JP4524970B2 - Engine exhaust system structure - Google Patents

Engine exhaust system structure Download PDF

Info

Publication number
JP4524970B2
JP4524970B2 JP2001234510A JP2001234510A JP4524970B2 JP 4524970 B2 JP4524970 B2 JP 4524970B2 JP 2001234510 A JP2001234510 A JP 2001234510A JP 2001234510 A JP2001234510 A JP 2001234510A JP 4524970 B2 JP4524970 B2 JP 4524970B2
Authority
JP
Japan
Prior art keywords
exhaust gas
flow
catalyst
engine
bent portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001234510A
Other languages
Japanese (ja)
Other versions
JP2003049640A (en
Inventor
友巳 渡辺
康夫 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2001234510A priority Critical patent/JP4524970B2/en
Publication of JP2003049640A publication Critical patent/JP2003049640A/en
Application granted granted Critical
Publication of JP4524970B2 publication Critical patent/JP4524970B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Silencers (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Pipe Accessories (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はエンジンの排気系構造に関する。
【0002】
【従来の技術】
一般にエンジンの排気管には排気ガスを浄化するための触媒コンバータが結合されている。この触媒コンバータの触媒を有効に利用するためには、排気ガスがコンバータ上流端の全面にわたって均等に流入することが望まれる。この点に関し、特開平8−21231号公報には、排気マニホールドの集合部に触媒コンバータを直結したとき、集合部に近接した気筒から排出される排気ガスが触媒コンバータの一部の領域に高温のまま直線状に流入する問題について記載されている。その解決手段は、排気マニホールドの集合部に上記高温の排気ガスの流れを偏向させる堰を設ける、というものである。すなわち、高温の排気ガスを偏向させることにより、排気流を拡散させて排気ガスを触媒コンバータ全体にできるだけ均等に流入させる、というものである。
【0003】
【発明が解決しようとする課題】
排気ガス浄化用触媒の早期活性を図るには上述の如く触媒コンバータを排気マニホールドの集合部に直結し、触媒コンバータに高温の排気ガスが流入するようにすればよい。
【0004】
しかし、図1に示すように、触媒コンバータ1よりも上流側にターボ過給機2を設ける場合、自動車エンジンルーム内の各種機器のレイアウトの関係で、ターボ過給機2から直線状に延びる排気管を途中で曲げてその下流側に触媒コンバータ1を結合しなければならないことがある。図1において、3はエンジン、4はターボ過給機2に集合部が連結された排気マニホールドである。5は排気通路であり、ターボ過給機2から直線状に延びる直線部6、該直線部6の下流端に続く曲がり部7、並びに曲がり部7から通路径が拡大して触媒9の上流端面に至る拡径部8とを備えている。
【0005】
このような構成であれば、排気ガスは、ターボ過給機2のタービン2aの回転の影響により、直線部6においては排気ガスが通路内面に沿って旋回しながら進む螺旋流となるが、触媒9に流入する排気ガスの流速は触媒各部で大きく異なるものになる。これは、直線部6で螺旋流となっている排気ガスが曲がり部7に至ったとき、排気ガス全体の進行方向は変わるものの、旋回方向は変わらず、螺旋流であった排気ガス流が曲がり部7を通過するときに直線流に変わり、曲がり部7の内周側の壁面に沿って巻き込まれるように流れるためである。
【0006】
つまり、排気ガスの流れを矢符で示すように、直線部6を通路内面に沿って旋回しながら進んでいた排気ガスは、曲がり部7に至ると、旋回を継続させるための管壁が言わばなくなった状態になっているから、旋回の勢いで直線流に変わり曲がり部を一気に抜けるものである。
【0007】
このような螺旋流から直線流への急激な変化は、直線部6の中心軸と触媒9の中心軸とが直角又は鋭角に交わり、且つ曲がり部7の内周側の曲率半径が小さい場合に顕著になる。すなわち、曲がり部7が80度〜120度程度の円弧状に形成され、曲がり部7の最内周側の曲率半径が管内径の1/10〜1/3程度である場合である。
【0008】
図2はシミュレーションによって得た排気ガスの代表的な流線を示す。直線部6を螺旋流で進んできた排気ガスは曲がり部7で直線流に近い状態に変わり、曲がり部7の内周側の壁面に沿うように流れて触媒9へ向かっている。図3にそのときの触媒9の上流端面の排気ガス流速の分布を示すように(同図の閉曲線は排気ガスの等流速線であり、多重になった等流速線は内側になるほど流速が高い。)、曲がり部7の内周側に対応する部位に流速の高い排気ガスが強く集中している。つまり、流速の偏りが強くなっている。従って、触媒9はその触媒全体が排気ガスの浄化に有効に利用されず、また、局部的に劣化し易くなる。
【0009】
本発明は、このような排気ガスが螺旋流となって流れる直線部に続けて曲がり部を設けた場合に、触媒に流入する排気ガスの流速が触媒各部で大きく異なるものになる、という問題を解決するものである。
【0010】
【課題を解決するための手段】
本発明は、エンジンの排気通路に排気ガスを浄化する触媒が設けられているエンジンの排気系構造であって、
上記排気通路は、エンジンの排気ガスが通路内面に沿って旋回しながら進む螺旋流となって流れる直線部と、
上記直線部の下流端に続いて該直線部と直交する軸回りに曲がった曲がり部と、
上記曲がり部から通路径が拡大して上記触媒の上流端面に至る拡径部とを備え、
上記曲がり部に上記排気ガスの流れを分ける分流部が設けられており、
上記分流部は、板面が上記直線部と直交する上記軸に垂直になった平板によって形成され、排気ガスを上記軸の方向の両側に分けることを特徴とする。
【0011】
従って、直線部を螺旋流となって流れてくる排気ガスは曲がり部に入ると流れが分流部によって分断されるから、流速の高い排気ガスが触媒の上流端面の1箇所に強く集中することが避けられる。しかも、螺旋流が分流部に至った場合、この分流部がいわゆる邪魔板となって螺旋流の旋回力が弱められる(旋回運動エネルギーが圧力エネルギーに変換される)から、螺旋流が当該旋回力によって直線流に変わっても、曲がり部の内周面に沿って強く巻き込まれることがなくなる。よって、排気ガスが触媒の上流端面において分散され易くなり、流速の高い排気ガスが局部的に強く集中することが避けられる。このため、触媒全体を排気ガスの浄化に有効に利用する上で有利になり、また、触媒が局部的に早期に劣化することを避ける上で有利になる。
【0012】
特に、上記分流部は、板面が上記直線部と直交する上記軸に垂直になった平板によって形成されているから、排気ガス流は、その平板によって、上記直線部と直交する上記軸方向の両側に分かれ、この2つの排気ガス流の流速は略等しくなり、流速の高い排気ガスが触媒上流端面の1箇所に強く集中することが避けられる。
【0013】
しかも、分断された一方の排気ガス流は平板に沿った流れとなるように整流されるから、触媒の上流端面の中心に指向し易くなる。また、分断された他方の排気ガス流は曲がり部の管壁に沿って流れるため、旋回力が少し残り、分流部を通り抜けたときに上記一方の排気ガス流と合流して触媒上流端面の中心を指向するようになる。
【0014】
上記平板状の分流部は、上記曲がり部の外周側の壁面より内周側に突設し、且つ該分流部と内周側の壁面との間に隙間を形成するようにしてもよい。これにより、排気ガスの分流効果は低くなるが、分流部が排気ガスの流れに抵抗する度合が低くなり、エンジンに対する背圧が高くなることを避ける上で有利になる。
【0015】
上記分流部は、上記曲がり部の上流端から下流端に至るまで延ばすことが好ましい。これにより、分流効果を高めることができ、特に、曲がり部の上流端において螺旋流を分断することができるから、その旋回力を弱め、曲がり部を通過する直線流の流速を落とす上で有利になる。
【0016】
上記曲がり部の下流端の中心軸と上記触媒の中心軸とは、略一致させるようにしても、互いにずれたオフセット状態にしてもよい。
【0017】
本発明は、上記曲がり部が80度〜120度程度の円弧状に形成され、該曲がり部の管内の最内周側の曲率半径が管内径の1/10〜1/3程度である場合に特に有効である。
【0018】
【発明の効果】
以上のように、本発明によれば、エンジンの排気ガスが螺旋流となって流れる直線部と、該直線部に続いて該直線部と直交する軸回りに曲がった曲がり部と、該曲がり部から触媒の上流端面に至る拡径部とを備えたエンジンの排気系構造において、曲がり部に上記排気ガスの流れを分ける分流部が設けられており、該分流部は、板面が上記直線部と直交する上記軸に垂直になった平板によって形成され、排気ガスを上記軸の方向の両側に分けるから、流速の高い排気ガスが触媒上流端面の1箇所に強く集中することが避けられ、しかも流速の増大が抑えられた排気ガスが触媒の上流端面の中心に指向し易くなり、触媒全体を排気ガスの浄化に有効に利用するとともに、触媒の局部的な早期劣化を避ける上で有利になる。
【0019】
【発明の実施の形態】
以下、本発明の実施形態及び参考形態を図面に基づいて説明する。
【0020】
参考形態1
参考形態に係るエンジンの排気系の基本構成は図1に示す通りであり、図4及び図5に要部を示している。図4に示す直線部6は円筒状のものであって、図1に示すターボ過給機2のタービン室より自動車の車幅方向に直線状に延びている。直線部6の下流端に続く曲がり部7も直線部6と同径の円筒状のものであって、直線部6に直交する軸回りに滑らかに曲がっている。曲がり部7の下流端に接続された触媒コンバータ1は、図1に示すように触媒容器に排気ガスを浄化するための触媒9を収容してなるものである。
【0021】
触媒容器は中央部に上記直線部6よりも大径に形成された円筒状の触媒収容部を有し、この触媒収容部の上流側は上記曲がり部7から通路径が拡大して触媒9の上流端面に至る拡径部8に形成されている。触媒収容部の下流側は径が漸次小さくなったコーン状(縮径部)に形成されている。曲がり部7の下流端の中心軸と触媒コンバータ1の触媒収容部の中心軸、すなわち、触媒9の中心軸C1とは一致している。また、触媒9の中心軸C1と直線部6の中心軸C2とは鋭角に交わっている。このため、本例の曲がり部7は110度程度の円弧状に形成されている。曲がり部7の最内周側の曲率半径は管内径の1/7程度である。
【0022】
そうして、上記曲がり部7には、板面が上記直線部6に直交する軸回りに曲がり部7と同心状に曲がった分流板11が設けられている。すなわち、この分流板11は、上記直線部6と直交する上記軸の方向を幅方向としていて、曲がり部7の通路中心を該曲がり部7の上流端から下流端に至るまで延びている。換言すれば、分流板11は、曲がり部7の通路中心を上記直線部6と直交する上記軸の方向に横切っている。
【0023】
従って、ターボ過給機2のタービンの回転により直線部6を螺旋状に進んでくる排気ガス流は、曲がり部7に入ると、図4及び図5に矢符付き流線で示すように、分流板11によって内周側と外周側とに分かれる。その際、分流板11が邪魔板となって螺旋流の旋回力が弱められるから、曲がり部7の内周側を通過する排気ガスは曲がり部7の内周面に沿って巻き込まれることが少なくなる。つまり、排気ガス流が図5に示すように触媒9の上流端面の全体に分散され易くなる。また、曲がり部7の外周側を通過する排気ガス流も旋回力による巻き込みはないから、同様に分散され易くなる。
【0024】
また、曲がり部7の外周側を通過する排気ガスは内周側を通過する排気ガスよりも流速が遅くなる。そうして、この流速が異なる排気ガス同士が曲がり部7を通過して合流するときに、排気ガスの流れに乱れを生じ、排気ガスが触媒9の上流端面全体に分散され易くなる。
【0025】
よって、図5の触媒9の上流端面に排気ガス流速の分布を示すように、流速の高い排気ガスが触媒上流端面の1箇所に強く集中することが避けられる。
【0026】
<実施形態
本実施形態に係るエンジンの排気系の基本構成は図1に示す通りであり、図6及び図7に要部を示している。本実施形態は、分流板11の構成が参考形態1とは異なり、他は同じである。
【0027】
本実施形態の分流板11は、板面が直線部6と直交する上記軸に垂直になった平板によって形成されている。すなわち、分流板11は、曲がり部7の内周側を中心に曲がり部7の上流端から下流端にわたって開いた扇形であり、曲がり部7の通路中心を横切っている。
【0028】
従って、ターボ過給機2のタービンの回転により直線部6を螺旋状に進んでくる排気ガス流は、曲がり部7に入ると、図6及び図7に矢符付き流線で示すように、分流板11によって上記直線部6と直交する上記軸方向の両側に分かれ、この2つの排気ガス流の流速は略等しくなる。分断された一方の排気ガス流は分流板11に沿った流れとなるから、触媒9の上流端面の中心に指向し易くなる。また、分断された他方の排気ガス流は曲がり部7の壁面に沿って流れるため、旋回力が少し残り、曲がり部7を通り抜けたときに上記一方の排気ガス流と合流して触媒9の上流端面の中心を指向するようになる。
【0029】
また、分流板11が邪魔板となって螺旋流の旋回力が弱められるから、分流板11の両側を通過する排気ガスは曲がり部7の内周面に沿って巻き込まれることが少なくなる。
【0030】
参考形態2
参考形態に係るエンジンの排気系の基本構成は図1に示す通りであり、図8に要部を示している。本参考形態は、直線部6及び滑らかな曲がり部7については参考形態1と同じであるが、曲がり部7の下流端の中心軸C3に対して触媒9の中心軸C1が直線部6の長手方向の上流側にずれている点、並びに分流板が設けられていない点で相違する。
【0031】
従って、本参考形態の場合、分流板が設けられていないため、直線部6を螺旋状に進んでくる排気ガス流は曲がり部7に入ると、旋回力によって直線流に変わり、曲がり部7の内周側の壁面に沿うようにして触媒9へ向かう。しかし、触媒9の中心軸C1が曲がり部7の下流端の中心軸C3に対して直線部6の長手方向の上流側にずれているから、排気ガスは触媒9の上流端面の中央(上記直線部の長手方向で考えたときの中央)を指向するようになる。しかも、上記中心軸のずれにより、曲がり部7の内周側の壁面に続く拡径部8の壁面の逃げ角(該内周側の壁面に対する逃げ角)が大きくなっているから、曲がり部7の内周側の壁面に沿って流れる排気ガスが拡径部8に至ったときに壁面から離れ易くなる。このため、排気ガスは触媒9の上流端面の中央へ向かい易くなる。
【0032】
参考形態3
参考形態に係るエンジンの排気系の基本構成は図1に示す通りであり、図9及び図10に要部を示している。
【0033】
すなわち、触媒9の中心軸C1と直線部6の中心軸C2とは鋭角に交わり、触媒9の中心軸C1と曲がり部7の下流端の中心軸C3とは一致している。直線部6から拡径部8に至る間の曲がり部7は、直線部6に対して鈍角で折れ曲がった直線状の第1折れ部7aと、該第1折れ部7aに対して鈍角で折れ曲がった直線状の第2折れ部7bとによって構成されている。各々の折れ角は130度である。但し、折れ角は120度〜150度とすることができ、また、折れ部の数は3又は4にすることができる。
【0034】
従って、排気ガスの螺旋流が直線部6から曲がり部7に至っても、この曲がり部7は直線状の折れ部7a,7bが鈍角で連なってなるものであるから、各折れ部7a,7bの直線状に延びる壁面が排気ガスの旋回を維持させながら、その進行方向を少しずつ(本参考形態では50度ずつ)変更させる働きをする。このため、螺旋流が曲がり部7を抜けるときも保存され易くなり、排気ガスが触媒9の上流端面全体に分散して流入するようになる。
【0035】
参考形態4
参考形態に係るエンジンの排気系の基本構成は図1に示す通りであり、図11に要部を示し、図12に触媒9の上流端面における排気ガスの流速分布を示している。
【0036】
すなわち、本参考形態は、直線部6及び折れ曲がった曲がり部7については参考形態3と同じであるが、触媒9の中心軸C1が曲がり部7の下流端の中心軸C3に対して直線部6の長手方向の上流側にずれている点、並びに曲がり部7の下流端近くから拡径部8にわたって分流・整流板12を設けている点で相違する。
【0037】
すなわち、分流・整流板12は、直線部6と直交する上記軸の方向を幅方向とする板状に形成されていて、曲がり部7の第2折れ部7bの途中から下流端まで延び排気ガスの流れを分ける分流部12aと、この分流部12aに続いて拡径部8を曲がり部7の下流端から触媒9の中心に向かって延びた整流部12aとを備えてなる。分流部12aは曲がり部7の通路中心を横切っている。
【0038】
参考形態のように曲がり部7が鈍角で折れ曲がり且つ触媒9の中心軸C1が曲がり部7の下流端の中心軸C3に対してずれている場合、上記分流・整流板12がないときは、図13に示すような排気ガス流となる。すなわち、螺旋流が曲がり部8を抜けても保存される結果、排気ガスが触媒9の上流端面の中心から直線部6の長手方向の下流側にずれた位置を指向する。また、螺旋流から直線流に変化した排気ガス流は曲がり部7の第1折れ部7aの内周側壁面を伝って外周側へ向かう。図14はそのときの触媒9の上流端面における排気ガスの流速分布を示すものであり、曲がり部7の外周側に対応する部位に流速の高い排気ガスが集中している。
【0039】
これに対して、本参考形態の場合は、直線部6から曲がり部7に流入した排気ガスの流れは、分流・整流板12の分流部12aによって曲がり部7の内周側と外周側とに分かれる。そして、内周側の排気ガス流は分流部12aに続く整流部12bによって触媒9の中心側(直線部6の長手方向の上流側)に向かうように変向される。曲がり部7の内周側は螺旋流から直線流に変化した流速の高い排気ガス流になっているが、この排気ガス流が触媒9の中心側へ向かうことにより、図12に示すように触媒9の上流端面においては、その中心部に流速の高い排気ガスが集まり易くなり、また、流速の高い排気ガス流の分散度も高くなる。
【0040】
上記分流部12aは、矢符Aのように曲がり部7の第1折れ部7aを流れる排気ガス流の入射角が40〜50度になるように設けられ、整流部12bは、矢符Bのように第2折れ部7bを流れる排気ガス流の入射角が40〜50度になるように設けられている。
【0041】
<実施形態
本実施形態は図15に示し、実施形態の変形例である。すなわち、分流板11は実施形態と同じく板面が直線部6と直交する軸に垂直になった平板によって形成されているが、この分流板11は曲がり部7の外周側の壁面より内周側に向かって突設され、その突出端縁と内周側壁面との間に隙間13が形成されている。
【0042】
従って、隙間13がある分、排気ガスの分流効果は低くなるが、分流板11が排気ガスの流れに抵抗する度合が低くなり、エンジンに対する背圧が大きくなることを避ける上で有利になる。
【0043】
なお、先に説明した他の参考形態においても、その分流板又は分流・整流板は、その両側縁のうちの一方を排気通路の壁面から離して隙間を設けるようにすることができる。
【図面の簡単な説明】
【図1】 エンジンの排気系構造の基本構成を示す概略図。
【図2】 本発明の課題とする排気ガス流の偏在を示す排気系の断面図。
【図3】 本発明の課題とする排気ガス流の偏在を示す触媒上流端面の流速分布図。
【図4】 本発明の参考形態1に係る排気系及び代表的な排気ガス流を示す断面図。
【図5】 同参考形態の代表的な排気ガス流及び流速分布を図4のa矢視で示す図。
【図6】 本発明の実施形態に係る排気系及び代表的な排気ガス流を示す断面図。
【図7】 同実施形態の代表的な排気ガス流及び流速分布を図6のb矢視で示す図。
【図8】 本発明の参考形態2に係る排気系及び代表的な排気ガス流を示す断面図。
【図9】 本発明の参考形態3に係る排気系の側面図。
【図10】 同参考形態の排気系及び代表的な排気ガス流を示す断面図。
【図11】 本発明の参考形態4に係る排気系及び代表的な排気ガス流を示す断面図。
【図12】 同参考形態の触媒上流端面の排気ガス流速の分布図。
【図13】 同参考形態の比較例の排気系及び代表的な排気ガス流を示す図。
【図14】 同比較例の触媒上流端面の排気ガス流速の分布図。
【図15】 本発明の実施形態に係る排気系の断面図。
【符号の説明】
1 触媒コンバータ
2 ターボ過給機
3 エンジン
4 排気マニホールド
5 排気通路
6 直線部
7 曲がり部
7a 第1折れ部
7b 第2折れ部
8 拡径部
9 触媒
11 分流板
12 分流・整流板
12a 分流部
12b 整流部
13 隙間
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust system structure of an engine.
[0002]
[Prior art]
In general, a catalytic converter for purifying exhaust gas is coupled to an exhaust pipe of an engine. In order to effectively use the catalyst of this catalytic converter, it is desired that the exhaust gas flows evenly over the entire surface of the upstream end of the converter. In this regard, Japanese Patent Application Laid-Open No. 8-21231 discloses that when a catalytic converter is directly connected to a collecting portion of an exhaust manifold, exhaust gas discharged from a cylinder adjacent to the collecting portion has a high temperature in a part of the catalytic converter. It describes the problem of straight inflow. The solution is to provide a weir for deflecting the flow of the high-temperature exhaust gas at the collecting portion of the exhaust manifold. That is, by deflecting the hot exhaust gas, the exhaust flow is diffused so that the exhaust gas flows as evenly as possible into the entire catalytic converter.
[0003]
[Problems to be solved by the invention]
In order to achieve early activation of the exhaust gas purifying catalyst, the catalytic converter may be directly connected to the assembly portion of the exhaust manifold as described above so that high-temperature exhaust gas flows into the catalytic converter.
[0004]
However, as shown in FIG. 1, when the turbocharger 2 is provided upstream of the catalytic converter 1, the exhaust gas extending linearly from the turbocharger 2 due to the layout of various devices in the automobile engine room. It may be necessary to bend the pipe in the middle and to connect the catalytic converter 1 downstream thereof. In FIG. 1, 3 is an engine, and 4 is an exhaust manifold having a collecting portion connected to a turbocharger 2. Reference numeral 5 denotes an exhaust passage, a straight portion 6 extending linearly from the turbocharger 2, a bent portion 7 following the downstream end of the straight portion 6, and an upstream end surface of the catalyst 9 by increasing the passage diameter from the bent portion 7. And an enlarged diameter portion 8 that extends to.
[0005]
With such a configuration, the exhaust gas becomes a spiral flow in which the exhaust gas swirls along the inner surface of the passage in the straight portion 6 due to the influence of the rotation of the turbine 2a of the turbocharger 2. The flow rate of the exhaust gas flowing into the gas 9 is greatly different in each part of the catalyst. This is because when the exhaust gas that is spirally flowing in the straight portion 6 reaches the bent portion 7, the traveling direction of the exhaust gas as a whole changes, but the swirl direction does not change, and the exhaust gas flow that is a spiral flow bends. This is because the flow changes into a linear flow when passing through the portion 7 and flows so as to be wound along the inner peripheral wall surface of the bent portion 7.
[0006]
In other words, as indicated by the arrow of the flow of exhaust gas, the exhaust gas that has advanced while turning the straight portion 6 along the inner surface of the passage reaches the bent portion 7, so that the tube wall for continuing the rotation is the same. Since it is in a state of disappearing, it turns into a straight flow with the momentum of turning, and it goes through the bent part at once.
[0007]
Such a rapid change from the spiral flow to the linear flow occurs when the central axis of the linear portion 6 and the central axis of the catalyst 9 intersect at a right angle or an acute angle and the radius of curvature on the inner peripheral side of the bent portion 7 is small. Become prominent. That is, the bent portion 7 is formed in an arc shape of about 80 to 120 degrees, and the radius of curvature on the innermost peripheral side of the bent portion 7 is about 1/10 to 1/3 of the pipe inner diameter.
[0008]
FIG. 2 shows typical streamlines of exhaust gas obtained by simulation. The exhaust gas that has traveled in the straight portion 6 in a spiral flow changes to a state close to a straight flow at the bending portion 7, flows along the inner peripheral wall surface of the bending portion 7, and travels toward the catalyst 9. FIG. 3 shows the distribution of the exhaust gas flow velocity at the upstream end face of the catalyst 9 at that time (the closed curve in FIG. 3 is an exhaust gas iso-velocity line, and the multiple iso-velocity lines become more inward as the flow rate increases. .), Exhaust gas having a high flow velocity is strongly concentrated in a portion corresponding to the inner peripheral side of the bent portion 7. That is, the uneven flow velocity is strong. Therefore, the catalyst 9 as a whole is not effectively used for purifying the exhaust gas, and is liable to deteriorate locally.
[0009]
The present invention has a problem that when such a bent portion is provided following a straight portion in which the exhaust gas flows in a spiral flow, the flow velocity of the exhaust gas flowing into the catalyst is greatly different in each portion of the catalyst. It is a solution.
[0010]
[Means for Solving the Problems]
The present invention is an engine exhaust system structure in which a catalyst for purifying exhaust gas is provided in the exhaust passage of the engine,
The exhaust passage is a straight portion that flows as a spiral flow in which the exhaust gas of the engine turns while turning along the inner surface of the passage,
A bent portion bent around an axis orthogonal to the straight line portion following the downstream end of the straight line portion;
A diameter-expanding portion extending from the bent portion to the upstream end face of the catalyst,
A diversion part that divides the flow of the exhaust gas is provided in the bent part ,
The diversion part is formed by a flat plate having a plate surface perpendicular to the axis perpendicular to the straight part, and divides exhaust gas on both sides in the direction of the axis .
[0011]
Accordingly, when the exhaust gas flowing in a spiral flow in the straight portion enters the bent portion, the flow is divided by the diversion portion, so that the exhaust gas having a high flow velocity is strongly concentrated at one place on the upstream end surface of the catalyst. can avoid. In addition, when the spiral flow reaches the diverting portion, the diverting portion becomes a so-called baffle plate and the turning force of the spiral flow is weakened (the turning kinetic energy is converted into pressure energy), so the spiral flow becomes the turning force. Even if it changes into a linear flow by, it will not be caught strongly along the internal peripheral surface of a bending part. Therefore, the exhaust gas tends to be dispersed on the upstream end face of the catalyst, and the exhaust gas having a high flow velocity can be avoided from being concentrated locally. For this reason, it is advantageous to effectively use the entire catalyst for purifying exhaust gas, and it is advantageous to avoid local deterioration of the catalyst at an early stage.
[0012]
In particular, since the flow dividing portion is formed by a flat plate whose plate surface is perpendicular to the axis perpendicular to the straight portion , the exhaust gas flow is caused by the flat plate in the axial direction perpendicular to the straight portion. Dividing into both sides, the flow rates of the two exhaust gas flows are substantially equal, and it is possible to avoid the exhaust gas having a high flow rate from being concentrated strongly at one place on the upstream end face of the catalyst.
[0013]
In addition, since one of the divided exhaust gas flows is rectified to become a flow along a flat plate, it is easy to direct to the center of the upstream end face of the catalyst. In addition, since the other separated exhaust gas flow flows along the pipe wall of the bent portion, a little swirling force remains, and when passing through the diverted portion, it merges with the one exhaust gas flow and becomes the center of the upstream end face of the catalyst. To become oriented.
[0014]
The flat plate-like flow dividing portion may protrude from the outer peripheral wall surface of the bent portion to the inner peripheral side, and a gap may be formed between the flow dividing portion and the inner peripheral wall surface. As a result, the effect of diverting the exhaust gas is reduced, but the degree to which the diversion part resists the flow of the exhaust gas is reduced, which is advantageous in avoiding an increase in the back pressure against the engine.
[0015]
It is preferable that the branch part extends from the upstream end to the downstream end of the bent part. As a result, the diversion effect can be enhanced, and in particular, since the spiral flow can be divided at the upstream end of the bent portion, it is advantageous in reducing the turning force and reducing the flow velocity of the linear flow passing through the bent portion. Become.
[0016]
The central axis of the downstream end of the bent portion and the central axis of the catalyst may be substantially coincident or may be offset from each other.
[0017]
In the present invention, when the bent portion is formed in an arc shape of about 80 to 120 degrees, and the radius of curvature on the innermost peripheral side in the tube of the bent portion is about 1/10 to 1/3 of the inner diameter of the tube. It is particularly effective.
[0018]
【The invention's effect】
As described above, according to the present invention, the straight part in which the exhaust gas of the engine flows in a spiral flow, the bent part bent around the axis orthogonal to the straight part following the straight part, and the bent part In the exhaust system structure of the engine having a diameter-expanded portion extending from the upstream end surface of the catalyst to the upstream end surface of the engine, a flow-dividing portion that divides the flow of the exhaust gas is provided at the bent portion, and the flow-dividing portion has a plate surface that is the straight portion. is formed by a flat plate is perpendicular to the axis orthogonal to, because the exhaust gas divided on both sides of the direction of the shaft, is inevitable that a high flow velocity exhaust gas is concentrated strongly at one location upstream of the catalyst end surface, yet The exhaust gas whose increase in flow velocity is suppressed is easily directed to the center of the upstream end face of the catalyst, and the entire catalyst is effectively used for purification of exhaust gas, and it is advantageous for avoiding local early deterioration of the catalyst. .
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments and reference embodiments of the present invention will be described with reference to the drawings.
[0020]
< Reference form 1 >
The basic configuration of the exhaust system of the engine according to the present embodiment is as shown in FIG. 1, and the main parts are shown in FIGS. The straight portion 6 shown in FIG. 4 is cylindrical, and extends linearly in the vehicle width direction of the automobile from the turbine chamber of the turbocharger 2 shown in FIG. The bent portion 7 following the downstream end of the straight portion 6 is also cylindrical with the same diameter as the straight portion 6 and is smoothly bent around an axis orthogonal to the straight portion 6. As shown in FIG. 1, the catalytic converter 1 connected to the downstream end of the bent portion 7 contains a catalyst 9 for purifying exhaust gas in a catalyst container.
[0021]
The catalyst container has a cylindrical catalyst housing portion formed at a central portion with a diameter larger than that of the straight portion 6, and the upstream side of the catalyst housing portion has a passage diameter enlarged from the bent portion 7 so that the catalyst 9 It is formed in the enlarged diameter part 8 which reaches an upstream end surface. The downstream side of the catalyst housing portion is formed in a cone shape (reduced diameter portion) whose diameter is gradually reduced. The central axis of the downstream end of the bent portion 7 coincides with the central axis of the catalyst housing portion of the catalytic converter 1, that is, the central axis C 1 of the catalyst 9. Further, the central axis C1 of the catalyst 9 and the central axis C2 of the linear portion 6 intersect at an acute angle. For this reason, the bending part 7 of this example is formed in the circular arc shape of about 110 degree | times. The radius of curvature of the innermost peripheral side of the bent portion 7 is about 1/7 of the inner diameter of the pipe.
[0022]
Thus, the bent portion 7 is provided with a flow dividing plate 11 whose plate surface is bent concentrically with the bent portion 7 around an axis perpendicular to the straight portion 6. That is, the flow dividing plate 11 extends from the upstream end to the downstream end of the bent portion 7 with the axis direction orthogonal to the straight portion 6 as the width direction, and the path center of the bent portion 7 extends. In other words, the flow dividing plate 11 crosses the passage center of the bent portion 7 in the direction of the axis perpendicular to the straight portion 6.
[0023]
Therefore, when the exhaust gas flow that spirally travels along the straight portion 6 due to the rotation of the turbine of the turbocharger 2 enters the bend portion 7, as shown by the flow lines with arrows in FIGS. The flow dividing plate 11 is divided into an inner peripheral side and an outer peripheral side. At that time, since the diverting plate 11 becomes a baffle plate and the turning force of the spiral flow is weakened, the exhaust gas passing through the inner peripheral side of the bent portion 7 is rarely caught along the inner peripheral surface of the bent portion 7. Become. That is, the exhaust gas flow is easily dispersed over the entire upstream end face of the catalyst 9 as shown in FIG. Further, since the exhaust gas flow passing through the outer peripheral side of the bent portion 7 is not engulfed by the turning force, it is similarly easily dispersed.
[0024]
Further, the exhaust gas passing through the outer peripheral side of the bent portion 7 has a lower flow velocity than the exhaust gas passing through the inner peripheral side. Thus, when exhaust gases having different flow velocities pass through the bent portion 7 and merge, the flow of the exhaust gas is disturbed, and the exhaust gas is easily dispersed over the entire upstream end face of the catalyst 9.
[0025]
Therefore, as shown in the distribution of the exhaust gas flow velocity on the upstream end face of the catalyst 9 in FIG. 5, it is possible to avoid the exhaust gas having a high flow velocity from being concentrated on one place on the catalyst upstream end face.
[0026]
<Embodiment 1 >
The basic configuration of the exhaust system of the engine according to the present embodiment is as shown in FIG. 1, and the main parts are shown in FIGS. In the present embodiment, the configuration of the flow dividing plate 11 is different from that of the reference embodiment 1, and the others are the same.
[0027]
The flow dividing plate 11 of the present embodiment is formed by a flat plate whose plate surface is perpendicular to the axis perpendicular to the straight portion 6. That is, the flow dividing plate 11 has a fan shape that opens from the upstream end to the downstream end of the bent portion 7 around the inner peripheral side of the bent portion 7, and crosses the passage center of the bent portion 7.
[0028]
Therefore, when the exhaust gas flow that spirally travels along the straight portion 6 due to the rotation of the turbine of the turbocharger 2 enters the bend portion 7, as shown by the flow lines with arrows in FIGS. 6 and 7, The flow dividing plate 11 is divided into both sides in the axial direction perpendicular to the straight line portion 6, and the flow rates of the two exhaust gas flows become substantially equal. Since one of the divided exhaust gas flows becomes a flow along the flow dividing plate 11, it becomes easy to direct to the center of the upstream end face of the catalyst 9. Further, since the other exhaust gas flow that has been divided flows along the wall surface of the bent portion 7, a little turning force remains, and when passing through the bent portion 7, it merges with the one exhaust gas flow to the upstream of the catalyst 9. It will be oriented toward the center of the end face.
[0029]
Further, since the diverting plate 11 serves as a baffle plate and the turning force of the spiral flow is weakened, the exhaust gas passing through both sides of the diverting plate 11 is less likely to be caught along the inner peripheral surface of the bent portion 7.
[0030]
< Reference form 2 >
The basic configuration of the exhaust system of the engine according to this embodiment is as shown in FIG. 1, and the main part is shown in FIG. This reference form is the same as the reference form 1 with respect to the straight part 6 and the smooth bent part 7, but the central axis C1 of the catalyst 9 is the longitudinal axis of the straight part 6 with respect to the central axis C3 at the downstream end of the bent part 7. It is different in that it is shifted to the upstream side in the direction and that a flow dividing plate is not provided.
[0031]
Therefore, in the case of the present embodiment , since the flow dividing plate is not provided, when the exhaust gas flow that spirally travels along the straight portion 6 enters the bending portion 7, it changes to a straight flow by the turning force, and the bending portion 7 It goes to the catalyst 9 along the inner peripheral wall surface. However, since the central axis C1 of the catalyst 9 is shifted to the upstream side in the longitudinal direction of the linear portion 6 with respect to the central axis C3 at the downstream end of the bent portion 7, the exhaust gas is at the center of the upstream end surface of the catalyst 9 (the straight line described above). The center when viewed in the longitudinal direction of the part. In addition, due to the deviation of the central axis, the clearance angle of the wall surface of the enlarged diameter portion 8 (the clearance angle with respect to the inner peripheral wall surface) following the inner peripheral wall surface of the bending portion 7 is increased. When the exhaust gas flowing along the wall surface on the inner peripheral side reaches the diameter-expanded portion 8, it becomes easy to leave the wall surface. For this reason, the exhaust gas tends to go to the center of the upstream end face of the catalyst 9.
[0032]
< Reference form 3 >
The basic configuration of the exhaust system of the engine according to the present embodiment is as shown in FIG. 1, and the main parts are shown in FIGS.
[0033]
That is, the central axis C1 of the catalyst 9 and the central axis C2 of the straight portion 6 intersect at an acute angle, and the central axis C1 of the catalyst 9 and the central axis C3 of the downstream end of the bent portion 7 coincide. A bent portion 7 between the straight portion 6 and the enlarged diameter portion 8 is bent at an obtuse angle with respect to the first bent portion 7a and a linear first bent portion 7a bent at an obtuse angle with respect to the straight portion 6. It is comprised by the linear 2nd bending part 7b. Each fold angle is 130 degrees. However, the bend angle can be 120 to 150 degrees, and the number of bends can be 3 or 4.
[0034]
Therefore, even if the spiral flow of the exhaust gas reaches the bent portion 7 from the straight portion 6, the bent portion 7 is formed by connecting the linear bent portions 7a and 7b at an obtuse angle, so that the bent portions 7a and 7b The wall surface extending in a straight line functions to change the traveling direction little by little (in this reference embodiment , by 50 degrees) while maintaining the exhaust gas swirling. For this reason, it becomes easy to preserve | save even when a spiral flow passes through the bending part 7, and exhaust gas distribute | circulates to the whole upstream end surface of the catalyst 9, and flows in.
[0035]
< Reference form 4 >
The basic configuration of the exhaust system of the engine according to the present embodiment is as shown in FIG. 1, FIG. 11 shows the main part, and FIG. 12 shows the exhaust gas flow velocity distribution on the upstream end face of the catalyst 9.
[0036]
That is, this reference form is the same as the reference form 3 with respect to the straight part 6 and the bent part 7, but the central axis C 1 of the catalyst 9 is linear part 6 with respect to the central axis C 3 at the downstream end of the bent part 7. Are different from each other in that they are shifted to the upstream side in the longitudinal direction and that the flow dividing / rectifying plate 12 is provided from the downstream end of the bent portion 7 to the enlarged diameter portion 8.
[0037]
That is, the shunt / rectifier plate 12 is formed in a plate shape having the direction of the axis perpendicular to the straight portion 6 as the width direction, and extends from the middle of the second bent portion 7b of the bent portion 7 to the downstream end. And a flow straightening portion 12a extending from the downstream end of the bent portion 7 toward the center of the catalyst 9 following the flow dividing portion 12a. The diversion part 12 a crosses the passage center of the bending part 7.
[0038]
When the bent portion 7 is bent at an obtuse angle and the central axis C1 of the catalyst 9 is deviated from the central axis C3 at the downstream end of the bent portion 7 as in this reference embodiment , The exhaust gas flow is as shown in FIG. That is, as a result of the preservation of the spiral flow even after passing through the bent portion 8, the exhaust gas is directed to a position shifted from the center of the upstream end surface of the catalyst 9 to the downstream side in the longitudinal direction of the straight portion 6. Further, the exhaust gas flow changed from the spiral flow to the linear flow travels along the inner peripheral side wall surface of the first bent portion 7a of the bent portion 7 toward the outer peripheral side. FIG. 14 shows the flow velocity distribution of the exhaust gas on the upstream end face of the catalyst 9 at that time, and the exhaust gas having a high flow velocity is concentrated at a portion corresponding to the outer peripheral side of the bent portion 7.
[0039]
On the other hand, in the case of the present embodiment , the flow of the exhaust gas flowing into the bent portion 7 from the straight portion 6 is divided into the inner peripheral side and the outer peripheral side of the bent portion 7 by the flow dividing portion 12a of the flow dividing / rectifying plate 12. Divided. The exhaust gas flow on the inner peripheral side is diverted toward the center side of the catalyst 9 (upstream in the longitudinal direction of the straight portion 6) by the rectifying unit 12b following the diversion unit 12a. The inner peripheral side of the bent portion 7 is an exhaust gas flow having a high flow velocity changed from a spiral flow to a linear flow. When this exhaust gas flow is directed toward the center of the catalyst 9, as shown in FIG. At the upstream end face of No. 9, exhaust gas having a high flow rate is likely to gather at the center thereof, and the dispersion degree of the exhaust gas flow having a high flow rate is also increased.
[0040]
The flow dividing portion 12a is provided so that the incident angle of the exhaust gas flow flowing through the first bent portion 7a of the bent portion 7 as indicated by an arrow A is 40 to 50 degrees. Thus, the incident angle of the exhaust gas flow flowing through the second bent portion 7b is set to be 40 to 50 degrees.
[0041]
<Embodiment 2 >
This embodiment is shown in FIG. 15 and is a modification of the first embodiment. That is, the flow dividing plate 11 is formed of a flat plate whose plate surface is perpendicular to an axis orthogonal to the straight portion 6 as in the first embodiment. The flow dividing plate 11 has an inner circumference from the wall surface on the outer peripheral side of the bent portion 7. A gap 13 is formed between the protruding end edge and the inner peripheral side wall surface.
[0042]
Accordingly, although the exhaust gas diversion effect is reduced by the gap 13, the degree to which the flow dividing plate 11 resists the flow of the exhaust gas is reduced, which is advantageous in avoiding an increase in the back pressure against the engine.
[0043]
In the other reference forms described above, the flow dividing plate or the flow dividing / rectifying plate can be provided with a gap by separating one of both side edges from the wall surface of the exhaust passage.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a basic configuration of an exhaust system structure of an engine.
FIG. 2 is a cross-sectional view of an exhaust system showing uneven distribution of an exhaust gas flow as a subject of the present invention.
FIG. 3 is a flow velocity distribution diagram on the upstream end face of the catalyst showing the uneven distribution of the exhaust gas flow as the subject of the present invention.
FIG. 4 is a cross-sectional view showing an exhaust system and a typical exhaust gas flow according to Reference Embodiment 1 of the present invention.
FIG. 5 is a view showing a typical exhaust gas flow and flow velocity distribution of the reference embodiment as viewed in the direction of arrow a in FIG. 4;
FIG. 6 is a cross-sectional view showing an exhaust system and a typical exhaust gas flow according to Embodiment 1 of the present invention.
7 is a view showing a typical exhaust gas flow and flow velocity distribution of the same embodiment as seen in the direction of arrow b in FIG. 6;
FIG. 8 is a cross-sectional view showing an exhaust system and a typical exhaust gas flow according to Reference Embodiment 2 of the present invention.
FIG. 9 is a side view of an exhaust system according to Reference Embodiment 3 of the present invention.
FIG. 10 is a cross-sectional view showing an exhaust system of the same reference embodiment and a typical exhaust gas flow.
FIG. 11 is a cross-sectional view showing an exhaust system and a typical exhaust gas flow according to Reference Embodiment 4 of the present invention.
FIG. 12 is a distribution diagram of exhaust gas flow velocity on the upstream end face of the catalyst according to the reference embodiment .
FIG. 13 is a view showing an exhaust system and a typical exhaust gas flow of a comparative example of the reference embodiment .
FIG. 14 is a distribution diagram of exhaust gas flow velocity on the upstream end face of the catalyst of the comparative example.
FIG. 15 is a cross-sectional view of an exhaust system according to Embodiment 2 of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Catalytic converter 2 Turbocharger 3 Engine 4 Exhaust manifold 5 Exhaust passage 6 Straight line part 7 Bending part 7a 1st folding part 7b 2nd folding part 8 Expanded diameter part 9 Catalyst 11 Dividing plate 12 Dividing / rectifying plate 12a Dividing part 12b Rectifier 13 Clearance

Claims (4)

エンジンの排気通路に排気ガスを浄化する触媒が設けられているエンジンの排気系構造であって、
上記排気通路は、エンジンの排気ガスが通路内面に沿って旋回しながら進む螺旋流となって流れる直線部と、
上記直線部の下流端に続いて該直線部と直交する軸回りに曲がった曲がり部と、
上記曲がり部から通路径が拡大して上記触媒の上流端面に至る拡径部とを備え、
上記曲がり部に上記排気ガスの流れを分ける分流部が設けられており、
上記分流部は、板面が上記直線部と直交する上記軸に垂直になった平板によって形成され、排気ガスを上記軸の方向の両側に分けることを特徴とするエンジンの排気系構造。
An engine exhaust system structure in which a catalyst for purifying exhaust gas is provided in an engine exhaust passage,
The exhaust passage is a straight portion that flows as a spiral flow in which the exhaust gas of the engine turns while turning along the inner surface of the passage,
A bent portion bent around an axis orthogonal to the straight line portion following the downstream end of the straight line portion;
A diameter-expanding portion extending from the bent portion to the upstream end face of the catalyst,
A diversion part that divides the flow of the exhaust gas is provided in the bent part ,
An engine exhaust system structure characterized in that the flow dividing portion is formed by a flat plate whose plate surface is perpendicular to the axis perpendicular to the straight line portion, and divides the exhaust gas on both sides in the direction of the axis .
請求項1に記載されているエンジンの排気系構造において、
上記分流部は、上記曲がり部の外周側の壁面より内周側に突設され、且つ該分流部と内周側の壁面との間に隙間が形成されていることを特徴とするエンジンの排気系構造。
The engine exhaust system structure according to claim 1 ,
The exhaust of the engine characterized in that the flow dividing portion projects from the outer peripheral wall surface of the bent portion to the inner peripheral side, and a gap is formed between the flow dividing portion and the inner peripheral wall surface. System structure.
請求項1又は請求項2に記載されているエンジンの排気系構造において、
上記分流部は、上記曲がり部の上流端から下流端に至るまで延びていることを特徴とするエンジンの排気系構造。
In the exhaust system structure for an engine according to claim 1 or 2 ,
An exhaust system structure for an engine, wherein the branch portion extends from an upstream end to a downstream end of the bent portion.
請求項1乃至請求項3のいずれか一に記載されているエンジンの排気系構造において、
上記曲がり部の下流端の中心軸と上記触媒の中心軸とが略一致していることを特徴とするエンジンの排気系構造。
The engine exhaust system structure according to any one of claims 1 to 3 ,
An exhaust system structure for an engine, wherein a central axis of a downstream end of the bent portion and a central axis of the catalyst substantially coincide with each other.
JP2001234510A 2001-08-02 2001-08-02 Engine exhaust system structure Expired - Fee Related JP4524970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001234510A JP4524970B2 (en) 2001-08-02 2001-08-02 Engine exhaust system structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001234510A JP4524970B2 (en) 2001-08-02 2001-08-02 Engine exhaust system structure

Publications (2)

Publication Number Publication Date
JP2003049640A JP2003049640A (en) 2003-02-21
JP4524970B2 true JP4524970B2 (en) 2010-08-18

Family

ID=19066108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001234510A Expired - Fee Related JP4524970B2 (en) 2001-08-02 2001-08-02 Engine exhaust system structure

Country Status (1)

Country Link
JP (1) JP4524970B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190012526A (en) * 2017-07-27 2019-02-11 현대자동차주식회사 Exhaust connecting unit for catalytic converter
KR20190141840A (en) * 2018-06-15 2019-12-26 현대자동차주식회사 Exhaust device of turbo charger vehicle

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4332755B2 (en) * 2007-12-25 2009-09-16 三菱自動車工業株式会社 Exhaust gas purification device for internal combustion engine
JP5262586B2 (en) * 2008-11-05 2013-08-14 日産自動車株式会社 Exhaust passage structure of a supercharged engine
JP5990025B2 (en) * 2012-04-12 2016-09-07 日野自動車株式会社 Mixing structure
JP2015165094A (en) * 2012-06-05 2015-09-17 日産自動車株式会社 Exhaust device for internal combustion engine
JP2021167589A (en) * 2020-04-10 2021-10-21 フタバ産業株式会社 Exhaust emission control device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121816U (en) * 1984-07-13 1986-02-08 トヨタ自動車株式会社 Exhaust pipe leading exhaust gas to manifold converter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121816U (en) * 1984-07-13 1986-02-08 トヨタ自動車株式会社 Exhaust pipe leading exhaust gas to manifold converter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190012526A (en) * 2017-07-27 2019-02-11 현대자동차주식회사 Exhaust connecting unit for catalytic converter
KR102359935B1 (en) * 2017-07-27 2022-02-07 현대자동차 주식회사 Exhaust connecting unit for catalytic converter
KR20190141840A (en) * 2018-06-15 2019-12-26 현대자동차주식회사 Exhaust device of turbo charger vehicle
KR102529517B1 (en) * 2018-06-15 2023-05-04 현대자동차주식회사 Exhaust device of turbo charger vehicle

Also Published As

Publication number Publication date
JP2003049640A (en) 2003-02-21

Similar Documents

Publication Publication Date Title
US5606857A (en) Exhaust system for an engine
US8621851B2 (en) Particle filter arrangement
US4342195A (en) Motorcycle exhaust system
EP0744536B1 (en) Silencer
US7131514B2 (en) Noise attenuation device for a vehicle exhaust system
US7086498B2 (en) Noise attenuation device for a vehicle exhaust system
US10247079B2 (en) Exhaust gas purification system of internal combustion engine having turbocharger
US20130239557A1 (en) Apparatus for removing exhaust gas pressure and preventing backflow of exhaust gas
CN211082028U (en) Mixer and selective catalytic reduction system comprising same
JP4524970B2 (en) Engine exhaust system structure
JP2006009793A (en) Exhaust pipe structure
CA2352041A1 (en) Turbine inlet scroll
JP6318101B2 (en) Vehicle exhaust system
JP5513814B2 (en) Fuel consumption improvement device for vehicle exhaust pipe
JP6651564B2 (en) Flange fastening structure
US9238992B2 (en) Exhaust system having a flow rotation element and method for operation of an exhaust system
JP2006329031A (en) Internal combustion engine with turbocharger
US20240218822A1 (en) Vehicle exhaust system having an integral hood
US10577996B2 (en) Exhaust conduit with a flow conditioning portion
JP2020045897A (en) Catalytic converter
US11692470B2 (en) Exhaust system and muffler
JP2002089245A (en) Exhaust emission control system for internal combustion engine
JP4014121B2 (en) Engine exhaust gas purification device
JP4424019B2 (en) Exhaust manifold for internal combustion engines
JP2008163917A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees