JP4526328B2 - Conveyor drive control device - Google Patents

Conveyor drive control device Download PDF

Info

Publication number
JP4526328B2
JP4526328B2 JP2004242296A JP2004242296A JP4526328B2 JP 4526328 B2 JP4526328 B2 JP 4526328B2 JP 2004242296 A JP2004242296 A JP 2004242296A JP 2004242296 A JP2004242296 A JP 2004242296A JP 4526328 B2 JP4526328 B2 JP 4526328B2
Authority
JP
Japan
Prior art keywords
conveyor
container
containers
wide
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004242296A
Other languages
Japanese (ja)
Other versions
JP2006056693A (en
Inventor
安行 平野
弘之 長山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Machinery Systems Co Ltd
Original Assignee
Mitsubishi Heavy Industries Food and Packaging Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Food and Packaging Machinery Co Ltd filed Critical Mitsubishi Heavy Industries Food and Packaging Machinery Co Ltd
Priority to JP2004242296A priority Critical patent/JP4526328B2/en
Publication of JP2006056693A publication Critical patent/JP2006056693A/en
Application granted granted Critical
Publication of JP4526328B2 publication Critical patent/JP4526328B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、液体充填ラインにおける容器用コンベア装置に関し、特に、液体を容器に充填封栓後、一旦集積コンベアにランダムに積載した容器群を単列に整列させ下流のラベラ等の処理装置に供給するために各種コンベアを組合わせたコンベア駆動制御装置に関する。 The present invention relates to a container conveyor device in a liquid filling line, and in particular, after filling and sealing a liquid into a container, a group of containers once loaded randomly on an accumulation conveyor is aligned in a single row and supplied to a processing apparatus such as a downstream labeler. It relates to conveyor drive control equipment which combined the various conveyors to.

液体充填ラインは、フィラー・キャッパ等の上流側の機能装置において、容器形状のバラツキ、容器ハンドリング中の容器転倒、充填量不足等の不具合やその調整のため、短時間の停止や減速を余儀なくされたときに、下流のラベラー等の運転への影響を少なくするように、フィラー・キャッパで液体を充填し封栓された容器は、一旦、速度が遅い多列の集積コンベアに集積して容器の供給能力が調整できるようにし、できるだけラベラーを止めないで連続運転させるようにしている。   The liquid filling line is forced to stop or decelerate for a short time due to problems such as variations in container shape, container tipping during container handling, insufficient filling, etc. and adjustments in the upstream functional devices such as fillers and cappers. In order to reduce the influence on the operation of the downstream labeler, etc., the container filled with liquid with a filler capper and sealed is once accumulated on a multi-row accumulation conveyor with a low speed. The supply capacity can be adjusted, and continuous operation is performed without stopping the labeler as much as possible.

集積コンベアから単列の供給コンベアに至るまで、多列で搬送される容器相互間に大きな搬送圧力が作用して容器が変形しないように(特にプラスチック容器等)、容器の搬送速度を徐々に上げ、単列コンベアへ移し渡す必要があるので、要所に容器の有無と速度を監視検出する容器センサが取付けられ、この容器センサの信号により、容器をカウントし、容器速度を計算し、下流のラベラーが要求する供給速度と比較して、上流側のコンベアの搬送速度を制御するようにしている。   From the stacking conveyor to the single-line supply conveyor, gradually increase the container transport speed so that the container does not deform (particularly plastic containers) due to the large transport pressure acting between the containers transported in multiple rows. Because it is necessary to transfer to a single-line conveyor, a container sensor that monitors and detects the presence / absence and speed of the container is installed at a critical point. The container sensor counts the container, calculates the container speed, and Compared to the supply speed required by the labeler, the transport speed of the upstream conveyor is controlled.

従来例として、このような多列コンベアで搬送される容器を単列化する多列−単列化コンベアと、単列コンベアに設置された容器検出センサにより、多列−単列化コンベアの速度を制御する単列化コンベア装置が開示されている(例えば、特許文献1)。   As a conventional example, the speed of a multi-row-single-row conveyor is determined by a multi-row-single-row conveyor that singularizes containers conveyed by such a multi-row conveyor and a container detection sensor installed on the single-row conveyor. A single-line conveyor device that controls the above is disclosed (for example, Patent Document 1).

また、単列のコンベア上での容器速度をラベラーへの供給速度に合わせるために、供給コンベアに容器速度規制用ロータリーホィールを設けた従来例も開示されている(例えば、特許文献2)。
特許2794618号公報 特開2000−7134号公報
Further, a conventional example in which a container speed regulating rotary wheel is provided on the supply conveyor in order to match the container speed on the single-line conveyor with the supply speed to the labeler is also disclosed (for example, Patent Document 2).
Japanese Patent No. 2794618 JP 2000-7134 A

従来例の容器単列化コンベアは最終の単列コンベアの容器供給速度をラベラーへの容器供給速度に設定することはできるが、単列化コンベアは容器が押せ押せの状態で整列され、また、容器カウント用センサも容器が押せ押せの状態において容器を数えるようにしているので、多列の多数の容器をハンドリングするときは、搬送圧力が大きくなり、特に、変形し易いプラスチックの角形容器において押せ押せの状態で変形し、そのために、倒れ、ジャムやブロッキングを生じる可能性がある。   In the conventional container single row conveyor, the container supply speed of the final single row conveyor can be set to the container supply speed to the labeler, but the single row conveyor is aligned in a state where the containers are pressed and pressed. Since the container counting sensor also counts the containers when the containers are pressed and pressed, when handling a large number of containers in multiple rows, the conveyance pressure becomes large, especially when the plastic square containers that are easily deformed are pressed. It can be deformed in the pressed state, which can cause overturning, jamming and blocking.

本発明は、充填機、封栓機とラベラーの間に、容器のハンドリングの不具合を吸収するための集積コンベアを設けて、容器供給を確実にマッチさせると同時に、角形のプラスチック容器であっても、過大な搬送圧力がかからないようにして、集積コンベア、単列化コンベアから、単列の供給コンベアまで、ジャムやブロッキングを起こす事のないようにしたコンベア駆動制御装置を提供することを目的とする。 The present invention provides an integrated conveyor for absorbing defects in container handling between a filling machine, a sealing machine, and a labeler to ensure that the container supply is matched, and at the same time, even if it is a square plastic container , so as not to apply excessive transport pressure, accumulation conveyor, a single row of conveyor, until the supply conveyor single row, and aims to provide a conveyor drive control equipment which is adapted never cause jamming or blocking To do.

上記の問題点に対し、本発明は以下の各手段により課題の解決を図る。
本発明のコンベア駆動制御装置は、ランダム分布で容器を搬送し、下流のコンベアの一時停止時に適宜な数の容器を集積する可変速モータ駆動の幅広コンベアと、幅広コンベアの容器を複数列で受取り、段階的に加速して単列に整列させる可変速モータ駆動の容器整列コンベア手段と、容器整列コンベア手段で単列に整列された容器を受け取り容器間に一定の隙間を持たせるようにした可変速モータ駆動の単列コンベアと、単列コンベアで搬送される容器を受け取り下流の容器処理装置と連動駆動される供給コンベアとで構成されたコンベア装置において、幅広コンベアに設置されコンベア上の一定の範囲の容器を上方から撮影し撮像された容器を計数して容器の搬送能力を算出する容器計数手段と、幅広コンベア以外の各コンベアに備えられた通過する容器数を検出する容器検出センサと、容器検出センサが検出した容器数より各コンベアの容器搬送能力を算出する算出回路を内蔵し算出した各コンベアの容器搬送能力及び容器計数手段により算出した容器搬送能力を比較して各コンベアの速度を制御する制御回路を有する制御装置とを備え、上記幅広コンベアを、上流側に搬送能力が大きく可変速モータ駆動の第1幅広コンベアと、下流側に搬送速度が遅く容器が密接して搬送され上述の容器計数手段を設置し独自の可変速モータで駆動される第2幅広コンベアとに2分割して、第1幅広コンベアは集積コンベア、第2幅広コンベアは搬送速度制御用コンベアとし、液体充填ラインに設けられたコンベア装置で、上記第1の手段及び第2の手段のコンベア装置の容器を受け取る上流側の容器処理装置が充填封栓機であり、上記供給コンベアから容器を受け取る下流側の容器処理装置がラベラーであり、上記コンベア装置の第2幅広コンベアの上方に設置された容器計数手段は、コンベア上での容器の停滞が無い一定の範囲の容器群を撮影する撮像カメラと、撮影した図形を走査して計数した容器数とコンベア速度の積から容器の搬送能力(容器数/時間)を算出する容器計数回路とからなることを特徴とする。
In order to solve the above problems, the present invention aims to solve the problems by the following means.
The conveyor drive control device of the present invention receives a variable speed motor-driven wide conveyor that transports containers in a random distribution and accumulates an appropriate number of containers when a downstream conveyor is temporarily stopped, and receives a plurality of wide conveyor containers in multiple rows. The container alignment conveyor means driven by a variable speed motor, which is accelerated in stages and aligned in a single row, and the containers aligned in a single row by the container alignment conveyor means are received so that a certain gap is provided between the containers. In a conveyor apparatus composed of a single-line conveyor driven by a variable speed motor and a supply conveyor that receives containers conveyed by the single-line conveyor and is driven in conjunction with a downstream container processing apparatus, the conveyor apparatus is installed on a wide conveyor and fixed on the conveyor. Provided in each conveyor other than the wide conveyor and a container counting means for photographing the range of containers from above and counting the imaged containers to calculate the container conveyance capacity. A container detection sensor that detects the number of containers that have passed through and a calculation circuit that calculates the container conveyance capacity of each conveyor from the number of containers detected by the container detection sensor is built in. And a control device having a control circuit for controlling the speed of each conveyor by comparing the container carrying capacity, and the wide conveyor, the first wide conveyor having a large carrying capacity on the upstream side and a variable speed motor drive, and the downstream side The container is transported in close proximity, the container is transported closely, and the above-mentioned container counting means is installed and divided into a second wide conveyor driven by a unique variable speed motor. The wide conveyor is a conveyor for controlling the conveyance speed, and is a conveyor device provided in the liquid filling line, and receives the containers of the conveyor devices of the first means and the second means. The flow-side container processing device is a filling and sealing machine, the downstream-side container processing device that receives the containers from the supply conveyor is a labeler, and the container counting means installed above the second wide conveyor of the conveyor device is An imaging camera that captures a certain range of containers on the conveyor without any stagnation of containers, and the container transport capacity (number of containers / hour) from the product of the number of containers scanned by the captured figure and the conveyor speed And a container counting circuit for calculating.

また、本発明のコンベア駆動制御装置は、上記コンベア駆動制御装置を用いて容器搬送をするとき、前記制御装置は、下流側の容器倒れ、ジャム等の不具合によりコンベアが一時的に停止したとき、第2の幅広コンベアは下流のコンベアと同時に停止し、第1の幅広コンベアはそのまま搬送を続けて容器を集積し、集積数が規定数以上になったとき、又は、第2の幅広コンベア停止後、一定時間を超えたとき、緩速から停止するように制御することを特徴とする。 Furthermore, conveyor drive control equipment of the present invention, when the container transport with upper logger conveyer drive controller, the controller, falling container downstream conveyor temporarily stopped due to a problem such as jamming The second wide conveyor stops at the same time as the downstream conveyor, and the first wide conveyor continues to convey and accumulates containers, and when the number of stacks exceeds a specified number, or the second wide conveyor It is characterized by controlling so as to stop at a slow speed when a certain time is exceeded after the conveyor stops.

また、本発明のコンベア駆動制御装置は、上記コンベア駆動制御装置において、前記制御装置は、単列コンベアの容器搬送能力と容器整列コンベア手段の容器搬送能力が一致するように同調制御し、上記第2幅広コンベアに設置された容器計数手段の検出値から計算した容器搬送能力と上記単列コンベアに設置された容器センサから検出した容器速度とを比較し、第2幅広コンベアの容器搬送能力が単列コンベアの容器供給速度(能力)と一致するように制御することを特徴とする。 Furthermore, conveyor drive control equipment of the present invention, in the above Kiko conveyer drive controller, the controller, and tuning control to container carrying capacity of the container carrying capacity and the container alignment conveyor means single-row conveyor are matched The container conveyance capacity calculated from the detection value of the container counting means installed on the second wide conveyor is compared with the container speed detected from the container sensor installed on the single row conveyor, and the container conveyance of the second wide conveyor Control is performed so that the capacity matches the container supply speed (capacity) of the single-line conveyor.

発明は、充填ラインの主要機能装置(充填封栓機とラベラー)間をつないでいるコンベア装置に、充填ラインの機能装置における一時的な停滞を吸収するために、集積コンベアを設け、各コンベアに設置された容器センサにより検出算出した容器速度を比較して上流側のコンベアの速度を制御することにより、容器供給が停滞しないようにして、容器群のジャムやブロッキング(特に角形のプラスチック容器に生じる易い)を抑え、搬送される容器相互間に過大な搬送圧力がかからないようにすることができる。 The present invention provides a conveyor device that connects the main functional devices (filling plugging machine and labeler) of the filling line with an integrated conveyor for absorbing temporary stagnation in the functional device of the filling line. By comparing the container speed detected and calculated by the container sensor installed in the container and controlling the speed of the conveyor on the upstream side, the container supply is prevented from stagnation, and jamming and blocking of the container group (especially for rectangular plastic containers) It is possible to prevent an excessive conveyance pressure from being applied between containers to be conveyed.

しかも、本発明は、容器計数手段を用い、第2幅広コンベアの容器搬送能力が制御されるので、下流の容器整列コンベアに過剰な容器が送り込まれること無く、容器間の過大な搬送圧力を避けることができる。 In addition, the present invention uses the container counting means to control the container conveyance capacity of the second wide conveyor, so that excessive container pressure is not sent to the downstream container alignment conveyor and excessive conveyance pressure between the containers is avoided. be able to.

しかも、本発明は容器の搬送能力をオンラインで検出することができるので、下流のコンベアとの搬送速度(能力)との比較が容易であり、容器の適正な送り出しが可能となる。 In addition, since the present invention can detect the conveyance capacity of the container on-line, it is easy to compare with the conveyance speed (capacity) with the downstream conveyor, and the container can be sent out properly.

また、発明は、コンベアの搬送能力と直前のコンベアの搬送能力とを比較することにより、コンベア間の直接の容器受け渡しを適正に制御し、コンベア間の不具合を防止することができる。 Moreover, this invention can control the direct container delivery between conveyors by comparing the conveyance capability of a conveyor, and the conveyance capability of the last conveyor, and can prevent the malfunction between conveyors.

本発明の実施の形態は、飲料等の液体充填ラインにおいて、充填機、封栓機とラベラーの間に設置される容器搬送コンベア装置に、容器のハンドリングの不具合による一時的な搬送停止を吸収するための集積コンベアを設け、集積コンベアの下流の集合コンベア、単列コンベア、供給コンベア等の各コンベアに、それぞれ容器搬送能力を検出する容器センサを設置して、各コンベアの容器搬送能力を比較制御することにより容器のハンドリングをスムーズに行えるようにしたものであり、以下に図に基づいて構成と作用を説明する。
(第1の実施の形態)
The embodiment of the present invention absorbs temporary transport stoppage due to container handling failure in a container transport conveyor device installed between a filling machine, a plugging machine and a labeler in a liquid filling line for beverages and the like. A container sensor is installed on each conveyor, such as a collective conveyor, a single-line conveyor, or a supply conveyor, downstream of the stacking conveyor, and the container transport capacity of each conveyor is compared and controlled. Thus, the container can be handled smoothly, and the configuration and operation will be described below with reference to the drawings.
(First embodiment)

図1はコンベア装置の全体レイアウト図、図2は図1のコンベア装置の幅広コンベアの部分拡大平面図、図3は図2の幅広コンベアの部分の側面図、図4は図1に示す単列コンベアに設置された容器センサの作用説明図、図5は図1に示す供給コンベアに設置された容器センサの作用説明図(その1)、図6は図1に示す供給コンベアに設置された容器センサの作用説明図(その2)である。   1 is an overall layout diagram of the conveyor device, FIG. 2 is a partially enlarged plan view of the wide conveyor of the conveyor device of FIG. 1, FIG. 3 is a side view of the wide conveyor portion of FIG. 2, and FIG. FIG. 5 is an operation explanatory view of the container sensor installed on the supply conveyor shown in FIG. 1 (part 1), and FIG. 6 is a container installed on the supply conveyor shown in FIG. It is operation | movement explanatory drawing (the 2) of a sensor.

図において、フィラー・キャッパー1に結合する第1幅広コンベア2には容器10がランダム分布で搬送される。
上流側の第1幅広コンベア2は搬送能力が大きく、下流のコンベアの一時停止時に、適宜数の容器を集積することができる。下流側の第2幅広コンベア3は、第1幅広コンベア2よりも搬送能力が小さく、第1幅広コンベア2から受けた容器10をコンベアの幅と長さ方向に密接して搬送する同じ幅のコンベアである。第1幅広コンベア2は可変速度モータMSで駆動され、第2幅広コンベア3も独自の可変速度モータM1で駆動される。第2幅広コンベア3の上方には容器計数手段となるカメラCCが設置されている。第1幅広コンベア2は集積コンベア、第2幅広コンベア3は搬送速度制御用コンベアとなっている。
In the figure, containers 10 are conveyed in a random distribution on a first wide conveyor 2 coupled to a filler capper 1.
The first wide conveyor 2 on the upstream side has a large carrying capacity, and can appropriately accumulate a number of containers when the downstream conveyor is temporarily stopped. The second wide conveyor 3 on the downstream side has a smaller carrying capacity than the first wide conveyor 2 and has the same width to convey the container 10 received from the first wide conveyor 2 in close contact with the width and length of the conveyor. It is. The first wide conveyor 2 is driven by a variable speed motor MS, and the second wide conveyor 3 is also driven by a unique variable speed motor M1. A camera CC serving as a container counting means is installed above the second wide conveyor 3. The first wide conveyor 2 is an accumulation conveyor, and the second wide conveyor 3 is a conveyor for controlling the conveyance speed.

第1幅広コンベア2と第2幅広コンベア3は図2、図3の拡大図で示すように、複数条のエンドレスのトッププレートチェーン22、23が駆動軸に取付けられたスプロケットホイール24、28によって駆動され、容器10を載せている送行面はコンベアフレームに取付けられたガイドプレート29によって裏面をガイドされ水平面を保っている。ェーン22、23の戻りの折り曲がり部は小さな曲率半径を有するV形ガイド26、26にって下に折り曲げられるように方向転換し、渡し板が無くても容器10が転倒することなく受け渡しができるようになっている。   As shown in the enlarged views of FIGS. 2 and 3, the first wide conveyor 2 and the second wide conveyor 3 are driven by sprocket wheels 24 and 28 in which a plurality of endless top plate chains 22 and 23 are attached to a drive shaft. The feeding surface on which the container 10 is placed is guided by the back surface by a guide plate 29 attached to the conveyor frame, and the horizontal surface is maintained. The return bent portions of the chains 22 and 23 are turned so as to be bent downward by the V-shaped guides 26 and 26 having a small radius of curvature, so that the container 10 can be transferred without falling even if there is no transfer plate. It can be done.

トッププレートチェーン22、23は、各条毎に設けられたチェーンテンションロール25と、アイドルロール27によってチェーンテンションが保たれる。また、第2幅広コンベア3から複列コンベア5へ受渡す部分は、複列コンベア5の受渡し位置のコンベア31のトッププレートを第2幅広コンベア3側へ若干張り出す構造にして、容器10の受取りをスムーズにしている。   The top plate chains 22 and 23 are kept in chain tension by a chain tension roll 25 and an idle roll 27 provided for each strip. In addition, the portion that is transferred from the second wide conveyor 3 to the double-row conveyor 5 has a structure in which the top plate of the conveyor 31 at the delivery position of the double-row conveyor 5 is slightly extended toward the second wide conveyor 3 to receive the container 10. Is smooth.

容器整列コンベア手段4は、第2幅広コンベア3の容器10を受取るトッププレートを広げたコンベアチェーン31と複数の通常のトッププレートチェーン32よりなる複列コンベア5と、複列コンベア6、複列コンベア7、複列コンベア8と単列コンベア12とからなる複合コンベアで、複列コンベア5から複列コンベア6、複列コンベア7、複列コンベア8に移動する毎に、段階的に加速して単列のコンベア12に整列させる作用を有している。コンベア5〜コンベア12はいずれも可変速度モータM2〜M6で駆動されるが、コンベア間の搬送速度は一定比率が保たれる。   The container alignment conveyor means 4 includes a double-row conveyor 5 comprising a conveyor chain 31 having a top plate that receives the containers 10 of the second wide conveyor 3 and a plurality of normal top-plate chains 32, a double-row conveyor 6, and a double-row conveyor. 7. It is a composite conveyor composed of a double-row conveyor 8 and a single-row conveyor 12, and each time it moves from the double-row conveyor 5 to the double-row conveyor 6, the double-row conveyor 7, and the double-row conveyor 8, it is accelerated step by step. It has the effect of aligning the conveyors 12 in a row. The conveyors 5 to 12 are all driven by variable speed motors M2 to M6, but the conveyance speed between the conveyors is maintained at a constant ratio.

単列コンベア13は容器整列コンベア手段4で単列に整列された容器10を受け取り、容器間に一定の隙間を持たせるようにした可変速モータMで駆動される単列コンベアである。単列コンベア13で搬送される容器10は、供給コンベア14へ受け渡され、供給コンベア14は割り出しスクリュ15を経て、下流のラベラー16へ(容器処理装置)容器10を供給する。供給コンベア14と割り出しスクリュ15はラベラー16と同一駆動源で連動駆動される。 Single-row conveyer 13 receives the container 10 with the container aligning conveyor means 4 are aligned in a single row, a single row conveyor driven by a variable speed motor M 7 which is adapted to have a certain gap between the container. The containers 10 conveyed by the single-line conveyor 13 are transferred to the supply conveyor 14, and the supply conveyor 14 supplies the containers 10 (container processing apparatus) to the downstream labeler 16 through the indexing screw 15. The supply conveyor 14 and the indexing screw 15 are interlocked and driven by the same drive source as the labeler 16.

第2幅広コンベア3における容器10の搬送能力の算出方法を説明する。第2幅広コンベア3の上方に設置されたCCDカメラCCは第2幅広コンベア3の幅一杯(図1に示す幅Bm)の送行方向の一定長さ(図1に示すAm)の範囲の容器10を上方から撮影することができる。CCDカメラCCが撮影した映像(Am×Bm)を走査し、容器数Nを計数し、単位長さ(例えば1m)当たりの容器数に換算する(N/A)。 第2幅広コンベア3の搬送速度をV3m/min とすれば、第2幅広コンベア3の搬送能力Q個/minはQ=N/A×V3 となる。   The calculation method of the conveyance capability of the container 10 in the 2nd wide conveyor 3 is demonstrated. The CCD camera CC installed above the second wide conveyor 3 is a container 10 in the range of a certain length (Am shown in FIG. 1) in the feeding direction of the full width of the second wide conveyor 3 (width Bm shown in FIG. 1). Can be taken from above. The image (Am × Bm) photographed by the CCD camera CC is scanned, the number of containers N is counted, and converted into the number of containers per unit length (for example, 1 m) (N / A). If the transport speed of the second wide conveyor 3 is V3 m / min, the transport capability Q / min of the second wide conveyor 3 is Q = N / A × V3.

第2幅広コンベア3の下流に接続設置された容器整列コンベア手段4において単列化され、単列コンベア12に受け渡された容器10は、渡し板19でブレーキをかけられて一旦押せ押せ状態にされ、単列コンベア12に渡されたとき、容器10同士の間に略一定の隙間を空けて搬送され、容器検出センサS3が容器10と容器10間の隙間を検出し、容器数を計数する。時間当たりの容器数により容器搬送能力(速度)が算出される(容器10と光源35と光センサ36と検出信号の関係は図4の容器検出センサS2、又は図5の容器検出センサS1と同様である)。また、容器整列コンベア手段4の容器ガイド9に設けられた図示せぬ容器トラップ(倒れた容器が抜け出せる穴)から取り除かれた容器10の数は、CCDカメラCCが撮影し計数した容器数Nに加えられる。   The container 10 that is made into a single row in the container alignment conveyor means 4 connected and installed downstream of the second wide conveyor 3 and delivered to the single row conveyor 12 is braked by the transfer plate 19 and once pushed into a pressed state. When it is passed to the single-line conveyor 12, it is conveyed with a substantially constant gap between the containers 10, and the container detection sensor S3 detects the gap between the containers 10 and counts the number of containers. . The container conveyance capacity (speed) is calculated based on the number of containers per hour (the relationship between the container 10, the light source 35, the optical sensor 36, and the detection signal is the same as the container detection sensor S2 in FIG. 4 or the container detection sensor S1 in FIG. 5). Is). In addition, the number of containers 10 removed from a container trap (not shown) provided in the container guide 9 of the container alignment conveyor means 4 is equal to the number N of containers counted and counted by the CCD camera CC. Added.

容器整列コンベア手段4の単列のコンベア12上の容器10は、次の単列コンベア13に受け渡される。単列コンベア13はコンベア12より若干早い速度に設定されているので、図4に示すように容器10間の隙間bが大きくなり、容器の個別の検出を確実にする。単列コンベア13には、図4に示すように、光源35と光センサ36とからなる容器検出センサS2が設置され、図の下に示すように、容器センサS2が検出した時間信号から、容器搬送能力と容器10間のピッチaと隙間bとを計算することができる(容器径=a−b)。   The containers 10 on the single row conveyor 12 of the container alignment conveyor means 4 are transferred to the next single row conveyor 13. Since the single-line conveyor 13 is set at a slightly higher speed than the conveyor 12, the gap b between the containers 10 is increased as shown in FIG. 4 to ensure individual detection of the containers. As shown in FIG. 4, the single row conveyor 13 is provided with a container detection sensor S2 including a light source 35 and an optical sensor 36. As shown in the lower part of the figure, a container signal S2 is detected from a time signal detected by the container sensor S2. The conveyance capacity and the pitch a and the gap b between the containers 10 can be calculated (container diameter = ab).

単列コンベア13で搬送された容器10は、次の供給コンベア14に受け渡される。供給コンベア14は、ラベラー16と、ラベラー16に容器10を送り込む割り出しスクリュ15と同じ駆動源により連動されている。供給コンベア14には、図5に示すように、光源35と光センサ36とからなる容器検出センサS1と、図6に示すような同じ光源35と光センサ36とからなる容器検出センサS0とが設置されている。供給コンベア14では、容器10が僅かに当接する状態で割り出しスクリュ15に供給されるのが理想であるが、送り込む側のコンベアでそのような微妙な調整をするのは困難であり、同スクリュ15の手前において、若干の押し圧がかかる押せ押せ状態にしてスムースに容器10が供給されるようにしている。   The container 10 conveyed by the single row conveyor 13 is delivered to the next supply conveyor 14. The supply conveyor 14 is linked by the same drive source as the labeler 16 and the indexing screw 15 that feeds the container 10 into the labeler 16. As shown in FIG. 5, the supply conveyor 14 includes a container detection sensor S <b> 1 including a light source 35 and an optical sensor 36, and a container detection sensor S <b> 0 including the same light source 35 and optical sensor 36 as illustrated in FIG. 6. is set up. The supply conveyor 14 is ideally supplied to the indexing screw 15 in a state where the container 10 is slightly in contact, but it is difficult to make such a delicate adjustment on the conveyor on the feeding side. In this state, the container 10 is smoothly supplied in a pressed state where a slight pressing pressure is applied.

即ち、S1が図5に示すように容器10間に隙間cを検出し、S0が図6に示すように容器10の密着を検出したときは、容器の供給は正常であり、コンベア間の相対速度はそのままで良い。S1、S0とも隙間の検出が無いときは、容器10の供給が過剰であると判定して、前段のコンベア速度を下げて搬送能力を低下させる。また、S1、S0とも隙間を検出したときは、容器10の供給が不十分であると判定して、前段のコンベア速度を上げて搬送能力を増加させる。搬送能力(速度)の増減幅は±5%以内とする。   That is, when S1 detects the gap c between the containers 10 as shown in FIG. 5 and S0 detects the close contact of the containers 10 as shown in FIG. The speed can be left as it is. When there is no detection of a gap in both S1 and S0, it is determined that the supply of the container 10 is excessive, and the conveying speed is lowered by reducing the conveyor speed of the previous stage. Further, when a gap is detected in both S1 and S0, it is determined that the supply of the container 10 is insufficient, and the conveying speed is increased by increasing the preceding conveyor speed. Increase / decrease width of transfer capacity (speed) should be within ± 5%.

各コンベア間の容器搬送能力(速度)の第1の制御方法について、図7の「図1
のコンベア間の同調制御ブロック図(その1)」を用いて説明する。 制御装置17に設けられたCPU(中央処理ユニット)41がコンベア装置の総合的な制御を行っている。
コンベア装置を用いて容器10の搬送をするとき、下流側の容器倒れ、ジャム等の不具合によりコンベア装置が一時的に停止したとき、容器センサS1、S2、S3の何れかが容器無しを検出すると、その信号がCPU41に伝えられ、CPU41の指示により、第2の幅広コンベア3は下流のコンベアと同時に停止し、第1幅広コンベア2はそのまま搬送を続けて容器10を集積し、CPU41においてタイマー等により集積数が規定数以上になったことを確認したときは、CPU41よりインバータ出力回路45を経て緩速に切り換え、更に時間を経て停止する。
For the first method of controlling the container conveyance capacity (speed) between the conveyors, see FIG.
This will be described with reference to a block diagram (No. 1) of synchronization control between conveyors. A CPU (Central Processing Unit) 41 provided in the control device 17 performs comprehensive control of the conveyor device.
When the conveyor 10 is transported using the conveyor device, when the conveyor device is temporarily stopped due to a failure such as a container collapse or jam on the downstream side, if any of the container sensors S1, S2, S3 detects no container The signal is transmitted to the CPU 41, and the second wide conveyor 3 is stopped simultaneously with the downstream conveyor according to the instruction from the CPU 41, the first wide conveyor 2 continues to convey and accumulates the containers 10, and the CPU 41 accumulates a timer or the like. When it is confirmed that the number of integrations exceeds the specified number, the CPU 41 switches from the CPU 41 through the inverter output circuit 45 to a slow speed, and then stops after a lapse of time.

容器整列コンベア手段4の単列コンベア12に設置されたセンサS3は、コンベアの下流側に設置された容器数と容器搬送速度を検出する容器検出センサであり、このセンサS3の検出信号を比較同調制御回路44へ送る。同時に、第2幅広コンベア3上の容器数をCCDカメラCCで撮影し、画像処理回路42において画像内の容器数を計数し、容器搬送能力算定回路43において、画像内の容器数と第2幅広コンベア3の速度との積から、容器搬送能力(速度)算定し、算定値を比較同調制御回路44へ送って、上記のセンサS3の検出信号と比較し、同じ搬送能力となるようにインバータ出力回路45を介して可変速モータM1へ出力し、第2幅広コンベア3の速度を制御する。46はCCDカメラCCで撮影した画像のモニタである。モニタ46はカメラCCで撮影した画像を表示すると同時に、又は、画像を切換えて、CPU41に集められた各コンベアの容器搬送速度等を表示することができる。   A sensor S3 installed on the single row conveyor 12 of the container alignment conveyor means 4 is a container detection sensor for detecting the number of containers installed on the downstream side of the conveyor and the container transport speed, and the detection signal of the sensor S3 is comparatively tuned. This is sent to the control circuit 44. At the same time, the number of containers on the second wide conveyor 3 is photographed by the CCD camera CC, the number of containers in the image is counted in the image processing circuit 42, and the number of containers in the image and the second wide width are counted in the container transport capacity calculation circuit 43. From the product of the speed of the conveyor 3, the container transfer capacity (speed) is calculated, the calculated value is sent to the comparison and tuning control circuit 44, compared with the detection signal of the sensor S 3, and the inverter output so that the same transfer capacity is obtained. It outputs to the variable speed motor M1 via the circuit 45, and controls the speed of the second wide conveyor 3. Reference numeral 46 denotes a monitor for images taken by the CCD camera CC. The monitor 46 can display the images taken by the camera CC, or at the same time, or can switch the images to display the container conveyance speed of each conveyor collected by the CPU 41.

単列コンベア13に設置された容器検出センサS2は、単列コンベア13に搬送される容器10の数量を検出して容器の搬送速度を算出し、その算出値を比較同調制御回路51へ送って、容器整列コンベア手段4の出口コンベアである単列コンベア12の容器検出センサS3の検出信号とを比較し、インバータ出力回路52を介して容器整列コンベア手段4の各モータM2、M3、M4、M5、M6を制御することにより、容器整列コンベア手段4の各コンベア5、6、7、8、12の容器搬送能力が、単列コンベア13の容器10の搬送能力と一致するように制御することができる。   The container detection sensor S2 installed on the single row conveyor 13 detects the quantity of the containers 10 conveyed to the single row conveyor 13, calculates the conveyance speed of the containers, and sends the calculated value to the comparison and tuning control circuit 51. The detection signal of the container detection sensor S3 of the single-line conveyor 12 which is the outlet conveyor of the container alignment conveyor means 4 is compared, and each motor M2, M3, M4, M5 of the container alignment conveyor means 4 is connected via the inverter output circuit 52. By controlling M6, it is possible to control the container conveying capacity of each conveyor 5, 6, 7, 8, 12 of the container aligning conveyor means 4 so as to match the conveying capacity of the containers 10 of the single-line conveyor 13. it can.

供給コンベア14に設置された容器検出センサS0とS1は容器10間の隙間の有無を検出する容器検出センサである。容器10が供給コンベア14上を搬送されるとき、同センサS0とS1が、ともに容器間に隙間が無いことを検出したときは、上流の単列コンベア13の容器搬送能力が早すぎてラベラー16への供給が多すぎる状態を示し、同センサS0が容器間に隙間が無いことを検出し、同センサS1が容器間に隙間が有ることを検出したときは、ラベラー16への容器供給が円滑である状態を示し、同センサS0とS1の両方とも容器間に隙間が有ることを検出したときは、ラベラー16への容器供給が不足している状態を示している。   Container detection sensors S0 and S1 installed on the supply conveyor 14 are container detection sensors that detect the presence or absence of a gap between the containers 10. When the containers 10 are transported on the supply conveyor 14, when the sensors S0 and S1 both detect that there is no gap between the containers, the container transport capability of the upstream single-line conveyor 13 is too early and the labeler 16 When the sensor S0 detects that there is no gap between the containers, and the sensor S1 detects that there is a gap between the containers, the container supply to the labeler 16 is smooth. When both the sensors S0 and S1 detect that there is a gap between the containers, the supply of containers to the labeler 16 is insufficient.

容器検出センサS0とS1の検出信号は容器混み具合判定回路55に送られて、供給コンベア14における容器の混み具合を判定し、その判定結果が容器搬送速度調整回路48へ伝えられ、単列コンベア13の容器検出センサS2の容器搬送能力信号と比較され、ラベラー16への供給が多すぎる状態のときは、インバータ出力回路49を介して単列コンベア13の可変速モータM7の回転数を下げ、ラベラー16への供給が不足している状態のときは、インバータ出力回路49により単列コンベア13のモータM7の回転数を若干早くして、容器10の供給を正常な状態に調整する。   The detection signals of the container detection sensors S0 and S1 are sent to the container congestion determination circuit 55 to determine the container congestion in the supply conveyor 14, and the determination result is transmitted to the container conveyance speed adjustment circuit 48, so that the single-line conveyor 13 is compared with the container conveyance capability signal of the container detection sensor S2, and when the supply to the labeler 16 is too much, the rotational speed of the variable speed motor M7 of the single-line conveyor 13 is reduced via the inverter output circuit 49, When the supply to the labeler 16 is insufficient, the inverter output circuit 49 slightly increases the rotation speed of the motor M7 of the single-line conveyor 13 to adjust the supply of the container 10 to a normal state.

このような、コンベアで多数の容器10が殆ど整列して順調に搬送されているときは、搬送速度の増減幅は僅かである方が安定するので、単列コンベア13の搬送速度の増減幅の制御範囲は±5%以下とし、その変動速度も比較的緩慢に行われる方が良い。 以上に説明したように、構造が複雑で熟練した運転が必要なラベラー16は、運転速度をできるだけ一定にするのが望ましく、従って、ラベラー16への容器10の供給を一定の速度にするため、単列コンベア13の容器の供給速度を供給コンベア14の容器搬送速度に合わせ、容器整列コンベア手段4の各コンベア5、6、7、8、12の容器搬送能力を単列コンベア13の容器搬送能力に合わせるように制御し、第2幅広コンベア3の速度を容器整列コンベア手段4の容器搬送能力に合わせるようにして、下流のコンベアに上流のコンベアの搬送速度能力を制御するようにしている。   When a large number of containers 10 are almost lined up smoothly on the conveyor as described above, the increase / decrease width of the transport speed is more stable. The control range should be ± 5% or less, and the fluctuation speed should be relatively slow. As described above, the labeler 16 having a complicated structure and requiring a skilled operation preferably has an operation speed as constant as possible. Therefore, in order to maintain the supply of the container 10 to the labeler 16 at a constant speed, The container supply speed of the single-line conveyor 13 is adjusted to match the container supply speed of the supply conveyor 14 with the container supply speed of the single-line conveyor 13, and the container transfer capacity of each conveyor 5, 6, 7, 8, 12 of the container alignment conveyor means 4. So that the speed of the second wide conveyor 3 is matched with the container conveying ability of the container aligning conveyor means 4, and the conveying speed ability of the upstream conveyor is controlled by the downstream conveyor.

(第2の実施の形態)
図1のコンベア装置を用いて、各コンベア間の同調制御をする第2の方法を説明する。各コンベア間の同調制御の第2の方法が、上記の第1の同調制御方法と異なる点は、単列コンベア13に設置された容器検出センサS2が検出した単列コンベア13容器搬送能力を、第2幅広コンベア3のCCDカメラCCが撮影し、撮像から計数した容器数から割り出した第2幅広コンベア3の搬送能力と比較し、第2幅広コンベア3の速度を同調制御することである。その他の各コンベア間の比較同調制御については、第1の同調制御方法と同様である。この制御方法においては、容器整列単列化コンベア4内で直ぐに解決できるような、容器倒れやジャムによる直接の影響を無くすことができ、制御回路が簡単になる。
(Second embodiment)
A second method for controlling the synchronization between the conveyors using the conveyor apparatus of FIG. 1 will be described. The second method of the synchronization control between the conveyors is different from the first synchronization control method described above in that the single row conveyor 13 container conveyance capacity detected by the container detection sensor S2 installed in the single row conveyor 13 is The CCD camera CC of the second wide conveyor 3 is photographed, and the speed of the second wide conveyor 3 is synchronously controlled by comparing with the conveyance capacity of the second wide conveyor 3 calculated from the number of containers counted from the imaging. The comparison and synchronization control between the other conveyors is the same as the first synchronization control method. In this control method, it is possible to eliminate the direct influence due to the container collapse and jam that can be solved immediately in the container alignment single row conveyor 4, and the control circuit is simplified.

同調制御の第2の方法について、図8の「図1のコンベア間の同調制御ブロック図(その2)」によって説明する。容器整列コンベア手段4の容器搬送能力は、単列コンベア13の容器搬送能力と一致するように、比較同調制御回路51において同調制御駆動する。第2の幅広コンベア3上の容器数をCCDカメラCCで撮影し、画像処理回路42において画像内の容器数を計数し、容器搬送能力算定回路43において、画像内の容器数と幅広コンベア3の速度との積から算定した容器搬送能力(速度)算定値と、単列コンベア13のセンサS2の検出信号と、を比較同調制御回路44へ送って、比較し、第2幅広コンベア3の容器搬送能力が単列コンベア13の容器供給速度(能力)と同じ搬送能力となるようにインバータ出力回路45を介してモータM1へ出力し第2幅広コンベア3の速度を同調制御する。   A second method of the tuning control will be described with reference to “a block diagram of tuning control between conveyors in FIG. 1 (part 2)” in FIG. The comparison and tuning control circuit 51 performs synchronous control driving so that the container conveyance capability of the container alignment conveyor means 4 matches the container conveyance capability of the single-line conveyor 13. The number of containers on the second wide conveyor 3 is photographed by the CCD camera CC, the number of containers in the image is counted in the image processing circuit 42, and the number of containers in the image and the width of the wide conveyor 3 are counted in the container conveying capacity calculation circuit 43. The container conveyance capacity (speed) calculated value calculated from the product of the speed and the detection signal of the sensor S2 of the single-line conveyor 13 are sent to the comparison and tuning control circuit 44 for comparison, and the containers of the second wide conveyor 3 are conveyed. The speed is output to the motor M1 via the inverter output circuit 45 so that the capacity is the same as the container supply speed (capacity) of the single-line conveyor 13, and the speed of the second wide conveyor 3 is synchronously controlled.

本発明の第1の実施の形態に係るコンベア装置の全体レイアウト図である。1 is an overall layout diagram of a conveyor device according to a first embodiment of the present invention. 図1のコンベア装置の幅広コンベアの部分拡大平面図である。It is the elements on larger scale of the wide conveyor of the conveyor apparatus of FIG. 図2の幅広コンベアの部分の側面図である。It is a side view of the part of the wide conveyor of FIG. 図1に示す単列コンベアに設置された容器センサの作用説明図である。It is action | operation explanatory drawing of the container sensor installed in the single row conveyor shown in FIG. 図1に示す供給コンベアに設置された容器センサの作用説明図(その1)である。FIG. 6 is an operation explanatory diagram (No. 1) of a container sensor installed on the supply conveyor shown in FIG. 1. 図1に示す供給コンベアに設置された容器センサの作用説明図(その2)である。It is action | operation explanatory drawing (the 2) of the container sensor installed in the supply conveyor shown in FIG. 図1のコンベア間の同調制御ブロック図(その1)である。FIG. 2 is a block diagram (No. 1) of synchronization control between conveyors in FIG. 1. 本発明の第1の実施の形態に係る図1のコンベア間の同調制御ブロック図(その2)である。FIG. 3 is a block diagram (No. 2) of synchronization control between the conveyors of FIG. 1 according to the first embodiment of the present invention.

符号の説明Explanation of symbols

2 第1幅広コンベア
3 第2幅広コンベア
4 容器整列コンベア手段
5、6、7、8 複列コンベア
10 容器
12、13 単列コンベア
14 供給コンベア
17 制御装置
35 光源
36 光検出センサ
MS、ML、M1、M2、M3、M4、M5、M6、M7 可変速モータ
CC CCDカメラ
S0、S1、S1、S2、S3 容器検出センサ
2 First wide conveyor 3 Second wide conveyor 4 Container alignment conveyor means 5, 6, 7, 8 Double row conveyor 10 Container 12, 13 Single row conveyor 14 Supply conveyor 17 Control device 35 Light source 36 Photodetection sensors MS, ML, M1 M2, M3, M4, M5, M6, M7 Variable speed motor CC CCD camera S0, S1, S1, S2, S3 Container detection sensor

Claims (3)

ランダム分布で容器を搬送し、下流のコンベアの一時停止時に適宜な数の容器を集積する可変速モータ駆動の幅広コンベアと、幅広コンベアの容器を複数列で受取り、段階的に加速して単列に整列させる可変速モータ駆動の容器整列コンベア手段と、容器整列コンベア手段で単列に整列された容器を受け取り容器間に一定の隙間を持たせるようにした可変速モータ駆動の単列コンベアと、単列コンベアで搬送される容器を受け取り下流の容器処理装置と連動駆動される供給コンベアとで構成されたコンベア装置において、
幅広コンベアに設置されコンベア上の一定の範囲の容器を上方から撮影し撮像された容器を計数して容器の搬送能力を算出する容器計数手段と、幅広コンベア以外の各コンベアに備えられた通過する容器数を検出する容器検出センサと、容器検出センサが検出した容器数より各コンベアの容器搬送能力を算出する算出回路を内蔵し算出した各コンベアの容器搬送能力及び容器計数手段により算出した容器搬送能力を比較して各コンベアの速度を制御する制御回路を有する制御装置とを備え
上記の幅広コンベアを、上流側に搬送能力が大きく可変速モータ駆動の第1幅広コンベアと、下流側に搬送速度が遅く容器が密接して搬送され上述の容器計数手段を設置し独自の可変速モータで駆動される第2幅広コンベアとに2分割して、第1幅広コンベアは集積コンベア、第2幅広コンベアは搬送速度制御用コンベアとし、
同コンベア駆動制御装置が容器を受け取る上流側の容器処理装置が充填封栓機であり、前記コンベア駆動制御装置の供給コンベアから容器を受け取る下流側の容器処理装置がラベラーであり、
上記第2幅広コンベアの上方に設置された容器計数手段は、コンベア上での容器の停滞が無い一定の範囲の容器群を撮影する撮像カメラと、撮影した図形を走査して計数した容器数とコンベア速度の積から容器の搬送能力(容器数/時間)を算出する容器計数回路とからなる、
ことを特徴とするコンベア駆動制御装置。
A variable speed motor-driven wide conveyor that transports containers in a random distribution and accumulates an appropriate number of containers when the downstream conveyor is temporarily stopped, and the containers of the wide conveyor are received in multiple rows and accelerated in stages to single rows A variable-speed motor-driven container alignment conveyor means for aligning, and a variable-speed motor-driven single-line conveyor configured to receive containers aligned in a single row by the container alignment conveyor means so as to have a certain gap between the containers; In a conveyor device configured with a supply conveyor that receives containers conveyed by a single-line conveyor and is driven in conjunction with a downstream container processing device,
A container counting unit that is installed on a wide conveyor and shoots a certain range of containers on the conveyor from above and counts the imaged containers to calculate the conveyance capacity of the containers, and passes through each conveyor other than the wide conveyor. A container detection sensor for detecting the number of containers and a calculation circuit for calculating the container transfer capacity of each conveyor from the number of containers detected by the container detection sensor, and the container transfer calculated by the container transfer capacity and the container counting means of each conveyor calculated. A control device having a control circuit that compares the capabilities and controls the speed of each conveyor ;
The above wide conveyor is equipped with a variable speed motor-driven first wide conveyor with a large conveying capacity on the upstream side and a container with the above-mentioned container counting means installed on the downstream side where the conveying speed is slow and the container is closely conveyed. Divided into a second wide conveyor driven by a motor, the first wide conveyor is an accumulation conveyor, the second wide conveyor is a conveyor for controlling the conveyance speed,
The upstream container processing apparatus that receives the container by the conveyor drive control device is a filling and sealing machine, and the downstream container processing apparatus that receives the container from the supply conveyor of the conveyor drive control apparatus is a labeler,
The container counting means installed above the second wide conveyor includes an imaging camera for capturing a group of containers in a certain range where there is no stagnation of containers on the conveyor, and the number of containers counted by scanning the captured figure. Consists of a container counting circuit that calculates the container conveyance capacity (number of containers / hour) from the product of the conveyor speed,
A conveyor drive control device characterized by that.
請求項に記載するコンベア駆動制御装置を用いて容器搬送をするとき、前記制御装置は、下流側の容器倒れ、ジャム等の不具合によりコンベアが一時的に停止したとき、第2の幅広コンベアは下流のコンベアと同時に停止し、第1の幅広コンベアはそのまま搬送を続けて容器を集積し、集積数が規定数以上になったとき、又は、第2の幅広コンベア停止後、一定時間を超えたとき、緩速から停止するように制御することを特徴とするコンベア駆動制御装置。 When the container is transported using the conveyor drive control device according to claim 1 , the control device is configured such that when the conveyor is temporarily stopped due to a container collapse, jam or the like on the downstream side, the second wide conveyor is Stopped at the same time as the downstream conveyor, the first wide conveyor continues to convey and accumulates containers, and when the number of stacks exceeds the specified number, or after the second wide conveyor stops, a certain time has passed. when, conveyor drive control equipment, characterized in that control to stop the slow. 請求項1または2に記載するコンベア駆動制御装置において、前記制御装置は、単列コンベアの容器搬送能力と容器整列コンベア手段の容器搬送能力が一致するように同調制御し、上記第2幅広コンベアに設置された容器計数手段の検出値から計算した容器搬送能力と上記単列コンベアに設置された容器センサから検出した容器速度とを比較し、第2幅広コンベアの容器搬送能力が単列コンベアの容器供給速度(能力)と一致するように制御することを特徴とするコンベア駆動制御装置。 3. The conveyor drive control device according to claim 1 , wherein the control device performs synchronous control so that the container conveyance capability of the single-line conveyor and the container conveyance capability of the container alignment conveyor unit coincide with each other, and the second wide conveyor The container conveyance capacity calculated from the detection value of the installed container counting means is compared with the container speed detected from the container sensor installed on the single-line conveyor, and the container conveyance capacity of the second wide conveyor is the container of the single-line conveyor. conveyor drive control equipment, characterized by controlling so as to match the feed rate (capacity).
JP2004242296A 2004-08-23 2004-08-23 Conveyor drive control device Expired - Fee Related JP4526328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004242296A JP4526328B2 (en) 2004-08-23 2004-08-23 Conveyor drive control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004242296A JP4526328B2 (en) 2004-08-23 2004-08-23 Conveyor drive control device

Publications (2)

Publication Number Publication Date
JP2006056693A JP2006056693A (en) 2006-03-02
JP4526328B2 true JP4526328B2 (en) 2010-08-18

Family

ID=36104487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004242296A Expired - Fee Related JP4526328B2 (en) 2004-08-23 2004-08-23 Conveyor drive control device

Country Status (1)

Country Link
JP (1) JP4526328B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5222593B2 (en) * 2008-03-14 2013-06-26 三菱重工食品包装機械株式会社 Container alignment transport device
JP5504821B2 (en) * 2009-10-26 2014-05-28 澁谷工業株式会社 Container transfer device
JP5444184B2 (en) * 2010-10-13 2014-03-19 麒麟麦酒株式会社 Residual liquid detection device
JP6282975B2 (en) * 2014-12-26 2018-02-21 三菱重工機械システム株式会社 Container assembly device
KR101686323B1 (en) * 2015-03-13 2016-12-14 성균관대학교산학협력단 Method and apparatus for controlling speed of conveyor
JP6189978B2 (en) * 2016-01-08 2017-08-30 株式会社ダイシン Conveyed object discrimination control system and conveying apparatus
JP6779156B2 (en) * 2017-02-22 2020-11-04 澁谷工業株式会社 Container transport device
JP7213745B2 (en) * 2019-04-25 2023-01-27 三菱重工機械システム株式会社 Conveying device and method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742413A (en) * 1980-07-09 1982-03-10 Holstein & Kappert Maschf Method and device for distributing and separating vessel flowing in on several track onto one row of track
JPS6347223A (en) * 1986-08-11 1988-02-29 Shibuya Kogyo Co Ltd Operation control unit for container collecting device
JPH03143823A (en) * 1989-10-31 1991-06-19 Mitsubishi Heavy Ind Ltd Conveyor device for container
JPH10120152A (en) * 1996-10-18 1998-05-12 Fuji Mach Co Ltd Method and device for assorting conveyed article
JP2794618B2 (en) * 1992-11-25 1998-09-10 澁谷工業株式会社 Speed difference type alignment feeding device
JP2000007134A (en) * 1998-06-18 2000-01-11 Shibuya Kogyo Co Ltd Vessel supply amount control device
JP2001240239A (en) * 2000-02-29 2001-09-04 Shibuya Kogyo Co Ltd Accumulator
JP2002205815A (en) * 2001-01-09 2002-07-23 Maki Mfg Co Ltd Uniform dispersing device for agricultural products

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742413A (en) * 1980-07-09 1982-03-10 Holstein & Kappert Maschf Method and device for distributing and separating vessel flowing in on several track onto one row of track
JPS6347223A (en) * 1986-08-11 1988-02-29 Shibuya Kogyo Co Ltd Operation control unit for container collecting device
JPH03143823A (en) * 1989-10-31 1991-06-19 Mitsubishi Heavy Ind Ltd Conveyor device for container
JP2794618B2 (en) * 1992-11-25 1998-09-10 澁谷工業株式会社 Speed difference type alignment feeding device
JPH10120152A (en) * 1996-10-18 1998-05-12 Fuji Mach Co Ltd Method and device for assorting conveyed article
JP2000007134A (en) * 1998-06-18 2000-01-11 Shibuya Kogyo Co Ltd Vessel supply amount control device
JP2001240239A (en) * 2000-02-29 2001-09-04 Shibuya Kogyo Co Ltd Accumulator
JP2002205815A (en) * 2001-01-09 2002-07-23 Maki Mfg Co Ltd Uniform dispersing device for agricultural products

Also Published As

Publication number Publication date
JP2006056693A (en) 2006-03-02

Similar Documents

Publication Publication Date Title
CA1261368A (en) Computer controlled non-contact feeder
EP3428089A1 (en) Accumulation conveyor system and transport system
JP4526328B2 (en) Conveyor drive control device
JP2017503734A (en) Induction conveyor
US20130056329A1 (en) Apparatus for Conveying Eggs
CN111620074B (en) Package handling apparatus and method
JP6965208B2 (en) Bag transport method and bag transport device
JP5504821B2 (en) Container transfer device
US9340380B2 (en) Method and device for clocking in book blocks
RU2662325C2 (en) System for collecting confectionary product
WO2012064277A1 (en) Transition device
JP2941549B2 (en) Product transport integration method for packaging machines
US7832545B2 (en) System and method for transferring blanks in a production line
JP4057859B2 (en) Paper sheet take-out device
CN209835093U (en) Cement bag continuous-packaging processing device of automatic car loader
JPH08230830A (en) Container-carrying processor
CN112722430B (en) Shunting hacking stacking device
JP3808787B2 (en) Belt conveyor equipment
JP2002205815A (en) Uniform dispersing device for agricultural products
JP4220063B2 (en) Transport device
JPS6236932B2 (en)
US11135867B2 (en) Book block conveying device
JPH0544911U (en) Aqueumination Race Conveyor
CN112722429A (en) Shunting stacking process
JP2006111406A (en) Article collecting delivery device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060313

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060327

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20070315

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4526328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees