JP4524573B2 - Press molded product shape prediction method, prediction program, recording medium recording the program, and press molding method - Google Patents

Press molded product shape prediction method, prediction program, recording medium recording the program, and press molding method Download PDF

Info

Publication number
JP4524573B2
JP4524573B2 JP2004104112A JP2004104112A JP4524573B2 JP 4524573 B2 JP4524573 B2 JP 4524573B2 JP 2004104112 A JP2004104112 A JP 2004104112A JP 2004104112 A JP2004104112 A JP 2004104112A JP 4524573 B2 JP4524573 B2 JP 4524573B2
Authority
JP
Japan
Prior art keywords
press
shape
formed product
corner
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004104112A
Other languages
Japanese (ja)
Other versions
JP2005288459A (en
Inventor
孝善 中原
弘晃 阿賀
信之 中土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2004104112A priority Critical patent/JP4524573B2/en
Publication of JP2005288459A publication Critical patent/JP2005288459A/en
Application granted granted Critical
Publication of JP4524573B2 publication Critical patent/JP4524573B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

この発明は、プレス成形品の形状を予測する予測方法、その予測のためのプログラム及び該プログラムを記録したコンピュータ読み取り可能な記録媒体、並びにかかる予測方法を用いたプレス成形方法に関する。   The present invention relates to a prediction method for predicting the shape of a press-formed product, a program for the prediction, a computer-readable recording medium recording the program, and a press-molding method using the prediction method.

板状の素材をプレス成形して所定形状の成形品(ワーク)を製造する場合、従来では、金型試作と試し打ちを繰り返して行い、その都度金型モデルを修正して、最終的に設計通りの所定形状が安定して得られるように、プレス金型を完成させるのが、従来、一般的である。   In the case of manufacturing a molded product (workpiece) of a predetermined shape by press molding a plate-shaped material, conventionally, the mold prototype and trial placement are repeated, and the mold model is corrected each time and finally designed. Conventionally, it is common to complete a press die so that a predetermined shape can be stably obtained.

近年では、このような試作工程での多大の時間および労力の負担をできるだけ軽減するものとして、プレス成形品の形状予測に弾塑性有限要素法を適用し、コンピュータを利用した解析を行うことで成形品の形状を予測するシミュレーション手法(例えば特許文献1参照)が注目されている。
しかしながら、従来の形状予測方法では、一般に、実用に供するには、予測精度が未だ十分ではなく、また、解析にも時間がかかるという難点があった。
In recent years, in order to reduce as much time and labor as possible in such a prototype process, molding is performed by applying the elasto-plastic finite element method to predict the shape of a press-formed product and performing analysis using a computer. A simulation method for predicting the shape of a product (see, for example, Patent Document 1) has attracted attention.
However, the conventional shape prediction methods generally have a problem that the prediction accuracy is not yet sufficient for practical use, and the analysis takes time.

ところで、例えば、平板状の金属素材をダイとホルダとの間に固定し、ダイの凹部内にパンチを進行させることで、平板の一部(例えば中央部分)に凹部を有する成形品(ワーク)を得る場合、素材はダイの凹部入り口の角R部で、該角R部の曲率半径に沿うようにして曲げられることとなるが、このとき、凹部の縦壁を形成する部分は、ダイとホルダとで挟持された金属素材が絞り込まれるようにして形成される。   By the way, for example, a flat metal material is fixed between a die and a holder, and a punch is advanced into a concave portion of the die, whereby a molded product (workpiece) having a concave portion in a part of the flat plate (for example, a central portion). In this case, the material is bent at the corner R portion at the entrance of the concave portion of the die, and is bent along the radius of curvature of the corner R portion. The metal material sandwiched between the holders is formed so as to be narrowed down.

すなわち、上記凹部の縦壁の一部(上部)は、ダイとホルダの間の金属素材が塑性流動し、ダイの角R部を通過し流入するようにして形成される。このようにして形成された縦壁上部では、ダイの角R部通過時に板厚方向に圧縮応力が作用しながら成形され、成形後ダイから取り出された際に曲げ戻しが生じ、弾性回復による反りが大きくなる。この現象が、形状予測精度を低下させる大きな要因の一つになっている。
特開2003−33828号公報
That is, a part (upper part) of the vertical wall of the concave portion is formed such that the metal material between the die and the holder is plastically flowed and flows through the corner R portion of the die. The upper part of the vertical wall formed in this way is molded while compressive stress is acting in the plate thickness direction when passing the corner R part of the die, bending occurs when it is taken out from the die after molding, and warpage due to elastic recovery Becomes larger. This phenomenon is one of the major factors that reduce the shape prediction accuracy.
JP 2003-33828 A

上述のワークにおける縦壁上部のように、板厚方向に圧縮応力が作用しながら成形される部分での形状予測精度を向上させるためには、板厚方向の応力をも考慮に入れて弾塑性有限要素法を適用すれば良いのであるが、従来では、プレス成形品など薄板状ワークの形状予測に弾塑性有限要素法を適用する場合、平面的な所謂シェル要素を用いる方法が一般的であり、この場合には、面内方向の応力は計算されるが、通常、板厚は仮想的に無視されるため、板厚方向の応力は計算することができない。
このような板厚方向の応力計算を行う方法としては、上記シェル要素に代えて所謂ソリッド要素を用いる方法があるが、この場合には、解析結果を得るのに非常に時間がかかるという難点があった。
In order to improve the shape prediction accuracy at the part that is molded while compressive stress acts in the plate thickness direction like the upper part of the vertical wall in the above-mentioned workpiece, it is elastic-plastic considering the stress in the plate thickness direction as well. The finite element method may be applied, but conventionally, when applying the elasto-plastic finite element method to predict the shape of a thin plate-like workpiece such as a press-formed product, a method using a planar so-called shell element is generally used. In this case, the stress in the in-plane direction is calculated, but usually the plate thickness is virtually ignored, so the stress in the plate thickness direction cannot be calculated.
As a method for calculating the stress in the plate thickness direction, there is a method using a so-called solid element instead of the shell element. In this case, however, it is difficult to obtain an analysis result. there were.

この発明は、かかる技術的課題に鑑みてなされたもので、板状のプレス成形品の形状予測を行うに際して、比較的短時間で、より精度の高い予測を行えるようにすることを目的とする。   The present invention has been made in view of such technical problems, and it is an object of the present invention to perform more accurate prediction in a relatively short time when predicting the shape of a plate-like press-formed product. .

このため、本願発明に係るプレス成形品形状の予測方法は、型パンチ部の加圧により、板状素材の一部を型の角R部を通過させることで、上記素材の一部に板厚方向の圧縮応力を作用させつつプレス成形を行うことにより得られるプレス成形品の形状を予測する、プレス成形品形状の予測方法であって、上記プレス成形品の材料モデルについて、上記角R部を通過する部分と通過しない部分とで異なる特性の材料モデルを設定し、上記型パンチ部の加圧の進行に伴う材料移動過程において発生する各部位毎の応力を、上記材料移動に伴って随時演算するステップと、演算された上記各部位毎の応力の釣り合いを解くことにより、弾性回復後のプレス成形品の形状を予測演算するステップと、を備えたことを特徴としたものである。   For this reason, the method for predicting the shape of a press-formed product according to the present invention is a method in which a part of a plate-like material is passed through a corner R portion of a die by pressurization of a die punch part, so that a part of the material has a plate thickness. A method for predicting the shape of a press-molded product obtained by performing press molding while applying a compressive stress in a direction, wherein the corner R portion is determined for a material model of the press-molded product. Set material models with different characteristics for the parts that pass and parts that do not pass, and calculate the stress for each part that occurs in the material movement process with the progress of pressurization of the die punch as needed And a step of predicting and calculating the shape of the press-formed product after elastic recovery by solving the balance of the calculated stress for each part.

また、本願発明に係るプレス成形品形状の予測プログラムは、型パンチ部の加圧により、板状素材の一部を型の角R部を通過させることで、上記素材の一部に板厚方向の圧縮応力を作用させつつプレス成形を行うことにより得られるプレス成形品の形状を、コンピュータに予測させるプレス成形品形状の予測プログラムであって、上記コンピュータに、上記プレス成形品の材料モデルについて、上記角R部を通過する部分と通過しない部分とで異なる特性の材料モデルを設定し、上記型パンチ部の加圧の進行に伴う材料移動過程において発生する各部位毎の応力を、上記材料移動に伴って随時演算する機能と、演算された上記各部位毎の応力の釣り合いを解くことにより、弾性回復後のプレス成形品の形状を予測演算する機能と、を実現させるものである。   In addition, the press-formed product shape prediction program according to the present invention allows a part of the plate-shaped material to pass through the corner R portion of the mold by pressurizing the mold punch part, so that a part of the material is in the plate thickness direction. A press-molded product shape prediction program for causing a computer to predict the shape of a press-molded product obtained by performing press molding while applying the compressive stress of the computer, about the material model of the press-molded product, A material model having different characteristics is set for a portion that passes through the corner R portion and a portion that does not pass through the portion, and the stress at each part generated in the material movement process accompanying the progress of pressurization of the die punch portion is determined by the material movement. The function to calculate at any time along with the above, and the function to predict and calculate the shape of the press-formed product after elastic recovery by solving the balance of the calculated stress for each part It is intended.

更に、本願発明に係るコンピュータ読み取り可能な記録媒体は、上記プレス成形品形状の予測プログラムを記録したものである。
この記録媒体としては、例えば、コンパクトディスク(CD)やDVD等の光ディスク媒体や磁気テープ媒体など、周知の種々の記録媒体を適用することができる。
Furthermore, a computer-readable recording medium according to the present invention records the press-formed product shape prediction program.
As this recording medium, for example, various known recording media such as an optical disk medium such as a compact disk (CD) and a DVD, and a magnetic tape medium can be applied.

また更に、本願発明に係るプレス成形方法は、型パンチ部の加圧により、板状素材の一部を型の角R部を通過させることで、上記素材の一部に板厚方向の圧縮応力を作用させつつプレス成形を行うことにより得られるプレス成形品の成形方法であって、請求項1に記載されたプレス成形品の形状予測方法にて予測演算された成形品の形状と、当該成形品の正規形状との形状差を演算するステップと、該演算結果に基づいて、上記正規形状となるようにプレス成形を行うステップと、を備えたことを特徴としたものである。   Furthermore, in the press molding method according to the present invention, a compression stress in the thickness direction is applied to a part of the material by passing a part of the plate-like material through the corner R part of the die by pressing the die punch part. A method of forming a press-molded product obtained by performing press-molding while acting on the shape of the molded product predicted by the press-molded product shape prediction method according to claim 1, and the molding The method includes a step of calculating a shape difference from the normal shape of the product, and a step of performing press forming so as to obtain the normal shape based on the calculation result.

この場合において、上記形状差の演算結果に基づいてプレス成形金型を修正し、この修正後の金型を用いてプレス成形を行うことが好ましい。
或いは、上記プレス成形品の形状予測演算に用いたプレス成形金型を用いてプレス成形を行い、その後に、上記形状差の演算結果に基づいたプレス加工量で後プレス成形を行うようにしても良い。
In this case, it is preferable to correct the press mold based on the calculation result of the shape difference and perform press molding using the corrected mold.
Alternatively, press molding may be performed using the press molding die used for the shape prediction calculation of the press molded product, and then post press molding may be performed with a press working amount based on the calculation result of the shape difference. good.

本願発明に係るプレス成形品形状の予測方法によれば、プレス成形品の材料モデルについて、型の角R部を通過する部分と通過しない部分とで異なる特性の材料モデルを設定し、型パンチ部の加圧の進行に伴う材料移動過程において発生する各部位毎の応力を、上記材料移動に伴って随時演算することで、上記角R部を通過することにより素材に作用する板厚方向の圧縮応力を考慮した演算を行うことができる。すなわち、比較的簡単な方法で、且つ、比較的短時間で、より精度の高い予測を行うことができる。   According to the method for predicting the shape of a press-formed product according to the present invention, a material model having different characteristics is set for a material model of the press-formed product in a portion that passes through the corner R portion of the die and a portion that does not pass through the die punch portion. Compression in the plate thickness direction that acts on the material by passing through the corner R portion by calculating the stress at each part that occurs in the material movement process with the progress of pressurization as needed along with the material movement Calculations that take stress into account can be performed. That is, more accurate prediction can be performed by a relatively simple method and in a relatively short time.

また、本願発明に係るプレス成形品形状の予測プログラムによれば、プレス成形品の材料モデルについて、型の角R部を通過する部分と通過しない部分とで異なる特性の材料モデルを設定する機能と、型パンチ部の加圧の進行に伴う材料移動過程において発生する各部位毎の応力を、上記材料移動に伴って随時演算する機能とを、コンピュータに実現させることで、上記角R部を通過することにより素材に作用する板厚方向の圧縮応力を考慮した演算を行うことができる。すなわち、比較的簡単な方法で、且つ、比較的短時間で、より精度の高い予測を行うことができる。   Further, according to the press-formed product shape prediction program according to the present invention, the material model of the press-formed product has a function of setting a material model having different characteristics depending on whether the part passes through the corner R portion of the mold or not. By passing through the corner R portion by causing a computer to realize the function of calculating the stress of each part generated during the material movement process accompanying the pressurization of the die punch portion as needed with the material movement. By doing so, it is possible to perform calculation in consideration of the compressive stress in the thickness direction acting on the material. That is, more accurate prediction can be performed by a relatively simple method and in a relatively short time.

更に、本願発明に係るコンピュータ読み取り可能な記録媒体によれば、上記プレス成形品形状の予測プログラムをコンピュータに読み取らせることで、プレス成形品の材料モデルについて、型の角R部を通過する部分と通過しない部分とで異なる特性の材料モデルを設定し、型パンチ部の加圧の進行に伴う材料移動過程において発生する素材の各部位毎の応力を、上記材料移動に伴って随時演算する機能を、コンピュータに実現させることができ、上記角R部を通過することにより素材に作用する板厚方向の圧縮応力を考慮した演算を行うことができる。すなわち、比較的簡単な方法で、且つ、比較的短時間で、より精度の高い予測を行うことができる。   Furthermore, according to the computer-readable recording medium according to the present invention, by causing the computer to read the press-molded product shape prediction program, the material model of the press-molded product has a portion that passes through the corner R portion of the mold. A function to set a material model with different characteristics depending on the part that does not pass through, and to calculate the stress of each part of the material generated in the material movement process accompanying the pressurization of the die punch part as needed along with the material movement. The calculation can be performed in consideration of the compressive stress in the thickness direction acting on the material by passing through the corner R. That is, more accurate prediction can be performed by a relatively simple method and in a relatively short time.

また、本願発明に係るプレス成形方法によれば、上記プレス成形品の形状予測方法にて予測演算された成形品の形状と、当該成形品の正規形状との形状差を演算する演算結果に基づいて、上記正規形状となるようにプレス成形を行うことで、型の角R部を通過することにより素材に作用する板厚方向の圧縮応力を考慮した演算結果に基づいた、形状精度がより高いプレス成形を行うことができる。   Further, according to the press molding method according to the present invention, based on the calculation result of calculating the shape difference between the shape of the molded product predicted by the shape prediction method of the press molded product and the regular shape of the molded product. In addition, by performing press molding so as to have the regular shape, the shape accuracy is higher based on the calculation result considering the compressive stress in the thickness direction acting on the material by passing through the corner R portion of the mold Press molding can be performed.

このプレス成形方法において、上記形状差の演算結果に基づいてプレス成形金型を修正し、この修正後の金型を用いてプレス成形を行うことで、形状精度がより高いプレス成形を行うことができる。   In this press molding method, it is possible to perform press molding with higher shape accuracy by correcting the press molding die based on the calculation result of the shape difference and performing press molding using the corrected die. it can.

或いは、上記プレス成形方法において、上記プレス成形品の形状予測演算に用いたプレス成形金型を用いてプレス成形を行い、その後に、上記形状差の演算結果に基づいたプレス加工量で後プレス成形を行うことで、形状精度がより高いプレス成形品を得ることができる。   Alternatively, in the press molding method, press molding is performed using the press molding die used for the shape prediction calculation of the press molded product, and then post press molding is performed with a press working amount based on the calculation result of the shape difference. By performing this, it is possible to obtain a press-formed product with higher shape accuracy.

以下、本発明の実施形態について、添付図面を参照しながら詳細に説明する。
図1は、本実施形態に係るプレス成形方法に用いられるプレス成形型の一例および成形素材を示す断面説明図である。また、図2は図1の要部を拡大して示した断面説明図である。尚、これらプレス成形型および成形素材は、従来公知のものと同様のものである。
これらの図に示すように、上記プレス成形型は、中央部分に所定深さの凹部2cを有するダイ2と、該ダイ2と組み合わされて平板状の金属素材Mを挟持し固定するホルダ4と、該ホルダ4の内周面4dにより外周部6dが上下方向へ摺動自在にガイドされたパンチ6とを備えている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a cross-sectional explanatory view showing an example of a press mold used for the press molding method according to the present embodiment and a molding material. FIG. 2 is an explanatory cross-sectional view showing an enlarged main part of FIG. These press molds and molding materials are the same as those conventionally known.
As shown in these drawings, the press mold includes a die 2 having a concave portion 2c having a predetermined depth in a central portion, and a holder 4 that sandwiches and fixes a flat metal material M in combination with the die 2. The outer peripheral portion 6d is guided by the inner peripheral surface 4d of the holder 4 so as to be slidable in the vertical direction.

ダイ2の凹部2cの入り口の角部2k(つまり、ダイ2の上面2fと凹部2cの縦壁2dとが交差して形成される角部)は、所定の曲率半径を有する曲面状に形成されている。以下、この角部2kを「角R部2k」と称する。尚、上記凹部2cの底面2bの周縁の角部2j(つまり、凹部2cの底面2bと縦壁2dとが交差して形成される角部)も所定の曲率半径を有する曲面状に形成されている。
上記プレス成形型を用いてプレス成形を行う際には、平板状の金属素材Mをダイ2の上面2fとホルダ4の下面4fとの間に挟持して固定し、パンチ6をダイ2の凹部2c内に向って進行させることで、図1において2点鎖線で示されるように、平板部Wfの中央部分に、縦壁Wdと底壁Wbで形成された凹部Wcを有する(断面形状が略ハット状の)プレス成形品W(ワーク)が得られる。
A corner 2k at the entrance of the recess 2c of the die 2 (that is, a corner formed by intersecting the upper surface 2f of the die 2 and the vertical wall 2d of the recess 2c) is formed in a curved surface having a predetermined radius of curvature. ing. Hereinafter, this corner portion 2k is referred to as “corner R portion 2k”. The corner 2j at the periphery of the bottom surface 2b of the recess 2c (that is, the corner formed by the intersection of the bottom surface 2b of the recess 2c and the vertical wall 2d) is also formed in a curved surface having a predetermined radius of curvature. Yes.
When performing press molding using the press mold, the flat metal material M is sandwiched and fixed between the upper surface 2f of the die 2 and the lower surface 4f of the holder 4, and the punch 6 is recessed in the die 2. By proceeding toward 2c, as shown by a two-dot chain line in FIG. 1, a central portion of the flat plate portion Wf has a concave portion Wc formed by a vertical wall Wd and a bottom wall Wb (the cross-sectional shape is substantially the same). A hat-shaped press-formed product W (workpiece) is obtained.

このとき、素材Mはダイ2の凹部2cの入り口の角R部2kで、該角R部2kの曲面に沿うようにして曲げられることとなるが、このとき、ワーク凹部Wcの縦壁Wdを形成する部分は、ダイ2とホルダ4とで挟持された金属素材Mが絞り込まれるようにして形成される。すなわち、ワーク縦壁Wdの一部(上部)は、ダイ2の上面2fとホルダ4の下面4fの間に挟持された金属素材Mが塑性流動し、ダイ2の角R部2kを通過し流入するようにして形成される。   At this time, the material M is bent at the corner R portion 2k at the entrance of the concave portion 2c of the die 2 so as to follow the curved surface of the corner R portion 2k. At this time, the vertical wall Wd of the workpiece concave portion Wc is The portion to be formed is formed such that the metal material M sandwiched between the die 2 and the holder 4 is narrowed down. That is, the metal material M sandwiched between the upper surface 2f of the die 2 and the lower surface 4f of the holder 4 plastically flows in a part (upper part) of the workpiece vertical wall Wd and flows through the corner R portion 2k of the die 2 and flows in. In this way, it is formed.

このようにして形成されたワーク縦壁Wdの上部では、ダイ2の角R部2k通過時に板厚方向に圧縮応力が作用しながら成形され、成形後にダイ2から取り出された際に曲げ戻しが生じ、弾性回復による反りが大きくなる。この現象が、ワークWの形状予測精度を低下させる大きな要因の一つになっているのである。   In the upper part of the workpiece vertical wall Wd formed in this manner, the die 2 is molded while compressive stress is acting in the plate thickness direction when passing through the corner R portion 2k, and when the die 2 is taken out from the die 2 after molding, it is bent back. And warpage due to elastic recovery increases. This phenomenon is one of the major factors that reduce the shape prediction accuracy of the workpiece W.

図3は、ワークW(プレス成形品)について板厚方向に圧縮応力の作用を受けながら成形される領域を模式的に示した部分説明図である。この図に示されるように、ワークWの凹部縦壁Wdのほぼ上半分までの上部領域Luについては、ダイ2の上面2fとホルダ4の下面4fの間に挟持された金属素材Mが塑性流動し、ダイ2の角R部2kを通過し流入するようにして(図3の1点鎖線矢印参照)形成されることにより、ダイ2の角R部2k通過時に板厚方向に圧縮応力が作用しながら成形されることになる。
一方、ワークWの凹部縦壁Wdの下部領域Lsについては、このような板厚方向の圧縮応力が作用することなく成形される。
FIG. 3 is a partial explanatory view schematically showing a region where the workpiece W (press-molded product) is molded while receiving the action of compressive stress in the plate thickness direction. As shown in this figure, the metal material M sandwiched between the upper surface 2f of the die 2 and the lower surface 4f of the holder 4 is plastically flowed in the upper region Lu up to substantially the upper half of the concave vertical wall Wd of the workpiece W. By forming the die 2 so as to pass through the corner R portion 2k (see the dashed line arrow in FIG. 3), a compressive stress acts in the plate thickness direction when the die 2 passes the corner R portion 2k. Will be molded.
On the other hand, the lower region Ls of the concave vertical wall Wd of the workpiece W is formed without such compressive stress acting in the plate thickness direction.

以上のようなプレス成形品Wの形状を予測する予測方法について説明する。
ここでは、非線形有限要素法を用いた成形シミュレーションにより形状予測を行う。かかる成形シミュレーションでは、成形過程で発生するワークの各部位毎の応力を弾塑性計算により計算し、その後、弾性計算を用いて応力の釣り合いを解くことで、弾性回復(所謂、スプリングバック)後のワーク形状が予測できる。
図4は弾塑性計算結果に基づく弾性回復前のワーク要部の予測形状を模式的に示す説明図であり、図5は弾性計算結果に基づく弾性回復後のワーク要部の予測形状を模式的に示す説明図である。また、図6は、弾性回復前(破線曲線参照)と弾性回復後(実線曲線参照)のワーク要部の予測形状を併せて模式的に示す説明図である。
A prediction method for predicting the shape of the press-formed product W as described above will be described.
Here, shape prediction is performed by forming simulation using a nonlinear finite element method. In such forming simulation, the stress for each part of the workpiece generated in the forming process is calculated by elastic-plastic calculation, and then the balance of stress is solved by using elastic calculation, so that after elastic recovery (so-called spring back). The workpiece shape can be predicted.
FIG. 4 is an explanatory diagram schematically showing the predicted shape of the main part of the work before elastic recovery based on the elastic-plastic calculation result, and FIG. 5 schematically shows the predicted shape of the main part of the work after elastic recovery based on the elastic calculation result. It is explanatory drawing shown in. FIG. 6 is an explanatory diagram schematically showing the predicted shape of the main part of the work before elastic recovery (see the dashed curve) and after elastic recovery (see the solid curve).

本実施形態では、成形シミュレーションの形状予測精度をより高めるため、ワークWの成形時に板厚方向の圧縮応力が作用する領域Lu(つまり、ダイ2の角R部2kを通過する部分)と、成形時に板厚方向の圧縮応力が作用しない領域Ls(つまり、ダイ2の角R部2kを通過しない部分)とで、異なる特性の材料モデルを設定するようにした。   In the present embodiment, in order to further improve the shape prediction accuracy of the forming simulation, a region Lu (that is, a portion passing through the corner R portion 2k of the die 2) in which a compressive stress in the thickness direction acts when forming the workpiece W, and forming At times, a material model having different characteristics is set in the region Ls where the compressive stress in the thickness direction does not act (that is, the portion not passing through the corner R portion 2k of the die 2).

図11は上記ワークWの成形に用いた素材金属Mの応力−歪特性を示すグラフであり、曲線N1は、圧縮応力が作用していない当該材料の本来の応力−歪特性を示し、その硬化式(硬化式1)は、σ=εn1(σ:応力,ε:歪,n1:定数)で表される。一方、曲線N2は、圧縮応力が作用した場合の応力−歪特性を示している。この場合には、周知のように、実降伏点が低下し、その硬化式(硬化式2)は、σ=εn2(σ:応力,ε:歪,n2:定数)で表される。 FIG. 11 is a graph showing the stress-strain characteristics of the material metal M used for forming the workpiece W, and the curve N1 shows the original stress-strain characteristics of the material to which no compressive stress is applied, and its hardening. The formula (curing formula 1) is represented by σ = ε n1 (σ: stress, ε: strain, n1: constant). On the other hand, the curve N2 shows the stress-strain characteristic when compressive stress is applied. In this case, as is well known, the actual yield point is lowered, and the hardening formula (hardening formula 2) is represented by σ = ε n2 (σ: stress, ε: strain, n2: constant).

本実施形態では、成形時に板厚方向の圧縮応力が作用しない領域Lsに対しては、曲線N1(硬化式1)で表される特性を有する材料モデル(以下、これを材料モデル1と称する。)を適用し、成形時に板厚方向の圧縮応力が作用する領域Luに対しては、曲線N2(硬化式2)で表される特性を有する材料モデル(以下、これを材料モデル2と称する。)を適用するようにした。
これにより、解析に多大な時間を要するソリッド要素を用いた方法に依ることなく、比較的短時間で解析可能なシェル要素を用いた方法でも、板厚方向の圧縮応力を考慮した演算を行うことができる。
In the present embodiment, a material model (hereinafter referred to as a material model 1) having characteristics represented by a curve N1 (curing formula 1) is applied to a region Ls where a compressive stress in the thickness direction does not act during molding. ) And a material model (hereinafter referred to as a material model 2) having a characteristic represented by a curve N2 (curing formula 2) for a region Lu in which a compressive stress in the thickness direction acts during molding. ) Applied.
This makes it possible to perform calculations in consideration of compressive stress in the plate thickness direction even with methods using shell elements that can be analyzed in a relatively short time, without relying on methods using solid elements that require a long time for analysis. Can do.

また、成形時における板厚方向の圧縮応力の作用の有無、つまり、成形時におけるダイ2の角R部2k通過の有無は、有限要素法のメッシュモデルにおいて、ダイ角R部のメッシュと材料メッシュの節点との接触の有無を判定する接触判定法により、判定するようにした。
この接触判定法は、図10に模式的に示すように、ダイ角R部のメッシュDmと材料メッシュWmの節点Fとの距離を演算し、この距離がゼロ(零:0)になると、接触があったと判定するものである。
The presence or absence of the action of compressive stress in the plate thickness direction at the time of molding, that is, the presence or absence of passing through the corner R portion 2k of the die 2 at the time of molding, is determined in the mesh model of the finite element method. The contact is determined by the contact determination method for determining the presence or absence of contact with the node.
As schematically shown in FIG. 10, this contact determination method calculates the distance between the mesh Dm of the die corner R portion and the node F of the material mesh Wm, and when this distance becomes zero (zero: 0), It is determined that there was.

次に、本実施形態に係るプレス成形品形状の予測方法について、図9のフローチャートを参照しながら説明する。
予測システムがスタートすると、まず、成形素材Mの材料モデルとして材料モデル1が設定入力され(ステップ#1)、次いで、弾塑性演算が開始される(ステップ#2)。そして、ステップ#3で、ダイ2の角R部2kの通過(ダイR通過)の有無を判定する。この判定は、前述の接触判定法により行われる。このスッテプ#3での判定の結果、通過無しの場合には、そのまま材料モデル1が適用され(ステップ#4)、通過有りの場合には、材料モデル1に代えて材料モデル2が適用される(ステップ#5)。そして、ステップ#6で、弾塑性計算が実行される。
Next, a method for predicting the shape of a press-formed product according to this embodiment will be described with reference to the flowchart of FIG.
When the prediction system starts, first, the material model 1 is set and inputted as the material model of the molding material M (step # 1), and then the elastoplastic calculation is started (step # 2). In step # 3, it is determined whether or not the corner R portion 2k of the die 2 has passed (die R passage). This determination is performed by the aforementioned contact determination method. As a result of the determination at step # 3, when there is no passage, the material model 1 is applied as it is (step # 4), and when there is passage, the material model 2 is applied instead of the material model 1. (Step # 5). In step # 6, elastoplastic calculation is executed.

次に、ステップ#7で、パンチ6のストロークが所定量に達した(過達)か、達していない(未達)かを判定し、未達の場合には、ステップ#3に戻り、それ以降同様のステップ(ステップ#3〜#7)を繰り返して実行する。一方、ストローク過達の場合には、弾塑性計算が終了する(ステップ#8)。
以上のステップ#3〜#7の一連のステップは、パンチ6のストローク進行中に随時実行される随時演算領域を構成しており、これにより、成形過程における材料移動に伴う各シェル要素の応力状態の算出,適切な材料モデル(硬化式)の選択が可能となり、応力履歴を考慮することが可能になる。
Next, in step # 7, it is determined whether the stroke of the punch 6 has reached a predetermined amount (excessive) or not reached (not reached), and if not, the process returns to step # 3. Thereafter, the same steps (steps # 3 to # 7) are repeatedly executed. On the other hand, if the stroke is excessive, the elastic-plastic calculation is completed (step # 8).
The series of steps # 3 to # 7 described above constitutes an optional calculation area that is executed as needed while the stroke of the punch 6 is in progress, whereby the stress state of each shell element accompanying the material movement in the molding process. Calculation, selection of an appropriate material model (hardening equation), and stress history can be taken into consideration.

その後、より好ましくは、材料の残留応力値が算出され(ステップ#9)、この残留応力値も考慮して弾性計算が実行される(ステップ#10)ようになっている。この弾性計算で応力の釣り合いを解く演算を行うことにより、弾性回復後の形状の予測が得られる。   After that, more preferably, the residual stress value of the material is calculated (step # 9), and the elasticity calculation is executed in consideration of this residual stress value (step # 10). By performing an operation for solving the balance of stress by this elastic calculation, a prediction of the shape after elastic recovery can be obtained.

図7は、従来の形状予測法による予測形状(破線曲線参照)と本実施形態に係る形状予測方法による予測形状(実線曲線参照)とを対比して示すワーク要部の説明図である。また、図8は、図7の要部Y8を拡大して示す拡大説明図である。
これらの図に示すように、従来の形状予測法では、板厚方向の圧縮応力が考慮されていないため、変形(反り)が比較的小さく予測されるが、本実施形態に係る形状予測方法によれば、板厚方向の圧縮応力が考慮されているので、変形(反り)が比較的大きく予測される。
FIG. 7 is an explanatory diagram of a main part of the work showing the predicted shape (see the dashed curve) according to the conventional shape prediction method and the predicted shape (see the solid curve) according to the present embodiment in comparison with each other. FIG. 8 is an enlarged explanatory view showing the main part Y8 of FIG. 7 in an enlarged manner.
As shown in these figures, in the conventional shape prediction method, since the compressive stress in the thickness direction is not taken into account, the deformation (warp) is predicted to be relatively small, but the shape prediction method according to the present embodiment is According to this, since the compressive stress in the thickness direction is taken into account, deformation (warping) is predicted to be relatively large.

以上の形状予測ステップは全て、形状予測プログラムとしてプログラム化されており、このプログラムをコンピュータに実行させることによって行われる。かかる形状予測プログラムは、例えば光ディスク媒体や磁気テープ媒体など、コンピュータ読み取り可能な種々の周知の記録媒体に記録させておくことができ、かかる記録媒体をコンピュータの読み出し装置に装着してプログラムを読み出すことにより実行可能である。   All of the above shape prediction steps are programmed as a shape prediction program, and are performed by causing a computer to execute this program. Such a shape prediction program can be recorded on various known computer-readable recording media such as an optical disk medium and a magnetic tape medium, and the program is read by attaching the recording medium to a computer reading device. Can be executed.

以上のようにして予測演算が行われた後、ここで予測演算されたワークWの形状と、当該ワークWの正規形状(設計形状)との形状差が演算され、この該演算結果に基づいて、上記正規形状となるようにワークWがプレス成形される。
具体的には、上記形状差の演算結果に基づいてプレス成形金型を修正し、この修正後の金型を用いてプレス成形が行われる。このような修正後の金型を用いてプレス成形を行うことで、形状精度がより高いプレス成形を行うことができる。
After the prediction calculation is performed as described above, the shape difference between the shape of the workpiece W predicted and calculated here and the normal shape (design shape) of the workpiece W is calculated. Based on the calculation result, The workpiece W is press-molded so as to have the regular shape.
Specifically, the press mold is corrected based on the calculation result of the shape difference, and press molding is performed using the corrected mold. By performing press molding using such a corrected mold, press molding with higher shape accuracy can be performed.

或いは、その代わりに、上記予測演算に用いたプレス成形金型を用いてプレス成形を行い、その後に、上記形状差の演算結果に基づいたプレス加工量で後プレス成形を行うようにしても良い。このような後プレス成形を行うことで、形状精度がより高いプレス成形品を得ることができる。   Alternatively, press molding may be performed using the press mold used for the prediction calculation, and then post-press molding may be performed with a press working amount based on the calculation result of the shape difference. . By performing such post-press molding, a press-molded product with higher shape accuracy can be obtained.

以上、説明したように、本実施形態に係るプレス成形品形状の予測方法によれば、ワークWの材料モデルについて、ダイ2の角R部2kを通過する部分Luと通過しない部分Lsとで異なる特性の材料モデルを設定しておき、パンチ6の加圧の進行に伴う材料移動過程において発生するワークの各部位毎の応力を、上記材料移動に伴って随時演算することで、上記角R部2kを通過することにより素材に作用する板厚方向の圧縮応力を考慮した演算を行うことができる。すなわち、比較的簡単な方法で、且つ、比較的短時間で、より精度の高い予測を行うことができるのである。   As described above, according to the method for predicting the shape of a press-formed product according to this embodiment, the material model of the workpiece W differs between the portion Lu that passes through the corner R portion 2k of the die 2 and the portion Ls that does not pass through. By setting a characteristic material model and calculating the stress for each part of the workpiece generated in the material movement process accompanying the pressurization of the punch 6 as needed with the material movement, the corner R portion The calculation considering the compressive stress in the thickness direction acting on the material by passing 2k can be performed. That is, more accurate prediction can be performed in a relatively simple method and in a relatively short time.

尚、本発明は、以上の実施態様に限定されるものではなく、その要旨を逸脱しない範囲において、種々の変更や改良を加え得るものであることは言うまでもない。   Needless to say, the present invention is not limited to the above-described embodiments, and various modifications and improvements can be added without departing from the scope of the present invention.

本発明の実施形態に係るプレス成形方法に用いられるプレス成形型および成形素材を示す断面説明図である。It is a section explanatory view showing the press mold and molding material used for the press molding method concerning the embodiment of the present invention. 図1の要部を拡大して示した断面説明図である。It is sectional explanatory drawing which expanded and showed the principal part of FIG. プレス成形品の要部を模式的に示す部分説明図である。It is a partial explanatory view showing typically the principal part of a press-formed product. 弾塑性計算結果に基づく弾性回復前のワーク要部の予測形状を模式的に示す説明図である。It is explanatory drawing which shows typically the prediction shape of the workpiece | work principal part before elastic recovery based on the elastoplastic calculation result. 弾性計算結果に基づく弾性回復後のワーク要部の予測形状を模式的に示す説明図である。It is explanatory drawing which shows typically the estimated shape of the workpiece | work principal part after the elastic recovery based on an elastic calculation result. 弾性回復前と弾性回復後のワーク要部の予測形状を併せて模式的に示す説明図である。It is explanatory drawing which shows typically the prediction shape of the workpiece | work principal part before elastic recovery and after elastic recovery collectively. 従来の形状予測法による予測形状と本実施形態に係る形状予測方法による予測形状とを対比して示すワーク要部の説明図である。It is explanatory drawing of the principal part of a workpiece | work which shows and compares the prediction shape by the conventional shape prediction method with the prediction shape by the shape prediction method which concerns on this embodiment. 図7の要部Y8を拡大して示す拡大説明図である。FIG. 8 is an enlarged explanatory view showing a main part Y8 of FIG. 7 in an enlarged manner. 本実施形態に係るプレス成形品形状の予測方法を説明するためのフローチャートである。It is a flowchart for demonstrating the prediction method of the press molded product shape which concerns on this embodiment. ダイ角R部のメッシュと材料メッシュの節点との接触の有無を判定する接触判定法の説明図である。It is explanatory drawing of the contact determination method which determines the presence or absence of the contact of the mesh of a die angle | corner R part, and the node of a material mesh. 素材金属の応力−歪特性を示すグラフである。It is a graph which shows the stress-strain characteristic of raw material metal.

符号の説明Explanation of symbols

2 ダイ
2k 角R部
4 ホルダ
6 パンチ
W プレス成形品
Wc 凹部
Wd 縦壁
Lu 縦壁の上部領域
Ls 縦壁の下部領域
M 板状素材
2 Dies 2k Corner R part 4 Holder 6 Punch W Press molded product Wc Concave part Wd Vertical wall Lu Upper part of vertical wall Ls Lower part of vertical wall M Plate material

Claims (6)

型パンチ部の加圧により、板状素材の一部を型の角R部を通過させることで、上記素材の一部に板厚方向の圧縮応力を作用させつつプレス成形を行うことにより得られるプレス成形品の形状を予測する、プレス成形品形状の予測方法であって、
上記プレス成形品の材料モデルについて、上記角R部を通過する部分と通過しない部分とで異なる特性の材料モデルを設定し、上記型パンチ部の加圧の進行に伴う材料移動過程において発生する各部位毎の応力を、上記材料移動に伴って随時演算するステップと、
演算された上記各部位毎の応力の釣り合いを解くことにより、弾性回復後のプレス成形品の形状を予測演算するステップと、
を備えたことを特徴とするプレス成形品形状の予測方法。
By pressing the mold punch part, a part of the plate-shaped material is passed through the corner R part of the mold, so that it can be obtained by press forming while applying a compressive stress in the sheet thickness direction to a part of the material. A method for predicting the shape of a press-formed product, which predicts the shape of a press-formed product,
With respect to the material model of the press-formed product, a material model having different characteristics is set for a portion that passes through the corner R portion and a portion that does not pass through, and each of the materials generated in the material movement process accompanying the pressurization of the die punch portion Calculating the stress for each part as needed with the material movement;
Predicting the shape of the press-formed product after elastic recovery by solving the balance of the calculated stress for each of the above-mentioned parts;
A method for predicting the shape of a press-formed product, comprising:
型パンチ部の加圧により、板状素材の一部を型の角R部を通過させることで、上記素材の一部に板厚方向の圧縮応力を作用させつつプレス成形を行うことにより得られるプレス成形品の形状を、コンピュータに予測させるプレス成形品形状の予測プログラムであって、
上記コンピュータに、
上記プレス成形品の材料モデルについて、上記角R部を通過する部分と通過しない部分とで異なる特性の材料モデルを設定し、上記型パンチ部の加圧の進行に伴う材料移動過程において発生する各部位毎の応力を、上記材料移動に伴って随時演算する機能と、
演算された上記各部位毎の応力の釣り合いを解くことにより、弾性回復後のプレス成形品の形状を予測演算する機能と、
を実現させるためのプレス成形品形状の予測プログラム。
By pressing the mold punch part, a part of the plate-shaped material is passed through the corner R part of the mold, so that it can be obtained by press forming while applying a compressive stress in the sheet thickness direction to a part of the material. A press-formed product shape prediction program for causing a computer to predict the shape of a press-formed product,
In the above computer,
With respect to the material model of the press-formed product, a material model having different characteristics is set for a portion that passes through the corner R portion and a portion that does not pass through, and each of the materials generated in the material movement process accompanying the pressurization of the die punch portion. A function to calculate stress for each part as needed along with the material movement;
A function for predicting and calculating the shape of the press-formed product after elastic recovery by solving the balance of the stress for each of the calculated parts,
For predicting the shape of a press-formed product to achieve this.
請求項2に記載されたプレス成形品形状の予測プログラムを記録したコンピュータ読み取り可能な記録媒体。   A computer-readable recording medium on which the press-formed product shape prediction program according to claim 2 is recorded. 型パンチ部の加圧により、板状素材の一部を型の角R部を通過させることで、上記素材の一部に板厚方向の圧縮応力を作用させつつプレス成形を行うことにより得られるプレス成形品の成形方法であって、
請求項1に記載されたプレス成形品の形状予測方法にて予測演算された成形品の形状と、当該成形品の正規形状との形状差を演算するステップと、
該演算結果に基づいて、上記正規形状となるようにプレス成形を行うステップと、
を備えたことを特徴とするプレス成形方法。
By pressing the mold punch part, a part of the plate-shaped material is passed through the corner R part of the mold, so that it can be obtained by press forming while applying a compressive stress in the sheet thickness direction to a part of the material. A method of forming a press-molded product,
A step of calculating a shape difference between the shape of the molded product predicted and calculated by the method for predicting the shape of the press-formed product according to claim 1 and a normal shape of the molded product;
Based on the calculation result, performing press molding so as to have the regular shape;
A press molding method characterized by comprising:
請求項4に記載のプレス成形方法において、
上記形状差の演算結果に基づいてプレス成形金型を修正し、この修正後の金型を用いてプレス成形を行うことを特徴とするプレス成形方法。
In the press molding method according to claim 4,
A press molding method, comprising: correcting a press mold based on the calculation result of the shape difference, and performing press molding using the corrected mold.
請求項4に記載のプレス成形方法において、
上記プレス成形品の形状予測演算に用いたプレス成形金型を用いてプレス成形を行い、その後に、上記形状差の演算結果に基づいたプレス加工量で後プレス成形を行うことを特徴とするプレス成形方法。
In the press molding method according to claim 4,
A press characterized in that press molding is performed using the press molding die used for the shape prediction calculation of the press molded product, and then post press molding is performed with a press working amount based on the calculation result of the shape difference. Molding method.
JP2004104112A 2004-03-31 2004-03-31 Press molded product shape prediction method, prediction program, recording medium recording the program, and press molding method Expired - Fee Related JP4524573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004104112A JP4524573B2 (en) 2004-03-31 2004-03-31 Press molded product shape prediction method, prediction program, recording medium recording the program, and press molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004104112A JP4524573B2 (en) 2004-03-31 2004-03-31 Press molded product shape prediction method, prediction program, recording medium recording the program, and press molding method

Publications (2)

Publication Number Publication Date
JP2005288459A JP2005288459A (en) 2005-10-20
JP4524573B2 true JP4524573B2 (en) 2010-08-18

Family

ID=35322002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004104112A Expired - Fee Related JP4524573B2 (en) 2004-03-31 2004-03-31 Press molded product shape prediction method, prediction program, recording medium recording the program, and press molding method

Country Status (1)

Country Link
JP (1) JP4524573B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5298032B2 (en) * 2007-02-28 2013-09-25 シロー インダストリーズ インコーポレイテッド Metal blank with binder trim parts and design method
JP5462201B2 (en) * 2011-02-14 2014-04-02 株式会社豊田中央研究所 Molding analysis method, molding analysis apparatus, program, and storage medium
JP5834698B2 (en) * 2011-09-26 2015-12-24 Jfeスチール株式会社 Springback factor analysis method and apparatus in press molding
JP6236297B2 (en) * 2013-11-14 2017-11-22 日産自動車株式会社 Surface shape quantification method
KR102499831B1 (en) 2016-05-23 2023-02-14 코닝 인코포레이티드 Method of predicting gravity-free shape of glass sheet and method of managing quality of a glass sheet based on gravity-free shape

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0890086A (en) * 1994-09-27 1996-04-09 Matsushita Electric Works Ltd Method for bending and device therefor
JP2000312933A (en) * 1999-04-28 2000-11-14 Toyota Motor Corp Springback volume prediction method
JP2002126834A (en) * 2000-10-20 2002-05-08 Nippon Yunishisu Kk Mold and its designing apparatus, designing method or manufacturing apparatus, and formed product
JP2002219523A (en) * 2001-01-29 2002-08-06 Toyota Motor Corp Method for analyzing press forming
JP2003340529A (en) * 2002-05-29 2003-12-02 Jfe Steel Kk Analysis system for springback of press-formed product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0890086A (en) * 1994-09-27 1996-04-09 Matsushita Electric Works Ltd Method for bending and device therefor
JP2000312933A (en) * 1999-04-28 2000-11-14 Toyota Motor Corp Springback volume prediction method
JP2002126834A (en) * 2000-10-20 2002-05-08 Nippon Yunishisu Kk Mold and its designing apparatus, designing method or manufacturing apparatus, and formed product
JP2002219523A (en) * 2001-01-29 2002-08-06 Toyota Motor Corp Method for analyzing press forming
JP2003340529A (en) * 2002-05-29 2003-12-02 Jfe Steel Kk Analysis system for springback of press-formed product

Also Published As

Publication number Publication date
JP2005288459A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
JP5910224B2 (en) Press forming analysis method
EP3151138A1 (en) Model configuration method, forming simulation method, manufacturing method for forming tool, program, computer readable recording medium with program stored therein, and finite element model
JP6558515B2 (en) Method for evaluating deformation limit on sheared surface of metal plate, method for predicting cracks, and method for designing press dies
CN102737147B (en) Optimized design method for determining geometric parameters of intermediate construction for forming panel veneer in multiple steps
JP4524573B2 (en) Press molded product shape prediction method, prediction program, recording medium recording the program, and press molding method
JP2012122948A (en) Flare rigidity evaluation indenter model, and flare rigidity analysis apparatus and flare rigidity analysis method using indenter model
JP2006263788A (en) Design system of anticipative die shape
CN107532981A (en) Breakage prediction method, program, recording medium and arithmetic processing apparatus
JP4052211B2 (en) Press simulation model initial shape creation device, press simulation device, press simulation model initial shape creation method, and simulation method
JP2006031594A (en) Shape determination method for press forming die, and press forming method for material to be formed
JP2009277143A (en) Method, apparatus, and program for analytically processing impact property or rigidity of thin-plate shaped structure, and storage medium
JP6528656B2 (en) Analysis method for hot stamp forming process, determination method, analysis apparatus and program
JP4986955B2 (en) Molding condition determination method
JP4352658B2 (en) Springback analysis method for press-formed products
Kayabasi et al. Automated design methodology for automobile side panel die using an effective optimization approach
JP2005266892A (en) Mold designing support system and method, and program for supporting mold designing
JP5737059B2 (en) Press forming simulation analysis method and apparatus
JP2005266894A (en) Mold design support system and method, and program for supporting mold designing
JP2024031802A (en) Stress-strain relationship estimation method and springback prediction method, and method for manufacturing press molding
JP5462201B2 (en) Molding analysis method, molding analysis apparatus, program, and storage medium
JP5107595B2 (en) Simulation analysis method and mold design method
JP4041766B2 (en) Method for analyzing characteristics of structure including pressed metal parts, characteristic analysis program, and storage medium storing the program
JP2006026723A (en) Method, apparatus and program for simulating die-casting, and record medium for recording this program
JP5389841B2 (en) Springback analysis method, springback analysis device, program, and storage medium
JP5797594B2 (en) Press forming analysis system and program thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061108

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090122

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100506

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4524573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees