化水素樹脂の水素添加物がより好ましい。
ポリプロピレンと炭化水素樹脂とのブレンド比は、重量比で、好ましくはポリプロピレン/炭化水素樹脂=95/5〜70/30、より好ましくはポリプロピレン/炭化水素樹脂=90/10〜75/25、更に好ましくはポリプロピレン/炭化水素樹脂=82/18〜78/22である。
ブレンド物に含まれる炭化水素樹脂が5重量%未満の場合、延伸性の改善効果が小さくなり、エチレン含有量の多いEVOHでないと高倍率の2軸延伸積層EVOHフィルムが良好に得られない傾向にあり、従ってフィルムの酸素透過度が大きくなる傾向にある。一方、ブレンド物に含まれる炭化水素樹脂が30重量%を超える場合、後記する易ヒートシール性樹脂層とのラミネート強度が弱くなり 好ましくない傾向にある。
【0011】
本発明のEVOH(エチレン−酢酸ビニル共重合体ケン化物)とは、エチレン含有量が好ましくは26〜36モル%、より好ましくは28〜34モル%、更に好ましくは29〜32モル%で、ケン化度が好ましくは98%以上、より好ましくは99%以上のものである。
エチレン含有量が26モル%未満で且つケン化度が98%以上のEVOHの場合、酸素透過度においてはより好ましいが、横延伸時にフィルムの破断が起こり易くなる傾向にある。
一方、エチレン含有量が36モル%を超え且つケン化度が98%以上のEVOHの場合、酸素透過度が大きくなり好ましくない傾向にある。
また、ケン化度が98%未満のEVOHの場合、酸素透過度が大きくなり好ましくない傾向にある。
【0012】
本発明の接着性樹脂とは、前記の炭化水素樹脂を含むポリプロピレン層とEVOH層とを接着するものであれば特に限定するものではなく、例えば、酸変性ポリオレフィンが例示できる。好ましいのものとして無水マレイン酸変性ポリプロピレンが挙げられる。より好ましいものとしてホモポリプロピレン又はエチレン含有量が1重量%未満のプロピレン−エチレンランダム共重合体の無水マレイン酸変性物が挙げられ、融点が155℃以上のホモポリプロピレンの無水マレイン酸変性物が特に好ましいものとして挙げられる。
【0013】
本発明のフィルムである、炭化水素樹脂を含むポリプロピレン層(A)と接着性樹脂層(B)とEVOH層(C)とが(A)/(B)/(C)/(B)/(A)の順に積層された2軸延伸積層EVOHフィルムの各層の厚さは好ましくは、炭化水素樹脂を含むポリプロピレン層(A)が2〜15μm、接着性樹脂層(B)が1〜5μm、EVOH層(C)が1〜10μmである。そして、2軸延伸積層EVOHフィルムのトータルの厚さは、好ましくは10〜50μmである。
なお、各層には本発明の特性を損なわない範囲で、安定剤、滑剤、アンチブロッキング剤、帯電防止剤、紫外線吸収剤等の公知の添加剤やその他の樹脂を合目的的に添加してもよい。
【0014】
次に2軸延伸積層EVOHフィルムの好ましい製造方法について説明する。先ず5層の積層シートを作成する。この方法としては公知の如何なる方法を用いてもよいが、共押出によるのが簡便でより好ましい。次いで、このシートを縦方向に好ましくは110〜125℃で3〜5倍ロール延伸し、横方向に好ましくは130〜145℃で8〜10倍テンター延伸し、熱固定し、必要ならフィルム表面にコロナ放電処理を施して、巻き取る。次いで、エージング後、所望の幅にスリットして、所期のフィルムが得られる。
なお、前記は逐次2軸延伸についてのものであるが、フラット状又はチューブ状のシートを同時2軸延伸してフィルムを得てもよい。
【0015】
かくして得られた2軸延伸積層EVOHフィルムの酸素透過度は、EVOH層(C)の厚さを3μmに換算したとき、好ましくは2〜4cc/m・day・atm(20℃×65%RH)、より好ましくは2.5〜3.5cc/m・day・atm(20℃×65%RH)である。
そして、フィルムのヘーズ値は2%以下と透明性に優れたものであり、炭化水素樹脂を含むポリプロピレン層(A)とEVOH層(C)との層間剥離強度は350g/15mm以上と優れたものである。
【0016】
本発明のフィルムは、炭化水素樹脂を含むポリプロピレン層(A)の少なくとも片面上に易ヒートシール性樹脂層(D)がさらに設けられた2軸延伸積層EVOHフィルムとしてもよい。
このような構成にすると、ヒートシールにより合掌シール袋や三方シール袋のような包装用袋を作成することができる。また、易ヒートシール性樹脂を適宜選定することによって、各種容器の蓋材としても使用可能となる。そして、中味商品が入った包装体を得ることができる。
易ヒートシール性樹脂としては、特に限定するものではなく、例えば、ポリエチレン系樹脂やポリプロピレン系樹脂等のポリオレフィン、ポリスチレン、ポリエステル、ポリブタジエン、及びそれらのブレンド物が例示できる。
易ヒートシール性樹脂層(D)を設ける方法は公知の如何なる方法によってもよい。例えば、ドライラミ、押出しラミ、サンドラミ、コーティング等の方法が例示できる。
また、炭化水素樹脂を含むポリプロピレン層(A)と易ヒートシール性樹脂層(D)との間に印刷層を設けてもよい。
【0017】
【実施例】
次に代表的な実施例を比較例と共に挙げて説明する。
【0018】
酸素透過度の測定は以下の方法によった。即ち、MODERN CONTROL社製OX−TRAN 200型を使用し、ASTM D 3985に準拠して測定した。
【0019】
ヘーズ値の測定は以下の方法によった。即ち、日本電色工業株式会社製NDH2000を使用し、JIS K 7105に準拠して測定した。
【0020】
水蒸気透過度の測定は以下の方法によった。即ち、MODERN CONTROL社製PERMATRAN W−200形を使用し、ASTM F 372−73に準拠して測定した。
【0021】
炭化水素樹脂を含むポリプロピレン層(A)とEVOH層(C)との層間剥離強度は以下の方法によった。即ち、試料を幅15mmに切り出し、180°剥離、引っ張り速度200mm/minで測定した。
【0022】
(実施例1)
ホモポリプロピレン(融点:160℃、MFR(230℃、21.18N):2.3、13C−NMRで測定したペンタッド分率(%mmmm):96%)80重量%とジシクロペンタジエン系炭化水素樹脂の水素添加物(トーネックス 株式会社製エスコレッツE5320、軟化点:125℃)20重量%とのブレンド物からなる層(A)と、ホモポリプロピレンの無水マレイン酸変性物(三井化学株式会社製QF500、融点:165℃、MFR(230℃、21.18N):3)からなる層(B)と、EVOH(日本合成化学工業株式会社製 DC3203、エチレン含有量:32モル%、ケン化度:99%以上、融点:183℃、MFR(210℃、21.18N):4)からなる層(C)とが(A)/(B)/(C)/(B)/(A)の順に積層するようにして、温度220℃のTダイから3種5層のシートを共押出し、23℃の冷却ロールで引き取った。
次いでこのシートを、115℃で縦方向に3.4倍ロール延伸し、135℃で予熱し、135℃で横方向に9倍テンター延伸し、160℃で熱固定し、フィルムの片面を処理強度30W/分・mでコロナ放電処理を施して、巻き取った。次いで、40℃で24時間エージングした後、所定の幅にスリットして所期の2軸延伸積層EVOHフィルムを得た。各層の厚さは4μm/2μm/3μm/2μm/4μmで、フィルムのトータルの厚さは15μmであった。
このフィルムの酸素透過度、ヘーズ値、水蒸気透過度、及び層間剥離強度を表1に示す。
【0023】
(比較例1)
炭化水素樹脂をポリプロピレンにブレンドしない以外、実施例1と同様にして2軸延伸積層EVOHフィルムを得ようとしたが、フィルムの破断が断続的に発生し、2軸延伸積層EVOHフィルムを得ることができなかった。
【0024】
(比較例2)
炭化水素樹脂をポリプロピレンにブレンドせず、且つ、予熱温度と横方向の延伸温度を共に155℃とした以外、実施例1と同様にして2軸延伸積層EVOHフィルムを得た。
得られたフィルムは、網目状の無数の層間剥離部が存在しており、よく観察すると、その部分でEVOH層の破断も観察された。
このフィルムの酸素透過度、ヘーズ値、水蒸気透過度、及び層間剥離強度を表1に示す。
【0025】

Figure 0004526770
【0026】
【発明の効果】
本発明は以上のような構成からなるので、以下の効果を奏す。
【0027】
本発明によれば、エチレン含有量が少なく、且つ、ケン化度が大きいEVOHであっても、高倍率の2軸延伸積層EVOHフィルムが低温延伸で良好に得られる。従って、炭化水素樹脂の防湿効果と相まって、従来にない酸素透過度の小さい2軸延伸積層EVOHフィルムが得られる。
【0028】
また、炭化水素樹脂の防湿効果と相まって、水蒸気透過度の小さい2軸延伸積層EVOHフィルムが得られる。
【0029】
また、ヘーズ値の小さい(透明性に優れる)、層間剥離強度に優れる2軸延伸積層EVOHフィルムが得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a biaxially stretched EVOH film, and more particularly to a biaxially stretched EVOH film in which a polypropylene layer containing a hydrocarbon resin is laminated on both sides of an EVOH layer via an adhesive resin layer.
[0002]
[Prior art]
EVOH (ethylene-vinyl acetate copolymer saponified product) film, particularly biaxially stretched EVOH film, has low oxygen permeability and excellent fragrance retention, but has the disadvantage that these properties are greatly reduced by moisture absorption. is there. In addition, there is a drawback of lacking impact resistance.
In order to eliminate these drawbacks, it is conceivable to laminate a polypropylene layer having excellent moisture resistance and impact resistance. However, if this laminated film is biaxially stretched at a high magnification, the film breaks, the EVOH layer. Whitening, fibrillation, reticulation, etc. occur, and a good biaxially stretched film cannot be obtained.
[0003]
Therefore, various proposals for obtaining a good biaxially stretched film have been made. One of them uses EVOH having a high ethylene content (see, for example, Patent Document 1).
In addition, there are some which improve the stretchability by mixing EVOH having a high ethylene content and / or low saponification degree with EVOH having a low ethylene content and high saponification degree (see, for example, Patent Document 2 and Patent Document 3). ).
In addition, there are some which improve the stretchability by mixing EVOH having a low melting point with EVOH having a high melting point (see, for example, Patent Document 4).
Also, there are some which use high stereoregularity and high crystalline polypropylene as the polypropylene layer and improve the stretchability by using a mixture of low melting EVOH and high melting EVOH as the EVOH layer (for example, (See Patent Document 5).
The EVOH layer is uniaxially stretched, but has a structure of polypropylene / hydrocarbon resin-containing polypropylene layer / polypropylene layer / adhesive resin layer / EVOH layer / adhesive resin layer, and contains a hydrocarbon resin with excellent moisture resistance. There is also a technique of reducing the oxygen permeability by providing a polypropylene layer (see, for example, Patent Document 6).
[0004]
[Patent Document 1]
JP-A-1-159232 (page 3, upper left column, lines 5 to 7)
[Patent Document 2]
JP-A-8-311276 (page 3, right column, lines 20-27, Examples)
[Patent Document 3]
JP 2001-277352 A (page 3, right column, lines 27-44, Examples)
[Patent Document 4]
JP 2000-318095 A (page 3 right column 22 to 31 lines, page 3 right column 48 to page 4 left column 4 lines, Example)
[Patent Document 5]
JP 2000-351181 (page 4, right column, lines 19-26, page 5, right column, lines 40-42, page 6, left column, lines 8-21, Examples)
[Patent Document 6]
JP 2000-168008 A (Claims 1, 3 and Examples)
[0005]
[Problems to be solved by the invention]
However, each of the above proposals is still inadequate in terms of effect, and eventually, EVOH having a high ethylene content must be used. Therefore, the oxygen permeability of the obtained biaxially stretched film is low. Has the disadvantage of being large.
For example, the thickness of the EVOH layer in the example of Patent Document 2 is about 2 μm, and the oxygen permeability of the film is 10 to 30 cc / m 2 · day · atm (20 ° C. × 65% RH).
Moreover, in the Example of patent document 3, the oxygen permeability of the film whose EVOH layer thickness is 5 μm is 3.0 cc / m 2 · day · atm (20 ° C. × 50% RH), and the thickness of the EVOH layer is The oxygen permeability of the film having a thickness of 4 μm is 3.7 to 4.1 cc / m 2 · day · atm (20 ° C. × 50% RH), and the oxygen permeability of the film having an EVOH layer thickness of 3 μm is 4.7 cc. / M 2 · day · atm (20 ° C. × 50% RH) (note that the humidity at the time of measurement is as low as 50% RH. When the humidity is low, the oxygen permeability is low).
Moreover, in the Example of the co-extrusion molding of patent document 4, the oxygen permeability of the film when the thickness of the EVOH layer is converted to 20 μm is 1.5 to 2.9 cc / m 2 · day · atm (20 ° C. X 85% RH).
Moreover, in the Example of the co-extrusion molding of patent document 5, the oxygen permeability of the film when the thickness of the EVOH layer is converted to 20 μm is 7 to 25 cc / m 2 · day · atm (20 ° C. × 85% RH). ).
Moreover, in the Example of patent document 6, the oxygen permeability of the film whose EVOH layer thickness is 3 μm is 9.4 cc / m 2 · day · atm (20 ° C. × 80% RH), and the thickness of the EVOH layer is The film having 4 μm has an oxygen permeability of 9.0 cc / m 2 · day · atm (20 ° C. × 80% RH), and the film having an EVOH layer thickness of 5 μm has an oxygen permeability of 6.5 cc / m 2. day.atm (20 ° C. × 80% RH). In addition, the laminated | multilayer film thickness after extending | stretching of the Example of patent document 1 is 0.37-0.63 micrometer in calculation, and is the thickness which cannot be manufactured very much. There is also no description of what EVOH used in the examples. However, in the detailed description of the invention, EVOH having an ethylene content of at least 45 mol% is preferred. Therefore, if a film having a normal thickness that can be manufactured using 45 mol% EVOH is manufactured, the oxygen permeability is almost the same as that in Patent Document 4 from the contents of EVOH, stretching conditions, and the like. Guessed.
[0006]
An object of the present invention is to provide a biaxially stretched EVOH film having a smaller oxygen permeability than conventional products, excellent transparency (haze), and excellent delamination strength.
Another object of the present invention is to impart heat sealability to the biaxially stretched laminated EVOH film.
Furthermore, an object of the present invention is to provide a package using a biaxially stretched laminated EVOH film.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a polypropylene layer (A), an adhesive resin layer (B), and an EVOH layer (C) containing a hydrocarbon resin, wherein (A) / (B) / (C) / ( B) A biaxially stretched EVOH film laminated in the order of (A) , wherein the polypropylene layer (A) comprises a blend of polypropylene / hydrocarbon resin = 90-75 wt% / 10-25 wt%, The EVOH layer (C) is composed of EVOH having an ethylene content of 26 to 36 mol% and a saponification degree of 98% or more, and is obtained by stretching at 110 to 125 ° C in the longitudinal direction and 130 to 145 ° C in the transverse direction. It is characterized by.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
As a result of intensive studies in view of the above-mentioned drawbacks of the prior art, the present inventors have found that blending a hydrocarbon resin with a polypropylene layer is surprising even if EVOH has a low ethylene content and a high degree of saponification. In particular, it has been found that a high-magnification biaxially stretched laminated EVOH film can be obtained satisfactorily by low-temperature stretching, and the present invention has been completed.
[0009]
The polypropylene of the present invention preferably has a high isotactic structure with a pentad fraction (% mmmm) measured by 13 C-NMR of 95% or more, more preferably 96% or more. If the pentad fraction (% mmmm) is less than 95%, the rigidity of the film tends to be inferior.
[0010]
The hydrocarbon resin blended with the polypropylene is an aliphatic hydrocarbon resin, an aromatic hydrocarbon resin, an aliphatic-aromatic hydrocarbon resin, an alicyclic hydrocarbon resin, or hydrogenation thereof. These are generally called hydrocarbon resins (sometimes called petroleum resins), or rosins, rosin esters, terpene resins, etc. Among these, hydrogenation of alicyclic hydrocarbon resins In particular, a hydrogenated product of a dicyclopentadiene hydrocarbon resin having a softening point of 120 ° C. or higher is more preferable.
The blend ratio of polypropylene and hydrocarbon resin is, by weight ratio, preferably polypropylene / hydrocarbon resin = 95/5 to 70/30, more preferably polypropylene / hydrocarbon resin = 90/10 to 75/25, still more preferably. Is polypropylene / hydrocarbon resin = 82/18 to 78/22.
When the hydrocarbon resin contained in the blend is less than 5% by weight, the effect of improving the stretchability becomes small, and a high-magnification biaxially stretched EVOH film tends not to be obtained well unless EVOH has a high ethylene content. Therefore, the oxygen permeability of the film tends to increase. On the other hand, when the hydrocarbon resin contained in the blend exceeds 30% by weight, the laminate strength with the easily heat-sealable resin layer described later tends to be unfavorable.
[0011]
EVOH (saponified ethylene-vinyl acetate copolymer) of the present invention preferably has an ethylene content of 26 to 36 mol%, more preferably 28 to 34 mol%, still more preferably 29 to 32 mol%. The degree of conversion is preferably 98% or more, more preferably 99% or more.
EVOH having an ethylene content of less than 26 mol% and a saponification degree of 98% or more is more preferable in terms of oxygen permeability, but tends to easily break the film during transverse stretching.
On the other hand, in the case of EVOH having an ethylene content exceeding 36 mol% and a saponification degree of 98% or more, the oxygen permeability tends to increase, which tends to be undesirable.
Moreover, in the case of EVOH having a saponification degree of less than 98%, the oxygen permeability tends to increase, which tends to be undesirable.
[0012]
The adhesive resin of the present invention is not particularly limited as long as it adheres the polypropylene layer containing the hydrocarbon resin and the EVOH layer, and examples thereof include acid-modified polyolefin. Preferred examples include maleic anhydride-modified polypropylene. More preferred is homopolypropylene or a maleic anhydride modified product of a propylene-ethylene random copolymer having an ethylene content of less than 1% by weight, and a maleic anhydride modified product of homopolypropylene having a melting point of 155 ° C. or higher is particularly preferred. It is mentioned as a thing.
[0013]
The polypropylene layer (A), the adhesive resin layer (B), and the EVOH layer (C) containing the hydrocarbon resin, which are the films of the present invention, are (A) / (B) / (C) / (B) / ( The thickness of each layer of the biaxially stretched EVOH film laminated in the order of A) is preferably 2-15 μm for the polypropylene layer (A) containing hydrocarbon resin, 1-5 μm for the adhesive resin layer (B), EVOH Layer (C) is 1-10 μm. The total thickness of the biaxially stretched laminated EVOH film is preferably 10 to 50 μm.
In addition, a known additive such as a stabilizer, a lubricant, an anti-blocking agent, an antistatic agent, and an ultraviolet absorber and other resins may be appropriately added to each layer as long as the characteristics of the present invention are not impaired. Good.
[0014]
Next, a preferred method for producing a biaxially stretched EVOH film will be described. First, a 5-layer laminated sheet is prepared. Any known method may be used as this method, but co-extrusion is simple and more preferable. Next, the sheet is stretched 3 to 5 times in the machine direction, preferably at 110 to 125 ° C., tentered in the transverse direction, preferably at 10 to 10 times at 130 to 145 ° C., heat-set, and if necessary on the film surface. Apply corona discharge treatment and take up. Then, after aging, the desired film is obtained by slitting to a desired width.
Although the above is for sequential biaxial stretching, a film may be obtained by simultaneously biaxially stretching a flat or tube-like sheet.
[0015]
The oxygen permeability of the biaxially stretched laminated EVOH film thus obtained is preferably 2 to 4 cc / m 2 · day · atm (20 ° C. × 65% RH) when the thickness of the EVOH layer (C) is converted to 3 μm. ), More preferably 2.5 to 3.5 cc / m 2 · day · atm (20 ° C. × 65% RH).
And the haze value of the film is 2% or less and excellent in transparency, and the delamination strength between the polypropylene layer (A) containing the hydrocarbon resin and the EVOH layer (C) is as excellent as 350 g / 15 mm or more. It is.
[0016]
The film of the present invention may be a biaxially stretched EVOH film in which an easily heat-sealable resin layer (D) is further provided on at least one surface of a polypropylene layer (A) containing a hydrocarbon resin.
With such a configuration, a packaging bag such as a palm seal bag or a three-side seal bag can be produced by heat sealing. Further, by selecting an easily heat-sealable resin as appropriate, it can be used as a lid material for various containers. And the package containing the contents product can be obtained.
The heat-sealable resin is not particularly limited, and examples thereof include polyolefins such as polyethylene resins and polypropylene resins, polystyrene, polyester, polybutadiene, and blends thereof.
The method for providing the heat-sealable resin layer (D) may be any known method. For example, methods such as dry lamination, extrusion lamination, sand lamination, and coating can be exemplified.
Moreover, you may provide a printing layer between the polypropylene layer (A) containing a hydrocarbon resin, and an easily heat-sealable resin layer (D).
[0017]
【Example】
Next, typical examples will be described together with comparative examples.
[0018]
The oxygen permeability was measured by the following method. That is, the measurement was performed according to ASTM D 3985 using OX-TRAN 200 type manufactured by MODERN CONTROL.
[0019]
The haze value was measured by the following method. That is, NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd. was used, and measurement was performed in accordance with JIS K 7105.
[0020]
The water vapor permeability was measured by the following method. That is, the measurement was performed according to ASTM F 372-73 using a PERMATRAN W-200 model manufactured by MODERN CONTROL.
[0021]
The delamination strength between the polypropylene layer (A) containing the hydrocarbon resin and the EVOH layer (C) was determined by the following method. That is, the sample was cut into a width of 15 mm, measured at 180 ° peeling and a pulling speed of 200 mm / min.
[0022]
Example 1
Homopolypropylene (melting point: 160 ° C., MFR (230 ° C., 21.18N): 2.3, pentad fraction (% mmmm) measured by 13 C-NMR: 96%) 80% by weight and dicyclopentadiene hydrocarbon A layer (A) composed of a blend of 20% by weight of a resin hydrogenated product (Escollets E5320 manufactured by Tonex Co., Ltd., softening point: 125 ° C.), a maleic anhydride modified product of homopolypropylene (QF500 manufactured by Mitsui Chemicals, Inc.) Melting point: 165 ° C., layer (B) consisting of MFR (230 ° C., 21.18 N): 3) and EVOH (Nihon Synthetic Chemical Industry Co., Ltd. DC3203, ethylene content: 32 mol%, saponification degree: 99% The layer (C) composed of melting point: 183 ° C., MFR (210 ° C., 21.18 N): 4) is (A) / (B) / (C) / (B) / (A ), The three types and five layers of sheets were coextruded from a T die having a temperature of 220 ° C., and taken up by a cooling roll at 23 ° C.
The sheet is then stretched 3.4 times in the machine direction at 115 ° C, preheated at 135 ° C, stretched 9 times in the transverse direction at 135 ° C and heat-set at 160 ° C, and one side of the film is treated with strength. A corona discharge treatment was applied at 30 W / min · m 2 to wind up. Subsequently, after aging at 40 ° C. for 24 hours, the desired biaxially stretched laminated EVOH film was obtained by slitting to a predetermined width. The thickness of each layer was 4 μm / 2 μm / 3 μm / 2 μm / 4 μm, and the total thickness of the film was 15 μm.
Table 1 shows the oxygen permeability, haze value, water vapor permeability, and delamination strength of this film.
[0023]
(Comparative Example 1)
An attempt was made to obtain a biaxially stretched laminated EVOH film in the same manner as in Example 1 except that the hydrocarbon resin was not blended with polypropylene, but the film was intermittently broken to obtain a biaxially stretched laminated EVOH film. could not.
[0024]
(Comparative Example 2)
A biaxially stretched laminated EVOH film was obtained in the same manner as in Example 1 except that the hydrocarbon resin was not blended with polypropylene, and both the preheating temperature and the transverse stretching temperature were 155 ° C.
The obtained film had innumerable network-like delamination portions, and when observed well, breakage of the EVOH layer was also observed at those portions.
Table 1 shows the oxygen permeability, haze value, water vapor permeability, and delamination strength of this film.
[0025]
Figure 0004526770
[0026]
【The invention's effect】
Since this invention consists of the above structures, there exist the following effects.
[0027]
According to the present invention, even with EVOH having a low ethylene content and a high degree of saponification, a high-magnification biaxially stretched laminated EVOH film can be obtained satisfactorily by low-temperature stretching. Therefore, combined with the moisture-proof effect of the hydrocarbon resin, an unprecedented biaxially stretched laminated EVOH film with low oxygen permeability can be obtained.
[0028]
Moreover, combined with the moisture-proof effect of the hydrocarbon resin, a biaxially stretched laminated EVOH film having a low water vapor permeability can be obtained.
[0029]
Further, a biaxially stretched laminated EVOH film having a small haze value (excellent transparency) and excellent delamination strength can be obtained.

Claims (1)

炭化水素樹脂を含むポリプロピレン層(A)と接着性樹脂層(B)とEVOH層(C)とが(A)/(B)/(C)/(B)/(A)の順に積層された2軸延伸積層EVOHフィルムであって、ポリプロピレン層(A)がポリプロピレン/炭化水素樹脂=90〜75重量%/10〜25重量%のブレンド物からなり、EVOH層(C)がエチレン含有量26〜36モル%で、ケン化度98%以上のEVOHからなり、縦方向に110〜125℃、横方向に130〜145℃で延伸することにより得られる2軸延伸積層EVOHフィルムの製造方法。 Polypropylene layer (A) containing hydrocarbon resin, adhesive resin layer (B), and EVOH layer (C) were laminated in the order of (A) / (B) / (C) / (B) / (A). A biaxially stretched EVOH film , wherein the polypropylene layer (A) is a blend of polypropylene / hydrocarbon resin = 90-75 wt% / 10-25 wt%, and the EVOH layer (C) has an ethylene content of 26- A process for producing a biaxially stretched EVOH film comprising EVOH having 36 mol% and a saponification degree of 98% or more and obtained by stretching at 110 to 125 ° C in the longitudinal direction and 130 to 145 ° C in the transverse direction.
JP2003033550A 2003-02-12 2003-02-12 Biaxially stretched EVOH film Expired - Fee Related JP4526770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003033550A JP4526770B2 (en) 2003-02-12 2003-02-12 Biaxially stretched EVOH film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003033550A JP4526770B2 (en) 2003-02-12 2003-02-12 Biaxially stretched EVOH film

Publications (2)

Publication Number Publication Date
JP2004243562A JP2004243562A (en) 2004-09-02
JP4526770B2 true JP4526770B2 (en) 2010-08-18

Family

ID=33019496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003033550A Expired - Fee Related JP4526770B2 (en) 2003-02-12 2003-02-12 Biaxially stretched EVOH film

Country Status (1)

Country Link
JP (1) JP4526770B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3943297A4 (en) * 2019-03-22 2022-04-20 Mitsubishi Chemical Corporation Multilayer structure, and stand-up pouch including the multilayer structure
EP3873739A1 (en) 2020-01-06 2021-09-08 Flint Hills Resources, LP Polymeric substrate including a barrier layer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588644A (en) * 1981-07-08 1983-01-18 住友ベークライト株式会社 Heat-shrinkable multilayer film and its package
JPH01159232A (en) * 1987-10-05 1989-06-22 Mobil Oil Corp Biaxial oriented multilayer barrier film and manufacture thereof
JP2000168008A (en) * 1998-10-01 2000-06-20 Nippon Synthetic Chem Ind Co Ltd:The Laminate
JP2000351181A (en) * 1999-06-11 2000-12-19 Tohcello Co Ltd Multilayered film
WO2001049487A1 (en) * 1999-12-30 2001-07-12 Mobil Oil Corporation Multi-layer oriented polypropylene films with modified core layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588644A (en) * 1981-07-08 1983-01-18 住友ベークライト株式会社 Heat-shrinkable multilayer film and its package
JPH01159232A (en) * 1987-10-05 1989-06-22 Mobil Oil Corp Biaxial oriented multilayer barrier film and manufacture thereof
JP2000168008A (en) * 1998-10-01 2000-06-20 Nippon Synthetic Chem Ind Co Ltd:The Laminate
JP2000351181A (en) * 1999-06-11 2000-12-19 Tohcello Co Ltd Multilayered film
WO2001049487A1 (en) * 1999-12-30 2001-07-12 Mobil Oil Corporation Multi-layer oriented polypropylene films with modified core layer

Also Published As

Publication number Publication date
JP2004243562A (en) 2004-09-02

Similar Documents

Publication Publication Date Title
JP5869569B2 (en) Heat-sealable film with linear tear properties
JP5411935B2 (en) Heat-sealable uniaxially oriented propylene film having tear directionality
US9399318B2 (en) High barrier heat sealable film with linear tear properties
US11247440B2 (en) Metallized, oriented, linear, low-density, polyethylene films
JP6107002B2 (en) Sealant film, and packaging material and packaging bag using the same
JP2018511504A (en) Laminated structure and stand-up pouch made therefrom
US9080082B2 (en) Medium density polyethylene film layer and multilayer film comprising same
US9669591B2 (en) Heat sealable film with linear tear properties
JP2008132614A (en) Polypropylene based laminated film and gas-barrier film
CN112512806B (en) Laminate and packaging bag comprising same
US20120251749A1 (en) Heat sealable monoaxially oriented propylene-based film with directional tear
JP2015527943A (en) Heat-sealable uniaxially oriented propylene-based film having directional tearability
JP2018052120A (en) Sealant film, and packaging material and packaging bag using the same
EP3419825B1 (en) Bi-oriented, linear, low-density, polyetheylene film with improved sealing properties
KR102286459B1 (en) Easy openable cpp film and food package containing the same
JP2020007443A (en) Packaging film for food product, and package for food product
JP4526770B2 (en) Biaxially stretched EVOH film
JP6933282B2 (en) Sealant film, and packaging materials and packaging bags using it
JP2005103904A (en) Coextrusion multilayered film and laminated film
JP2905328B2 (en) Manufacturing method of laminate
JPS6129377B2 (en)
JP6278077B2 (en) Sealant film, and packaging material and packaging bag using the same
JP2022173753A (en) Multilayer film, packaging material and package
WO2024048097A1 (en) Polyethylene film for gas barrier coating film
WO2023195382A1 (en) Stretched film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4526770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees