JP4524076B2 - Stabilized transglutaminase - Google Patents

Stabilized transglutaminase Download PDF

Info

Publication number
JP4524076B2
JP4524076B2 JP2003098766A JP2003098766A JP4524076B2 JP 4524076 B2 JP4524076 B2 JP 4524076B2 JP 2003098766 A JP2003098766 A JP 2003098766A JP 2003098766 A JP2003098766 A JP 2003098766A JP 4524076 B2 JP4524076 B2 JP 4524076B2
Authority
JP
Japan
Prior art keywords
tgase
buffer
purified
enzyme
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003098766A
Other languages
Japanese (ja)
Other versions
JP2004305010A (en
Inventor
良明 黒野
欣也 鷲津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amano Enzyme Inc
Original Assignee
Amano Enzyme Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amano Enzyme Inc filed Critical Amano Enzyme Inc
Priority to JP2003098766A priority Critical patent/JP4524076B2/en
Publication of JP2004305010A publication Critical patent/JP2004305010A/en
Application granted granted Critical
Publication of JP4524076B2 publication Critical patent/JP4524076B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、製造工程中や製品保存中の酵素の活性の失活が抑制される安定化トランスグルタミナーゼに関する。
【0002】
【従来の技術】
トランスグルタミナーゼ(以下、TGaseと記載することがある)は、ペプチド鎖内にあるグルタミン残基のγ−カルボキシルアミド基のアシル転移反応を触媒する酵素で、アシル受容体としてタンパク質中のリジン残基のε−アミノ基が作用すると、タンパク質分子の分子内あるいは分子間においてε-(γ-Gln)-Lys架橋結合を形成させる。従って、TGaseの作用を利用すればタンパク質又はペプチドの改質を行うことができるため、ストレプトミセス属由来の微生物酵素を用いたTGase(特許文献1参照)が肉の結着、ソーセージ、豆腐、パン、麺類の製造に使用されている。
【0003】
TGaseは、発酵過程でプロ体を経て成熟型に変換されるシスティンを活性中心残基とするチオール酵素であることから、発酵ブロス中では一部不活性型で存在するものがあり、培養終了後、適切な工程で還元剤を加える等により活性化する必要があった。また、同じ理由により安定性が悪く、製造工程中あるいは製品保存中での失活を抑えるため、安定化剤の添加が必要であった。そのため、TGaseに安定化剤を添加した組成物(特許文献2及び特許文献3参照)が提案されている。
【0004】
一方、TGaseは、製造工程の煩雑さ、収率の低さ、コスト面等の理由から工業的規模で簡便に精製結晶化することが難しく、現在、工業的に製造されているTGaseは、発酵混合物から菌体等を除いた粗酵素液を限外濾過膜により脱塩濃縮後、アルコール分画沈殿等により部分精製されたものである。従って、比活性の低下等の理由で安定化剤の種類や添加量に限界があり、乾燥時における失活などによる収率の低下の問題があった。また、結晶酵素であれば液状や高濃度懸濁液などの製剤化が可能であるが、部分精製では粉末以外、例えば、液状にするとプロテアーゼ等の夾雑酵素による失活の虞があり、沈殿剤等を添加して懸濁状又はペースト状にすると比活性が低いことから使用量が多くなり、安定化剤や沈殿剤の影響が大きくなるという問題があった。
【0005】
【特許文献1】
特許第2849773号明細書
【特許文献2】
特開平4−207194号公報
【特許文献3】
WO96/11264
【0006】
【発明が解決しようとする課題】
しかし、従来の安定化剤の中には、各種法規制の対象となるものや、安全性に影響を及ぼす可能性のあるものもあり、使用目的等に応じた使い分けやより安全な安定化剤を用いる必要があったため、製造が煩雑となるばかりか製造コストが高くなることがあった。また、安定化剤の種類によっては十分な安定化効果が得られないことがあった。
上記特許文献1及び2に記載のものを含め従来の安定化されたTGaseは、いずれも部分精製されたものであり、精製結晶化されたTGaseの安定化に関してはこれまでに提案がない。従来の部分精製されたTGaseの安定化と精製結晶化されたTGaseの安定化とで差違のある可能性もあり、精製結晶化されたTGaseを安定化できれば、上記の部分精製のTGaseを安定化する場合の諸問題を解決できることからもTGaseの精製結晶化と精製結晶化されたTGaseの安定化に関する提案は有意義である。
【0007】
本発明は、上記事情に鑑みなされたものであり、安全性が高く、製造工程中や製品保存中の酵素活性の失活を抑制する安定化したトランスグルタミナーゼ(精製結晶化されたものを含む)を提供することを課題とする。
【0008】
本発明者等は、上記課題を解決するために種々検討を重ね本発明を完成した。
すなわち、本発明は、ストレプトミセス(Streptomyces)属の微生物が生産するトランスグルタミナーゼであって、とうもろこし蛋白分解物質とpH6.0〜7.0の範囲内のマッキルバイン緩衝液の混合物、トレハロースと小麦蛋白分解物とpH6.0〜7.0の範囲内のマッキルバイン緩衝液の混合物、小麦蛋白分解物とpH6.0〜7.0の範囲内のマッキルバイン緩衝液の混合物、システィンとpH6.0〜7.0の範囲内のマッキルバイン緩衝液の混合物からなる群から選ばれた1種以上が安定化剤として添加されてなる安定化トランスグルタミナーゼを要旨とする。
【0009】
上記の発明によれば、製造工程中や製品保存中の酵素活性の失活を抑制する安定化したトランスグルタミナーゼを得ることができる。
【0010】
上記発明におけるTGaseは、固体状に処理されたものでも液体状に処理されたものでも良いが、固体状に処理されたものが好ましく、ここに固体状に処理されたTGaseとは、粉末状などに処理されるものをいう。
【0013】
上記のいずれの安定化トランスグルタミナーゼも、マッキルバイン緩衝液のpHは6.5が好ましい。また、TGaseはストレプトミセス(Streptomyces)属が生産するものであれば、精製結晶化されたものでも、部分精製されたものでも良い。
【0014】
【発明の実施の形態】
トランスグルタミナーゼは、微生物が生産するものであれば特に限定されないが、ストレプトミセス(Streptomyces)属に属する微生物が生産するものが好ましい。ストレプトミセス属に属する微生物としては、ストレプトミセス・モバラエンシス(Streptomyces mobaraensis)(旧ストレプトベルチシリウム・モバラエンス)S-8112株(Agric.Biol.Chem.,53(10),2613-2617,1989、FERM P-9364)、ストレプトミセス・ラベンデュラエ(Streptomyces lavendulae)No.466(特許第2849773号明細書、特許文献1参照、FERM P-11657)、ストレプトミセス・エスピー(Streptomyces sp)No.83(特許第2849773号明細書、特許文献1参照、FERM P-11656)等を挙げることができる。また、紫外線照射やNTG(N-methyl-N'-nitrosoguanidine)等の常法を用いて生産性を高めたり、プロテアーゼやアミラーゼなどの夾雑蛋白の生成を減らしたり、抗生物質などの生理活性物質を抑制又は欠如させたような変異株を使用することもでき、更には、遺伝子組換え菌等の使用もできる。また、TGaseの精製結晶化は、市販のTGaseを用いて行うこともできる。
【0015】
TGase生産菌の発酵に使用する培地としては、デンプン、蔗糖、乳糖、グリセロール、グルコース等の炭素源、ペプトン、肉エキス、酵母エキス、コーンスチープリカー、硝酸アンモニウム、塩化アンモニウム、硫酸アンモニウム等の窒素源、リン酸一カリウム、リン酸二カリウム、硫酸マグネシウム、硫酸マンガン、炭酸カルシウム等の微量金属塩など一般的に用いられる培地原料を使用できる。また、発泡を抑えるために消泡剤の添加も必要に応じて行うことができる。
培養は、25℃〜35℃の範囲が一般的であり、各種発酵容器により実施され、通常3日間〜6日間の通気撹拌が行われる。菌株や発酵培地培養条件によってはこの限りでなく、例えば、培地原料をフイーヂングしたり、高濃度の培地原料を含む場合は、一般的に培養時間が更に長くなることもある。また、培地pHの制御も必要に応じて行われる。
【0016】
培養終了後における発酵混合物からの菌体等の除去は、濾過あるいは遠心分離により行われる。濾過は、けい藻土を加えた加圧濾過が好ましく、また、室温以下で実施することが好ましい。得られた濾液、すなわちTGase粗酵素液は、必要に応じて冷却が行われる。なお、Eur,.J,Biochem.,257,570-576(1998)に記載されているように、TGaseは前駆体として生産されることが知られており、成熟体への変換のため発酵混合物を一定時間そのまま、あるいは他のプロセッシングに使用可能なトリプシン等の酵素を添加して保温しても良い。また、TGaseは、酵素活性を持たない酸化型としても一部存在することが知られているため、システィンやグルタチオン、あるいはそれらを含む物質を添加して活性型に変換することも望ましい。但し、これらの活性化操作は、精製工程の段階に限定して行われるものではないが、好ましくは、精製の早い段階で行うのが好ましい。
【0017】
粗酵素液は、必要に応じて濃縮を行うことができる。濃縮方法は、特に限定されないが、濃縮と精製が同時に可能な限外濾過膜の利用が好ましい。濃縮は、10倍〜100倍程度まで行うことができるが、次の工程である塩析結晶化における沈殿の生成、回収に可能な濃度に達していれば特に問題がなく、作業性や回収率等を考慮すれば高い方が好ましい。なお、限外濾過膜は、TGaseの分子量約38,000を考慮すれば、それ以下の例えば分子量13,000の平均孔径を有する旭化成工業製ACP-13000等の使用が好ましいと言えるが、必ずしもこれに限定されることはなく、分子量50,000の孔径を有する膜を使用してもほとんど酵素が漏れることがないので、必要に応じて膜の選択を行うことで精製度を高めることも可能である。脱塩濃縮において沈殿を生じることもあるが、適切な緩衝液あるいは塩類溶液等を加えることにより溶解させ、回収率を高めることが可能である。また、濃縮時の温度は、特に限定されるものではないが、10℃〜30℃が好ましい。温度が高い程濃縮は効率的に実施できるが、失活も考えられる。
【0018】
濃縮液は、予め活性炭による脱色を行ったり、その他の吸着剤やイオン交換樹脂を用いて処理することができる。また、濃縮液は、他の沈殿剤、例えば、エタノール、ポリエチレングリコール等を使用して前処理を行い部分精製しても良い。更に、分画沈殿を塩析結晶化の前に行っても良い。また、十分脱塩後、精製水等による希釈を行って沈殿を生成させ、TGaseを沈殿画分から回収するなどの方法も実施することができる。
【0019】
TGaseの精製結晶化は、均一にまで精製し濃縮した酵素溶液に硫安や塩化ナトリウム等の塩類を加える塩析により行うことができるが、必ずしも均一にまで精製し濃縮したものである必要はない。すなわち、塩化ナトリウムでは飽和に達するまで加えても夾雑蛋白の沈殿が少ないので部分精製された酵素溶液であっても結晶化には好適である。なお、特に、酵素濃度が低い場合には、回収率を高めるために沈殿性が高い硫安等を併用することも有効である。
【0020】
精製結晶化は、予め結晶種を添加しても良いが、添加しなくても可能である。
塩化ナトリウム等の塩類は、一時に飽和させるのではなく徐々に添加するのが好ましい。通常、酵素の結晶化は、僅かに不定形の沈殿を生成する準飽和状態から時間をかけて塩濃度を高めたり、何らかの刺激を酵素液に与えて行われるが、塩化ナトリウムは既述のように他の夾雑蛋白の沈殿が少ないことから結晶化が容易に行えるものと思われる。また、塩化ナトリウムを用いて得られる結晶懸濁液の安定性は、結晶状態であることと塩濃度が高いことにより非常に優れており、長期保存も可能である。従って、必要があれば結晶懸濁液そのまま、あるいは適切な安定化剤を加えた製品とすることも可能となった。
【0021】
結晶の回収は、濾過や遠心分離など一般的な方法により実施できる。いずれの場合も結晶母液に含まれる夾雑蛋白を十分に除くため洗浄を行うことが好ましい。また、得られた結晶は、水あるいは塩類溶液等を用いて溶解した後、再度塩類を用いて結晶化を行ういわゆる再結晶化操作を行うことで、更に不純物の除去が可能である。
【0022】
得られた結晶は、水あるいは塩類溶液等を用いて溶解した後、塩析に使用した塩類を除くため、限外濾過膜その他の方法を用いて脱塩濃縮を行い、凍結乾燥などの方法により粉末化する。乾燥方法は、他に噴霧乾燥、減圧乾燥、フイルム乾燥、あるいはアルコール等の有機溶媒により沈殿させた後、真空乾燥すること等で可能である。脱塩濃縮は、乾燥効率を考慮すればできる限り濃度を高めることが好ましいが、濃度を高めることによりTGaseが沈殿として析出することもあるので、この場合、低濃度の塩類溶液を添加して溶解性を高める。
【0023】
精製結晶化されたTGaseの保存中の安定化は、安定化剤を添加して行うことができる。精製結晶化されたTGaseは、従来の粉末など固体状に処理するのみならず、容易に液体状に処理して製品化できるが、安定化剤は固体状で有効でも液体状で有効でない場合やその逆の場合もあり得るので、それぞれについて安定化剤を検討する必要がある。安定化剤は、TGaseに保存安定化効果が期待できる物質を添加し、所定期間保存後のTGaseの回収率と残存活性により評価される。
【0024】
TGaseの安定化剤としては、とうもろこし蛋白分解物質とpH6.0〜7.0の範囲内のマッキルバイン緩衝液の混合物、トレハロースと小麦蛋白分解物とpH6.0〜7.0の範囲内のマッキルバイン緩衝液の混合物、小麦蛋白分解物とpH6.0〜7.0の範囲内のマッキルバイン緩衝液の混合物、システィンとpH6.0〜7.0の範囲内のマッキルバイン緩衝液の混合物からなる群から選ばれた1種以上を挙げることができる。これらの安定化剤は、固体状に処理されたTGaseの安定化に好適である。ここで、マッキルバイン緩衝液は、クエン酸ナトリウムとリン酸二ナトリウムとの組み合わせからなる緩衝液で、酵素の粉末重量当たり前者が1%以上、後者が3%以上、好ましくは前者が3%以上、後者10%以上の割合で添加することが好ましい。また、マッキルバイン緩衝液のpHは、クエン酸ナトリウムとリン酸二ナトリウムの割合を変更することにより調整できる。
【0026】
また、上記の安定化剤は、精製結晶化されたTGase、あるいは部分精製されたTGaseに用いることができる。
【0027】
調製された固体状又は液体状の酵素は、更に使用目的により糖類、その他の物質の添加により賦形しても良い。特に、粉末の場合、タンパク質そのものの添加も液体状と異なり容易であるため、肉の接着においてカゼインナトリウムを高濃度に添加することができる。また、粉末状の場合には、包装容器内に酸素を吸収する脱酸素剤等を封入することも可能である。一方、液体状の場合、溶存酸素消去のため、脱気や窒素ガス封入も可能である。
【0028】
上記の各安定化剤の添加量は、比活性が7〜20u/Ab280nm(17〜50u/mg)程度のTGase1重量部に対して5〜100重量部、好ましくは20〜100重量部である。下限あるいは上限を外れると十分な安定化効果や回収率が得られないからである。
【0029】
【実施例】
次いで、本発明を実施例を挙げて説明するが、本発明は以下の実施例に限定されるものではない。
【0030】
〔参考例1〕(TGaseの精製結晶化1)
取得容易な市販のTGase(味の素社製ActivaTG、ストレプトミセス・モバラエンシス(Streptomyces mobaraensis)S-8112株の夾雑蛋白の少ない変異株が生産するTGaseの粗酵素の濃縮液をアルコール分画沈殿により粉末化した部分精製酵素、特開昭64−27471号公報参照)5gを0.2Mトリス−塩酸緩衝液pH6.0、50mlに溶解した後、不溶物を遠心分離により除いた。上清液に塩化ナトリウムを徐々に加え、少し濁りが生じた後、微量の結晶種を加えて低温に一夜保存した。生じた結晶懸濁液に更に塩化ナトリウムを飽和になるまで加えて数日間低温にて保存した。得られた結晶の回収率は63%で、比活性は結晶化前が7.1u/Ab280nmであったのに対し13.6u/Ab280nmであった。
【0031】
TGaseの活性の測定は、特開昭64−27471号公報に記載の方法により行った。すなわち、ベンジルオキシカルボニル−L−グルタミニルグリシンとヒドロキシルアミンを基質としてCa2+非存在下で反応を行い、生成したヒドロキサム酸をトリクロロ酢酸共存下で鉄錯体を形成させ、525nmの吸収を測定し、ヒドロキサム酸の量を検量線より求め算出する。以下、具体的に示す。
試薬A:0.2Mトリス塩酸緩衝液(pH6.0)、0.1Mヒドロキシルアミン、0.01M還元型グルタチオン、0.03Mベンジルオキシカルボニル−L−グルタミニルグリシン
試薬B:3N塩酸、12%トリクロロ酢酸、5%FeCl3・6H2O(O.1N−HClに溶解)
これらの溶液の1:1:1の混合液を試薬Bとした。
酵素液の0.05mlに試薬Aを0.5mlを加えて混合し、37℃で10分間反応後、試薬Bを加えて反応停止とFe錯体の形成を行った後、525nmの吸光度を測定する。対照として予め熱失活させた酵素液を用いて同様に反応させたものの吸光度を測定し、酵素液との吸光度差を求める。別に酵素液のかわりにL−グルタミン酸−γ−モノヒドロキサム酸を用いて検量線を作成し、前記吸光度差より生成されたヒドロキサム酸の量を求め、1分間に1μモルのヒドロキサム酸を生成する酵素活性を1単位とした。
TGaseの活性の測定は、以下の各参考例及び各実施例においても同様である。
【0032】
〔参考例2〕(TGaseの精製結晶化2)
TGase生産菌のストレプトミセス・モバラエンシス(Streptomyces mobaraensis)S-8112株とストレプトミセス・ラベンデュラエ(Streptomyces lavendulae)No.466をそれぞれ可溶性デンプン2%、ショ糖5%、ポリペプトン2%、酵母エキス0.2%、硫酸マグネシウム0.1%、リン酸2カリウム0.2%、アデカノール0.05%からなる培地100mlを500ml容坂口フラスコに入れ、これにショ糖を含まない同培地に胞子懸濁液を接種後2日間30℃にて振とう培養した前培養液1mlを接種して、4日間同様に振とう培養した。培養終了後、遠心分離によりそれぞれ粗酵素液450mlと930mlを得た。なお、%は重量%である。
【0033】
上記の粗酵素液を限外濾過膜(旭化成工業社製ACP1010)を用いて脱塩濃縮し、最終的に194mlと255mlの濃縮液を得た。この濃縮液を予め50mMのリン酸緩衝液pH7.0で透析し、同緩衝液で平衡化した約40mlのブルーセファロースCl-6Bカラムを通して酵素を吸着した後、塩化ナトリウム0.5Mを含む同緩衝液で溶出した。硫安飽和として酵素蛋白を沈殿として回収し、約10mlの0.2Mトリス塩酸緩衝液pH6.0に溶解した。その後、塩化ナトリウムを徐々に添加して生成する沈殿を除去することを繰り返すことによりTGaseの精製結晶化を行うことができた(粗結晶)。回収率は酵素濃度が低いために悪く約10%であったが、粗酵素液の比活性がそれぞれ0.11u/Ab280nm、0.06u/Ab280nmに対して粗結晶の比活性はそれぞれ13.1u/Ab280nmと6.9u/Ab280nmであった。
【0034】
〔参考例3〕(TGaseの精製結晶化3)
市販品トランスグルタミナーゼTGB(中国、Yiming Fine Chemical Co.,Ltd製)10gを0.2Mトリス塩酸緩衝液pH6.0 50mlに溶解懸濁後、不溶物を遠心分離により除き、硫安飽和による塩析を行って沈殿を集めた。沈殿を0.05Mリン酸塩緩衝液pH7.0に溶解透析後、ブルーセファロースCL-6Bカラムに通して酵素を吸着させた後、食塩0.5Mを含む同緩衝液で溶出を行った。このようにして、製品中に含まれる賦形剤等の除去を行った後、食塩飽和による塩析結晶化を行った。酵素濃度が低いため、十分な沈殿の生成に至らなかったため、少量の硫安を追加することにより結晶化を行うことができた。回収率は低いが、製品溶解液における比活性が2.2u/Ab280nmに対し、比活性10.1u/Ab280nmの粗結晶が得られた。
【0035】
〔実施例1〕(固体状に処理された精製結晶化TGaseに添加する安定化剤の検討1)
上記参考例1〜3でそれぞれTGaseの精製結晶化を行うことができた。これらのTGaseは、いずれも精製結晶化されており酵素的に同等であるため、いずれを使用して安定化剤の検討を行っても良いが、以下の検討では実施例4を除き参考例1、即ち市販の製品から得られた精製結晶化TGaseを使用した。参考例1で得られた精製結晶化酵素の一部を0.2Mトリス−塩酸緩衝液に溶解後、限外濾過膜により脱塩濃縮を行った。脱塩濃縮液2mlに対し、表1に示すTGaseの保存安定化効果を期待できそうな各種物質200mgを添加溶解後、予備凍結し、凍結乾燥機により乾燥させ、固体状に処理したTGaseの回収率と残存活性を調べた。結果は、表1に示す通りであった。なお、保存安定性については、上記で得た凍結乾燥品0.3〜0.8gを15ml容ファルコンプラスチックチューブにそのまま封入し、44℃で各時間保存後の残存活性により評価した。また、回収率は、乾燥に用いた脱塩濃縮液2mlの総活性に対して乾燥後の総活性を測定することにより算出した。以下の各実施例においても同様である。
【0036】
【表1】

Figure 0004524076
【0037】
表1から明らかなように、トレハロースととうもろこしタンパクの分解物であるペプチーノの混合物を添加した精製結晶化TGaseでは、ほぼ完全に活性が維持された。また、トレハロースとグルタミンペプチドの混合物、トレハロースとpH7.0付近のマッキルバイン緩衝液成分の混合物も活性が高く維持された。
【0038】
〔実施例2〕(固体状に処理された精製結晶化TGaseに添加する安定化剤の検討2)
実施例1と同様に固体状に処理された精製結晶化TGaseを用いて、クエン酸とリン酸2ナトリウムからなる各pHのマッキルバイン緩衝液の添加量を中心に、グルタミン酸ナトリウムとトレハロースとの組み合わせからなるTGaseの回収率と44℃、1ヶ月間保存後の残存活性について検討した。結果は、表2に示した。なお、酵素及び各種物質の添加量は表2に示す通りである。
【0039】
【表2】
Figure 0004524076
【0040】
表2から明らかなように、グルタミン酸ナトリウムとトレハロースとマッキルバイン緩衝液の混合物は、マッキルバイン緩衝液のpHの6.5のものが回収率と残存活性で最も高い結果を示した。なお、後記の液体状に処理された酵素についてのマッキルバイン緩衝液でのpH安定性がpH6.0〜7.0で高いことから、この固体状に処理された精製結晶化TGaseのpH安定性もこの領域で最も高いことが考えられる。また、pH6.5以外のマッキルバイン緩衝液を加えたものも、添加量を増やすことにより回収率と残存活性を高めることが可能と考えられる。
【0041】
〔実施例3〕(固体状に処理された精製結晶化TGaseに添加する安定化剤の検討3)
各種物質の添加効果について更に確認するために、実施例1と同様に固体状に処理された精製結晶化TGaseを用いて調べた。即ち、表3に記載の各種物質を添加して回収率と44℃、1ヶ月間保存後の残存活性を測定した。表3に示すように、pH6.5のマッキルバイン緩衝液とシスティンあるいはグルタチオンの混合物が添加されたTGaseは、従来知られているシスティン、グルタチオンの単独添加の場合より回収率と残存活性において顕著に高い結果を示した。なお、回収率で特に高い値を示しているシスティン、グルタチオン、亜硫酸水素ナトリウムは、酵素の乾燥中に一部活性化され、逆に、他のもので回収率が低いのは、精製工程で活性化が不十分であったことによるものと考えられる。
【0042】
【表3】
Figure 0004524076
【0043】
〔実施例4〕(粗酵素TGaseに添加する安定化剤の検討)
実施例1〜3では、精製結晶化された酵素に対する安定化効果を調べたが、本実施例では結晶化されない粗酵素での同様な効果を調べた。参考例1に記載の市販のTGaseを0.2Mトリス−塩酸緩衝液pH6.0に懸濁後、不溶物を遠心分離により除いた上清液に硫安を飽和となるまで加えて塩析した。生じた沈殿を遠心分離により集めて限外濾過膜により脱塩濃縮して粗酵素液を得た。この粗酵素液を用いて表4に示す各種物質の保存安定性効果を調べた。
【0044】
【表4】
Figure 0004524076
【0045】
表4より、トレハロースとペプチーノとpH6.0〜7.0の範囲内のマッキルバイン緩衝液の混合物、ペプチーノとpH6.0〜7.0の範囲内のマッキルバイン緩衝液の混合物、トレハロースとグルタミンペプチドとpH6.0〜7.0の範囲内のマッキルバイン緩衝液の混合物、グルタミンペプチドとpH6.0〜7.0の範囲内のマッキルバイン緩衝液の混合物、トレハロースと亜硫酸水素ナトリウムとpH6.0〜7.0の範囲内のマッキルバイン緩衝液の混合物、トレハロースとグルタミン酸ナトリウムと亜硫酸水素ナトリウムとpH6.0〜7.0の範囲内のマッキルバイン緩衝液の混合物、あるいはグルタミン酸ナトリウムと亜硫酸水素ナトリウムの混合物が高い回収率と残存活性を示した。なお、これらの効果が認められた安定化剤は、特に結果は示していないが、精製結晶化TGaseについても保存安定化効果が確認された。
【0046】
〔実施例5〕(液体状に処理された精製結晶化TGaseに添加する安定化剤の検討)
参考例1で得られた精製結晶化されたTGaseを0.2Mトリス−塩酸緩衝液pH6.0に溶解し、通常の活性測定に使用される2倍濃縮となるまで希釈した後、表5、表6に記載の各種物質の溶液と等量混合し、液体状のまま50℃1時間の加熱処理を行って残存活性の測定を行い各種物質の保存安定化効果を検討した。
【0047】
【表5】
Figure 0004524076
【0048】
【表6】
Figure 0004524076
【0049】
表5と表6に示すように、グルタミンペプチド、ペプチーノ等の蛋白分解物、L−グルタミン酸ナトリウム一水和物、L−システィン、亜硫酸水素ナトリウム、炭酸水素ナトリウム、pH6.0〜7.0の範囲内のマッキルバイン緩衝液が精製結晶化により液体状に処理されたTGaseの保存安定化に効果があった。
特許文献2や特許文献3に記載される部分精製された粉末状のTGaseの安定化剤とある程度の相関性はあるが、これらで安定化効果が認められた糖や糖アルコール、硫酸マグネシウム、塩化カルシウムなどは精製結晶化により液体状に処理されたTGaseでは効果が認められず、完全には相関するものではなかった。また、結果は示さないが、これら物質について適宜組み合わせることにより相加あるいは相乗的な効果がみられた。特に、特徴的な効果としてグルタミンペプチドではpH5.0〜6.5付近で、また、マッキルバイン緩衝液(pH6〜7.0)で高い安定化効果を示すことが見出された。
【0050】
【発明の効果】
本発明によれば、以下の効果を奏する。安全性がありかつ安定化効果に優れた安定化剤を添加することによりTGaseが安定化し、製造中や製品保存中に酵素活性が失活し難く、長期に亘る酵素活性の高いTGaseの保管が可能となる。
また、精製結晶化されたTGaseの製造中や製品保存中の安定化を図ることができるので、粉末など固体状に処理される精製結晶化されたTGaseのみならず、液状、懸濁状、ペースト状など液体状に処理される酵素活性の高い精製結晶化TGaseの保管が可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a stabilized transglutaminase that suppresses inactivation of an enzyme activity during a production process or during product storage.
[0002]
[Prior art]
Transglutaminase (hereinafter sometimes referred to as TGase) is an enzyme that catalyzes the acyl transfer reaction of the γ-carboxylamido group of a glutamine residue in a peptide chain, and serves as an acyl acceptor of a lysine residue in a protein. When the ε-amino group acts, an ε- (γ-Gln) -Lys crosslink is formed within or between protein molecules. Therefore, protein or peptide can be modified by utilizing the action of TGase. Therefore, TGase (see Patent Document 1) using a microbial enzyme derived from the genus Streptomyces is a meat binding, sausage, tofu, bread. , Used in the production of noodles.
[0003]
TGase is a thiol enzyme that has cysteine, which is converted into a mature form via a pro-form during fermentation, as an active central residue. Therefore, some TGases exist in an inactive form in fermentation broth. It was necessary to activate by adding a reducing agent in an appropriate process. Further, for the same reason, the stability is poor, and it is necessary to add a stabilizer in order to suppress deactivation during the production process or during product storage. Therefore, a composition in which a stabilizer is added to TGase (see Patent Document 2 and Patent Document 3) has been proposed.
[0004]
On the other hand, TGase is difficult to purify and crystallize easily on an industrial scale due to the complexity of the production process, low yield, cost, and the like. A crude enzyme solution obtained by removing cells from the mixture is desalted and concentrated with an ultrafiltration membrane, and then partially purified by alcohol fractionation or the like. Therefore, there is a limit to the kind and amount of stabilizer added due to a decrease in specific activity, and there is a problem of a decrease in yield due to deactivation during drying. In addition, if it is a crystalline enzyme, it can be formulated into a liquid or high-concentration suspension. However, in partial purification, for example, if it is in a liquid state, it may be inactivated by a contaminating enzyme such as protease, and a precipitant When a suspension or paste is added to form a suspension or paste, there is a problem that the amount of use increases because of low specific activity, and the influence of a stabilizer and a precipitant increases.
[0005]
[Patent Document 1]
Japanese Patent No. 2849773
[Patent Document 2]
JP-A-4-207194
[Patent Document 3]
WO96 / 11264
[0006]
[Problems to be solved by the invention]
However, some of the conventional stabilizers are subject to various laws and regulations, and some may affect safety. Therefore, the manufacturing cost may be increased and the manufacturing cost may be increased. Also, depending on the type of stabilizer, a sufficient stabilizing effect may not be obtained.
All of the conventional stabilized TGases including those described in Patent Documents 1 and 2 are partially purified, and there has been no proposal for the stabilization of purified and crystallized TGase. There is a possibility that there is a difference between the stabilization of the conventional partially purified TGase and the stabilized purified TGase. If the purified and crystallized TGase can be stabilized, the partially purified TGase is stabilized. Proposals relating to the purification of purified TGase and the stabilization of purified purified TGase are also significant because the problems in doing so can be solved.
[0007]
The present invention has been made in view of the above circumstances, has a high level of safety, and has stabilized transglutaminase (including purified and crystallized) that suppresses inactivation of enzyme activity during the production process or during product storage. It is an issue to provide.
[0008]
The present inventors have made various studies in order to solve the above problems and completed the present invention.
That is, the present invention Of the genus Streptomyces A transglutaminase produced by a microorganism, Corn proteolytic substances And a mixture of McKilvine buffer in the range of pH 6.0 to 7.0, trehalose Wheat protein breakdown product And a mixture of McKilvine buffer in the range of pH 6.0 to 7.0, Wheat protein breakdown product And at least one selected from the group consisting of a mixture of cysteine and a mocklevine buffer in the range of pH 6.0 to 7.0, and a mixture of mucklevine buffer in the range of pH 6.0 to 7.0. The gist is a stabilized transglutaminase added as
[0009]
According to said invention, the stabilized transglutaminase which suppresses the deactivation of the enzyme activity during a manufacturing process or a product preservation | save can be obtained.
[0010]
The TGase in the above invention may be processed in a solid state or processed in a liquid state, but is preferably processed in a solid state. The TGase processed in a solid state is a powder or the like. It means what is processed.
[0013]
In any of the above-mentioned stabilized transglutaminases, the pH of the Mucklevine buffer is preferably 6.5. The TGase may be purified and crystallized or partially purified as long as it is produced by the genus Streptomyces.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The transglutaminase is not particularly limited as long as it is produced by a microorganism, but is preferably produced by a microorganism belonging to the genus Streptomyces. As microorganisms belonging to the genus Streptomyces, Streptomyces mobaraensis (formerly Streptomyces mobaraensis) S-8112 strain (Agric. Biol. Chem., 53 (10), 2613-2617, 1989, FERM P-9364), Streptomyces lavendulae No.466 (Patent No. 2849773, see Patent Document 1, FERM P-11657), Streptomyces sp No.83 (Patent No. 2849773) No., see Patent Document 1, FERM P-11656) and the like. In addition, by using conventional methods such as ultraviolet irradiation and NTG (N-methyl-N'-nitrosoguanidine), productivity is increased, production of contaminating proteins such as protease and amylase is reduced, and physiologically active substances such as antibiotics are added. Mutant strains that are suppressed or lacked can be used, and genetically modified bacteria can also be used. The purified crystallization of TGase can also be performed using commercially available TGase.
[0015]
Medium used for fermentation of TGase producing bacteria includes carbon sources such as starch, sucrose, lactose, glycerol, glucose, nitrogen sources such as peptone, meat extract, yeast extract, corn steep liquor, ammonium nitrate, ammonium chloride, ammonium sulfate, phosphorus Commonly used medium materials such as trace metal salts such as monopotassium acid, dipotassium phosphate, magnesium sulfate, manganese sulfate, and calcium carbonate can be used. Moreover, in order to suppress foaming, addition of an antifoamer can also be performed as needed.
The culture is generally in the range of 25 ° C. to 35 ° C., and is performed in various fermentation vessels, and aeration and agitation are usually performed for 3 to 6 days. This is not limited depending on the strain and fermentation medium culture conditions. For example, when the medium raw material is fed or a high concentration medium raw material is included, the culture time may generally be longer. The medium pH is also controlled as necessary.
[0016]
Removal of cells and the like from the fermentation mixture after completion of the culture is performed by filtration or centrifugation. Filtration is preferably pressure filtration with diatomaceous earth added, and is preferably performed at room temperature or lower. The obtained filtrate, that is, the TGase crude enzyme solution is cooled as necessary. In addition, as described in Eur, J, Biochem., 257, 570-576 (1998), TGase is known to be produced as a precursor, and the fermentation mixture is fixed for conversion to a mature form. The temperature may be kept as it is, or by adding an enzyme such as trypsin that can be used for other processing. Moreover, since TGase is known to exist in part as an oxidized form having no enzyme activity, it is also desirable to add cysteine, glutathione, or a substance containing them to convert to an active form. However, these activation operations are not limited to the stage of the purification process, but are preferably performed at an early stage of purification.
[0017]
The crude enzyme solution can be concentrated as necessary. The concentration method is not particularly limited, but it is preferable to use an ultrafiltration membrane capable of simultaneously concentrating and purifying. Concentration can be performed up to about 10 to 100 times, but there is no particular problem as long as it reaches a concentration that enables formation and recovery of precipitate in the next step, salting out crystallization, and workability and recovery rate. The higher one is preferable in consideration of the above. In addition, it can be said that the ultrafiltration membrane is preferably used, for example, ACP-13000 manufactured by Asahi Kasei Kogyo Co., Ltd. having an average pore diameter of 13,000 or less, considering the molecular weight of TGase of about 38,000, but is not necessarily limited thereto. Even if a membrane having a pore size of molecular weight 50,000 is used, almost no enzyme leaks, and it is possible to increase the degree of purification by selecting a membrane as necessary. Although precipitation may occur in desalting and concentration, it can be dissolved by adding an appropriate buffer or salt solution, and the recovery rate can be increased. Moreover, the temperature at the time of concentration is not particularly limited, but is preferably 10 ° C to 30 ° C. The higher the temperature, the more efficiently the concentration can be carried out, but deactivation is also conceivable.
[0018]
The concentrated liquid can be decolorized with activated carbon in advance, or can be treated with other adsorbents or ion exchange resins. The concentrated solution may be partially purified by pretreatment using another precipitating agent such as ethanol or polyethylene glycol. Further, fractional precipitation may be performed before salting out crystallization. In addition, after sufficient desalting, dilution with purified water or the like is performed to generate a precipitate, and TGase can be recovered from the precipitate fraction.
[0019]
The purified crystallization of TGase can be carried out by salting out a salt such as ammonium sulfate or sodium chloride to the enzyme solution purified and concentrated to homogeneity, but it is not necessarily purified and concentrated to homogeneity. That is, even when sodium chloride is added until saturation is reached, there is little precipitation of contaminating proteins, so even a partially purified enzyme solution is suitable for crystallization. In particular, when the enzyme concentration is low, it is also effective to use ammonium sulfate or the like having a high precipitation property in order to increase the recovery rate.
[0020]
Purified crystallization may be carried out without adding a crystal seed in advance.
Salts such as sodium chloride are preferably added gradually rather than saturated at once. Normally, enzyme crystallization is performed by increasing the salt concentration over time from a subsaturated state that produces a slightly amorphous precipitate, or by applying some stimulus to the enzyme solution, but sodium chloride is as described above. In addition, it is considered that crystallization can be easily performed because there is little precipitation of other contaminating proteins. In addition, the stability of the crystal suspension obtained using sodium chloride is very excellent because it is in a crystalline state and has a high salt concentration, and can be stored for a long time. Therefore, if necessary, the crystal suspension can be used as it is or a product to which an appropriate stabilizer is added.
[0021]
Crystals can be collected by a general method such as filtration or centrifugation. In any case, it is preferable to perform washing in order to sufficiently remove contaminating proteins contained in the crystal mother liquor. Further, after the obtained crystal is dissolved using water or a salt solution or the like, impurities can be further removed by performing a so-called recrystallization operation in which crystallization is performed using salts again.
[0022]
The obtained crystals are dissolved using water or a salt solution, etc., and then desalted and concentrated using an ultrafiltration membrane or other methods to remove the salts used for salting out. Powderize. Other drying methods are possible, such as spray drying, vacuum drying, film drying, or precipitation with an organic solvent such as alcohol, followed by vacuum drying. In desalting and concentration, it is preferable to increase the concentration as much as possible in consideration of the drying efficiency, but TGase may precipitate as a precipitate by increasing the concentration. In this case, a salt solution with a low concentration is added and dissolved. Increase sex.
[0023]
Stabilization of the purified crystallized TGase during storage can be performed by adding a stabilizer. Purified and crystallized TGase can be processed not only in a solid state such as a conventional powder but also easily processed into a liquid state, but the stabilizer may be effective in a solid state but not in a liquid state. Since the reverse is also possible, it is necessary to consider a stabilizer for each. The stabilizer is evaluated based on the recovery rate of TGase and the residual activity after storage for a predetermined period of time by adding a substance that can be expected to have a storage stabilizing effect to TGase.
[0024]
As a stabilizer of TGase Corn proteolytic substances And a mixture of McKilvine buffer in the range of pH 6.0 to 7.0, trehalose Wheat protein breakdown product And a mixture of McKilvine buffer in the range of pH 6.0 to 7.0, Wheat protein breakdown product And one or more selected from the group consisting of a mixture of cystine and a mocklevine buffer in the range of pH 6.0 to 7.0. it can. These stabilizers are suitable for stabilizing TGase treated in a solid state. Here, the mucklevine buffer is a buffer solution composed of a combination of sodium citrate and disodium phosphate, and the former is 1% or more, 3% or more of the latter, preferably 3% or more of the former, per weight of the enzyme powder. The latter is preferably added at a ratio of 10% or more. In addition, the pH of the Mucklevine buffer can be adjusted by changing the ratio of sodium citrate and disodium phosphate.
[0026]
The stabilizer can be used for purified and crystallized TGase or partially purified TGase.
[0027]
The prepared solid or liquid enzyme may be further shaped by adding saccharides or other substances depending on the purpose of use. In particular, in the case of powder, addition of protein itself is easy unlike liquid form, so sodium caseinate can be added at a high concentration in the adhesion of meat. In the case of powder, it is possible to enclose an oxygen scavenger or the like that absorbs oxygen in the packaging container. On the other hand, in the liquid state, degassing and nitrogen gas sealing can be performed to eliminate dissolved oxygen.
[0028]
The amount of each stabilizer added is 5 to 100 parts by weight, preferably 20 to 100 parts by weight, per 1 part by weight of TGase having a specific activity of about 7 to 20 u / Ab 280 nm (17 to 50 u / mg). This is because if the lower limit or the upper limit is exceeded, a sufficient stabilizing effect and recovery rate cannot be obtained.
[0029]
【Example】
EXAMPLES Next, although an Example is given and this invention is demonstrated, this invention is not limited to a following example.
[0030]
[Reference Example 1] (Purified crystallization of TGase 1)
An TGase crude enzyme concentrate produced by an easily obtainable commercial TGase (ActivaTG manufactured by Ajinomoto Co., Inc., Streptomyces mobaraensis S-8112, a low-contaminant mutant, was pulverized by alcohol fractionation precipitation. Partially purified enzyme (see JP-A No. 64-27471) (5 g) was dissolved in 50 ml of 0.2 M Tris-HCl buffer pH 6.0, and insoluble matter was removed by centrifugation. Sodium chloride was gradually added to the supernatant, and a little turbidity was generated. Then, a small amount of crystal seeds were added and stored overnight at a low temperature. Sodium chloride was further added to the resulting crystal suspension until saturation, and the resulting suspension was stored at low temperature for several days. The recovery rate of the obtained crystals was 63%, and the specific activity was 13.6 u / Ab 280 nm compared to 7.1 u / Ab 280 nm before crystallization.
[0031]
The TGase activity was measured by the method described in JP-A No. 64-27471. That is, benzyloxycarbonyl-L-glutaminylglycine and hydroxylamine as substrates 2+ The reaction is carried out in the absence, and the resulting hydroxamic acid is formed into an iron complex in the presence of trichloroacetic acid, the absorption at 525 nm is measured, and the amount of hydroxamic acid is calculated from a calibration curve. Specific description will be given below.
Reagent A: 0.2 M Tris-HCl buffer (pH 6.0), 0.1 M hydroxylamine, 0.01 M reduced glutathione, 0.03 M benzyloxycarbonyl-L-glutaminylglycine
Reagent B: 3N hydrochloric acid, 12% trichloroacetic acid, 5% FeCl Three ・ 6H 2 O (dissolved in O.1N-HCl)
A 1: 1 mixture of these solutions was designated as reagent B.
Add 0.5 ml of reagent A to 0.05 ml of the enzyme solution, mix and react at 37 ° C. for 10 minutes, add reagent B to stop the reaction and form an Fe complex, and then measure the absorbance at 525 nm. As a control, the absorbance of an enzyme solution that has been reacted in the same manner using a previously heat-inactivated enzyme solution is measured, and the absorbance difference from the enzyme solution is determined. Separately, a calibration curve is prepared using L-glutamic acid-γ-monohydroxamic acid instead of the enzyme solution, the amount of hydroxamic acid generated from the difference in absorbance is obtained, and 1 μmol hydroxamic acid is produced per minute The activity was defined as 1 unit.
The measurement of TGase activity is the same in the following Reference Examples and Examples.
[0032]
[Reference Example 2] (Purified crystallization 2 of TGase)
TGase producing strains Streptomyces mobaraensis S-8112 and Streptomyces lavendulae No.466 are soluble starch 2%, sucrose 5%, polypeptone 2%, yeast extract 0.2%, sulfuric acid, respectively. 100 ml of a medium composed of 0.1% magnesium, 0.2% dipotassium phosphate and 0.05% adecanol is placed in a 500 ml Sakaguchi flask, inoculated with the spore suspension in the same medium without sucrose, and shaken at 30 ° C for 2 days. 1 ml of the precultured culture was inoculated and shake-cultured in the same manner for 4 days. After completion of the culture, 450 ml and 930 ml of a crude enzyme solution were obtained by centrifugation, respectively. In addition,% is weight%.
[0033]
The above crude enzyme solution was desalted and concentrated using an ultrafiltration membrane (ACP1010 manufactured by Asahi Kasei Kogyo Co., Ltd.), and finally 194 ml and 255 ml concentrated solutions were obtained. This concentrated solution was dialyzed with 50 mM phosphate buffer pH 7.0 in advance, and the enzyme was adsorbed through about 40 ml of Blue Sepharose Cl-6B column equilibrated with the same buffer solution, and then the same buffer solution containing 0.5 M sodium chloride. Eluted with. Enzyme protein was recovered as a precipitate as ammonium sulfate saturation, and dissolved in about 10 ml of 0.2 M Tris-HCl buffer pH 6.0. Thereafter, TGase was purified and crystallized by repeating the removal of precipitates formed by gradually adding sodium chloride (crude crystals). The recovery rate was about 10% because the enzyme concentration was low, but the specific activity of the crude crystals was 13.1 u / Ab 280 nm for the specific activity of the crude enzyme solution was 0.11 u / Ab 280 nm and 0.06 u / Ab 280 nm, respectively. It was 6.9u / Ab280nm.
[0034]
[Reference Example 3] (Purified crystallization 3 of TGase)
10 g of commercially available transglutaminase TGB (manufactured by Yiming Fine Chemical Co., Ltd., China) was dissolved and suspended in 50 ml of 0.2 M Tris-HCl buffer pH 6.0, insoluble matters were removed by centrifugation, and salting out was performed by ammonium sulfate saturation. The precipitate was collected. The precipitate was dissolved and dialyzed in 0.05 M phosphate buffer pH 7.0, passed through a Blue Sepharose CL-6B column, adsorbed with enzyme, and then eluted with the same buffer containing 0.5 M sodium chloride. Thus, after removing the excipient | filler etc. which are contained in a product, the salting out crystallization by salt saturation was performed. Since the enzyme concentration was low, sufficient precipitation was not generated, and crystallization could be performed by adding a small amount of ammonium sulfate. Although the recovery rate was low, crude crystals with a specific activity of 10.1 u / Ab 280 nm were obtained while the specific activity in the product solution was 2.2 u / Ab 280 nm.
[0035]
[Example 1] (Study 1 of stabilizer added to purified crystallized TGase treated in solid state)
In Reference Examples 1 to 3, TGase was purified and crystallized. Since all of these TGases are purified and crystallized and are enzymatically equivalent, any of these TGases may be used for studying the stabilizer. In the following examination, except for Example 4, Reference Example 1 was used. That is, purified crystallized TGase obtained from a commercial product was used. A part of the purified crystallization enzyme obtained in Reference Example 1 was dissolved in 0.2 M Tris-HCl buffer, and then desalted and concentrated using an ultrafiltration membrane. Recovery of TGase treated in a solid state after adding and dissolving 200 mg of various substances that can be expected to preserve the storage stability of TGase shown in Table 1 to 2 ml of desalted concentrate. The rate and residual activity were examined. The results were as shown in Table 1. The storage stability was evaluated based on the remaining activity after storage at 44 ° C. for each time, with 0.3 to 0.8 g of the lyophilized product obtained above sealed in a 15 ml Falcon plastic tube. The recovery rate was calculated by measuring the total activity after drying with respect to the total activity of 2 ml of the desalted concentrate used for drying. The same applies to the following embodiments.
[0036]
[Table 1]
Figure 0004524076
[0037]
As is clear from Table 1, activity was almost completely maintained in purified crystallized TGase to which a mixture of peptino, which is a degradation product of trehalose and corn protein, was added. Also, the activity of the mixture of trehalose and glutamine peptide, and the mixture of trehalose and McKilvine buffer solution around pH 7.0 was maintained high.
[0038]
[Example 2] (Study 2 of stabilizer added to purified crystallized TGase treated in solid state)
Using the purified crystallized TGase treated in a solid state in the same manner as in Example 1, the combination of sodium glutamate and trehalose with a focus on the amount of each added McKilvine buffer consisting of citric acid and disodium phosphate. The recovery rate of TGase and the residual activity after storage at 44 ° C. for 1 month were examined. The results are shown in Table 2. The amounts of enzyme and various substances added are as shown in Table 2.
[0039]
[Table 2]
Figure 0004524076
[0040]
As is clear from Table 2, the mixture of sodium glutamate, trehalose, and makilvine buffer showed the highest recovery rate and residual activity when the pH of the makilvine buffer was 6.5. In addition, since the pH stability in the Makilvine buffer of the enzyme processed in the liquid state described later is high at pH 6.0 to 7.0, the pH stability of the purified crystallized TGase treated in the solid state is also high. It may be the highest in this area. Moreover, it is thought that what added the McKilvine buffer other than pH 6.5 can also improve a recovery rate and residual activity by increasing the addition amount.
[0041]
[Example 3] (Study 3 of stabilizer added to purified crystallized TGase treated in solid state)
In order to further confirm the effect of the addition of various substances, a purified crystallized TGase treated in a solid state as in Example 1 was used. That is, various substances listed in Table 3 were added, and the recovery rate and the remaining activity after storage at 44 ° C. for 1 month were measured. As shown in Table 3, TGase to which a mixture of pH 6.5 McKilvine buffer and cysteine or glutathione was added had a significantly higher recovery rate and residual activity than the conventional addition of cysteine and glutathione alone. Results are shown. Cysteine, glutathione, and sodium bisulfite, which show particularly high recovery rates, are partially activated during the drying of the enzyme. This is thought to be due to insufficient conversion.
[0042]
[Table 3]
Figure 0004524076
[0043]
[Example 4] (Examination of stabilizer added to crude enzyme TGase)
In Examples 1 to 3, the stabilizing effect on purified and crystallized enzyme was examined, but in this example, the same effect on a crude enzyme that was not crystallized was examined. After suspending commercially available TGase described in Reference Example 1 in 0.2 M Tris-HCl buffer solution pH 6.0, ammonium sulfate was added to the supernatant after removing insolubles by centrifugation until salting out. The resulting precipitate was collected by centrifugation and desalted and concentrated with an ultrafiltration membrane to obtain a crude enzyme solution. Using this crude enzyme solution, the storage stability effects of various substances shown in Table 4 were examined.
[0044]
[Table 4]
Figure 0004524076
[0045]
From Table 4, a mixture of trehalose and peptino and makilvine buffer in the range of pH 6.0-7.0, a mixture of peptino and makilvine buffer in the range of pH 6.0 to 7.0, trehalose and glutamine peptide and pH6. A mixture of maturvine buffer in the range of 0.0 to 7.0, a mixture of glutamine peptide and maturvine buffer in the range of pH 6.0 to 7.0, trehalose and sodium bisulfite and pH 6.0 to 7.0. A mixture of muckilvine buffer within the range, a mixture of trehalose, sodium glutamate, sodium bisulfite, and a mixture of muckilvine buffer within the range of pH 6.0-7.0, or a mixture of sodium glutamate and sodium bisulfite with high recoveries and residuals. Showed activity. In addition, although the result in particular has not shown the stabilizer in which these effects were recognized, the storage stabilization effect was confirmed also about refined crystallized TGase.
[0046]
[Example 5] (Examination of stabilizer added to purified crystallized TGase treated in liquid state)
The purified and crystallized TGase obtained in Reference Example 1 was dissolved in 0.2M Tris-HCl buffer solution pH 6.0 and diluted to a 2-fold concentration used for normal activity measurement. Equivalent amounts of the various substances described in 6 were mixed, and the remaining activity was measured by heating at 50 ° C. for 1 hour in the liquid state to examine the storage stabilization effect of the various substances.
[0047]
[Table 5]
Figure 0004524076
[0048]
[Table 6]
Figure 0004524076
[0049]
As shown in Tables 5 and 6, proteolysates such as glutamine peptides and peptino, L-glutamate sodium monohydrate, L-cysteine, sodium hydrogen sulfite, sodium hydrogen carbonate, pH 6.0 to 7.0 Among them, the Muckilvine buffer solution was effective in stabilizing the storage of TGase treated in a liquid state by purification crystallization.
Although there is a certain degree of correlation with the partially purified powdery TGase stabilizer described in Patent Document 2 and Patent Document 3, sugars, sugar alcohols, magnesium sulfate, chloride, which have been confirmed to have a stabilizing effect. For calcium and the like, no effect was observed in TGase treated in a liquid state by purification crystallization, and it was not completely correlated. Moreover, although a result is not shown, the additive or synergistic effect was seen by combining these substances suitably. In particular, as a characteristic effect, it was found that a glutamine peptide exhibits a high stabilizing effect at a pH of around 5.0 to 6.5, and a Makilvine buffer (pH 6 to 7.0).
[0050]
【The invention's effect】
The present invention has the following effects. TGase is stabilized by adding a stabilizer that is safe and has an excellent stabilizing effect. Enzyme activity is not easily deactivated during production or product storage, and storage of TGase with high enzyme activity over a long period of time is possible. It becomes possible.
In addition, since the purified crystallized TGase can be stabilized during production and storage of the product, not only purified crystallized TGase that is processed into a solid state such as powder, but also liquid, suspension, paste It becomes possible to store purified crystallized TGase having a high enzyme activity that is processed into a liquid state such as a liquid.

Claims (4)

ストレプトミセス(Streptomyces)属の微生物が生産するトランスグルタミナーゼであって、とうもろこし蛋白分解物質とpH6.0〜7.0の範囲内のマッキルバイン緩衝液の混合物、トレハロースと小麦蛋白分解物とpH6.0〜7.0の範囲内のマッキルバイン緩衝液の混合物、小麦蛋白分解物とpH6.0〜7.0の範囲内のマッキルバイン緩衝液の混合物、システィンとpH6.0〜7.0の範囲内のマッキルバイン緩衝液の混合物からなる群から選ばれた1種以上が安定化剤として添加されてなる安定化トランスグルタミナーゼ。A transglutaminase produced by a microorganism belonging to the genus Streptomyces , which is a mixture of a corn proteolytic substance and a McKilvine buffer within a pH range of 6.0 to 7.0, trehalose and a wheat proteolysate, and a pH of 6.0. A mixture of mocklevine buffer in the range of 7.0, a mixture of wheat proteolysate and mucklevine buffer in the range of pH 6.0-7.0, mucklevine buffer in the range of cysteine and pH 6.0-7.0 A stabilized transglutaminase obtained by adding at least one selected from the group consisting of a mixture of liquids as a stabilizer. トランスグルタミナーゼが固体状に処理されたものである請求項1に記載の安定化トランスグルタミナーゼ。  The stabilized transglutaminase according to claim 1, wherein the transglutaminase is treated in a solid state. マッキルバイン緩衝液のpHが6.5である請求項1又は請求項2に記載の安定化トランスグルタミナーゼ。  The stabilized transglutaminase according to claim 1 or 2, wherein the pH of the Muckilvine buffer is 6.5. トランスグルタミナーゼが精製結晶化されたものである請求項1〜請求項3のいずれか記載の安定化トランスグルタミナーゼ。  The stabilized transglutaminase according to any one of claims 1 to 3, wherein the transglutaminase is purified and crystallized.
JP2003098766A 2003-04-02 2003-04-02 Stabilized transglutaminase Expired - Lifetime JP4524076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003098766A JP4524076B2 (en) 2003-04-02 2003-04-02 Stabilized transglutaminase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003098766A JP4524076B2 (en) 2003-04-02 2003-04-02 Stabilized transglutaminase

Publications (2)

Publication Number Publication Date
JP2004305010A JP2004305010A (en) 2004-11-04
JP4524076B2 true JP4524076B2 (en) 2010-08-11

Family

ID=33463404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003098766A Expired - Lifetime JP4524076B2 (en) 2003-04-02 2003-04-02 Stabilized transglutaminase

Country Status (1)

Country Link
JP (1) JP4524076B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006042757A (en) * 2003-08-20 2006-02-16 Seikagaku Kogyo Co Ltd Enzyme-stabilizing agent
EP2251421B1 (en) 2008-02-13 2016-11-16 Amano Enzyme Inc. Stabilized transglutaminase and process for production thereof
TWI548350B (en) * 2010-03-08 2016-09-11 Ajinomoto Kk Food manufacturing methods and food modification with enzyme preparations
CN107177567B (en) * 2016-02-16 2018-07-03 上海青瑞食品科技有限公司 A kind of liquid enzyme formulation and preparation method
CN108018279B (en) * 2018-01-24 2020-09-04 江南大学 Glutamine transaminase compound agent and application thereof
EP3770254A4 (en) * 2018-03-23 2021-12-29 Ajinomoto Co., Inc. Liquid preparation containing transglutaminase
CN110358757A (en) * 2019-07-30 2019-10-22 泰兴市东圣生物科技有限公司 A kind of glutamine transaminage liquid enzyme formulation with long preservation period and its preparation method
CN115029290A (en) * 2022-03-17 2022-09-09 上海交通大学 Method for inhibiting expression of non-essential high-abundance protein to improve fermentation level of TG enzyme

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04207194A (en) * 1990-11-30 1992-07-29 Ajinomoto Co Inc Stabilized transglutaminase composition and method for preserving the same
JPH07506001A (en) * 1992-01-22 1995-07-06 ノボ ノルディスク アクティーゼルスカブ activator XIII
WO1996011264A1 (en) * 1994-10-11 1996-04-18 Ajinomoto Co., Inc. Stabilized transglutaminase and enzymatic preparation containing the same
JPH08245418A (en) * 1995-03-09 1996-09-24 Behringwerke Ag Stable transglutaminase pharmaceutical preparation and its preparation
JPH10504721A (en) * 1994-08-26 1998-05-12 ノボ ノルディスク アクティーゼルスカブ Microbial transglutaminases, their production and use

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04207194A (en) * 1990-11-30 1992-07-29 Ajinomoto Co Inc Stabilized transglutaminase composition and method for preserving the same
JPH07506001A (en) * 1992-01-22 1995-07-06 ノボ ノルディスク アクティーゼルスカブ activator XIII
JPH10504721A (en) * 1994-08-26 1998-05-12 ノボ ノルディスク アクティーゼルスカブ Microbial transglutaminases, their production and use
WO1996011264A1 (en) * 1994-10-11 1996-04-18 Ajinomoto Co., Inc. Stabilized transglutaminase and enzymatic preparation containing the same
JPH08245418A (en) * 1995-03-09 1996-09-24 Behringwerke Ag Stable transglutaminase pharmaceutical preparation and its preparation

Also Published As

Publication number Publication date
JP2004305010A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
US9487765B2 (en) Stabilized transglutaminase and process for production thereof
Ando et al. Purification and characteristics of a novel transglutaminase derived from microorganisms
WO2005030973A1 (en) Method of purifying succinic acid from fermentation liquid
JP4524076B2 (en) Stabilized transglutaminase
IE47250B1 (en) Process for the continuous isomerisation of sucrose to isomaltulose with the aid of micro-organisms
JPS6013668B2 (en) Method for producing glutathione peroxidase
JP4383131B2 (en) Method for industrial crystallization of transglutaminase and method for producing transglutaminase preparation
KR20060006888A (en) PROCESS FOR PRODUCING 2-O-alpha-D-GLUCOPYRANOSYL-L-ASCORBIC ACID
JP2556109B2 (en) Material for meat grain
US20050214912A1 (en) Method for producing an optically active amino acid
JP2590373B2 (en) New surimi and its manufacturing method
JPH0523744B2 (en)
JP2007289128A (en) Method for producing 1-kestose, method for producing 1-kestose-producing enzyme, and 1-kestose-producing enzyme
JP2533365B2 (en) Method of manufacturing fish surimi
US3532600A (en) Method of producing l-ornithine and l-isoleucine by fermentation
JP2009106278A (en) Method for manufacturing d-lactic acid by fermentation
JPS6244188A (en) Production of optically active lactic acid
CA1309678C (en) Urease and method of producing the same
US6338957B2 (en) Method for producing halo-L-tryptophan
JP3709007B2 (en) Process for producing fumaric acid
JP3399575B2 (en) Carbon dioxide measurement method and reagent
JP3125954B2 (en) Novel phosphoenolpyruvate carboxylase and its preparation
JPS6244191A (en) Production of l-threonine by fermentation
JPH02211887A (en) Production of l-threonine by fermentation
JPS6147194A (en) Preparation of n-carbamoyl-d-valine or d-valine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100514

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4524076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term