JP4524597B2 - Driving force distribution device for four-wheel independent drive vehicle - Google Patents

Driving force distribution device for four-wheel independent drive vehicle Download PDF

Info

Publication number
JP4524597B2
JP4524597B2 JP2004280139A JP2004280139A JP4524597B2 JP 4524597 B2 JP4524597 B2 JP 4524597B2 JP 2004280139 A JP2004280139 A JP 2004280139A JP 2004280139 A JP2004280139 A JP 2004280139A JP 4524597 B2 JP4524597 B2 JP 4524597B2
Authority
JP
Japan
Prior art keywords
driving force
wheel
wheels
sensitivity
braking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004280139A
Other languages
Japanese (ja)
Other versions
JP2006094679A (en
Inventor
一郎 山口
欣高 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004280139A priority Critical patent/JP4524597B2/en
Priority to US11/166,741 priority patent/US7440834B2/en
Publication of JP2006094679A publication Critical patent/JP2006094679A/en
Application granted granted Critical
Publication of JP4524597B2 publication Critical patent/JP4524597B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02T10/7241

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、四輪駆動車の各駆動輪に対応して駆動モータを備える四輪独立駆動車の駆動力配分装置に関するものである。   The present invention relates to a driving force distribution device for a four-wheel independent drive vehicle including a drive motor corresponding to each drive wheel of the four-wheel drive vehicle.

四輪駆動車の各駆動輪に対応して駆動モータを備える四輪独立駆動車の駆動力配分装置が知られている(特許文献1参照)。   A driving force distribution device for a four-wheel independent drive vehicle that includes a drive motor corresponding to each drive wheel of the four-wheel drive vehicle is known (see Patent Document 1).

これは、4個の駆動輪のうち1輪のみがスリップしているときは、左側及び右側のうちスリップ輪と同じ側にある非スリップ輪に、スリップが発生していなければスリップ輪に配分されるはずであった出力トルクを配分する。また、スリップ輪が2輪あり、それらが左側及び右側に1個ずつあるときには、スリップしていなければそのスリップ輪に配分されるはずであったトルク出力を、同じ側にある非スリップ輪に配分する。以上により、駆動力を補正する前後で、前後方向の加速度と、各輪の駆動力によって発生する車両重心周りのヨーモーメントの変化を抑えるようにしている。
特開平10−295004号公報
This means that when only one of the four drive wheels is slipping, it is allocated to the non-slip wheel on the same side as the slip wheel on the left and right sides, and to the slip wheel if no slip occurs. Distribute the output torque that should have been. Also, when there are two slip wheels, one on each of the left and right sides, the torque output that would have been distributed to that slip wheel if it did not slip is distributed to the non-slip wheels on the same side To do. Thus, before and after correcting the driving force, the change in the yaw moment around the center of gravity of the vehicle caused by the acceleration in the front-rear direction and the driving force of each wheel is suppressed.
Japanese Patent Laid-Open No. 10-295004

しかしながら、上記従来例では、車両の左右各々において前後車輪に配分している制駆動力を変化させないよう補正して車両重心周りのヨーモーメントの変化を抑えるものであり、制駆動力補正の前後における各車輪と路面との間で発生している横方向力の変化を考慮していない。このため、前車輪および後車輪で夫々発生している横方向力が補正前後において大きく変化して、横方向の加速度とそれに基づく車両重心周りのヨーモーメントに変化が発生する場合がある。これはドライバーが意図しない変化であり、運転性を損なう恐れがある。   However, in the above-described conventional example, the braking / driving force distributed to the front and rear wheels on each of the left and right sides of the vehicle is corrected so as not to change to suppress the change in the yaw moment around the center of gravity of the vehicle. It does not take into account changes in the lateral force generated between each wheel and the road surface. For this reason, the lateral force generated at the front wheel and the rear wheel may change greatly before and after the correction, and the lateral acceleration and the yaw moment around the center of gravity of the vehicle based on it may change. This is a change that is not intended by the driver and may impair driving performance.

そこで本発明は、上記問題点に鑑みてなされたもので、いずれか1輪の制駆動力が変化したり任意に変化させる場合において、左右駆動力差に加えて車輪が舵角を有する場合における前後方向及び横方向の加速度と車両重心周りのヨーモーメントの変化を抑制可能な四輪独立駆動車の駆動力配分装置を提供することを目的とする。   Therefore, the present invention has been made in view of the above problems, and when the braking / driving force of any one wheel is changed or arbitrarily changed, the wheel has a steering angle in addition to the left / right driving force difference. It is an object of the present invention to provide a driving force distribution device for a four-wheel independent drive vehicle capable of suppressing changes in acceleration in the front-rear and lateral directions and yaw moment around the center of gravity of the vehicle.

本発明は、四輪を夫々独立に駆動可能であり、車両の運動要求に基づいて四輪夫々の制駆動力を決定する制駆動力決定手段を備える四輪独立駆動車の駆動力配分装置において、左前輪、右前輪、左後輪、右後輪夫々の駆動力変化に対するタイヤ横力の感度k1,k2,k3,k4を推定するタイヤ横力感度推定手段と、左前輪、右前輪、左後輪、右後輪夫々の舵角δ1,δ2,δ3,δ4と、該タイヤ横力感度推定手段で推定された感度k1,k2,k3,k4に基づいて、左前輪、右前輪、左後輪、右後輪夫々の駆動力を補正する手段と、を備え、前記制駆動力決定手段により決定された制駆動力を変更する場合には、前記駆動力補正手段は、左前輪、右前輪、左後輪、右後輪夫々の舵角δ1,δ2,δ3,δ4と、該タイヤ横力感度推定手段で推定された感度k1,k2,k3,k4に基づいて、前記車両の運動要求を満たすように左前輪、右前輪、左後輪、右後輪夫々の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4だけ補正するようにした。   The present invention relates to a driving force distribution device for a four-wheel independent drive vehicle that is capable of independently driving the four wheels and includes braking / driving force determining means for determining the braking / driving force of each of the four wheels based on a motion demand of the vehicle. , Tire lateral force sensitivity estimation means for estimating tire lateral force sensitivity k1, k2, k3, k4 with respect to changes in driving force of the left front wheel, right front wheel, left rear wheel, and right rear wheel, left front wheel, right front wheel, left Based on the steering angles δ1, δ2, δ3, δ4 of the rear wheel and the right rear wheel and the sensitivities k1, k2, k3, k4 estimated by the tire lateral force sensitivity estimation means, the left front wheel, the right front wheel, the left rear Means for correcting the driving force of each of the wheel and the right rear wheel, and when changing the braking / driving force determined by the braking / driving force determining means, the driving force correcting means includes the left front wheel and the right front wheel. , Steering angles δ1, δ2, δ3, δ4 of the left rear wheel and the right rear wheel, and sensitivities k1, k2 estimated by the tire lateral force sensitivity estimating means , K3, and k4, the driving force correction amounts ΔFx1, ΔFx2, ΔFx3, and ΔFx4 for the left front wheel, the right front wheel, the left rear wheel, and the right rear wheel are corrected so as to satisfy the motion requirement of the vehicle.

したがって、本発明では、車両の運動要求に基づいて四輪夫々の制駆動力を決定する制駆動力決定手段により決定された制駆動力を変更する場合には、駆動力補正手段により、左前輪、右前輪、左後輪、右後輪夫々の舵角δ1,δ2,δ3,δ4と、該タイヤ横力感度推定手段で推定された感度k1,k2,k3,k4に基づいて、前記車両の運動要求を満たすように左前輪、右前輪、左後輪、右後輪夫々の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4だけ補正するようにした。このような構成とすることにより、各輪の舵角δi(i=1〜4)が無視できないほど大きい場合でも、前後方向の加速度だけでなく、制駆動力を補正した時のタイヤ横力変化によって発生する横方向の加速度と車両重心周りのヨーモーメントの変化を抑えることができ、ドライバーの意図しない車両挙動の乱れを防止し運転性を向上させることができる。   Therefore, in the present invention, when changing the braking / driving force determined by the braking / driving force determining means for determining the braking / driving force of each of the four wheels based on the motion request of the vehicle, the driving force correcting means Based on the steering angles δ1, δ2, δ3, δ4 of the right front wheel, the left rear wheel, and the right rear wheel, and the sensitivities k1, k2, k3, k4 estimated by the tire lateral force sensitivity estimating means. The driving force correction amounts ΔFx1, ΔFx2, ΔFx3, and ΔFx4 for the left front wheel, the right front wheel, the left rear wheel, and the right rear wheel are corrected so as to satisfy the motion requirement. With such a configuration, even when the steering angle δi (i = 1 to 4) of each wheel is so large that it cannot be ignored, not only the longitudinal acceleration but also the lateral force change of the tire when the braking / driving force is corrected Therefore, it is possible to suppress changes in lateral acceleration and yaw moment around the center of gravity of the vehicle, which can prevent unintended disturbance of vehicle behavior and improve drivability.

以下、本発明の四輪独立駆動車の駆動力配分装置を一実施形態に基づいて説明する。図1は、本発明を適用した四輪独立駆動車の駆動力配分装置の第1実施形態を示すシステム構成図である。   Hereinafter, a driving force distribution device for a four-wheel independent drive vehicle of the present invention will be described based on an embodiment. FIG. 1 is a system configuration diagram showing a first embodiment of a driving force distribution device for a four-wheel independent drive vehicle to which the present invention is applied.

図1において、四輪独立駆動車の駆動力配分装置は、左前輪1、右前輪2、左後輪3及び右後輪4に、それぞれモータ11,12,13及び14が連結され、夫々のモータ11〜14は各車輪1〜4を独立に駆動可能に構成している。各車輪1〜4の回転半径(R)は全て等しく、各モータ11〜14と各車輪1〜4とは減速比1で直接連結状態で回転する。夫々の駆動軸には車輪速センサ21〜24が配置され、検出された回転速度信号はコントローラ8に出力される。   In FIG. 1, the driving force distribution device for a four-wheel independent drive vehicle has motors 11, 12, 13 and 14 connected to a left front wheel 1, a right front wheel 2, a left rear wheel 3 and a right rear wheel 4, respectively. The motors 11 to 14 are configured to be able to drive the wheels 1 to 4 independently. The rotation radii (R) of the wheels 1 to 4 are all equal, and the motors 11 to 14 and the wheels 1 to 4 rotate in a directly connected state with a reduction ratio of 1. Wheel speed sensors 21 to 24 are arranged on the respective drive shafts, and the detected rotational speed signal is output to the controller 8.

前記モータ11〜14は、三相同期電動機や三相誘導電動機等の力行運転及び回生運転ができる交流機であり、コントローラ8によりの指令に応じてバッテリ9からの直流電力を夫々インバータ31〜34を介して交流電力に変換して供給されて夫々独立に力行運転して各々の車輪1〜4を駆動可能であり、また、コントローラ8によりの指令に応じて各々の車輪1〜4から駆動される回生運転時にはその交流の回生電力を夫々インバータ31〜34を介して直流電力に変換してバッテリ9に充電可能である。バッテリ9はニッケル水素電池或いはリチウムイオン電池が望ましい。   The motors 11 to 14 are AC machines that can perform power running operation and regenerative operation such as a three-phase synchronous motor and a three-phase induction motor, and invert DC power from the battery 9 in accordance with commands from the controller 8, respectively. The wheels 1 to 4 can be driven by being independently powered by being converted into alternating current power via the wheel, and driven from the wheels 1 to 4 in response to a command from the controller 8. During regenerative operation, the AC regenerative power can be converted into DC power via inverters 31 to 34 to charge the battery 9. The battery 9 is preferably a nickel metal hydride battery or a lithium ion battery.

前記左右前輪1、2は、ステアリングギヤ15を介してステアリングハンドル5の操舵により転舵可能であり、その舵角は運転者によるステアリングハンドル5の操舵により機械的に調整される。前記ステアリングハンドル5の操舵量はステアリング角センサ25により検出されて操舵角信号としてコントローラ8に出力される。前記ステアリングギヤ15のギヤ比は、ステアリングハンドル5の操舵角変化量に対して左右前輪の舵角変化量が1/16となるよう設定されている。前記左右後輪3、4はコントローラ8から指令された指令値に追従するようステアリングアクチュエータ16により、その舵角が調整される。各車輪1〜4の各舵角は舵角センサ41〜44によって検出され、検出された各車輪の舵角はコントローラ8に送信される。   The left and right front wheels 1 and 2 can be steered by steering the steering handle 5 via the steering gear 15, and the steering angle is mechanically adjusted by the steering of the steering handle 5 by the driver. The steering amount of the steering handle 5 is detected by a steering angle sensor 25 and output to the controller 8 as a steering angle signal. The gear ratio of the steering gear 15 is set so that the steering angle change amount of the left and right front wheels is 1/16 with respect to the steering angle change amount of the steering handle 5. The steering angles of the left and right rear wheels 3 and 4 are adjusted by the steering actuator 16 so as to follow the command value commanded from the controller 8. The steering angles of the wheels 1 to 4 are detected by the steering angle sensors 41 to 44, and the detected steering angles of the wheels are transmitted to the controller 8.

前記コントローラ8には、運転者によるステアリングハンドル5の操舵回転角を検出するステアリング角センサ25の操舵角信号、運転者によるアクセルペダル6の踏込み量およびブレーキペダル7の踏込み量を夫々検出するアクセルストロークセンサ26及びブレーキストロークセンサ27の検出信号(踏込み量)、各車輪1〜4の舵角を検出する舵角センサ41〜44の検出舵角信号、車両の重心位置に取付けられて車両の前後方向および横方向の加速度を検出する加速度センサ100よりの加速度信号、同じく車両の重心位置に取付けられて車両のヨー回転運動を検出するヨーレートセンサ101よりのヨーレート信号、前記した車輪速信号、が入力される。コントローラ8は、CPU、ROM、RAM、インターフェース回路等からなり、前記各信号に基づいて各モータ11〜14へのトルク配分を演算し且つ各インバータ31〜34への指令値を制御する。   The controller 8 includes an accelerator stroke for detecting the steering angle signal of the steering angle sensor 25 for detecting the steering rotation angle of the steering handle 5 by the driver, the depression amount of the accelerator pedal 6 and the depression amount of the brake pedal 7 by the driver, respectively. Sensor 26 and brake stroke sensor 27 detection signals (depression amount), steering angle sensors 41 to 44 for detecting the steering angles of the wheels 1 to 4, detected steering angle signals, and the vehicle front-rear direction attached to the center of gravity of the vehicle And an acceleration signal from the acceleration sensor 100 that detects lateral acceleration, a yaw rate signal from the yaw rate sensor 101 that is attached to the center of gravity of the vehicle and detects the yaw rotation of the vehicle, and the wheel speed signal described above are input. The The controller 8 includes a CPU, a ROM, a RAM, an interface circuit, and the like, calculates torque distribution to the motors 11 to 14 based on the signals, and controls command values to the inverters 31 to 34.

図2のフローチャートは各モータ11〜14へのトルク配分を演算し各インバータ31〜34への指令値を制御するルーチンを示しており、コントローラ8において一定周期毎に実行される。このフローチャートにおいて、ステップS20〜S70は車両の運動要求に基づいて四輪夫々の制駆動力を決定する制駆動力決定手段を構成し、ステップS80〜S90およびステップS140は左前輪1、右前輪2、左後輪3、右後輪4夫々の駆動力変化に対するタイヤ横力の感度k1,k2,k3,k4を推定するタイヤ横力感度推定手段を構成し、ステップS100〜S130が制駆動力決定手段により決定された制駆動力を変更する要因に基づき必要な制駆動力補正量を決定する手段を構成し、ステップS150〜S160が左前輪、右前輪、左後輪、右後輪夫々の舵角δ1,δ2,δ3,δ4と、タイヤ横力感度推定手段で推定された感度k1,k2,k3,k4に基づいて、前記車両の運動要求を満たすように左前輪1、右前輪2、左後輪3、右後輪4夫々の駆動力をΔFx1,ΔFx2,ΔFx3,ΔFx4だけ補正する駆動力補正手段を構成している。以下、これについて説明する。   The flowchart of FIG. 2 shows a routine for calculating the torque distribution to each of the motors 11 to 14 and controlling the command value to each of the inverters 31 to 34, and is executed by the controller 8 at regular intervals. In this flowchart, steps S20 to S70 constitute braking / driving force determining means for determining the braking / driving force of each of the four wheels based on the vehicle motion request, and steps S80 to S90 and step S140 are the left front wheel 1 and the right front wheel 2. , Tire lateral force sensitivity estimation means for estimating the tire lateral force sensitivity k1, k2, k3, k4 with respect to the driving force changes of the left rear wheel 3 and the right rear wheel 4 is configured, and steps S100 to S130 determine the braking / driving force. A means for determining a necessary braking / driving force correction amount based on a factor for changing the braking / driving force determined by the means is configured, and steps S150 to S160 are used to steer the left front wheel, the right front wheel, the left rear wheel, and the right rear wheel. Based on the angles δ1, δ2, δ3, δ4 and the sensitivity k1, k2, k3, k4 estimated by the tire lateral force sensitivity estimation means, the left front wheel 1, the right front wheel 2, the left Rear wheel 3, right rear 4 each of the driving force ΔFx1, ΔFx2, ΔFx3, constitute a driving force correction means for correcting only DerutaFx4. This will be described below.

ステップS10では、車輪速センサ21〜24で検出した各車輪1〜4の回転速度ω1,ω2,ω3,ω4[単位:rad/s]を夫々検出し、各車輪1〜4の半径Rを乗じて車輪速度V1,V2,V3,V4[単位:m/s]を演算する。また、舵角センサ41〜44で各輪1〜4の舵角δ1,δ2,δ3,δ4[単位:rad]を検出する。さらに、アクセルストロークセンサ26及びブレーキストロークセンサ27によって検出したアクセルペダル6とブレーキペダル7の踏込量AP[単位:%]及びBP[単位:%]、ステアリング角センサ25によって検出したステアリングハンドル5の回転角θ[単位:rad]、加速度センサ100で検出した車両の前後方向加速度Xg[単位:m/s2]と横方向加速度Yg[単位:m/s2]、ヨーレートセンサ101で検出したヨーレートγ[単位:rad/s]を夫々読込む。 In step S10, the rotational speeds ω1, ω2, ω3, and ω4 [unit: rad / s] of the wheels 1 to 4 detected by the wheel speed sensors 21 to 24 are detected, respectively, and multiplied by the radius R of the wheels 1 to 4. The wheel speeds V1, V2, V3, V4 [unit: m / s] are calculated. Further, the steering angle sensors 41 to 44 detect the steering angles δ1, δ2, δ3, and δ4 [unit: rad] of the wheels 1 to 4, respectively. Further, the depression amounts AP [unit:%] and BP [unit:%] of the accelerator pedal 6 and the brake pedal 7 detected by the accelerator stroke sensor 26 and the brake stroke sensor 27, and the rotation of the steering handle 5 detected by the steering angle sensor 25. Angle θ [unit: rad], vehicle longitudinal acceleration Xg [unit: m / s 2 ] and lateral acceleration Yg [unit: m / s 2 ] detected by acceleration sensor 100, yaw rate γ detected by yaw rate sensor 101 Read [Unit: rad / s] respectively.

なお、車輪速度V1〜V4は車両前進方向を正とし、ステアリングハンドル5の回転角θは反時計回りを正とし、前後方向加速度Xgは車両が前方に加速する方向を正とし、横方向加速度Ygは車両が左旋回時に車両重心位置から旋回中心に向かう方向を正とし、ヨーレートγは車両を鉛直上方からみたときに反時計回りを正とする。また、図3に示すように、舵角δ1〜δ4は各輪1〜4の向きが車体前後方向と一致している状態を0とし、車両を鉛直上方からみたときに反時計回りを正とする。また、車両のヨー回転方向の車両重心位置から前輪車軸までの距離はLf[単位:m]、ヨー回転方向の車両重心位置から後輪車軸までの距離はLr[単位:m]、前後輪のトレッド長さは共にLt[単位:m]の車両である。また、以降の説明でこの車両のホイールベース長さをL(=Lf+Lr)とする。   The wheel speeds V1 to V4 are positive in the forward direction of the vehicle, the rotation angle θ of the steering handle 5 is positive in the counterclockwise direction, the longitudinal acceleration Xg is positive in the direction in which the vehicle accelerates forward, and the lateral acceleration Yg. Is positive in the direction from the center of gravity of the vehicle toward the turning center when the vehicle is turning left, and the yaw rate γ is positive in the counterclockwise direction when the vehicle is viewed from vertically above. As shown in FIG. 3, the steering angles δ1 to δ4 are set to 0 when the directions of the wheels 1 to 4 coincide with the longitudinal direction of the vehicle body, and the counterclockwise direction is positive when the vehicle is viewed from vertically above. To do. The distance from the vehicle center of gravity position in the yaw rotation direction of the vehicle to the front wheel axle is Lf [unit: m], the distance from the vehicle gravity center position in the yaw rotation direction to the rear wheel axle is Lr [unit: m], Both tread lengths are vehicles of Lt [unit: m]. In the following description, the wheel base length of the vehicle is L (= Lf + Lr).

ステップS20では、車速V[単位:m/s]を下記の式(1)
V=(V1+V2+V3+V4)÷4 ・・・(1)
の通り求める。なお、車速Vは車両前進方向を正としする。
In step S20, the vehicle speed V [unit: m / s] is expressed by the following equation (1).
V = (V1 + V2 + V3 + V4) ÷ 4 (1)
Ask as follows. The vehicle speed V is positive in the vehicle forward direction.

ステップS30では、各輪1〜4の輪荷重W1,W2,W3,W4[単位:N]を下記の式(2)〜(5)
W1=(mLrg/2L)−(mhXg/2L)−(mhYg/2Lt) ・・・(2)
W2=(mLrg/2L)−(mhXg/2L)−(mhYg/2Lt) ・・・(3)
W3=(mLfg/2L)−(mhXg/2L)−(mhYg/2Lt) ・・・(4)
W4=(mLfg/2L)−(mhXg/2L)−(mhYg/2Lt) ・・・(5)
の通り求める。
In step S30, the wheel loads W1, W2, W3, and W4 [unit: N] of each of the wheels 1 to 4 are expressed by the following equations (2) to (5).
W1 = (mLrg / 2L)-(mhXg / 2L)-(mhYg / 2Lt) (2)
W2 = (mLrg / 2L)-(mhXg / 2L)-(mhYg / 2Lt) (3)
W3 = (mLfg / 2L)-(mhXg / 2L)-(mhYg / 2Lt) (4)
W4 = (mLfg / 2L)-(mhXg / 2L)-(mhYg / 2Lt) (5)
Ask as follows.

ステップS40では、後輪3、4の舵角δ3,δ4がステアリングハンドル5の回転角θに対して下記の式(6)
δ3=δ4=(1/16)[k0/(1+TeS)−(Kf/Kr)(TeS/(1+TeS))]×θ ・・・(6)
の応答となるようにステアリングアクチュエータ16を制御する。ただし、Te=IV/(2LLfKf+mLrV2)、K0=−[Lr+(mLf/2LKr)KfV2]/[Lf+(mLr/2LKf)KrV2]である。なお、式(6)におけるm[単位:kg]及びI[単位:kgm2]は、図3に示す本制御対象の車両の質量及び車体重心周りのヨー慣性モーメントであり、Kf,Kr[単位:N/rad]は、前輪1、2及び後輪3、4の横滑り角が十分小さい時の単位横滑り角あたりのコーナーリングフォースである。また、上記式(6)の右辺の左端の「1/16」はステアリングハンドル5の回転角θの変化に対する前輪舵角δ1,δ2の感度であることは、前述の通りである。
In step S40, the steering angles δ3 and δ4 of the rear wheels 3 and 4 with respect to the rotation angle θ of the steering handle 5 are expressed by the following equation (6).
δ3 = δ4 = (1/16) [k0 / (1 + TeS) − (Kf / Kr) (TeS / (1 + TeS))] × θ (6)
The steering actuator 16 is controlled so that However, Te = IV / (2LLfKf + mLrV 2), K0 = - a [Lr + (mLf / 2LKr) KfV 2] / [Lf + (mLr / 2LKf) KrV 2]. In the equation (6), m [unit: kg] and I [unit: kgm 2] are the mass of the vehicle to be controlled and the yaw moment of inertia around the center of gravity of the vehicle shown in FIG. 3, and Kf, Kr [unit: N / rad] is a cornering force per unit side slip angle when the side slip angles of the front wheels 1 and 2 and the rear wheels 3 and 4 are sufficiently small. Further, as described above, “1/16” at the left end of the right side of the equation (6) is the sensitivity of the front wheel steering angles δ 1 and δ 2 with respect to the change in the rotation angle θ of the steering handle 5.

このように左右後輪3、4の舵角δ3,δ4の目標応答をステアリングハンドル5の回転角θに対して決定することによって、左右輪の駆動力差が0の場合には、車体横滑り角βを零化できることが知られている(「自動車の運動と制御」第8章8.3.1節,(著)安部正人,(出版)山海堂)。   Thus, by determining the target responses of the steering angles δ3 and δ4 of the left and right rear wheels 3 and 4 with respect to the rotation angle θ of the steering handle 5, when the difference in driving force between the left and right wheels is zero, the side slip angle of the vehicle body It is known that β can be nullified ("Motor Movement and Control", Chapter 8, Section 8.3.1, (Author) Masato Abe, (Publishing) Sankai-do).

ステップS50では、電動車両に対するドライバーの要求制駆動力tFを、下記の式(7)
tF=tFa+tFb ・・・(7)
の通り求める。式(7)中の要求駆動力tFaは、図4に示すように、アクセルペダル6の踏込量AP及び車速Vに対応した要求駆動力を、予めコントローラ8のROMに記録した要求駆動トルクマップに基づいて設定したものである。また、要求制動力tFbは、図5に示すように、ブレーキペダル7の踏込量BPに対応した要求制動力を、予めコントローラ8のROMに記録した要求制動力マップに基づいて設定したものである。また、要求駆動力tFおよびtFa、要求制動力tFbは、いずれも車両を前方に加速させる向きを正とする。
In step S50, the driver's required braking / driving force tF for the electric vehicle is expressed by the following equation (7).
tF = tFa + tFb (7)
Ask as follows. As shown in FIG. 4, the required driving force tFa in the equation (7) is a required driving torque map in which the required driving force corresponding to the depression amount AP of the accelerator pedal 6 and the vehicle speed V is recorded in the ROM of the controller 8 in advance. It is set based on. Further, as shown in FIG. 5, the required braking force tFb is obtained by setting a required braking force corresponding to the depression amount BP of the brake pedal 7 based on a required braking force map previously recorded in the ROM of the controller 8. . Further, the required driving forces tF and tFa and the required braking force tFb are positive in the direction in which the vehicle is accelerated forward.

ステップS60では、ステアリングハンドル5の回転角θと車両速度Vから、車両の左右輪駆動力差ΔF[単位:N]を、予めコントローラ8のROMに記憶しておいた目標左右駆動力差マップに基づいて設定する。この目標左右駆動力差マップは、例えば、図6に示すように、操舵角θと車速Vに対応して左右輪駆動力差ΔFを設定したものである。   In step S60, the left / right wheel driving force difference ΔF [unit: N] of the vehicle is calculated from the rotation angle θ of the steering handle 5 and the vehicle speed V in a target left / right driving force difference map stored in the ROM of the controller 8 in advance. Set based on. This target left / right driving force difference map is obtained by setting a left / right wheel driving force difference ΔF corresponding to the steering angle θ and the vehicle speed V, for example, as shown in FIG.

なお、ステップS50の前記要求駆動力やステップS60の左右輪駆動力差は、ドライバーによるアクセルペダル6の踏込量AP及び車速Vに対応した要求駆動力とブレーキペダル7の踏込量BPに対応した要求制動力との和による加減速方向の運動要求、および、ステアリングハンドル5の操舵による車両旋回方向の運動要求に基づいて設定するようにしているが、車両の運動要求としては、ドライバーによるこれらペダル6、7およびハンドル5の操作に限られることなく、例えば、緊急回避装置や車間距離を一定に保持させる自動追尾装置若しくは走行レーンを自動的に維持させるレーンキープ装置等の自動操縦装置よりの信号による前後加速度、横加速度およびヨーレートを加味した車両の運動要求に基づいて設定してもよい。   The difference between the required driving force in step S50 and the left and right wheel driving force in step S60 is a request corresponding to the required driving force corresponding to the depression amount AP of the accelerator pedal 6 and the vehicle speed V by the driver and the depression amount BP of the brake pedal 7. It is set based on the motion demand in the acceleration / deceleration direction based on the sum of the braking force and the motion demand in the vehicle turning direction due to the steering of the steering handle 5. , 7 and the operation of the steering wheel 5, for example, according to a signal from an automatic control device such as an emergency avoidance device, an automatic tracking device that keeps the distance between the vehicles constant, or a lane keeping device that automatically maintains the traveling lane You may set based on the motion request | requirement of the vehicle which considered the longitudinal acceleration, the lateral acceleration, and the yaw rate.

ステップS70では、各車輪1〜4の制駆動力Fx1,Fx2,Fx3,Fx4を、下記の式(8)および式(9)
Fx1=Fx2=(tF/4)−(ΔF/4) ・・・(8)
Fx3=Fx4=(tF/4)+(ΔF/4) ・・・(9)
により求める。なお、制駆動力Fx1,Fx2,Fx3,Fx4は、車両を前進させる方向に働く力を正とする。
In step S70, the braking / driving forces Fx1, Fx2, Fx3, and Fx4 of the wheels 1 to 4 are expressed by the following equations (8) and (9).
Fx1 = Fx2 = (tF / 4) − (ΔF / 4) (8)
Fx3 = Fx4 = (tF / 4) + (ΔF / 4) (9)
Ask for. The braking / driving forces Fx1, Fx2, Fx3, and Fx4 are positive forces acting in the direction of moving the vehicle forward.

ステップS80では、各車輪1〜4の横滑り角β1,β2,β3,β4[単位:rad]を推定する。この横滑り角(スリップ角ともいう)とは、車両の進行方向とタイヤの前後方向のなす現時点におけるスリップ角(現状スリップ角)のことである。推定方法については種々あるが、ここでは一例として次の方法を用いる。ステップS10で読込んだ横方向加速度Yg、ヨーレートγ、車速V、各輪舵角δ1,δ2,δ3,δ4から車体横滑り角βを推定する。その上でこの横滑り角βとヨーレートγと車速Vと操舵角θから、下記のように、横滑り角β1,β2,β3,β4を推定する。   In step S80, the sideslip angles β1, β2, β3, β4 [unit: rad] of the wheels 1 to 4 are estimated. The side slip angle (also referred to as slip angle) is the current slip angle (current slip angle) formed by the traveling direction of the vehicle and the front-rear direction of the tire. Although there are various estimation methods, the following method is used here as an example. The vehicle body side slip angle β is estimated from the lateral acceleration Yg, yaw rate γ, vehicle speed V, and wheel steering angles δ1, δ2, δ3, and δ4 read in step S10. Then, the sideslip angles β1, β2, β3, β4 are estimated from the sideslip angle β, the yaw rate γ, the vehicle speed V, and the steering angle θ as follows.

先ず、前記車体横滑り角βは、下記の式(10)
β=∫(Yg/V−γ)dt ・・・(10)
により推定する。
First, the vehicle body side slip angle β is expressed by the following equation (10).
β = ∫ (Yg / V−γ) dt (10)
Estimated by

次いで、各車輪1〜4の横滑り角β1,β2,β3,β4は、下記の式(11)および式(12)
β1=β2=β+(θ/Gs)−(γ×Lf/V) ・・・(11)
β3=β4=β+(γ×Lr/V) ・・・(12)
により推定する。ただし、β1,β2は前輪スリップ角、β3,β4は後輪スリップ角、Gsはステアリングギヤ15のギヤ比である。なお、β1,β2,β3,β4の符号は、車輪の前後方向から車輪速度の方向までの角度が鉛直上方から見て反時計回りになっている場合を正とする。
Next, the sideslip angles β1, β2, β3, and β4 of the wheels 1 to 4 are expressed by the following equations (11) and (12).
β1 = β2 = β + (θ / Gs) − (γ × Lf / V) (11)
β3 = β4 = β + (γ × Lr / V) (12)
Estimated by Here, β1, β2 are front wheel slip angles, β3, β4 are rear wheel slip angles, and Gs is a gear ratio of the steering gear 15. The signs of β1, β2, β3, and β4 are positive when the angle from the front-rear direction of the wheel to the direction of the wheel speed is counterclockwise when viewed from vertically above.

ステップS90では、各車輪1〜4の路面摩擦係数μ1,μ2,μ3,μ4を推定する。推定方法については種々あるが、ここでは一例として次の方法を用いる。先ず、各車輪1〜4が路面から受ける路面反力F'1〜F'4を推定し、この路面反力F'1〜F'4とステップS60で求めた輪荷重W1〜W4から各車輪1〜4の路面摩擦係数μ1,μ2,μ3,μ4を推定する。即ち、モータ11〜14には、電磁トルクTmが加えられ、車輪1〜4には路面反力F'に車輪半径Rを乗じた路面反力トルクが、モータ11〜14によるトルクと逆方向に加えられている。   In step S90, the road surface friction coefficients μ1, μ2, μ3, and μ4 of the wheels 1 to 4 are estimated. Although there are various estimation methods, the following method is used here as an example. First, the road surface reaction forces F′1 to F′4 that the wheels 1 to 4 receive from the road surface are estimated, and each wheel is determined from the road surface reaction forces F′1 to F′4 and the wheel loads W1 to W4 obtained in step S60. Estimate 1 to 4 road surface friction coefficients μ1, μ2, μ3, and μ4. That is, the electromagnetic torque Tm is applied to the motors 11 to 14, and the road surface reaction force torque obtained by multiplying the wheel surface reaction force F ′ by the wheel radius R is applied to the wheels 1 to 4 in the direction opposite to the torque by the motors 11 to 14. It has been added.

そして、各モータ11〜14と車輪1〜4とは直結状態であり、車軸のねじり剛性κが十分に大きいと仮定でき、車軸のねじり変形を無視して、モータ11〜14の回転速度と車輪1〜4の回転速度とは同一速度ωなる関係が成り立つとすると、モータ11〜14と車輪1〜4との回転系の運動方程式は、下記の式(13)
(Jm+Jw)ω’=Tm−Cmw・ω−Rmw−F・R ・・・(13)
にまとめられる。なお、Jm、Jwはモータ11〜14および車輪1〜4の慣性モーメント、Cm、Cwはモータ11〜14および車輪1〜4の回転系の粘性減衰定数、Rm、Rwはモータ11〜14および車輪1〜4の回転系の固体摩擦である。
The motors 11 to 14 and the wheels 1 to 4 are in a directly connected state, and it can be assumed that the torsional rigidity κ of the axle is sufficiently large, and the rotational speeds and wheels of the motors 11 to 14 are ignored ignoring the torsional deformation of the axle. Assuming that the same speed ω holds with the rotational speeds 1 to 4, the equation of motion of the rotational system of the motors 11 to 14 and the wheels 1 to 4 is expressed by the following formula (13):
(Jm + Jw) ω ′ = Tm−Cmw · ω−Rmw−F · R (13)
Are summarized in Jm and Jw are moments of inertia of the motors 11 to 14 and wheels 1 to 4, Cm and Cw are viscous damping constants of the rotation systems of the motors 11 to 14 and wheels 1 to 4, and Rm and Rw are motors 11 to 14 and wheels. It is the solid friction of 1-4 rotating systems.

その結果、路面反力F'は、上記の式(13)を用い、下記の式(14)
F'={Tm−(Jm+Jw)ω’−Cmw・ω−Rmw}/R ・・・(14)
として推定できる。従って、各車輪1〜4について夫々路面反力F'1〜F'4を推定して求める。
As a result, the road surface reaction force F ′ is expressed by the following equation (14) using the above equation (13).
F ′ = {Tm− (Jm + Jw) ω′−Cmw · ω−Rmw} / R (14)
Can be estimated. Therefore, the road surface reaction forces F′1 to F′4 are estimated and obtained for the wheels 1 to 4, respectively.

また、同様に推定した路面反力F'1〜F'4とタイヤ荷重W1〜W4とにより、下記の式(15)〜式(18)
μ1=F'1/W1 ・・・(15)
μ2=F'2/W2 ・・・(16)
μ3=F'3/W3 ・・・(17)
μ4=F'4/W4 ・・・(18)
を用い、路面摩擦係数μ1、μ2、μ3、μ4を推定することができる。前記式(14)、式(15)〜(18)で示されるような路面反力、路面摩擦係数の推定演算は、全てコントローラ8に記憶させているマイクロコンピュータのソフトウェアにより実現できる。
Similarly, the following formulas (15) to (18) are calculated based on the road surface reaction forces F′1 to F′4 and the tire loads W1 to W4 estimated in the same manner.
μ1 = F'1 / W1 (15)
μ2 = F'2 / W2 (16)
μ3 = F'3 / W3 (17)
μ4 = F'4 / W4 (18)
Can be used to estimate road surface friction coefficients μ1, μ2, μ3, and μ4. The estimation calculation of the road surface reaction force and the road surface friction coefficient as shown in the above formulas (14) and (15) to (18) can be realized by microcomputer software stored in the controller 8.

ステップS100では、各車輪1〜4のいずれかにおいて、スリップ或いは車輪ロックしているか若しくはその傾向が生じている場合に、当該車輪1〜4のスリップ或いは車輪ロックを防止するために必要な制駆動力補正量ΔFsi(i=1〜4)を求める。この制駆動力補正量ΔFsiの求め方としては、ステップS90で求めた、各輪1〜4が路面から受ける反力F'i(i=1〜4)とモータ11〜14のトルクによって発生する制駆動力Fx1との差を制駆動力補正量ΔFsi(ΔFsi=F'i−Fxi)とする。   In step S100, when any one of the wheels 1 to 4 slips or locks the wheel or the tendency is generated, the braking / driving necessary for preventing the slip or wheel lock of the wheel 1 to 4 is required. The force correction amount ΔFsi (i = 1 to 4) is obtained. The braking / driving force correction amount ΔFsi is obtained by the reaction force F′i (i = 1 to 4) received by each wheel 1 to 4 from the road surface and the torque of the motors 11 to 14 obtained in step S90. A difference from the braking / driving force Fx1 is defined as a braking / driving force correction amount ΔFsi (ΔFsi = F′i−Fxi).

なお、上記ステップS100では、いずれかの車輪1〜4がスリップ若しくはロックしているか若しくはその傾向が生じているかどうかを要因として、これを防止するために必要な制動力補正量ΔFsiを求めるようにしているが、このステップS100での制駆動力決定手段により決定された制駆動力を変更する要因として、例えば、いずれかの車輪1〜4のモータ11〜14またはモータ駆動系統の故障による性能低下や駆動力能力限界を超えた制駆動力指令に対する等の外乱要因や内部事情に対する受動的若しくは能動的な補正量ΔFsiを設定するものであってもよい。   In step S100, the braking force correction amount ΔFsi necessary to prevent this is determined based on whether any of the wheels 1 to 4 slips or locks or whether such a tendency occurs. However, as a factor for changing the braking / driving force determined by the braking / driving force determining means in step S100, for example, performance degradation due to a failure of the motors 11 to 14 of any of the wheels 1 to 4 or the motor drive system Alternatively, a passive or active correction amount ΔFsi for a disturbance factor such as a braking / driving force command exceeding a driving force capability limit or an internal situation may be set.

ステップS110では、制駆動力補正量ΔFsiの絶対値|ΔFsi|が、予め設定した閾値Fthより大きい車輪1〜4が1輪以上ある場合にはステップS120へ進み、そうでない場合にはステップS190へ進む。前記閾値Fthは、路面から受ける反力F'iと制駆動力Fxiとの差が大きくなる、即ち、スリップ或いは車輪ロックの傾向が強くなっていることを判断するための閾値であり、例えば、車両重量W(単位:N)の1%、即ち0.01W程度とするのが望ましい。なお、ステップS100での制駆動力の変更の要因に応じて前記閾値Fthを望ましい値に変更して使用する。   In step S110, if there is one or more wheels 1-4 where the absolute value | ΔFsi | of the braking / driving force correction amount ΔFsi is greater than a preset threshold value Fth, the process proceeds to step S120, and otherwise, the process proceeds to step S190. move on. The threshold value Fth is a threshold value for determining that the difference between the reaction force F′i received from the road surface and the braking / driving force Fxi is large, that is, the tendency of slip or wheel lock is strong. It is desirable that the vehicle weight W (unit: N) is 1%, that is, about 0.01 W. Note that the threshold value Fth is changed to a desired value according to the factor of change of the braking / driving force in step S100.

ステップS120では、車輪1〜4の内の複数の車輪が制駆動力補正を必要としている場合を鑑みて、制駆動力補正値ΔFsiの絶対値|ΔFsi|が最も大きくなっている車輪の制駆動力補正値ΔFsiをΔFkとする。   In step S120, the braking / driving of the wheel having the largest absolute value | ΔFsi | of the braking / driving force correction value ΔFsi is considered in consideration of the case where a plurality of wheels 1 to 4 require the braking / driving force correction. The force correction value ΔFsi is set to ΔFk.

このステップS120から後述するステップS170の間では、絶対値|ΔFsi|が最も大きくなっている車輪1〜4のいずれかをスリップ或いは車輪ロックの状態から回復させると共に、車両挙動(前後方向の加速度Xg,横方向の加速度Yg,車両重心周りのヨーモーメントM)を乱さない各輪1〜4の制駆動力補正量ΔFxi(i=1〜4)を求める。   Between step S120 and step S170 described later, one of the wheels 1 to 4 having the largest absolute value | ΔFsi | is recovered from the slip or wheel lock state, and the vehicle behavior (the longitudinal acceleration Xg , Lateral acceleration Yg, braking / driving force correction amount ΔFxi (i = 1 to 4) of each of the wheels 1 to 4 that does not disturb the yaw moment M around the center of gravity of the vehicle.

ステップS130では、|ΔFk|が閾値Fthb以下の場合にはフラグflgに「1」を設定し、ΔFkrにΔFkを設定する。また、|ΔFk|が閾値Fthbより大きい場合にはフラグflgに「0」を設定し、ΔFk>=0の場合にはΔFkr=Fthb、ΔFk<0の場合にはΔFkr=−Fthbとする。   In step S130, when | ΔFk | is equal to or smaller than the threshold value Fthb, “1” is set to the flag flg, and ΔFk is set to ΔFkr. If | ΔFk | is larger than the threshold value Fthb, “0” is set to the flag flg, ΔFkr = Fthb when ΔFk> = 0, and ΔFkr = −Fthb when ΔFk <0.

このフラグflgおよび閾値Fthbについて、以下に説明する。何れか1輪の駆動力が変化した、或いは任意に変化させたときに、車両挙動を乱さない残り3輪の制駆動力補正量ΔFxiを求める後述する式(20)では、この各輪の制駆動力変化量が微小であるということが前提条件になっている。従って、このΔFkが十分微小とできないほど大きな場合には式(20)を用いて残り3輪の駆動力補正量ΔFxiを正確に求めることが難しくなる。これを判断するフラグがflgであり、微小と仮定できないほど大きな変化である場合には「0」が、そうでない場合には「1」が設定される。   The flag flg and the threshold value Fthb will be described below. When the driving force of any one of the wheels changes or is arbitrarily changed, the following equation (20) for determining the braking / driving force correction amount ΔFxi of the remaining three wheels that does not disturb the vehicle behavior, It is a precondition that the amount of change in driving force is minute. Therefore, when ΔFk is too large to be sufficiently small, it is difficult to accurately obtain the driving force correction amount ΔFxi for the remaining three wheels using Expression (20). The flag for determining this is flg, and “0” is set when the change is so large that it cannot be assumed to be small, and “1” is set otherwise.

また、この微小と仮定できる制駆動力変化量の最大値の絶対値が閾値Fthbであり、ΔFkがこの閾値Fthb以上の場合には、駆動力補正値の絶対値|ΔFsi|が最も大きくなっている車輪の制駆動力が閾値Fthb変化したと仮置きして、後述するステップS150,S160で各輪の制駆動力Fxiを補正すると共に、ΔFk←ΔFk−Fthb(ΔFk>=0の場合,ステップS190)とする。   Further, when the absolute value of the maximum value of the braking / driving force variation that can be assumed to be minute is the threshold value Fthb, and when ΔFk is equal to or larger than the threshold value Fthb, the absolute value | ΔFsi | of the driving force correction value becomes the largest. Assuming that the braking / driving force of the wheel is changed by the threshold value Fthb, the braking / driving force Fxi of each wheel is corrected in steps S150 and S160 described later, and if ΔFk ← ΔFk−Fthb (ΔFk> = 0, step S190).

この処理をΔFkが十分小さくなる、即ち|ΔFk|<Fthbとなるまで繰り返すことによって、ΔFkが微小とできないほど大きい場合でも、残り3輪の制駆動力補正量ΔFxiが得られる。本実施例ではこの閾値Fthbを車両重量W[単位:N]の4%、即ち0.04Wとする。   By repeating this process until ΔFk becomes sufficiently small, that is, | ΔFk | <Fthb, the braking / driving force correction amount ΔFxi for the remaining three wheels can be obtained even when ΔFk is too small. In this embodiment, the threshold value Fthb is 4% of the vehicle weight W [unit: N], that is, 0.04 W.

ステップS140では、ステップS30〜S90で推定した輪荷重Wi,横滑り角βi,路面摩擦係数μi(i=1〜4)から、各輪1〜4の駆動力変化に対するタイヤ横力の感度ki(i=1〜4)を求める。感度kiの求め方を左前輪1の場合を例にとって説明する。   In step S140, the tire lateral force sensitivity ki (i (i) to the driving force change of each wheel 1 to 4 is calculated from the wheel load Wi, the side slip angle βi, and the road surface friction coefficient μi (i = 1 to 4) estimated in steps S30 to S90. = 1 to 4). The method for obtaining the sensitivity ki will be described by taking the case of the left front wheel 1 as an example.

コントローラ8のROMには、制駆動力Fx1とタイヤ横力Fy1との関係を、輪荷重W1,横滑り角β1,路面摩擦係数μ1毎に予め実験或いはシミュレーションによって求めておいた、図7に示すような、各車輪1〜4の輪荷重W1,横滑り角β1,路面摩擦係数μ1毎に、車輪1〜4の制駆動力−タイヤ横力マップを記憶させておく。   In the ROM of the controller 8, the relationship between the braking / driving force Fx1 and the tire lateral force Fy1 is obtained in advance for each wheel load W1, side slip angle β1, and road surface friction coefficient μ1 by experiment or simulation, as shown in FIG. A braking / driving force-tire lateral force map of the wheels 1 to 4 is stored for each wheel load W1, side slip angle β1, and road surface friction coefficient μ1 of each wheel 1 to 4.

そして、現在の制駆動力Fx1に対応するタイヤ横力Fy1と、次の時点の制駆動力(Fx1+dFx1)に対応する次の時点のタイヤ横力(Fy1+dFy1)とを、このマップを参照して求め、感度kiを、下記の式(19)
ki=dFy1/dFx1 ・・・(19)
に従って求める。ここで、制駆動力変化dFx1(単位:N、dFx1>0)は輪荷重W1と比較して十分微小な制駆動力である。即ち、制駆動力Fx1が微小な「dFx1」だけ変化した時のタイヤ横力Fy1の変化量dFy1を求めることによって、制駆動力Fx1の変化に対するタイヤ横力Fy1の感度kiを求める。
The tire lateral force Fy1 corresponding to the current braking / driving force Fx1 and the tire lateral force (Fy1 + dFy1) at the next time corresponding to the braking / driving force at the next time (Fx1 + dFx1) are obtained with reference to this map. , Sensitivity ki, the following equation (19)
ki = dFy1 / dFx1 (19)
Ask according to. Here, the braking / driving force change dFx1 (unit: N, dFx1> 0) is a sufficiently small braking / driving force as compared with the wheel load W1. That is, the sensitivity k i of the tire lateral force Fy1 to the change in the braking / driving force Fx1 is obtained by obtaining the change amount dFy1 of the tire lateral force Fy1 when the braking / driving force Fx1 changes by a minute “dFx1”.

車輪2〜4についても同様に制駆動力−タイヤ横力マップを用意しておき、輪荷重W2〜W4と比較して十分微小な制駆動力変化dFx2,dFx3,dFx4を定義してタイヤ横力の感度k2〜k4を求める。   Similarly, for the wheels 2 to 4, a braking / driving force-tire lateral force map is prepared, and the tire lateral force is defined by defining sufficiently small braking / driving force changes dFx2, dFx3, dFx4 as compared with the wheel loads W2 to W4. The sensitivities k2 to k4 are obtained.

ステップS150では、各輪の制駆動力補正量ΔFxi(i=1〜4)を求める。具体的には、制駆動力補正量ΔFsiの絶対値|ΔFsi|が最も大きくなっている車輪1〜4をスリップ或いは車輪ロックの状態から回復させると共に、車両挙動(前後方向の加速度Xg、横方向の加速度Yg、車両重心周りのヨーモーメントM)を乱さない各車輪1〜4の制駆動力補正量ΔFxi(i=1〜4)を、下記の式(20)
ΔFx1:ΔFx2:ΔFx3:ΔFx4
=[(Lt/L)(h4−h2)+h2(h4−h3)]/(cosδ1−k1sinδ1):[(−Lt/L)(h3−h1)−h1(h4−h3)]/(cosδ2−k2sinδ2):[(−Lt/L)(h4−h2)+h4(h2−h1)]/(cosδ3−k3sinδ3):[(Lt/L)(h3−h1)+h3(h2−h1)]/(cosδ4−k4sinδ4) ・・・(20)
ただし、hi=(sinδi+kicosδi)/(cosδi−kisinδi)
により求める。各輪1〜4の制駆動力補正量ΔFxiの比を上記式(20)の通りにすれば、前後方向の加速度Xg、横方向の加速度Yg、車両重心周りのヨーモーメントMの変化を抑えることができる。
In step S150, the braking / driving force correction amount ΔFxi (i = 1 to 4) of each wheel is obtained. Specifically, the wheels 1 to 4 having the largest absolute value | ΔFsi | of the braking / driving force correction amount ΔFsi are recovered from the slip or wheel lock state, and the vehicle behavior (the longitudinal acceleration Xg, the lateral direction) is restored. The acceleration / deceleration Yg and the braking / driving force correction amount ΔFxi (i = 1 to 4) of the wheels 1 to 4 that do not disturb the yaw moment M around the center of gravity of the vehicle are expressed by the following equation (20):
ΔFx1: ΔFx2: ΔFx3: ΔFx4
= [(Lt / L) (h4−h2) + h2 (h4−h3)] / (cosδ1−k1sinδ1): [(−Lt / L) (h3−h1) −h1 (h4−h3)] / (cosδ2− k2sinδ2): [(−Lt / L) (h4−h2) + h4 (h2−h1)] / (cosδ3−k3sinδ3): [(Lt / L) (h3−h1) + h3 (h2−h1)] / (cosδ4 -K4sinδ4) (20)
However, hi = (sinδi + kicosδi) / (cosδi−kisinδi)
Ask for. If the ratio of the braking / driving force correction amount ΔFxi of each of the wheels 1 to 4 is as shown in the above equation (20), the change in the longitudinal acceleration Xg, the lateral acceleration Yg, and the yaw moment M around the vehicle center of gravity is suppressed. Can do.

したがって、例えば、左前輪1の駆動力補正量の絶対値|ΔFs1|が他の車輪の駆動力補正量の絶対値|ΔFs1|〜|ΔFs4|の中で最も大きい場合には、各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を、下記の式(21)〜式(24)
ΔFx1=ΔFkr ・・・(21)
ΔFx2={[(−Lt/L)(h3−h1)−h1(h4−h3)]/[(Lt/L)(h4−h2)+h2(h4−h3)]}×[(cosδ1−k1sinδ1)/(cosδ2−k2sinδ2)]×ΔFkr ・・・(22)
ΔFx3={[(−Lt/L)(h4−h2)+h4(h2−h1)]/[(Lt/L)(h4−h2)+h2(h4−h3)]}×[(cosδ1−k1sinδ1)/(cosδ3−k3sinδ3)]×ΔFkr ・・・(23)
ΔFx4={[(Lt/L)(h3−h1)+h3(h2−h1)]/[(Lt/L)(h4−h2)+h2(h4−h3)]}×[(cosδ1−k1sinδ1)/(cosδ4−k4sinδ4)]×ΔFkr ・・・(24)
の通り求める。他の車輪の駆動力補正値の絶対値|ΔFsi|が駆動力補正値の絶対値|ΔFs1|〜|ΔFs4|の中で最も大きい場合についても、同様にして各輪1〜4の駆動力補正量ΔFxiを求める。
Therefore, for example, when the absolute value | ΔFs1 | of the driving force correction amount for the left front wheel 1 is the largest among the absolute values | ΔFs1 | to | ΔFs4 | 4 driving force correction amounts ΔFx1, ΔFx2, ΔFx3, and ΔFx4 are expressed by the following equations (21) to (24).
ΔFx1 = ΔFkr (21)
ΔFx2 = {[(− Lt / L) (h3−h1) −h1 (h4−h3)] / [(Lt / L) (h4−h2) + h2 (h4−h3)]} × [(cosδ1−k1sinδ1) / (Cosδ2-k2sinδ2)] × ΔFkr (22)
ΔFx3 = {[(− Lt / L) (h4−h2) + h4 (h2−h1)] / [(Lt / L) (h4−h2) + h2 (h4−h3)]} × [(cosδ1−k1sinδ1) / (cosδ3−k3sinδ3)] × ΔFkr (23)
ΔFx4 = {[(Lt / L) (h3−h1) + h3 (h2−h1)] / [(Lt / L) (h4−h2) + h2 (h4−h3)]} × [(cosδ1−k1sinδ1) / ( cosδ4−k4sinδ4)] × ΔFkr (24)
Ask as follows. Similarly, when the absolute value | ΔFsi | of the driving force correction values of the other wheels is the largest among the absolute values | ΔFs1 | to | ΔFs4 | of the driving force correction values, the driving force corrections of the wheels 1 to 4 are performed in the same manner. The quantity ΔFxi is determined.

なお、本実施例では各輪1〜4の舵角δ1,δ2,δ3,δ4をステップS10で直接計測し、式(20)に基づいて各輪1〜4の駆動力補正量ΔFxiを求めている。これは即ち、各輪1〜4の駆動力やタイヤ横力等がサスペンションに加わることによって発生する舵角変化(コンプライアンスステア,ロールステア等)を考慮して駆動力補正量ΔFxiを求めていることに他ならない。従って、各輪1〜4の舵角δiを直接検出する手段を有さず、ステアリングハンドル5の回転角θとステアリングギア比等から推定するような車両では、このサスペンション特性から舵角変化量を推定し、各輪1〜4の舵角δiの推定値を補正することによって駆動力補正量ΔFxiをより高精度に求めることができる。   In this embodiment, the steering angles δ1, δ2, δ3, and δ4 of the wheels 1 to 4 are directly measured in step S10, and the driving force correction amount ΔFxi of each of the wheels 1 to 4 is obtained based on the equation (20). Yes. That is, the driving force correction amount ΔFxi is obtained in consideration of the steering angle change (compliance steer, roll steer, etc.) generated by the driving force of each wheel 1 to 4 and the tire lateral force applied to the suspension. It is none other than. Therefore, in a vehicle that does not have a means for directly detecting the steering angle δi of each of the wheels 1 to 4 and is estimated from the rotation angle θ of the steering handle 5 and the steering gear ratio, the steering angle change amount is determined from this suspension characteristic. By estimating and correcting the estimated value of the steering angle δi of each of the wheels 1 to 4, the driving force correction amount ΔFxi can be obtained with higher accuracy.

ステップS160では、各輪1〜4の制駆動力Fxiを、下記の式(25)〜式(28)
Fx1←Fx1+ΔFx1 ・・・(25)
Fx2←Fx2+ΔFx2 ・・・(26)
Fx3←Fx3+ΔFx3 ・・・(27)
Fx4←Fx4+ΔFx4 ・・・(28)
の通り補正する。
In step S160, the braking / driving force Fxi of each of the wheels 1 to 4 is expressed by the following equations (25) to (28).
Fx1 ← Fx1 + ΔFx1 (25)
Fx2 ← Fx2 + ΔFx2 (26)
Fx3 ← Fx3 + ΔFx3 (27)
Fx4 ← Fx4 + ΔFx4 (28)
Correct as follows.

ステップS170では、フラグflgが「1」ならばステップS190へ進む。そうでないならば、ステップS180で、ΔFk>0ならばΔFk←ΔFk−Frhb、また、ΔFk<0ならばΔFk←ΔFk+Fthbとして、ステップS130に進む。   In step S170, if the flag flg is “1”, the process proceeds to step S190. Otherwise, in step S180, if ΔFk> 0, ΔFk ← ΔFk−Frhb, and if ΔFk <0, set ΔFk ← ΔFk + Fthb and proceed to step S130.

ステップS190では、新たな各車輪1〜4の制駆動力Fxiをそれぞれタイヤ半径Rで除した値、即ちトルク指令値をモータ11〜14が出力するようにインバータ31〜34への電流指令値制御を行う。   In step S190, current command value control to the inverters 31 to 34 is performed so that the motors 11 to 14 output a value obtained by dividing the braking / driving force Fxi of each of the new wheels 1 to 4 by the tire radius R, that is, a torque command value. I do.

ところで、本出願人は、先願(特願2004−205689、平成16年7月13日出願)において、四輪を独立に駆動する車両において、各輪の舵角δi(i=1〜4)が十分小さいという仮定の元で、何れか1輪の駆動力が変化した、或いは1輪の駆動力を任意に変化させる場合に、車両前後方向及び横方向の加速度と車両重心周りのヨーモーメントが変化しないようにする、残り3輪の駆動力補正量を求める四輪独立駆動車の駆動力配分装置を提案している。   By the way, in the prior application (Japanese Patent Application No. 2004-205789, filed on July 13, 2004), the present applicant has determined that the steering angle δi (i = 1 to 4) of each wheel in a vehicle that independently drives four wheels. Assuming that the driving force of any one wheel changes or the driving force of any one wheel is changed arbitrarily, the vehicle longitudinal and lateral accelerations and the yaw moment around the vehicle center of gravity are A driving force distribution device for a four-wheel independent driving vehicle that determines the driving force correction amount for the remaining three wheels so as not to change is proposed.

この先願による、車両前後方向及び横方向の加速度と車両重心周りのヨーモーメントが変化しない各輪の駆動力補正量の求め方について以降説明する。図13は、各輪の舵角δi(i=1〜4)が十分小さいという仮定の元で、4輪独立駆動車に加わる駆動力と横力と車両重心周りのヨーモーメントを表した図である。各輪の駆動力の総和Fxと、各輪のタイヤ横力の総和Fyと、各輪の駆動力とタイヤ横力の総和によって発生する車両重心周りのヨーモーメントの総和Mは、下記の式(29)〜(31)
Fx=Fx1+Fx2+Fx3+Fx4 ・・・(29)
Fy=Fy1+Fy2+Fy3+Fy4 ・・・(30)
M=[(Fx2+Fx4)−(Fx1+Fx3)]×Lt/2+[(Fy1+Fy2)×Lf−(Fy3+Fy4)×Lr] ・・・(31)
の通り表すことができる。
A method for obtaining the driving force correction amount for each wheel in which the acceleration in the vehicle longitudinal direction and the lateral direction and the yaw moment around the vehicle center of gravity according to this prior application will not change will be described below. FIG. 13 is a diagram showing the driving force and lateral force applied to the four-wheel independent driving vehicle and the yaw moment around the vehicle center of gravity on the assumption that the steering angle δi (i = 1 to 4) of each wheel is sufficiently small. is there. The sum Fx of the driving force of each wheel, the sum Fy of the tire lateral force of each wheel, and the sum M of the yaw moment around the vehicle center of gravity generated by the sum of the driving force and tire lateral force of each wheel are expressed by the following formula ( 29) to (31)
Fx = Fx1 + Fx2 + Fx3 + Fx4 (29)
Fy = Fy1 + Fy2 + Fy3 + Fy4 (30)
M = [(Fx2 + Fx4) − (Fx1 + Fx3)] × Lt / 2 + [(Fy1 + Fy2) × Lf− (Fy3 + Fy4) × Lr] (31)
Can be expressed as:

従って、駆動力Fxi(i=1〜4)が夫々変化量ΔFx1,ΔFx2,ΔFx3,ΔFx4だけ変化した場合、制駆動力Fxiがこの変化量ΔFxi(i=1〜4)だけ変化したときのタイヤ横力変化量をΔFyi(i=1〜4)とすると、制駆動力Fx,タイヤ横力Fy,ヨーモーメントMの各変化量ΔFx,ΔFy,ΔMは、下記の式(32)〜(34)
ΔFx=ΔFx1+ΔFx2+ΔFx3+ΔFx4 ・・・(32)
ΔFy=ΔFy1+ΔFy2+ΔFy3+ΔFy4 ・・・(33)
ΔM=[(ΔFx2+ΔFx4)−(ΔFx1+ΔFx3)]×Lt/2+[(ΔFy1+ΔFy2)×Lf−(ΔFy3+ΔFy4)×Lr] ・・・(34)
の通りになる。
Therefore, when the driving force Fxi (i = 1 to 4) changes by the change amounts ΔFx1, ΔFx2, ΔFx3, and ΔFx4, the tire when the braking / driving force Fxi changes by this change amount ΔFxi (i = 1 to 4). When the lateral force change amount is ΔFyi (i = 1 to 4), the change amounts ΔFx, ΔFy, ΔM of the braking / driving force Fx, the tire lateral force Fy, and the yaw moment M are expressed by the following equations (32) to (34).
ΔFx = ΔFx1 + ΔFx2 + ΔFx3 + ΔFx4 (32)
ΔFy = ΔFy1 + ΔFy2 + ΔFy3 + ΔFy4 (33)
ΔM = [(ΔFx2 + ΔFx4) − (ΔFx1 + ΔFx3)] × Lt / 2 + [(ΔFy1 + ΔFy2) × Lf− (ΔFy3 + ΔFy4) × Lr] (34)
It becomes as follows.

ここで、駆動力とタイヤ横力の関係は既に示した図7、詳しくは図9の通りである。そこで各輪の現在の駆動力Fxiとタイヤ横力Fyiにおける、駆動力変化量ΔFxiに対するタイヤ横力の感度をki(i=1〜4)とおく。即ち、横力感度kiは図9に示すように制駆動力変化量ΔFxi及びタイヤ横力変化量ΔFyiが微小の時の式(35)
ki=ΔFyi/ΔFxi ・・・(35)
の値である。
Here, the relationship between the driving force and the tire lateral force is as shown in FIG. 7 and FIG. 9 in detail. Therefore, the sensitivity of the tire lateral force with respect to the driving force change amount ΔFxi at the current driving force Fxi and tire lateral force Fyi of each wheel is set to ki (i = 1 to 4). That is, as shown in FIG. 9, the lateral force sensitivity ki is an expression (35) when the braking / driving force variation ΔFxi and the tire lateral force variation ΔFyi are very small.
ki = ΔFyi / ΔFxi (35)
Is the value of

すると、制駆動力変化量ΔFxi及びタイヤ横力変化量ΔFyiが微小であり、この式(35)の近似が十分成り立つとすると、タイヤ横力変化量は、ΔFyi=kiΔFxiとおけるので、式(33)〜(34)のタイヤ横力の総和ΔFy,ヨーモーメントの総和ΔMは、下記の式(36)〜(37)
ΔFy=k1ΔFx1+k2ΔFx2+k3ΔFx3+k4ΔFx4 ・・・(36)
ΔM=[(ΔFx2+ΔFx4)−(ΔFx1+ΔFx3)]×Lt/2+[(k1ΔFx1+k2ΔFx2)×Lf−(k3ΔFx3+k4ΔFx4)×Lr]
=(k1Lf−Lt/2)ΔFx1+(k2Lf+Lt/2)ΔFx2+(−k3Lr−Lt/2)ΔFx3+(k4Lr−Lt/2)ΔFx4 ・・・(37)
の通り置き換えられる。従って、式(32)及び式(36)、式(37)をまとめると、下記の式(38)の通り表される。
Then, if the braking / driving force change amount ΔFxi and the tire lateral force change amount ΔFyi are very small and the approximation of the equation (35) is sufficiently established, the tire lateral force change amount can be expressed as ΔFyi = kiΔFxi. ) To (34) of the tire lateral force total ΔFy and yaw moment total ΔM are expressed by the following equations (36) to (37).
ΔFy = k1ΔFx1 + k2ΔFx2 + k3ΔFx3 + k4ΔFx4 (36)
ΔM = [(ΔFx2 + ΔFx4) − (ΔFx1 + ΔFx3)] × Lt / 2 + [(k1ΔFx1 + k2ΔFx2) × Lf− (k3ΔFx3 + k4ΔFx4) × Lr]
= (K1Lf−Lt / 2) ΔFx1 + (k2Lf + Lt / 2) ΔFx2 + (− k3Lr−Lt / 2) ΔFx3 + (k4Lr−Lt / 2) ΔFx4 (37)
Is replaced as follows. Therefore, when the formula (32), the formula (36), and the formula (37) are put together, they are expressed as the following formula (38).

Figure 0004524597
上記式(38)の左辺、即ち、制駆動力変化量,タイヤ横力変化量,ヨーモーメント変化量の各総和ΔFx,ΔFy,ΔMを0とした下記の式(39)を満たす制駆動力補正量ΔFx2,ΔFx3,ΔFx4は、式(39)を制駆動力補正量ΔFx2,ΔFx3,ΔFx4に関する連立方程式と見立てて解くと、制駆動力補正量ΔFx1を用いて、下記の式(40)〜式(42)の通り表される。
Figure 0004524597
The braking / driving force correction satisfying the following equation (39) where the left side of the above equation (38), that is, the sum ΔFx, ΔFy, ΔM of the braking / driving force variation, tire lateral force variation, and yaw moment variation is 0. The quantities ΔFx2, ΔFx3, and ΔFx4 are obtained by solving the equation (39) as simultaneous equations regarding the braking / driving force correction amounts ΔFx2, ΔFx3, ΔFx4, and using the braking / driving force correction amount ΔFx1, (42)

Figure 0004524597
ΔFx2=〔[(−Lt/L)(k3−k1)−k1(k4−k3)]/[(Lt/L)(k4−k2)−k2(k4−k3)]〕×ΔFx1 ・・・(40)
ΔFx3=〔[(−Lt/L)(k4−k2)−k4(k2−k1)]/[(Lt/L)(k4−k2)−k2(k4−k3)]〕×ΔFx1 ・・・(41)
ΔFx4=〔[(Lt/L)(k3−k1)−k3(k2−k1)]/[(Lt/L)(k4−k2)−k2(k4−k3)]〕×ΔFx1 ・・・(42)
ただし、Lはホイールベース長さで、L=Lf+Lrである。
Figure 0004524597
ΔFx2 = [[(− Lt / L) (k3−k1) −k1 (k4−k3)] / [(Lt / L) (k4−k2) −k2 (k4−k3)]] × ΔFx1. 40)
ΔFx3 = [[(− Lt / L) (k4−k2) −k4 (k2−k1)] / [(Lt / L) (k4−k2) −k2 (k4−k3)]] × ΔFx1. 41)
ΔFx4 = [[(Lt / L) (k3−k1) −k3 (k2−k1)] / [(Lt / L) (k4−k2) −k2 (k4−k3)]] × ΔFx1 (42 )
Here, L is the wheelbase length, and L = Lf + Lr.

前記式(40)〜式(42)から明らかな通り、制駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4が、下記の式(43)
ΔFx1:ΔFx2:ΔFx3:ΔFx4
=(Lt/L)(k4−k2)−k2(k4−k3):(−Lt/L)(k3−k1)−k1(k4−k3):(−Lt/L)(k4−k2)−k4(k2−k1):(Lt/L)(k3−k1)−k3(k2−k1) ・・・(43)
の通りの比を取ると、制駆動力変化量,タイヤ横力変化量,ヨーモーメント変化量の各総和ΔFx=ΔFy=ΔM=0となり、制駆動力Fx,タイヤ横力Fy,ヨーモーメントMの変化を0にすることができる。
As is apparent from the equations (40) to (42), the braking / driving force correction amounts ΔFx1, ΔFx2, ΔFx3, ΔFx4 are expressed by the following equation (43).
ΔFx1: ΔFx2: ΔFx3: ΔFx4
= (Lt / L) (k4-k2) -k2 (k4-k3): (-Lt / L) (k3-k1) -k1 (k4-k3): (-Lt / L) (k4-k2)- k4 (k2-k1) :( Lt / L) (k3-k1) -k3 (k2-k1) (43)
The ratio of the braking / driving force variation, the tire lateral force variation, and the yaw moment variation is ΔFx = ΔFy = ΔM = 0, and the braking / driving force Fx, tire lateral force Fy, and yaw moment M are The change can be made zero.

以上より、各輪1〜4における駆動力変化に対するタイヤ横力の感度kiを定義すると、この感度kiに基づいて各輪1〜4の駆動力を式(43)の比率で変化させることによって、制駆動力Fxだけでなくタイヤ横力FyおよびヨーモーメントMの変化も0にすることができる。   From the above, when the sensitivity k i of the tire lateral force to the driving force change in each wheel 1 to 4 is defined, by changing the driving force of each wheel 1 to 4 at the ratio of the equation (43) based on this sensitivity ki, Not only braking / driving force Fx but also changes in tire lateral force Fy and yaw moment M can be made zero.

即ち、各輪1〜4の舵角δが十分小さい場合に、何れか1輪において駆動力が故障やスリップ等で駆動力が変化したり、任意に駆動力を変化させても、この1輪の制駆動力変化に対して残り3輪の駆動力を式(43)の比率で変化させれば、ドライバーの意図しない前後方向及び横方向の加速度と車両重心周りのヨーモーメントの変化を防ぐことができる。   That is, when the steering angle δ of each of the wheels 1 to 4 is sufficiently small, even if the driving force of any one wheel changes due to a failure, slip, etc., or the driving force changes arbitrarily, this one wheel If the driving force of the remaining three wheels is changed at a ratio of the expression (43) with respect to the braking / driving force change of the vehicle, it prevents the driver's unintended longitudinal and lateral acceleration and yaw moment around the vehicle's center of gravity. Can do.

しかしながら、上記先願では、各輪1〜4の舵角δが十分小さいという仮定が成り立つ場合において、何れか1輪の駆動力変化に対して、前後方向及び横方向の加速度と車両重心周りのヨーモーメントの変化を0とする残り3輪の駆動力補正量を求める技術を提案するものであり、旋回時に前輪舵角δ1、δ2を大きくする場合等、各輪1〜4の舵角δiが大きくなると、前提条件が成り立たなくなるので、何れか1輪の駆動力変化に対して、前後方向及び横方向の加速度と車両重心周りのヨーモーメントの変化を防ぐことができる残り3輪の駆動力補正量を求められなくなる恐れがある。   However, in the above-mentioned prior application, when it is assumed that the steering angle δ of each of the wheels 1 to 4 is sufficiently small, the acceleration in the front-rear direction and the lateral direction and the vehicle center of gravity around the center of gravity of the vehicle with respect to the driving force change of any one wheel A technique for determining the driving force correction amount for the remaining three wheels with zero change in yaw moment is proposed. When the front wheel steering angles δ1 and δ2 are increased during turning, the steering angles δi of the wheels 1 to 4 are Since the precondition is no longer satisfied when the value is increased, the driving force correction of the remaining three wheels that can prevent the change in the acceleration in the front and rear direction and the lateral direction and the yaw moment around the vehicle center of gravity with respect to the driving force change of any one wheel. You may not be able to ask for the amount.

一方、本実施形態においては、前記ステップS150で提案した式(20)に基づいて、各輪1〜4の制駆動力補正量ΔFxi(i=1〜4)を求めることにより、各輪1〜4の舵角δiが大きくなっても、車両挙動(前後方向の加速度Xg、横方向の加速度Yg、車両重心周りのヨーモーメントM)を乱さない、即ち、前後方向及び横方向の加速度と車両重心周りのヨーモーメントが変化しない各輪1〜4の駆動力補正量の求めることができる。   On the other hand, in the present embodiment, by calculating the braking / driving force correction amount ΔFxi (i = 1 to 4) of each wheel 1 to 4 based on the formula (20) proposed in step S150, each wheel 1 to 1 is obtained. 4 does not disturb the vehicle behavior (front-rear acceleration Xg, lateral acceleration Yg, yaw moment M around the vehicle center of gravity), that is, the longitudinal and lateral accelerations and the vehicle center of gravity. The driving force correction amount of each of the wheels 1 to 4 where the surrounding yaw moment does not change can be obtained.

以下に、前記ステップS150で提案した式(20)に基づいて、各輪1〜4の制駆動力補正量ΔFxi(i=1〜4)を求めることにより、各輪1〜4の舵角δiが大きくなっても、車両挙動(前後方向の加速度Xg、横方向の加速度Yg、車両重心周りのヨーモーメントM)を乱さない根拠、即ち、各輪1〜4の舵角δiが大きくなっても、前後方向及び横方向の加速度と車両重心周りのヨーモーメントが変化しない各輪1〜4の駆動力補正量の求め方について、以下に説明する。   In the following, the braking / driving force correction amount ΔFxi (i = 1 to 4) of each wheel 1 to 4 is obtained based on the formula (20) proposed in step S150, thereby the steering angle δi of each wheel 1 to 4. Even if the vehicle behavior (the longitudinal acceleration Xg, the lateral acceleration Yg, the yaw moment M around the center of gravity of the vehicle) is not disturbed, that is, even if the steering angle δi of each wheel 1 to 4 is increased. A method for obtaining the driving force correction amount of each wheel 1 to 4 in which the acceleration in the front and rear direction and the lateral direction and the yaw moment around the center of gravity of the vehicle do not change will be described below.

まず最初に、前後方向及び横方向の加速度Xg、Ygと車両重心周りのヨーモーメントMが変化しない各輪の駆動力補正量ΔFxiを、各輪1〜4の舵角δiを考慮して求める方法について図3を用いて説明する。図3は、4輪独立駆動車に加わる各輪1〜4の駆動力とタイヤ横力と車両重心周りのヨーモーメントを表した図である。なお、図3の車両ではサスペンションに加わる力によって発生するホイールアライメント変化や舵角変化等は十分小さいものと仮定し、これらサスペンション特性は無視している。   First, a method of obtaining the driving force correction amount ΔFxi of each wheel in which the longitudinal and lateral accelerations Xg, Yg and the yaw moment M around the center of gravity of the vehicle do not change in consideration of the steering angle δi of each wheel 1-4. Will be described with reference to FIG. FIG. 3 is a diagram showing the driving force, the tire lateral force, and the yaw moment around the center of gravity of the vehicle that are applied to the four-wheel independent driving vehicle. In the vehicle of FIG. 3, it is assumed that the wheel alignment change, the steering angle change, and the like generated by the force applied to the suspension are sufficiently small, and these suspension characteristics are ignored.

ここで図8のように各輪の舵角をδi(i=1〜4)だけ切った場合における、タイヤ力の車体前後方向成分Fx'i、及び車体横方向成分Fy'i は、下記の式(44)及び式(45)
Fx'i=Fxicosδi−Fyisinδi ・・・(44)
Fy'i=Fxisinδi+Fyicosδi ・・・(45)
の通り表される。ただし、車体前後方向成分Fx'iは車両を前方に加速する方向を、車体横方向成分Fy'iは車両が左旋回時に車両重心位置から旋回中心に向かう方向をそれぞれ正とする。
Here, when the steering angle of each wheel is cut by δi (i = 1 to 4) as shown in FIG. 8, the vehicle body longitudinal component Fx′i and the vehicle lateral component Fy′i of the tire force are as follows: Formula (44) and Formula (45)
Fx'i = Fxicosδi−Fyisinδi (44)
Fy'i = Fxisinδi + Fyicosδi (45)
It is expressed as follows. However, the vehicle body longitudinal component Fx′i is positive in the direction of accelerating the vehicle forward, and the vehicle body lateral component Fy′i is positive in the direction from the vehicle center of gravity to the turning center when the vehicle is turning left.

従って、制駆動力がΔFxiだけ変化したときのタイヤ横力変化量をΔFyiとすると、車体前後方向成分および車体横方向成分Fx'i,Fy'iの変化量ΔFx'i,ΔFy'iは、下記の式(46)及び式(47)
ΔFx'i=ΔFxicosδi−ΔFyisinδi ・・・(46)
ΔFy'i=ΔFxisinδi−ΔFyicosδi ・・・(47)
の通り表される。
Accordingly, if the tire lateral force change amount when the braking / driving force changes by ΔFxi is ΔFyi, the vehicle longitudinal component and the vehicle lateral component components Fx′i and Fy′i change amounts ΔFx′i and ΔFy′i are: The following formula (46) and formula (47)
ΔFx′i = ΔFxicosδi−ΔFyisinδi (46)
ΔFy′i = ΔFxisinδi−ΔFyicosδi (47)
It is expressed as follows.

更に、図9及び式(35)で定義した、各輪1〜4の現在の制駆動力Fxiとタイヤ横力Fyiにおける、微小な制駆動力変化量ΔFxiに対するタイヤ横力の感度kiを用いると、タイヤ横力変化量ΔFyi≒kiΔFxiと近似することができるので、車体前後方向成分および車体横方向成分ΔFx'i,ΔFy'iは、この感度kiを用いて、下記の式(48)及び式(49)
ΔFx'i=(cosδi−kisinδi)ΔFxi=piΔFxi (pi=cosδi−kisinδi) ・・・(48)
ΔFy'i=(sinδi+kicosδi)ΔFxi=qiΔFxi (qi=sinδi+kicosδi) ・・・(49)
の通り表すことができる。
Furthermore, when the tire lateral force sensitivity ki for the minute braking / driving force change ΔFxi in the current braking / driving force Fxi and the tire lateral force Fyi of each of the wheels 1 to 4 defined by FIG. 9 and Expression (35) is used. Since the tire lateral force change amount ΔFyi≈kiΔFxi can be approximated, the vehicle longitudinal component and the vehicle lateral components ΔFx′i and ΔFy′i are expressed by the following equation (48) and equation using the sensitivity ki. (49)
ΔFx′i = (cosδi−kisinδi) ΔFxi = piΔFxi (pi = cosδi−kisinδi) (48)
ΔFy′i = (sinδi + kicosδi) ΔFxi = qiΔFxi (qi = sinδi + kicosδi) (49)
Can be expressed as:

従って、各輪1〜4の舵角δiがついた図3の状態において、タイヤ力の総和の車体前後方向成分Fxと、タイヤ力の総和の車体横方向成分Fyと、各輪1〜4のタイヤ力によって発生する車両重心周りのヨーモーメントの総和Mは、下記の式(50)〜(52)
Fx=Fx'1+Fx'2+Fx'3+Fx'4 ・・・(50)
Fy=Fy'1+Fy'2+Fy'3+Fy'4 ・・・(51)
M=[(Fx'2+Fx'4)−(Fx'1+Fx'3)]×Lt/2+[(Fy'1+Fy'2)×Lf−(Fy'3+Fy'4)×Lr] ・・・(52)
の通り表すことができる。ただし、ヨーモーメントの総和Mは、図3の通り車両を鉛直上方からみたときに反時計回りを正とする。
Therefore, in the state of FIG. 3 with the steering angles δi of the wheels 1 to 4, the vehicle body longitudinal component Fx of the total tire force, the vehicle lateral component Fy of the total tire force, and the wheels 1 to 4 The sum M of the yaw moment around the center of gravity of the vehicle generated by the tire force is expressed by the following equations (50) to (52).
Fx = Fx'1 + Fx'2 + Fx'3 + Fx'4 (50)
Fy = Fy'1 + Fy'2 + Fy'3 + Fy'4 (51)
M = [(Fx′2 + Fx′4) − (Fx′1 + Fx′3)] × Lt / 2 + [(Fy′1 + Fy′2) × Lf− (Fy′3 + Fy′4) × Lr] (52)
Can be expressed as: However, the sum M of yaw moments is positive in the counterclockwise direction when the vehicle is viewed from above as shown in FIG.

従って、各輪1〜4の制駆動力Fxiがそれぞれ補正量ΔFxiだけ変化したときの制駆動力Fx、タイヤ横力FyおよびヨーモーメントMの変化量ΔFx,ΔFy,ΔMは式(48)および式(49)のpi,qiを用いて、下記の式(53)〜(55)
ΔFx=ΔFx'1+ΔFx'2+ΔFx'3+ΔFx'4=p1ΔFx1+p2ΔFx2+p3ΔFx3+p4ΔFx4 ・・・(53)
ΔFy=ΔFy'1+ΔFy'2+ΔFy'3+ΔFy'4=q1ΔFx1+q2ΔFx2+q3ΔFx3+q4ΔFx4 ・・・(54)
ΔM=[(ΔFx'2+ΔFx'4)−(ΔFx'1+ΔFx'3)]×Lt/2+[(ΔFy'1+ΔFy'2)×Lf−(ΔFy'3+ΔFy'4)×Lr]
=[−(p1Lt/2)+q1Lf]ΔFx1+[(p2Lt/2)+q2Lf]ΔFx2+[−(p3Lt/2)−q3Lr]ΔFx3+[(p4Lt/2)−q4Lr]ΔFx4 ・・・(55)
の通り表される。
Therefore, the braking / driving force Fx, the tire lateral force Fy, and the yaw moment M variation ΔFx, ΔFy, ΔM when the braking / driving force Fxi of each of the wheels 1 to 4 is changed by the correction amount ΔFxi, respectively, Using pi and qi of (49), the following equations (53) to (55)
ΔFx = ΔFx′1 + ΔFx′2 + ΔFx′3 + ΔFx′4 = p1ΔFx1 + p2ΔFx2 + p3ΔFx3 + p4ΔFx4 (53)
ΔFy = ΔFy′1 + ΔFy′2 + ΔFy′3 + ΔFy′4 = q1ΔFx1 + q2ΔFx2 + q3ΔFx3 + q4ΔFx4 (54)
ΔM = [(ΔFx′2 + ΔFx′4) − (ΔFx′1 + ΔFx′3)] × Lt / 2 + [(ΔFy′1 + ΔFy′2) × Lf− (ΔFy′3 + ΔFy′4) × Lr]
= [-(P1Lt / 2) + q1Lf] ΔFx1 + [(p2Lt / 2) + q2Lf] ΔFx2 + [− (p3Lt / 2) −q3Lr] ΔFx3 + [(p4Lt / 2) −q4Lr] ΔFx4 (55)
It is expressed as follows.

前記した式(53)〜(55)をまとめると下記の式(56)の通り表すことができる。   The above formulas (53) to (55) can be summarized as the following formula (56).

Figure 0004524597
上記した式(56)の左辺、即ち制駆動力Fx、タイヤ横力FyおよびヨーモーメントMの変化量ΔFx,ΔFy,ΔMを0とした下記の式(57)を満たす他の車輪2〜4の制駆動力補正量ΔFx2,ΔFx3,ΔFx4は、式(57)を他の車輪2〜4の制駆動力補正量ΔFx2,ΔFx3,ΔFx4に関する連立方程式と見立てて解くと左前輪1の制駆動力ΔFx1を用いて、下記の式(58)〜式(60)
Figure 0004524597
Other wheels 2 to 4 satisfying the following expression (57) where the left side of the above expression (56), that is, the braking / driving force Fx, tire lateral force Fy, and yaw moment M variation ΔFx, ΔFy, ΔM is set to zero. The braking / driving force correction amounts ΔFx2, ΔFx3, ΔFx4 can be obtained by solving Equation (57) as simultaneous equations relating to the braking / driving force correction amounts ΔFx2, ΔFx3, ΔFx4 of the other wheels 2-4. Using the following formula (58) to formula (60)

Figure 0004524597
ΔFx2=〔[q1(p4q3−p3q4)L+p4(p3q1−p1q3)Lt]/[q2(p3q4−p4q3)L+p3(p2q4−p4q2)Lt]〕×ΔFx1 ・・・(58)
ΔFx3=〔[q4(p2q1−p1q2)L+p1(p4q2−p2q4)Lt]/[q2(p3q4−p4q3)L+p3(p2q4−p4q2)Lt]〕×ΔFx1 ・・・(59)
ΔFx4=〔[q3(p1q2−p2q1)L+p2(p1q3−p3q1)Lt]/[q2(p3q4−p4q3)L+p3(p2q4−p4q2)Lt]〕×ΔFx1 ・・・(60)
の通り表される。
Figure 0004524597
ΔFx2 = [[q1 (p4q3-p3q4) L + p4 (p3q1-p1q3) Lt] / [q2 (p3q4-p4q3) L + p3 (p2q4-p4q2) Lt]] × ΔFx1 (58)
ΔFx3 = [[q4 (p2q1-p1q2) L + p1 (p4q2-p2q4) Lt] / [q2 (p3q4-p4q3) L + p3 (p2q4-p4q2) Lt]] × ΔFx1 (59)
ΔFx4 = [[q3 (p1q2-p2q1) L + p2 (p1q3-p3q1) Lt] / [q2 (p3q4-p4q3) L + p3 (p2q4-p4q2) Lt]] × ΔFx1 (60)
It is expressed as follows.

前記した式(58)〜式(60)から明らかな通り、各輪1〜4の制駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4が、前記した下記の式(20)
ΔFx1:ΔFx2:ΔFx3:ΔFx4
=q2(p3q4−p4q3)L+p3(p2q4−p4q2)Lt:q1(p4q3−p3q4)L+p4(p3q1−p1q3)Lt:q4(p2q1−p1q2)L+p1(p4q2−p2q4)Lt]:q3(p1q2−p2q1)L+p2(p1q3−p3q1)Lt
=[(Lt/L)(h4−h2)+h2(h4−h3)]/(cosδ1−k1sinδ1):[(−Lt/L)(h3−h1)−h1(h4−h3)]/(cosδ2−k2sinδ2):[(−Lt/L)(h4−h2)+h4(h2−h1)]/(cosδ3−k3sinδ3):[(Lt/L)(h3−h1)+h3(h2−h1)]/(cosδ4−k4sinδ4) ・・・(20)
ただし、hi=(sinδi+kicosδi)/(cosδi−kisinδi)
の通りの比を取ると、制駆動力Fx、タイヤ横力FyおよびヨーモーメントMの変化量ΔFx=ΔFy=ΔM=0となる。
As apparent from the equations (58) to (60), the braking / driving force correction amounts ΔFx1, ΔFx2, ΔFx3, and ΔFx4 of the wheels 1 to 4 are the following equations (20).
ΔFx1: ΔFx2: ΔFx3: ΔFx4
= Q2 (p3q4-p4q3) L + p3 (p2q4-p4q2) Lt: q1 (p4q3-p3q4) L + p4 (p3q1-p1q3) Lt: q4 (p2q1-p1q2) L + p1 (p4q2-p2q4) p1 (q3) p L + p2 (p1q3-p3q1) Lt
= [(Lt / L) (h4−h2) + h2 (h4−h3)] / (cosδ1−k1sinδ1): [(−Lt / L) (h3−h1) −h1 (h4−h3)] / (cosδ2− k2sinδ2): [(−Lt / L) (h4−h2) + h4 (h2−h1)] / (cosδ3−k3sinδ3): [(Lt / L) (h3−h1) + h3 (h2−h1)] / (cosδ4 -K4sinδ4) (20)
However, hi = (sinδi + kicosδi) / (cosδi−kisinδi)
When the ratio is taken as follows, the change amount ΔFx = ΔFy = ΔM = 0 of the braking / driving force Fx, the tire lateral force Fy, and the yaw moment M is obtained.

従って、何れか1輪の制駆動力が車輪1〜4のスリップやモータの故障等で変化した場合、或いは何れか1輪の制駆動力を任意に変化させた場合、残り3輪の制駆動力変化量ΔFxiを式(20)の比となるようにすれば、各輪の舵角δiが無視できないほど大きい場合でも、タイヤ力の総和の車体前後方向成分Fxと、タイヤ力の総和の車体横方向成分Fyと、各輪のタイヤ力によって発生する車体重心周りのヨーモーメントの総和Mの変化を0にすることができる。   Therefore, if the braking / driving force of any one wheel changes due to slipping of the wheels 1 to 4 or a motor failure, or if any braking / driving force of any one wheel is changed arbitrarily, braking / driving of the remaining three wheels If the force change amount ΔFxi is set to the ratio of the equation (20), the vehicle body longitudinal component Fx of the total tire force and the vehicle body of the total tire force even when the steering angle δi of each wheel is not negligible. The change in the sum M of the yaw moment around the center of gravity of the vehicle body generated by the lateral component Fy and the tire force of each wheel can be made zero.

ところで、ステップS60〜ステップS70において、各輪1〜4の駆動力配分をステップS30で求めた輪荷重比となるように、即ち、下記の式(61)〜式(64)
Fx1=(W1/(W1+W2+W3+W4))×tF ・・・(61)
Fx2=(W2/(W1+W2+W3+W4))×tF ・・・(62)
Fx3=(W3/(W1+W2+W3+W4))×tF ・・・(63)
Fx4=(W4/(W1+W2+W3+W4))×tF ・・・(64)
の通り設定した場合には、制駆動力補正値ΔFsiが十分小さい、即ち軽微なスリップ等の場合(フラグflgが「1」の場合)には、ステップS150において、以下に説明するように、各輪の制駆動力補正量ΔFxiを求めても良い。
By the way, in step S60 to step S70, the driving force distribution of each wheel 1 to 4 is set to the wheel load ratio obtained in step S30, that is, the following equations (61) to (64).
Fx1 = (W1 / (W1 + W2 + W3 + W4)) × tF (61)
Fx2 = (W2 / (W1 + W2 + W3 + W4)) × tF (62)
Fx3 = (W3 / (W1 + W2 + W3 + W4)) × tF (63)
Fx4 = (W4 / (W1 + W2 + W3 + W4)) × tF (64)
When the braking / driving force correction value ΔFsi is sufficiently small, that is, a slight slip or the like (when the flag flg is “1”), in step S150, as described below, The braking / driving force correction amount ΔFxi of the wheel may be obtained.

即ち、車体のロール(サスペンション特性)を無視し、一定速度で走行している車両の水平面の運動を考えた場合、前後輪1〜4とも左右輪の舵角δiが等しいので、前後輪ともに左右輪の滑り角βi(i=1〜4)が等しいものと近似できることが知られている(「自動車の運動と制御」第3章3.2.1節,(著)安部正人,(出版)山海堂)。   That is, ignoring the roll (suspension characteristics) of the vehicle body and considering the movement of the horizontal plane of the vehicle running at a constant speed, the left and right wheels have the same rudder angle δi. It is known that the wheel slip angle βi (i = 1 to 4) can be approximated to be equal ("Motor Movement and Control", Chapter 3, Section 3.2.1, (Author) Masato Abe, (Publishing) Sankaido).

駆動力とタイヤ横力との関係を表す曲線は、図7及び図9からもわかるように、図10に示すような楕円(各輪1〜4とも長半径は輪荷重Wiに路面摩擦係数μiを乗じたμi×Wiと等しい)で近似することができる。また、この楕円の短半径も輪荷重Wiや路面摩擦係数μiにほぼ比例して変化すると近似することができる。   As shown in FIGS. 7 and 9, the curve representing the relationship between the driving force and the tire lateral force is an ellipse as shown in FIG. 10 (the long radius of each wheel 1 to 4 is the wheel load Wi and the road surface friction coefficient μi). (Equal to μi × Wi multiplied by). Further, it can be approximated that the short radius of the ellipse also changes substantially in proportion to the wheel load Wi and the road surface friction coefficient μi.

従って、左右輪の滑り角が等しいと、図10に示す左右前輪1、2の例のようにこの駆動力とタイヤ横力との関係を近似した楕円は左右輪でほぼ相似形となるので、左右輪の駆動力配分を輪荷重比と等しくすると、左右輪で駆動力変化に対するタイヤ横力の感度kiがほぼ等しくなる、即ち、各輪1〜4の感度がk1=k2,k3=k4と近似できる状態になる。   Therefore, if the slip angles of the left and right wheels are equal, an ellipse that approximates the relationship between the driving force and the tire lateral force as in the example of the left and right front wheels 1 and 2 shown in FIG. When the left and right wheel driving force distribution is made equal to the wheel load ratio, the sensitivity k i of the tire lateral force with respect to changes in driving force is substantially equal on the left and right wheels, that is, the sensitivity of each wheel 1-4 is k1 = k2 and k3 = k4. It can be approximated.

これは、タイヤの摩擦円に対する駆動力比を左右輪で等しくする、即ち、左右各輪の負担を均等化するように駆動力配分を行っている状態である。タイヤ接地面で発生する駆動力とタイヤ横力の合力(摩擦力)は、基本的にはそのタイヤの輪荷重以上にはならないため、輪荷重に応じて駆動力とタイヤ横力の合力(摩擦力)が左右各輪で発生させるということは、左右各輪の負担を均一化する、即ち、左右何れか片方の車輪でスリップやロックが発生し易い状態にならないようにする駆動力配分で走行している状態を指す。   This is a state in which the driving force is distributed so that the ratio of the driving force to the friction circle of the tire is equal between the left and right wheels, that is, the load on the left and right wheels is equalized. The resultant force (frictional force) between the driving force and tire lateral force generated on the tire contact surface basically does not exceed the wheel load of the tire, so the resultant force (frictional force) of the driving force and tire lateral force depends on the wheel load. The force generated by the left and right wheels equalizes the load on each of the left and right wheels, that is, the driving force is distributed so that slipping or locking is not likely to occur on either the left or right wheels. Refers to the state of

このような走行状態(走行状態[1])においては、各輪1〜4の舵角がδ1=δ2,δ3=δ4且つ各輪1〜4の感度がk1=k2,k3=k4と近似でき、前記ステップS150での前後方向の加速度Xg、横方向の加速度Yg、車両重心周りのヨーモーメントMを乱さない各車輪1〜4の制駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4の比を下記の式(65)
ΔFx1:ΔFx2:ΔFx3:ΔFx4
=(cosδ3−k3sinδ3):−(cosδ3−k3sinδ3):−(cosδ1−k1sinδ1):(cosδ1−k1sinδ1) ・・・(65)
の通り決定することができ、前後及び横方向の加速度と車両重心周りのヨーモーメントの変化を抑える各輪1〜4の制駆動力の補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を、より高精度に求めることができる。
In such a traveling state (traveling state [1]), the steering angles of the wheels 1 to 4 can be approximated as δ1 = δ2, δ3 = δ4, and the sensitivity of the wheels 1 to 4 can be approximated as k1 = k2 and k3 = k4. The ratio of the longitudinal acceleration Xg, the lateral acceleration Yg, and the braking / driving force correction amounts ΔFx1, ΔFx2, ΔFx3, ΔFx4 of the wheels 1 to 4 that do not disturb the yaw moment M around the center of gravity of the vehicle in the step S150 is as follows. Equation (65)
ΔFx1: ΔFx2: ΔFx3: ΔFx4
= (Cosδ3-k3sinδ3) :-( cosδ3-k3sinδ3) :-( cosδ1-k1sinδ1) :( cosδ1-k1sinδ1) (65)
The correction amounts ΔFx1, ΔFx2, ΔFx3, and ΔFx4 of the braking / driving forces of the wheels 1 to 4 that suppress changes in the longitudinal and lateral acceleration and the yaw moment around the center of gravity of the vehicle can be determined with higher accuracy. Can be sought.

即ち、各輪1〜4の舵角δiが、δ1=δ2,δ3=δ4且つ各輪1〜4の感度kiが、k1=k2,k3=k4と近似できる場合には、前述の式(20)において、各輪1〜4の舵角δiがδ1=δ2,δ3=δ4且つ各輪1〜4の感度kiがk1=k2,k3=k4と設定すると、下記の式(66)〜式(67)
h1=h2=(sinδ1+k1cosδ1)/(cosδ1−k1sinδ1),h3=h4=(sinδ3+k3cosδ3)/(cosδ3−k3sinδ3) (∴δ1=δ2,δ3=δ4,k1=k2,k3=k4) ・・・(66)

ΔFx1:ΔFx2:ΔFx3:ΔFx4
=[(Lt/L)(h4−h2)+h2(h4−h3)]/(cosδ1−k1sinδ1):[(−Lt/L)(h3−h1)−h1(h4−h3)]/(cosδ2−k2sinδ2):[(−Lt/L)(h4−h2)+h4(h2−h1)]/(cosδ3−k3sinδ3):[(Lt/L)(h3−h1)+h3(h2−h1)]/(cosδ4−k4sinδ4)
=[(L/Lt)(h3−h1)+h1(h3−h3)]/(cosδ1−k1sinδ1):[(−L/Lt)(h3−h1)−h1(h3−h3)]/(cosδ1−k1sinδ1):[(−L/Lt)(h3−h1)+h3(h1−h1)]/(cosδ3−k3sinδ3):[(L/Lt)(h3−h1)+h3(h1−h1)]/(cosδ3−k3sinδ3)
=1/(cosδ1−k1sinδ1):−1/(cosδ1−k1sinδ1):−1/(cosδ3−k3sinδ3):1/(cosδ3−k3sinδ3)
=(cosδ3−k3sinδ3):−(cosδ3−k3sinδ3):−(cosδ1−k1sinδ1):(cosδ1−k1sinδ1) ・・・(67)
(∴δ1=δ2,δ3=δ4,k1=k2,k3=k4,h1=h2,h3=h4)
の通り式変形ができることで説明できる。
That is, when the steering angle δi of each wheel 1 to 4 can be approximated as δ1 = δ2, δ3 = δ4 and the sensitivity ki of each wheel 1 to 4 can be approximated as k1 = k2, k3 = k4, the above equation (20 ), The steering angles δi of the wheels 1 to 4 are set to δ1 = δ2, δ3 = δ4, and the sensitivities ki of the wheels 1 to 4 are set to k1 = k2 and k3 = k4. 67)
h1 = h2 = (sinδ1 + k1cosδ1) / (cosδ1−k1sinδ1), h3 = h4 = (sinδ3 + k3cosδ3) / (cosδ3−k3sinδ3) (∴δ1 = δ2, δ3 = δ4, k1 = k2, k3 = k4) (66) )

ΔFx1: ΔFx2: ΔFx3: ΔFx4
= [(Lt / L) (h4−h2) + h2 (h4−h3)] / (cosδ1−k1sinδ1): [(−Lt / L) (h3−h1) −h1 (h4−h3)] / (cosδ2− k2sinδ2): [(−Lt / L) (h4−h2) + h4 (h2−h1)] / (cosδ3−k3sinδ3): [(Lt / L) (h3−h1) + h3 (h2−h1)] / (cosδ4 -K4sinδ4)
= [(L / Lt) (h3−h1) + h1 (h3−h3)] / (cosδ1−k1sinδ1): [(−L / Lt) (h3−h1) −h1 (h3−h3)] / (cosδ1− k1sinδ1): [(−L / Lt) (h3−h1) + h3 (h1−h1)] / (cosδ3−k3sinδ3): [(L / Lt) (h3−h1) + h3 (h1−h1)] / (cosδ3) −k3sinδ3)
= 1 / (cosδ1-k1sinδ1):-1 / (cosδ1-k1sinδ1):-1 / (cosδ3-k3sinδ3): 1 / (cosδ3-k3sinδ3)
= (Cosδ3-k3sinδ3) :-( cosδ3-k3sinδ3) :-( cosδ1-k1sinδ1) :( cosδ1-k1sinδ1) (67)
(∴δ1 = δ2, δ3 = δ4, k1 = k2, k3 = k4, h1 = h2, h3 = h4)
This can be explained by the fact that the equation can be modified as follows.

そして、さらに、図7及び図9からわかるように、各輪1〜4の滑り角βiが大きく且つ駆動力がほぼ0と近似できる場合や駆動力の大小によらず各輪1〜4の滑り角βiが小さい場合、例えば、各輪1〜4の滑り角βiが十分小さい直進時、或いは各輪1〜4の滑り角βiが大きくなる旋回時において各輪1〜4がほとんど制駆動力を出力しない定速走行或いは緩減速等の車両の走行状態においては、各輪1〜4の舵角δiがδ1=δ2,δ3=δ4の関係となり且つ各輪1〜4の感度kiがk1=k2=k3=k4=0と近似できる。   Further, as can be seen from FIG. 7 and FIG. 9, the slipping of each of the wheels 1 to 4 regardless of the case where the sliding angle βi of each of the wheels 1 to 4 is large and the driving force can be approximated to zero or the magnitude of the driving force. When the angle βi is small, for example, when the vehicle travels straight when the slip angle βi of each of the wheels 1 to 4 is sufficiently small, or when the wheel 1 to 4 has a large slip angle βi, the wheels 1 to 4 almost have braking / driving force. In a running state of the vehicle such as constant speed running or slow deceleration that is not output, the steering angles δi of the wheels 1 to 4 are in the relationship of δ1 = δ2, δ3 = δ4, and the sensitivity ki of each of the wheels 1 to 4 is k1 = k2. = K3 = k4 = 0.

このような車両の走行状態(走行状態[2])においては、前記ステップS150での前後方向の加速度Xg、横方向の加速度Yg、車両重心周りのヨーモーメントMを乱さない各車輪1〜4の制駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4の比を、cosδ3:−cosδ3:−cosδ1:cosδ1とより平易に求めることができ、演算を行う計算機(コントローラ8)のメモリや処理の低減が期待できる。言い換えると、前後輪共に左右輪の駆動力補正量の和がほぼ0に、且つ前輪1、2の舵角δ1、δ2が後輪3、4の舵角δ3、δ4に対して大きくなるにつれて右後輪4の駆動力補正量ΔFx4を左前輪1の駆動力補正量ΔFx1に対して小さくする構成となる。   In such a running state of the vehicle (running state [2]), the front-rear direction acceleration Xg, the lateral acceleration Yg, and the yaw moment M around the center of gravity of the vehicle are not affected. The ratio of braking / driving force correction amounts ΔFx1, ΔFx2, ΔFx3, and ΔFx4 can be calculated more simply as cosδ3: -cosδ3: -cosδ1: cosδ1, and reduction in memory and processing of the computer (controller 8) that performs the calculation is expected. it can. In other words, as the sum of the driving force correction amounts of the left and right wheels is substantially zero for both the front and rear wheels, and the steering angles δ1 and δ2 of the front wheels 1 and 2 become larger than the steering angles δ3 and δ4 of the rear wheels 3 and 4, the right The driving force correction amount ΔFx4 for the rear wheel 4 is made smaller than the driving force correction amount ΔFx1 for the left front wheel 1.

即ち、各輪1〜4の舵角δiがδ1=δ2,δ3=δ4且つ各輪1〜4の感度kiがk1=k2=k3=k4=0と近似できる場合には、前述の式(20)において、各輪1〜4の感度kiをk1=k2=k3=k4=0と設定すると、下記の式(68)
ΔFx1:ΔFx2:ΔFx3:ΔFx4
=1:−1:−(cosδ1−k1sinδ1)/(cosδ3−k3sinδ3):(cosδ1−k1sinδ1)/(cosδ3−k3sinδ3)
=1:−1:−cosδ1/cosδ3:cosδ1/cosδ3
=cosδ3:−cosδ3:−cosδ1:cosδ1 (∴k1=k2=k3=k4=0) ・・・(68)
の通り式変形ができ、この式(37)から左右後輪3、4の舵角δ3=δ4の絶対値に対して左右前輪1、2の舵角δ1=δ2の絶対値が大きくなるにつれて右後輪4の制駆動力補正量ΔFx4の絶対値は左前輪1の制駆動力補正量ΔFx1の絶対値に対して小さくすることが説明できる。
That is, when the steering angle δi of each wheel 1 to 4 can be approximated as δ1 = δ2, δ3 = δ4 and the sensitivity ki of each wheel 1 to 4 can be approximated as k1 = k2 = k3 = k4 = 0, the above equation (20 ), When the sensitivity ki of each wheel 1 to 4 is set as k1 = k2 = k3 = k4 = 0, the following equation (68)
ΔFx1: ΔFx2: ΔFx3: ΔFx4
= 1: -1 :-( cosδ1-k1sinδ1) / (cosδ3-k3sinδ3) :( cosδ1-k1sinδ1) / (cosδ3-k3sinδ3)
= 1: -1: -cosδ1 / cosδ3: cosδ1 / cosδ3
= Cosδ3: -cosδ3: -cosδ1: cosδ1 (δk1 = k2 = k3 = k4 = 0) (68)
From this equation (37), as the absolute value of the steering angle δ1 = δ2 of the left and right front wheels 1, 2 increases with respect to the absolute value of the steering angle δ3 = δ4 of the left and right rear wheels 3, 4, the right It can be explained that the absolute value of the braking / driving force correction amount ΔFx4 of the rear wheel 4 is made smaller than the absolute value of the braking / driving force correction amount ΔFx1 of the left front wheel 1.

また、他の実施例として、後輪転舵機構(ステアリングアクチュエータ16)を有さない前輪のみ転舵する車両が挙げられる。この車両に適用する場合には、例えば、図1〜10において、後輪3、4の舵角δ3,δ4の値を定数(通常は、舵角δ3=δ4=0)とすれば良い。また更に、この前輪1、2のみ転舵する車両を図1〜10に基づいて制御を行うとした場合、上記と同じくステップS60〜ステップS70において、上記した式(61)〜式(64)の通り各輪1〜4の駆動力配分を求めるようにした場合、軽微なスリップ等の場合(フラグflgが「1」の場合)には、ステップS150において、以下に説明するように、各輪1〜4の制駆動力補正量ΔFxiを求めても良い。   As another example, a vehicle that steers only the front wheels that do not have the rear-wheel steering mechanism (steering actuator 16) can be cited. When applied to this vehicle, for example, in FIGS. 1 to 10, the values of the steering angles δ3 and δ4 of the rear wheels 3 and 4 may be constants (normally, the steering angle δ3 = δ4 = 0). Furthermore, when the vehicle that steers only the front wheels 1 and 2 is controlled based on FIGS. 1 to 10, the above-described equations (61) to (64) are obtained in steps S60 to S70 as described above. As described above, when the driving force distribution of each of the wheels 1 to 4 is obtained, in the case of a slight slip or the like (when the flag flg is “1”), as described below, each wheel 1 The braking / driving force correction amount ΔFxi of ˜4 may be obtained.

即ち、各輪1〜4の舵角δiがδ1=δ2,δ3=δ4であり且つ各輪1〜4の感度kiがk1=k2,k3=k4と近似できる前記走行状態[1]において、左右後輪3、4の舵角δiが零(δ3=δ4=0)であり、左右前輪1、2のみが操舵される走行状態(走行状態[3])である場合には、前記ステップS150での前後方向の加速度Xg、横方向の加速度Yg、車両重心周りのヨーモーメントMを乱さない各車輪1〜4の制駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4の比を、1:−1:−(cosδ1−k1sinδ1):(cosδ1−k1sinδ1)と設定することで、制駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4をより一層平易に求めることができ、演算を行う計算機(コントローラ8)のメモリーや処理の低減が期待できる。   That is, in the traveling state [1] in which the steering angles δi of the wheels 1 to 4 can be approximated as δ1 = δ2, δ3 = δ4 and the sensitivities ki of the wheels 1 to 4 can be approximated as k1 = k2, k3 = k4, If the rudder angle δi of the rear wheels 3 and 4 is zero (δ3 = δ4 = 0) and only the left and right front wheels 1 and 2 are in a traveling state (traveling state [3]), in step S150, The ratio of the braking / driving force correction amounts ΔFx1, ΔFx2, ΔFx3, ΔFx4 of the wheels 1 to 4 that do not disturb the yaw moment M around the center of gravity of the vehicle is 1: -1: -(Cosδ1-k1sinδ1): By setting (cosδ1-k1sinδ1), the braking / driving force correction amounts ΔFx1, ΔFx2, ΔFx3, ΔFx4 can be obtained more easily and the memory of the computer (controller 8) that performs the calculation And reduction of processing can be expected.

上記のように、各輪1〜4の舵角δiがδ1=δ2,δ3=δ4=0であり且つ各輪1〜4の感度kiがk1=k2,k3=k4と近似できる場合には、前記した式(20)において、各輪1〜4の舵角δiが、δ1=δ2,δ3=δ4=0であると設定でき、下記の式(69)
ΔFx1:ΔFx2:ΔFx3:ΔFx4
=1:−1:−(cosδ1−k1sinδ1)/(cosδ3−k3sinδ3):(cosδ1−k1sinδ1)/(cosδ3−k3sinδ3)
=1:−1:−(cosδ1−k1sinδ1):(cosδ1−k1sinδ1)
(∴δ1=δ2,δ3=δ4=0) ・・・(69)
の通り式変形ができることで説明できる。
As described above, when the steering angles δi of the wheels 1 to 4 are δ1 = δ2, δ3 = δ4 = 0, and the sensitivities ki of the wheels 1 to 4 can be approximated as k1 = k2, k3 = k4, In the above equation (20), the steering angles δi of the wheels 1 to 4 can be set to be δ1 = δ2, δ3 = δ4 = 0, and the following equation (69)
ΔFx1: ΔFx2: ΔFx3: ΔFx4
= 1: -1 :-( cosδ1-k1sinδ1) / (cosδ3-k3sinδ3) :( cosδ1-k1sinδ1) / (cosδ3-k3sinδ3)
= 1: -1 :-( cos [delta] 1-k1sin [delta] 1) :( cos [delta] 1-k1sin [delta] 1)
(∴δ1 = δ2, δ3 = δ4 = 0) (69)
This can be explained by the fact that the equation can be modified as follows.

さらに、各輪1〜4の舵角δiがδ1=δ2,δ3=δ4=0であり且つ各輪1〜4の感度kiがk1=k2,k3=k4と近似できる前記走行状態[3]において、左右後輪3、4は左右輪の輪荷重比で左右各輪3、4の駆動力配分を行っている走行状態、左右前輪1、2は滑り角βiが大きく且つ左右輪1、2共に駆動力がほぼ0の走行状態、左右前輪1、2は滑り角βiが十分小さく且つ左右輪1、2の駆動力配分を任意に行っている走行状態である場合には、左右前輪1、2の感度をk1=k2=0と推定することができる。これらが該当する具体的な走行状態としては、任意の駆動力配分で直進走行を行う場合、或いは前輪1、2の駆動力を左右輪共に0にすると共に後輪3、4は左右輪の輪荷重比で左右各輪の駆動力配分を行いながら旋回する場合等が考えられる。このような走行状態[4]においては、前記ステップS150での前後方向の加速度Xg、横方向の加速度Yg、車両重心周りのヨーモーメントMを乱さない各車輪1〜4の制駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4の比を、1:−1:−cosδ1:cosδ1と設定することで、制駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を、さらにより一層平易に求めることができ、演算を行う計算機(コントローラ8)のメモリーや処理の低減が期待できる。   Further, in the traveling state [3] in which the steering angle δi of each wheel 1 to 4 is δ1 = δ2, δ3 = δ4 = 0, and the sensitivity ki of each wheel 1 to 4 can be approximated to k1 = k2, k3 = k4. The left and right rear wheels 3 and 4 are in a running state in which the driving force is distributed between the left and right wheels 3 and 4 by the wheel load ratio of the left and right wheels. The left and right front wheels 1 and 2 have a large sliding angle βi and both the left and right wheels 1 and 2 In a driving state where the driving force is almost zero, the left and right front wheels 1 and 2 are in a driving state where the sliding angle βi is sufficiently small and the driving force distribution between the left and right wheels 1 and 2 is arbitrarily performed. Can be estimated as k1 = k2 = 0. Specific driving conditions to which these are applicable include straight driving with arbitrary driving force distribution, or the driving forces of the front wheels 1 and 2 are set to 0 for both the left and right wheels, and the rear wheels 3 and 4 are wheels of the left and right wheels. For example, the vehicle may turn while distributing the driving force between the left and right wheels according to the load ratio. In such a running state [4], the braking / driving force correction amount ΔFx1 of each wheel 1-4 that does not disturb the longitudinal acceleration Xg, the lateral acceleration Yg, and the yaw moment M around the center of gravity of the vehicle in step S150. , .DELTA.Fx2, .DELTA.Fx3, .DELTA.Fx4 is set to 1: -1: -cos .delta.1: cos.delta. Reduction of the memory and processing of the computer (controller 8) that performs the process can be expected.

即ち、各輪1〜4の舵角δiがδ1=δ2,δ3=δ4=0且つ各輪1〜4の感度kiがk1=k2=0,k3=k4と近似できる場合には、前記した式(20)において、左右前輪1、2の感度をk1=k2=0と設定すると、下記の式(70)
ΔFx1:ΔFx2:ΔFx3:ΔFx4
=1:−1:−(cosδ1−k1sinδ1):(cosδ1−k1sinδ1)
=1:−1:−cosδ1:cosδ1 (∴k1=k2=0) ・・・(70)
の通り式変形ができ、この式(70)から前輪舵角δ1=δ2の絶対値が大きくなるにつれて右後輪4の制駆動力補正量ΔFx4の絶対値は左前輪1の制駆動力補正量ΔFx1の絶対値に対して小さくすることが説明できる。これは、前後輪共に左右輪の駆動力補正量の和がほぼ0に、且つ前輪1、2の舵角δ1,δ2が大きくなるにつれて右後輪4の駆動力補正量ΔFx4を左前輪1の駆動力補正量ΔFx1に対して小さくする構成を意味する。
That is, when the steering angle δi of each wheel 1 to 4 can be approximated as δ1 = δ2, δ3 = δ4 = 0 and the sensitivity ki of each wheel 1 to 4 can be approximated as k1 = k2 = 0, k3 = k4, In (20), if the sensitivity of the left and right front wheels 1 and 2 is set as k1 = k2 = 0, the following equation (70)
ΔFx1: ΔFx2: ΔFx3: ΔFx4
= 1: -1 :-( cos [delta] 1-k1sin [delta] 1) :( cos [delta] 1-k1sin [delta] 1)
= 1: -1: -cos .delta.1: cos .delta.1 (∴k1 = k2 = 0) (70)
As the absolute value of the front wheel rudder angle δ1 = δ2 increases from this equation (70), the absolute value of the braking / driving force correction amount ΔFx4 of the right rear wheel 4 becomes the braking / driving force correction amount of the left front wheel 1 It can be explained that the absolute value of ΔFx1 is reduced. This is because the driving force correction amount ΔFx4 of the right rear wheel 4 is changed to that of the left front wheel 1 as the sum of the driving force correction amounts of the left and right wheels is substantially zero for both the front and rear wheels and the steering angles δ1 and δ2 of the front wheels 1 and 2 are increased. This means a configuration in which the driving force correction amount ΔFx1 is reduced.

前記のように、後輪操舵機構(ステアリングアクチュエータ16)を有さない車両において、前述の従来技術(特開平10−295004)及び前記先願技術によって駆動力補正量を求めた場合と、図2のフローチャートに基づいて駆動力補正量を求めた場合との比較をシミュレーション上で行った結果について、以下に説明する。   As described above, in a vehicle having no rear wheel steering mechanism (steering actuator 16), when the driving force correction amount is obtained by the above-described prior art (Japanese Patent Laid-Open No. 10-295004) and the prior application technique, FIG. A result obtained by performing a simulation comparison with the case where the driving force correction amount is obtained based on the flowchart will be described below.

このシミュレーションは、先にも述べた通り、図1の車両において後輪操舵機構(ステアリングアクチュエータ16)がなく後輪3、4の舵角がδ3=δ4=0で固定された車両を想定して行った。また、シミュレーションを行った走行条件は、前輪1、2を左に大きく切り(舵角δ1,δ2>0)、右側車輪2、4の駆動力和が左側車輪1、3の駆動力和よりも大きくなる(Fx2+Fx4>Fx1+Fx3)ように左右駆動力差を付けて左方向に定速旋回している図11の状態から、右後輪4の駆動力が突然0になったとして(Fx4→0(ΔFx4≒−750[N]))、残り3輪の駆動力補正量を前述の従来技術、前記先願技術、および、図2のフローチャートに基づいて求めた。なお、前記先願技術を用いる場合は、舵角δ1=δ2=0として、図2のフローチャートを用いて行った。   As described above, this simulation assumes a vehicle in which the rear wheel steering mechanism (steering actuator 16) is not provided in the vehicle of FIG. 1 and the steering angles of the rear wheels 3 and 4 are fixed at δ3 = δ4 = 0. went. Further, the running conditions in which the simulation was performed were that the front wheels 1 and 2 were largely turned to the left (steering angles δ 1 and δ 2> 0), and the driving force sum of the right wheels 2 and 4 was larger than the driving force sum of the left wheels 1 and 3. Assuming that the driving force of the right rear wheel 4 suddenly becomes zero (Fx4 → 0 (Fx4 → 0 (Fx2 + Fx4> Fx1 + Fx3)) from the state of FIG. ΔFx4≈−750 [N])), and the driving force correction amounts for the remaining three wheels were determined based on the above-described prior art, the prior application, and the flowchart of FIG. In the case of using the prior application technique, the steering angle δ1 = δ2 = 0 was set using the flowchart of FIG.

この時の、車体速,車体前後方向加速度,車体横方向加速度,ヨーレート,車体滑り角,各輪の駆動力変化を図12に示す。この図12によれば、図11の状態から十分ゆっくりと右後輪の駆動力を減らしていった場合には、前述の従来技術及び前記先願技術に比べ、図2のフローチャートに基づいて駆動力補正量を求めた方が、車体速,車両前後方向加速度,車両横方向加速度,ヨーレート,車体滑り角の何れについてもその変化を低減できていることが確認できた。   FIG. 12 shows vehicle speed, vehicle body longitudinal acceleration, vehicle body lateral acceleration, yaw rate, vehicle body slip angle, and driving force change of each wheel at this time. According to FIG. 12, when the driving force of the right rear wheel is reduced sufficiently slowly from the state of FIG. 11, the driving is performed based on the flowchart of FIG. 2 as compared with the prior art and the prior application. It was confirmed that the change in the force correction amount was able to reduce the change in any of the vehicle speed, the vehicle longitudinal acceleration, the vehicle lateral acceleration, the yaw rate, and the vehicle slip angle.

本実施形態においては、以下に記載する効果を奏することができる。   In the present embodiment, the following effects can be achieved.

(ア)四輪を夫々独立に駆動可能であり、車両の運動要求に基づいて四輪夫々の制駆動力を決定する制駆動力決定手段(ステップS20〜S70)を備える四輪独立駆動車の駆動力配分装置において、左前輪1、右前輪2、左後輪3、右後輪4夫々の駆動力変化に対するタイヤ横力の感度k1,k2,k3,k4を推定するタイヤ横力感度推定手段(ステップS80〜S90、S140)と、左前輪1、右前輪2、左後輪3、右後輪4夫々の舵角δ1,δ2,δ3,δ4と、該タイヤ横力感度推定手段で推定された感度k1,k2,k3,k4に基づいて、左前輪1、右前輪2、左後輪3、右後輪4夫々の駆動力を補正する手段(ステップS150〜S160)と、を備え、前記制駆動力決定手段により決定された制駆動力を変更する場合には、前記駆動力補正手段は、左前輪1、右前輪2、左後輪3、右後輪4夫々の舵角δ1,δ2,δ3,δ4と、該タイヤ横力感度推定手段で推定された感度k1,k2,k3,k4に基づいて、前記車両の運動要求を満たすように左前輪1、右前輪2、左後輪3、右後輪4夫々の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4だけ補正するようにした。このような構成とすることにより、各輪1〜4の舵角δi(i=1〜4)が無視できないほど大きい場合でも、前後方向の加速度だけでなく、制駆動力を補正した時のタイヤ横力変化によって発生する横方向の加速度と車両重心周りのヨーモーメントの変化を抑えることができ、ドライバーの意図しない車両挙動の乱れを防止し運転性を向上させることができる。   (A) A four-wheel independent drive vehicle equipped with braking / driving force determining means (steps S20 to S70) capable of independently driving the four wheels and determining the braking / driving force of each of the four wheels on the basis of a motion request of the vehicle. In the driving force distribution device, tire lateral force sensitivity estimating means for estimating tire lateral force sensitivities k1, k2, k3, k4 with respect to changes in driving force of the left front wheel 1, the right front wheel 2, the left rear wheel 3, and the right rear wheel 4. (Steps S80 to S90, S140), the steering angles δ1, δ2, δ3, δ4 of the left front wheel 1, the right front wheel 2, the left rear wheel 3, and the right rear wheel 4 and the tire lateral force sensitivity estimation means. Means (steps S150 to S160) for correcting the driving forces of the left front wheel 1, the right front wheel 2, the left rear wheel 3, and the right rear wheel 4 based on the sensitivities k1, k2, k3, and k4. When changing the braking / driving force determined by the braking / driving force determining means, the driving force correction The steps are the steering angles δ1, δ2, δ3, δ4 of the left front wheel 1, the right front wheel 2, the left rear wheel 3, and the right rear wheel 4 and the sensitivities k1, k2, k3 estimated by the tire lateral force sensitivity estimation means. , K4 so as to correct the driving force correction amounts ΔFx1, ΔFx2, ΔFx3, ΔFx4 of the left front wheel 1, the right front wheel 2, the left rear wheel 3, and the right rear wheel 4 so as to satisfy the motion demand of the vehicle. did. By adopting such a configuration, even when the steering angle δi (i = 1 to 4) of each of the wheels 1 to 4 is so large that it cannot be ignored, not only the acceleration in the longitudinal direction but also the tire when the braking / driving force is corrected It is possible to suppress changes in lateral acceleration and yaw moment around the center of gravity of the vehicle that occur due to changes in lateral force, and to prevent unintended disturbances in vehicle behavior and improve drivability.

(イ)左右前輪1、2の舵角δ1、δ2および左右後輪3、4の舵角δ3、δ4が夫々左右輪でほぼ等しく且つ左右前輪1、2の感度k1とk2との差および左右後輪3、4の感度k3とk4との差がほぼ0である場合には、駆動力補正手段による左前輪1、右前輪2、左後輪3、右後輪4夫々の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4の比を、ΔFx1:ΔFx2:ΔFx3:ΔFx4=(cosδ3−k3sinδ3):−(cosδ3−k3sinδ3):−(cosδ1−k1sinδ1):(cosδ1−k1sinδ1)の関係となるよう設定することにより、例えば、左右輪の滑り角βiが等しく、左右輪の駆動力配分を輪荷重比Wiと等しい場合に、いずれかの車輪1〜4のスリップやロック等の防止のために制駆動力を補正するとき、前後方向および横方向の加速度と車両重心周りのヨーモーメントの変化を抑える各輪1〜4の制駆動力の補正量をより高精度に求めることができる。   (A) The steering angles δ1 and δ2 of the left and right front wheels 1 and 2 and the steering angles δ3 and δ4 of the left and right rear wheels 3 and 4 are substantially equal for the left and right wheels, respectively, and the difference between the sensitivity k1 and k2 of the left and right front wheels 1 and 2 When the difference between the sensitivity k3 and k4 of the rear wheels 3 and 4 is substantially zero, the driving force correction amount for each of the left front wheel 1, the right front wheel 2, the left rear wheel 3 and the right rear wheel 4 by the driving force correction means. The ratio of ΔFx1, ΔFx2, ΔFx3, and ΔFx4 is expressed as follows. For example, when the slip angle βi of the left and right wheels is equal and the driving force distribution of the left and right wheels is equal to the wheel load ratio Wi, braking / driving is performed to prevent any one of the wheels 1 to 4 from slipping or locking. When correcting the force, each wheel 1 that suppresses changes in the longitudinal and lateral acceleration and the yaw moment around the center of gravity of the vehicle. Correction amount of longitudinal force 4 can be determined more accurately.

(ウ)左右前輪1、2の舵角δ1、δ2および左右後輪3、4の舵角δ3、δ4が夫々左右輪でほぼ等しい場合において、前記タイヤ横力感度推定手段で推定された各車輪1〜4の感度k1,k2,k3,k4が全てほぼ0である場合には、駆動力補正手段による左右輪の駆動力補正量の和が前後輪ともにほぼ0になり且つ左右前輪1、2の舵角δ1,δ2が左右後輪3、4の舵角δ3,δ4に対して大きくなるに連れて後輪各輪3、4の駆動力補正量を対角位置にある前輪1、2の駆動力補正量に対して小さくする。即ち、左前輪1、右前輪2、左後輪3、右後輪4夫々の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4の比を、ΔFx1:ΔFx2:ΔFx3:ΔFx4=cosδ3:−cosδ3:−cosδ1:cosδ1の関係とすることにより、例えば、各輪1〜4の滑り角βiが大きく且つ駆動力がほぼ0と近似できる場合や駆動力の大小によらず各輪1〜4の滑り角βiが小さい場合に、いずれかの車輪1〜4のスリップやロック等の防止のために制駆動力を補正するとき、前後方向および横方向の加速度と車両重心周りのヨーモーメントの変化を抑える各輪1〜4の制駆動力補正量ΔFxiをより平易に求めることができ、演算を行う計算機(コントローラ8)のメモリーや処理の低減が期待できる。   (C) When the steering angles δ1 and δ2 of the left and right front wheels 1 and 2 and the steering angles δ3 and δ4 of the left and right rear wheels 3 and 4 are substantially equal for the left and right wheels, the respective wheels estimated by the tire lateral force sensitivity estimation means When the sensitivities k1, k2, k3, and k4 of 1 to 4 are all about 0, the sum of the driving force correction amounts of the left and right wheels by the driving force correcting means is substantially 0 for both the front and rear wheels and As the steering angles δ1 and δ2 of the left and right rear wheels 3 and 4 become larger than the steering angles δ3 and δ4 of the left and right rear wheels 3, the driving force correction amount of each of the rear wheels 3, 4 is set to the diagonal position of the front wheels 1, 2. Decrease the driving force correction amount. That is, the ratio of the driving force correction amounts ΔFx1, ΔFx2, ΔFx3, and ΔFx4 for the left front wheel 1, the right front wheel 2, the left rear wheel 3, and the right rear wheel 4 is expressed as follows: ΔFx1: ΔFx2: ΔFx3: ΔFx4 = cosδ3: −cosδ3: − The relationship of cosδ1: cosδ1, for example, when the sliding angle βi of each of the wheels 1 to 4 is large and the driving force can be approximated to 0, or regardless of the magnitude of the driving force, the sliding angle βi of each of the wheels 1-4. Each wheel suppresses changes in longitudinal and lateral acceleration and yaw moment around the center of gravity of the vehicle when correcting braking / driving force to prevent slipping or locking of any of the wheels 1 to 4 when the wheel is small The braking / driving force correction amount ΔFxi of 1 to 4 can be obtained more easily, and a reduction in the memory and processing of the computer (controller 8) that performs the calculation can be expected.

(エ)左右前輪1、2の舵角δ1、δ2がほぼ等しく且つ左右後輪3、4の舵角δ3、δ4が共にほぼ0であり、左右前輪1、2の感度k1とk2との差及び左右後輪3、4の感度k3とk4との差がほぼ0である場合には、駆動力補正手段による左前輪1、右前輪2、左後輪3、右後輪4夫々の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4の比を、ΔFx1:ΔFx2:ΔFx3:ΔFx4=1:−1:−(cosδ1−k1sinδ1):(cosδ1−k1sinδ1)の関係とすることにより、左右前輪1、2のみを操舵する場合に、いずれかの車輪1〜4のスリップやロック等の防止のために制駆動力を補正するとき、前後方向および横方向の加速度と車両重心周りのヨーモーメントの変化を抑える各輪1〜4の制駆動力補正量ΔFxiをより平易に求めることができ、演算を行う計算機(コントローラ8)のメモリーや処理の低減が期待できる。   (D) The rudder angles δ1 and δ2 of the left and right front wheels 1 and 2 are substantially equal, and the rudder angles δ3 and δ4 of the left and right rear wheels 3 and 4 are both substantially zero, and the difference between the sensitivity k1 and k2 of the left and right front wheels 1 and 2 When the difference between the sensitivity k3 and k4 of the left and right rear wheels 3 and 4 is substantially zero, the driving force of each of the left front wheel 1, right front wheel 2, left rear wheel 3 and right rear wheel 4 by the driving force correction means. By setting the ratio of the correction amounts ΔFx1, ΔFx2, ΔFx3, and ΔFx4 to the relationship of ΔFx1: ΔFx2: ΔFx3: ΔFx4 = 1: −1: − (cosδ1−k1sinδ1): (cosδ1−k1sinδ1), When the braking / driving force is corrected to prevent slipping or locking of any of the wheels 1 to 4 when steering only the vehicle, the longitudinal and lateral acceleration and the change in the yaw moment around the vehicle center of gravity are suppressed. A computer (controller) that can calculate the braking / driving force correction amount ΔFxi of each of the wheels 1 to 4 more easily. Reduction of memory and processing of 8) can be expected.

(オ)左右前輪1、2の舵角δ1、δ2がほぼ等しく且つ左右後輪3、4の舵角δ3、δ4が共にほぼ0であり、左右前輪1、2の感度k1とk2が共にほぼ0であり且つ左右後輪3、4の感度k3とk4がほぼ等しい場合には、駆動力補正手段による左右輪の駆動力補正量の和が前後輪ともにほぼ0になり且つ左右前輪1、2の舵角δ1,δ2が大きくなるに連れて後輪各輪3、4の駆動力補正量を対角位置にある前輪の駆動力補正量に対して小さくする。即ち、左前輪1、右前輪2、左後輪3、右後輪4夫々の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4の比を、ΔFx1:ΔFx2:ΔFx3:ΔFx4=1:−1:−cosδ1:cosδ1の関係とすることにより、例えば、左右前輪1、2は、滑り角βiが大きく且つ左右輪共に駆動力がほぼ0の走行状態、若しくは、滑り角βiが十分小さく且つ左右輪1、2の駆動力配分を任意に行っており、左右後輪3、4は左右輪の輪荷重比Wiで左右各輪3、4の駆動力配分を行っている走行状態である場合に、いずれかの車輪1〜4のスリップやロック等の防止のために制駆動力を補正するとき、前後方向および横方向の加速度と車両重心周りのヨーモーメントの変化を抑える各輪1〜4の制駆動力補正量ΔFxiをより一層平易に求めることができ、演算を行う計算機(コントローラ8)のメモリーや処理の低減が期待できる。   (E) The rudder angles δ1 and δ2 of the left and right front wheels 1 and 2 are substantially equal, the rudder angles δ3 and δ4 of the left and right rear wheels 3 and 4 are both substantially zero, and the sensitivity k1 and k2 of the left and right front wheels 1 and 2 are substantially both. When the left and right rear wheels 3 and 4 have substantially equal sensitivities k3 and k4, the sum of the driving force correction amounts of the left and right wheels by the driving force correcting means is substantially 0 for both the front and rear wheels and As the steering angles δ1 and δ2 increase, the driving force correction amount of the rear wheels 3 and 4 is made smaller than the driving force correction amount of the front wheels in the diagonal positions. That is, the ratio of the driving force correction amounts ΔFx1, ΔFx2, ΔFx3, and ΔFx4 of the left front wheel 1, the right front wheel 2, the left rear wheel 3, and the right rear wheel 4 is expressed as follows: ΔFx1: ΔFx2: ΔFx3: ΔFx4 = 1: −1: − By setting the relationship of cosδ1: cosδ1, for example, the left and right front wheels 1 and 2 are in a traveling state where the sliding angle βi is large and the driving force of both the left and right wheels is almost zero, or the sliding angle βi is sufficiently small and the left and right wheels 1 2 is arbitrarily distributed, and the left and right rear wheels 3 and 4 are in a running state where the left and right wheels 3 and 4 are distributed with the wheel load ratio Wi. When correcting the braking / driving force in order to prevent slipping or locking of the wheels 1 to 4, the braking / driving force of each wheel 1-4 that suppresses changes in the longitudinal and lateral accelerations and the yaw moment around the center of gravity of the vehicle A computer (controller) that can calculate the correction amount ΔFxi more easily and performs calculations. 8) Memory and processing can be reduced.

(カ)駆動力補正手段は、左前輪1、右前輪2、左後輪3、右後輪4夫々の舵角δ1,δ2,δ3,δ4と、該タイヤ横力感度推定手段で推定された感度k1,k2,k3,k4に基づいて、左前輪1、右前輪2、左後輪3、右後輪4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4の比を、四輪独立駆動車のトレッド長さをLt、ホイールベース長さをLとして、
ΔFx1:ΔFx2:ΔFx3:ΔFx4
=[(Lt/L)(h4−h2)+h2(h4−h3)]/(cosδ1−k1sinδ1):−[(Lt/L)(h3−h1)+h1(h4−h3)]/(cosδ2−k2sinδ2):−[(Lt/L)(h4−h2)+h4(h2−h1)]/(cosδ3−k3sinδ3):[(Lt/L)(h3−h1)+h3(h2−h1)]/(cosδ4−k4sinδ4)
ただし、hi=(sinδi+kicosδi)/(cosδi−kisinδi)
の関係となるよう設定することにより、前記(イ)〜(オ)に含まれない各走行状態においても、いずれかの車輪1〜4のスリップやロック等の防止のために制駆動力を補正するとき、前後方向および横方向の加速度と車両重心周りのヨーモーメントの変化を抑える各輪1〜4の制駆動力補正量ΔFxiを高精度に求めることができる。
(F) The driving force correcting means is estimated by the steering angle δ1, δ2, δ3, δ4 of the left front wheel 1, the right front wheel 2, the left rear wheel 3, and the right rear wheel 4 and the tire lateral force sensitivity estimating means. Based on the sensitivity k1, k2, k3, k4, the ratio of the driving force correction amounts ΔFx1, ΔFx2, ΔFx3, ΔFx4 of the left front wheel 1, the right front wheel 2, the left rear wheel 3, and the right rear wheel 4 is determined as a four-wheel independent drive vehicle. The tread length is Lt and the wheelbase length is L.
ΔFx1: ΔFx2: ΔFx3: ΔFx4
= [(Lt / L) (h4−h2) + h2 (h4−h3)] / (cosδ1−k1sinδ1): − [(Lt / L) (h3−h1) + h1 (h4−h3)] / (cosδ2−k2sinδ2) ):-[(Lt / L) (h4−h2) + h4 (h2−h1)] / (cosδ3−k3sinδ3): [(Lt / L) (h3−h1) + h3 (h2−h1)] / (cosδ4− k4sinδ4)
However, hi = (sinδi + kicosδi) / (cosδi−kisinδi)
By setting so as to satisfy the following relationship, the braking / driving force is corrected in order to prevent slipping or locking of any of the wheels 1 to 4 even in each traveling state that is not included in the above (a) to (e). In this case, the braking / driving force correction amount ΔFxi of each of the wheels 1 to 4 that suppresses changes in the longitudinal and lateral accelerations and the yaw moment around the center of gravity of the vehicle can be obtained with high accuracy.

本発明の一実施形態を示す四輪独立駆動車の駆動力配分装置のシステム構成図。1 is a system configuration diagram of a driving force distribution device for a four-wheel independent drive vehicle according to an embodiment of the present invention. コントローラで実行される駆動力配分制御のフローチャート。The flowchart of the driving force distribution control performed with a controller. コントローラで実行される駆動力配分制御の図2Aに続くフローチャート。The flowchart following FIG. 2A of the driving force distribution control performed by a controller. 4輪独立駆動車に加わる各輪の駆動力とタイヤ横力と車両重心周りのヨーモーメントを表した説明図。Explanatory drawing showing the driving force of each wheel applied to a four-wheel independent drive vehicle, tire lateral force, and yaw moment around the center of gravity of the vehicle. アクセルペダルの踏み込み量と車体速に応じたドライバーの要求駆動力を表すマップ。A map showing the driver's required driving force according to the amount of accelerator pedal depression and the vehicle speed. ブレーキペダルの踏み込み量に応じたドライバーの要求駆動力を表すマップ。A map showing the driver's required driving force according to the amount of brake pedal depression. ステアリング回転角と車速に応じた車両の左右駆動力差の目標値を表すマップ。The map showing the target value of the left and right driving force difference of the vehicle according to the steering rotation angle and the vehicle speed. コントローラに記憶させた制駆動力とタイヤ横力との関係を表す図。The figure showing the relationship between the braking / driving force memorize | stored in the controller, and a tire lateral force. 各輪の舵角をδi(i=1〜4)だけ切った場合における、タイヤ力の車体前後方向成分及び車体横方向成分を示す説明図。Explanatory drawing which shows the vehicle body front-back direction component and vehicle body horizontal direction component of tire force when the steering angle of each wheel is cut by δi (i = 1 to 4). 制駆動力とタイヤ横力との関係を表す特性図。The characteristic view showing the relationship between braking / driving force and tire lateral force. 制駆動力とタイヤ横力との関係が左右前輪でほぼ相似形の近似した楕円となる状態を説明する特性図。The characteristic view explaining the state where the relationship between braking / driving force and tire lateral force becomes an ellipse that is approximately similar to the left and right front wheels. 左右駆動力差を付けて左方向に定速旋回している走行状態から右後輪の駆動力が突然0になった状態を示す説明図。Explanatory drawing which shows the state from which the driving force of the right rear wheel suddenly became 0 from the driving | running | working state which attached the left-right driving force difference and made the left turn at constant speed. 図11の状態から十分ゆっくりと右後輪の駆動力を減らしていった場合における車体速,車体前後方向加速度,車体横方向加速度,ヨーレート,車体滑り角,各輪の駆動力変化のシミュレーション結果を示す説明図。FIG. 11 shows the simulation results of the vehicle speed, the vehicle longitudinal acceleration, the vehicle lateral acceleration, the yaw rate, the vehicle slip angle, and the driving force change of each wheel when the driving force of the right rear wheel is reduced sufficiently slowly from the state of FIG. FIG. 各輪の舵角δi(i=1〜4)が十分小さいという仮定の元で、4輪独立駆動車に加わる駆動力と横力と車両重心周りのヨーモーメントを表した説明図。An explanatory view showing the driving force and lateral force applied to the four-wheel independent drive vehicle and the yaw moment around the center of gravity of the vehicle under the assumption that the steering angle δi (i = 1 to 4) of each wheel is sufficiently small.

符号の説明Explanation of symbols

1〜4 車輪
5 ステアリング
6 アクセルペダル
7 ブレーキペダル
8 コントローラ
9 バッテリ
11〜14 モータ
15 ステアリングギヤ
16 ステアリングアクチュエータ
21〜24 車輪速センサ
25 ステアリング角センサ
26 アクセルストロークセンサ
27 ブレーキストロークセンサ
31〜34 インバータ
41〜44 舵角センサ
100 加速度センサ
101 ヨーレートセンサ
1-4 Wheel 5 Steering 6 Accelerator Pedal 7 Brake Pedal 8 Controller 9 Battery 11-14 Motor 15 Steering Gear 16 Steering Actuator 21-24 Wheel Speed Sensor 25 Steering Angle Sensor 26 Accelerator Stroke Sensor 27 Brake Stroke Sensor 31-34 Inverter 41- 44 Rudder angle sensor 100 Acceleration sensor 101 Yaw rate sensor

Claims (8)

四輪を夫々独立に駆動可能であり、車両の運動要求に基づいて四輪夫々の制駆動力を決定する制駆動力決定手段を備える四輪独立駆動車の駆動力配分装置において、
左前輪、右前輪、左後輪、右後輪夫々の駆動力変化に対するタイヤ横力の感度k1,k2,k3,k4を推定するタイヤ横力感度推定手段と、
左前輪、右前輪、左後輪、右後輪夫々の舵角δ1,δ2,δ3,δ4と、該タイヤ横力感度推定手段で推定された感度k1,k2,k3,k4に基づいて、左前輪、右前輪、左後輪、右後輪夫々の駆動力を補正する手段と、を備え、
前記制駆動力決定手段により決定された制駆動力を変更する場合には、前記駆動力補正手段は、左前輪、右前輪、左後輪、右後輪夫々の舵角δ1,δ2,δ3,δ4と、該タイヤ横力感度推定手段で推定された感度k1,k2,k3,k4に基づいて、前記車両の運動要求を満たすように左前輪、右前輪、左後輪、右後輪夫々の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4だけ補正することを特徴とする四輪独立駆動車の駆動力配分装置。
In the driving force distribution device for a four-wheel independent drive vehicle, which is capable of independently driving the four wheels, and includes braking / driving force determining means for determining the braking / driving force of each of the four wheels based on the motion demand of the vehicle.
Tire lateral force sensitivity estimating means for estimating the sensitivity k1, k2, k3, k4 of the tire lateral force with respect to changes in driving force of the left front wheel, right front wheel, left rear wheel, and right rear wheel,
Based on the steering angles δ1, δ2, δ3, δ4 of the left front wheel, the right front wheel, the left rear wheel, and the right rear wheel and the sensitivity k1, k2, k3, k4 estimated by the tire lateral force sensitivity estimation means, Means for correcting the driving force of each of the front wheel, the right front wheel, the left rear wheel, and the right rear wheel,
In the case of changing the braking / driving force determined by the braking / driving force determining means, the driving force correcting means includes the steering angles δ1, δ2, δ3 of the left front wheel, the right front wheel, the left rear wheel, and the right rear wheel, respectively. Based on δ4 and the sensitivity k1, k2, k3, k4 estimated by the tire lateral force sensitivity estimating means, the left front wheel, the right front wheel, the left rear wheel, and the right rear wheel A driving force distribution device for a four-wheel independent driving vehicle, wherein only the driving force correction amounts ΔFx1, ΔFx2, ΔFx3, and ΔFx4 are corrected.
前記駆動力補正手段は、左右前輪の舵角δ1、δ2および左右後輪の舵角δ3、δ4が夫々左右輪でほぼ等しく且つ左右前輪の感度k1とk2との差および左右後輪の感度k3とk4との差がほぼ0である場合には、左前輪、右前輪、左後輪、右後輪夫々の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4の比を、
ΔFx1:ΔFx2:ΔFx3:ΔFx4
=(cosδ3−k3sinδ3):−(cosδ3−k3sinδ3):−(cosδ1−k1sinδ1):(cosδ1−k1sinδ1)
の関係とすることを特徴とする請求項1に記載の四輪独立駆動車の駆動力配分装置。
The driving force correcting means is such that the steering angles δ1, δ2 of the left and right front wheels and the steering angles δ3, δ4 of the left and right rear wheels are substantially equal to the left and right wheels, and the difference between the sensitivity k1 and k2 of the left and right front wheels and the sensitivity k3 And k4 are almost zero, the ratio of the driving force correction amounts ΔFx1, ΔFx2, ΔFx3, ΔFx4 for the left front wheel, right front wheel, left rear wheel, and right rear wheel is
ΔFx1: ΔFx2: ΔFx3: ΔFx4
= (Cosδ3-k3sinδ3) :-( cosδ3-k3sinδ3) :-( cosδ1-k1sinδ1) :( cosδ1-k1sinδ1)
The drive power distribution device for a four-wheel independent drive vehicle according to claim 1, wherein:
前記駆動力補正手段は、左右前輪の舵角δ1、δ2および左右後輪の舵角δ3、δ4が夫々左右輪でほぼ等しい場合において、前記タイヤ横力感度推定手段で推定された各車輪の感度k1,k2,k3,k4が全てほぼ0である場合には、左右輪の駆動力補正量の和が前後輪ともにほぼ0になり且つ左右前輪の舵角δ1,δ2が左右後輪の舵角δ3,δ4に対して大きくなるに連れて後輪各輪の駆動力補正量を対角位置にある前輪の駆動力補正量に対して小さくすることを特徴とする請求項1または請求項2に記載の四輪独立駆動車の駆動力配分装置。   The driving force correction means is configured to detect the sensitivity of each wheel estimated by the tire lateral force sensitivity estimation means when the steering angles δ1 and δ2 of the left and right front wheels and the steering angles δ3 and δ4 of the left and right rear wheels are substantially equal to the left and right wheels, respectively. When k1, k2, k3, and k4 are all zero, the sum of the driving force correction amounts for the left and right wheels is substantially zero for both the front and rear wheels, and the rudder angles δ1 and δ2 of the left and right front wheels are the rudder angles of the left and right rear wheels. 3. The driving force correction amount for each of the rear wheels is decreased with respect to the driving force correction amount for the front wheels at the diagonal positions as δ3 and δ4 increase. The drive power distribution device for the four-wheel independent drive vehicle described. 前記駆動力補正手段は、左右前輪の舵角δ1、δ2および左右後輪の舵角δ3、δ4が夫々左右輪でほぼ等しい場合において、前記タイヤ横力感度推定手段で推定された各車輪の感度k1,k2,k3,k4が全てほぼ0である場合には、左前輪、右前輪、左後輪、右後輪夫々の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4の比を、ΔFx1:ΔFx2:ΔFx3:ΔFx4=cosδ3:−cosδ3:−cosδ1:cosδ1の関係とすることを特徴とする請求項1または請求項2に記載の四輪独立駆動車の駆動力配分装置。   The driving force correction means is configured to detect the sensitivity of each wheel estimated by the tire lateral force sensitivity estimation means when the steering angles δ1 and δ2 of the left and right front wheels and the steering angles δ3 and δ4 of the left and right rear wheels are substantially equal to the left and right wheels, respectively. When k1, k2, k3, and k4 are all substantially zero, the ratio of the driving force correction amounts ΔFx1, ΔFx2, ΔFx3, and ΔFx4 for the left front wheel, the right front wheel, the left rear wheel, and the right rear wheel is expressed as ΔFx1: ΔFx2 The driving force distribution device for a four-wheel independent drive vehicle according to claim 1 or 2, wherein: ΔFx3: ΔFx4 = cosδ3: -cosδ3: -cosδ1: cosδ1. 前記駆動力補正手段は、左右前輪の舵角δ1、δ2がほぼ等しく且つ左右後輪の舵角δ3、δ4が共にほぼ0であり、左右前輪の感度k1とk2との差及び左右後輪の感度k3とk4との差がほぼ0である場合には、左前輪、右前輪、左後輪、右後輪夫々の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4の比を、
ΔFx1:ΔFx2:ΔFx3:ΔFx4=1:−1:−(cosδ1−k1sinδ1):(cosδ1−k1sinδ1)
の関係とすることを特徴とする請求項1または請求項2に記載の四輪独立駆動車の駆動力配分装置。
The driving force correction means is such that the steering angles δ1 and δ2 of the left and right front wheels are substantially equal and the steering angles δ3 and δ4 of the left and right rear wheels are both substantially zero, the difference between the sensitivity k1 and k2 of the left and right front wheels, When the difference between the sensitivities k3 and k4 is substantially zero, the ratio of the driving force correction amounts ΔFx1, ΔFx2, ΔFx3, ΔFx4 for the left front wheel, the right front wheel, the left rear wheel, and the right rear wheel is calculated as follows:
ΔFx1: ΔFx2: ΔFx3: ΔFx4 = 1: −1: − (cosδ1−k1sinδ1): (cosδ1−k1sinδ1)
The driving force distribution device for a four-wheel independent drive vehicle according to claim 1 or 2, wherein the relationship is as follows.
前記駆動力補正手段は、左右前輪の舵角δ1、δ2がほぼ等しく且つ左右後輪の舵角δ3、δ4が共にほぼ0であり、左右前輪の感度k1とk2が共にほぼ0であり且つ左右後輪の感度k3とk4がほぼ等しい場合には、左右輪の駆動力補正量の和が前後輪ともにほぼ0になり且つ左右前輪の舵角δ1,δ2が大きくなるに連れて後輪各輪の駆動力補正量を対角位置にある前輪の駆動力補正量に対して小さくすることを特徴とする請求項1または請求項2に記載の四輪独立駆動車の駆動力配分装置。   The driving force correcting means is such that the steering angles δ1 and δ2 of the left and right front wheels are substantially equal, the steering angles δ3 and δ4 of the left and right rear wheels are both substantially zero, the sensitivity k1 and k2 of the left and right front wheels are both substantially zero, and When the rear wheel sensitivities k3 and k4 are substantially equal, the sum of the driving force correction amounts for the left and right wheels becomes substantially zero for both the front and rear wheels, and as the steering angles δ1 and δ2 of the left and right front wheels increase, The driving force distribution device for a four-wheel independent drive vehicle according to claim 1 or 2, wherein the driving force correction amount of the four-wheel independent drive vehicle is made smaller than the driving force correction amount of the front wheel at the diagonal position. 前記駆動力補正手段は、左右前輪の舵角δ1、δ2がほぼ等しく且つ左右後輪の舵角δ3、δ4が共にほぼ0であり、左右前輪の感度k1とk2が共にほぼ0であり且つ左右後輪の感度k3とk4がほぼ等しい場合には、左前輪、右前輪、左後輪、右後輪夫々の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4の比を、
ΔFx1:ΔFx2:ΔFx3:ΔFx4=1:−1:−cosδ1:cosδ1
の関係とすることを特徴とする請求項1または請求項2に記載の四輪独立駆動車の駆動力配分装置。
The driving force correcting means is such that the steering angles δ1 and δ2 of the left and right front wheels are substantially equal, the steering angles δ3 and δ4 of the left and right rear wheels are both substantially zero, the sensitivity k1 and k2 of the left and right front wheels are both substantially zero, and When the rear wheel sensitivities k3 and k4 are substantially equal, the ratios of the driving force correction amounts ΔFx1, ΔFx2, ΔFx3, ΔFx4 for the left front wheel, the right front wheel, the left rear wheel, and the right rear wheel,
ΔFx1: ΔFx2: ΔFx3: ΔFx4 = 1: −1: −cos δ1: cos δ1
The driving force distribution device for a four-wheel independent drive vehicle according to claim 1 or 2, wherein the relationship is as follows.
前記駆動力補正手段は、左前輪、右前輪、左後輪、右後輪夫々の舵角δ1,δ2,δ3,δ4と、該タイヤ横力感度推定手段で推定された感度k1,k2,k3,k4に基づいて、左前輪、右前輪、左後輪、右後輪の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4の比を、四輪独立駆動車のトレッド長さをLt、ホイールベース長さをLとして、
ΔFx1:ΔFx2:ΔFx3:ΔFx4
=[(Lt/L)(h4−h2)+h2(h4−h3)]/(cosδ1−k1sinδ1):−[(Lt/L)(h3−h1)+h1(h4−h3)]/(cosδ2−k2sinδ2):−[(Lt/L)(h4−h2)+h4(h2−h1)]/(cosδ3−k3sinδ3):[(Lt/L)(h3−h1)+h3(h2−h1)]/(cosδ4−k4sinδ4)
ただし、hi=(sinδi+kicosδi)/(cosδi−kisinδi)
の関係となるよう設定することを特徴とする請求項1に記載の四輪独立駆動車の駆動力配分装置。
The driving force correction means includes steering angles δ1, δ2, δ3, δ4 for the left front wheel, right front wheel, left rear wheel, and right rear wheel, and sensitivities k1, k2, k3 estimated by the tire lateral force sensitivity estimation means. , K4, the ratio of the driving force correction amounts ΔFx1, ΔFx2, ΔFx3, and ΔFx4 for the left front wheel, right front wheel, left rear wheel, and right rear wheel, the tread length of the four-wheel independent drive vehicle is Lt, and the wheel base length Let L be
ΔFx1: ΔFx2: ΔFx3: ΔFx4
= [(Lt / L) (h4−h2) + h2 (h4−h3)] / (cosδ1−k1sinδ1): − [(Lt / L) (h3−h1) + h1 (h4−h3)] / (cosδ2−k2sinδ2) ):-[(Lt / L) (h4−h2) + h4 (h2−h1)] / (cosδ3−k3sinδ3): [(Lt / L) (h3−h1) + h3 (h2−h1)] / (cosδ4− k4sinδ4)
However, hi = (sinδi + kicosδi) / (cosδi−kisinδi)
The driving force distribution device for a four-wheel independent drive vehicle according to claim 1, wherein the driving force distribution device is set so as to satisfy the following relationship.
JP2004280139A 2004-07-13 2004-09-27 Driving force distribution device for four-wheel independent drive vehicle Expired - Fee Related JP4524597B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004280139A JP4524597B2 (en) 2004-09-27 2004-09-27 Driving force distribution device for four-wheel independent drive vehicle
US11/166,741 US7440834B2 (en) 2004-07-13 2005-06-27 Drive force distribution system for four wheel independent drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004280139A JP4524597B2 (en) 2004-09-27 2004-09-27 Driving force distribution device for four-wheel independent drive vehicle

Publications (2)

Publication Number Publication Date
JP2006094679A JP2006094679A (en) 2006-04-06
JP4524597B2 true JP4524597B2 (en) 2010-08-18

Family

ID=36235093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004280139A Expired - Fee Related JP4524597B2 (en) 2004-07-13 2004-09-27 Driving force distribution device for four-wheel independent drive vehicle

Country Status (1)

Country Link
JP (1) JP4524597B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4929944B2 (en) 2006-09-20 2012-05-09 日産自動車株式会社 Vehicle driving force distribution control device
JP4811214B2 (en) * 2006-09-20 2011-11-09 日産自動車株式会社 Vehicle driving force distribution control device
JP4946319B2 (en) * 2006-09-29 2012-06-06 日産自動車株式会社 Vehicle driving force distribution device
JP4737058B2 (en) * 2006-12-05 2011-07-27 トヨタ自動車株式会社 Braking / driving force control device
JP5055992B2 (en) * 2006-12-11 2012-10-24 日産自動車株式会社 Hybrid vehicle driving force control device
JP2008239115A (en) * 2007-03-29 2008-10-09 Honda Motor Co Ltd Vehicle operation controller
JP5071154B2 (en) * 2008-02-28 2012-11-14 日産自動車株式会社 Vehicle attitude control device and vehicle attitude control method
JP5273020B2 (en) * 2009-04-10 2013-08-28 株式会社エクォス・リサーチ vehicle
JP2011114947A (en) * 2009-11-26 2011-06-09 Toyota Motor Corp Cooling apparatus for drive unit of right and left independent drive type vehicle
JP5716335B2 (en) * 2009-12-01 2015-05-13 株式会社豊田中央研究所 Vehicle motion control device
JP5568602B2 (en) * 2012-03-27 2014-08-06 本田技研工業株式会社 Vehicle drive device
JP2014155342A (en) * 2013-02-08 2014-08-25 Toyota Motor Corp Motor controller
US8983749B1 (en) * 2013-10-24 2015-03-17 The Goodyear Tire & Rubber Company Road friction estimation system and method
WO2016095825A1 (en) * 2014-12-16 2016-06-23 比亚迪股份有限公司 Electric vehicle, and active safety control system for electric vehicle and control method therefor
JP6329105B2 (en) * 2015-05-13 2018-05-23 トヨタ自動車株式会社 Driving force control device for four-wheel drive vehicle
DE102018101182A1 (en) * 2018-01-19 2019-07-25 Thyssenkrupp Ag A method for avoiding flashovers of a motor vehicle by means of torque vectoring

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06511136A (en) * 1991-10-04 1994-12-08 マンネスマン・アクチエンゲゼルシャフト Drives for motorized vehicles
JPH10295004A (en) * 1997-04-18 1998-11-04 Toyota Motor Corp Drive and control equipment for electric vehicle
JPH11187506A (en) * 1997-12-18 1999-07-09 Toyota Motor Corp Driving controller for electric motor car
JP2002254964A (en) * 2001-02-28 2002-09-11 Toyota Motor Corp Running controller for vehicle
JP2006033927A (en) * 2004-07-13 2006-02-02 Nissan Motor Co Ltd Driving force distributer for four-wheel independent drive vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06511136A (en) * 1991-10-04 1994-12-08 マンネスマン・アクチエンゲゼルシャフト Drives for motorized vehicles
JPH10295004A (en) * 1997-04-18 1998-11-04 Toyota Motor Corp Drive and control equipment for electric vehicle
JPH11187506A (en) * 1997-12-18 1999-07-09 Toyota Motor Corp Driving controller for electric motor car
JP2002254964A (en) * 2001-02-28 2002-09-11 Toyota Motor Corp Running controller for vehicle
JP2006033927A (en) * 2004-07-13 2006-02-02 Nissan Motor Co Ltd Driving force distributer for four-wheel independent drive vehicle

Also Published As

Publication number Publication date
JP2006094679A (en) 2006-04-06

Similar Documents

Publication Publication Date Title
US7440834B2 (en) Drive force distribution system for four wheel independent drive vehicle
JP4524597B2 (en) Driving force distribution device for four-wheel independent drive vehicle
US10144416B2 (en) Apparatus and method for controlling vehicle
JP4929944B2 (en) Vehicle driving force distribution control device
US8155818B2 (en) Vehicle control system
JP4867369B2 (en) Driving force control device for electric vehicle, automobile and driving force control method for electric vehicle
WO2014080696A1 (en) Vehicle control device
WO2015190349A1 (en) Drive control device with traction control function for right-left independent drive vehicle
JP4432649B2 (en) Driving force distribution device for four-wheel independent drive vehicle
JP2007038928A (en) Vehicle rollover prevention unit
CN110239499B (en) Vehicle control device and vehicle control method
JP6577850B2 (en) Vehicle control apparatus and vehicle control method
JP4729871B2 (en) Vehicle turning control device
JP4443582B2 (en) Understeer suppression device
JP4862423B2 (en) Vehicle state estimation and control device
JP5088032B2 (en) Vehicle braking / driving control apparatus and braking / driving control method
JP2010151205A (en) Driving force distribution control device for vehicle
JP4844148B2 (en) Driving force distribution device for four-wheel independent drive vehicle
JP4918787B2 (en) Driving force distribution device for four-wheel independent drive vehicle
JP4901701B2 (en) Power transmission device for four-wheel drive vehicles
JP4949319B2 (en) Vehicle driving force control device
JP4835198B2 (en) Vehicle behavior control device
JP2007055358A (en) Right and left torque distribution controller for vehicle
JP5104102B2 (en) Vehicle driving force distribution control device
JP2005231417A (en) Vehicle state quantity estimating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100506

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees