JP4383131B2 - Method for industrial crystallization of transglutaminase and method for producing transglutaminase preparation - Google Patents

Method for industrial crystallization of transglutaminase and method for producing transglutaminase preparation Download PDF

Info

Publication number
JP4383131B2
JP4383131B2 JP2003309771A JP2003309771A JP4383131B2 JP 4383131 B2 JP4383131 B2 JP 4383131B2 JP 2003309771 A JP2003309771 A JP 2003309771A JP 2003309771 A JP2003309771 A JP 2003309771A JP 4383131 B2 JP4383131 B2 JP 4383131B2
Authority
JP
Japan
Prior art keywords
enzyme
tgase
crystallization
transglutaminase
partially purified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003309771A
Other languages
Japanese (ja)
Other versions
JP2005073628A (en
Inventor
良明 黒野
欣也 鷲津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amano Enzyme Inc
Original Assignee
Amano Enzyme Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amano Enzyme Inc filed Critical Amano Enzyme Inc
Priority to JP2003309771A priority Critical patent/JP4383131B2/en
Publication of JP2005073628A publication Critical patent/JP2005073628A/en
Application granted granted Critical
Publication of JP4383131B2 publication Critical patent/JP4383131B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、主として食品用途に利用できるトランスグルタミナーゼを工業的規模で結晶化する方法及びこの方法を利用するトランスグルタミナーゼ製剤を製造する方法に関する。   The present invention relates to a method for crystallizing transglutaminase that can be used mainly for food use on an industrial scale, and a method for producing a transglutaminase preparation using this method.

トランスグルタミナーゼ(以下、TGaseと記載することがある)は、ペプチド鎖内にあるグルタミン残基のγ−カルボキシルアミド基のアシル転換反応を触媒する酵素で、アシル受容体としてタンパク質中のリジン残基のε−アミノ基が作用すると、タンパク質分子の分子内あるいは分子間においてε-(γ-Gln)-Lys架橋結合を形成させる。したがって、TGaseの作用を利用すればタンパク質又はペプチドの改質を行うことができるため、ストレプトミセス属由来の微生物酵素を部分精製したTGase(特許文献1参照)が肉の結着、ソーセージ、豆腐、パン、麺類の製造に使用されている。   Transglutaminase (hereinafter sometimes referred to as TGase) is an enzyme that catalyzes an acyl conversion reaction of a γ-carboxylamido group of a glutamine residue in a peptide chain, and serves as an acyl acceptor of a lysine residue in a protein. When the ε-amino group acts, an ε- (γ-Gln) -Lys crosslink is formed within or between protein molecules. Therefore, since the modification of protein or peptide can be carried out by utilizing the action of TGase, TGase (see Patent Document 1), which is a partially purified microbial enzyme derived from the genus Streptomyces, is used to bind meat, sausage, tofu, Used in the manufacture of bread and noodles.

ところで、酵素の結晶化は、一般的には、多段階で複雑な精製操作により均一にまで精製された酵素を用いて行われ、従来、様々な方法がある。しかし、酵素の結晶化は、均一にまで精製された酵素を用いても簡単に成功するものではなく、結晶化が成功するか否かは非常に経験的な要素が強く働くことが知られている。したがって、これまでに結晶化が成功していない多くの酵素がある。TGaseについても、結晶化されたものが既に報告されているが(特許文献2参照)、その調製法はハンギングドロップ法による超微量の実験室規模の調製法によるものであり、しかも結晶化剤が食品用途には不向きな物質が使われている。TGaseの場合、工業的規模で簡便に結晶化することは酵素を均一に精製することが必要なこと等製造工程の煩雑さ、収率の低さ、コストが高くなる等の理由から困難と言われ、未だ成功していないのが実情である。
したがって、現在、工業的に製造されているTGaseは、発酵混合物から菌体等を除いた粗酵素液を限外濾過膜により脱塩濃縮後、アルコール分画沈殿等により部分精製されたものであるが、部分精製酵素であることに起因して以下のような様々な問題点があったため、TGaseの工業的な結晶化が強く望まれていた。
(1)プロテアーゼやアミラーゼ等の夾雑酵素や着色物質を含むため、使用目的により好ましくない影響を受けることがあり、厳格な品質管理を設定した製品の製造管理が必要で煩雑であった。また、これらの夾雑物を除き品質を上げようとすると収率が悪くコストも高くなるという問題があった。
(2)比活性の低下等の理由で安定化剤の種類や添加量に限界があり、乾燥時における失活などによる収率の低下の問題があった。
(3)結晶酵素であれば液状や高濃度懸濁液などの製剤化が容易であるが、部分精製では粉末以外、例えば、液状にするとプロテアーゼ等の夾雑酵素による失活の虞があり、また、沈殿剤等を添加して懸濁状又はペースト状にすると比活性が低いことから使用量が多くなり、最終製品への安定化剤や沈殿剤の添加の影響が大きくなるという問題があり、事実上粉末以外の製剤化は困難であった。
(4)上記(3)の理由から、現在、TGaseは粉末品として供給されているが、粉末を水に溶解する等の取り扱い時に粉末が飛散し易く、特に目、鼻にプロテアーゼと同様の軽い炎症を招く虞があった。
特許第2849773号明細書 特開2002−253272号公報
By the way, crystallization of an enzyme is generally performed using an enzyme purified to a uniform level by a complicated purification operation in multiple stages, and conventionally, there are various methods. However, enzyme crystallization cannot be easily succeeded even by using an enzyme purified to homogeneity, and it is known that whether or not crystallization succeeds is highly empirical. Yes. Thus, there are many enzymes that have not been successfully crystallized so far. As for TGase, a crystallized one has already been reported (see Patent Document 2). However, the preparation method is based on an ultra-small laboratory-scale preparation method based on the hanging drop method. Substances unsuitable for food use are used. In the case of TGase, simple crystallization on an industrial scale is said to be difficult because of the complexity of the manufacturing process, low yield, and high cost, such as the need to purify the enzyme uniformly. The fact is that it has not been successful yet.
Therefore, TGase currently produced industrially is a crude enzyme solution obtained by removing cells from a fermentation mixture, desalted and concentrated with an ultrafiltration membrane, and then partially purified by alcohol fractionation or the like. However, due to the fact that it is a partially purified enzyme, there have been various problems as described below, and therefore industrial crystallization of TGase has been strongly desired.
(1) Contaminating enzymes such as protease and amylase and coloring substances are included, which may be undesirably affected by the purpose of use, and manufacturing management of products with strict quality control is necessary and complicated. In addition, when trying to improve the quality excluding these impurities, there is a problem that the yield is low and the cost is high.
(2) There is a limit to the kind and amount of stabilizer added due to a decrease in specific activity, and there has been a problem of a decrease in yield due to deactivation during drying.
(3) If it is a crystalline enzyme, it can be easily formulated into a liquid or high-concentration suspension. However, in partial purification, for example, if it is made liquid, there is a risk of inactivation due to contaminating enzymes such as proteases. When adding a precipitant or the like to form a suspension or paste, the specific activity is low, so the amount used is increased, and the effect of adding a stabilizer or precipitant to the final product is increased. In fact, it was difficult to formulate other than powder.
(4) For the reason of (3) above, TGase is currently supplied as a powder product, but the powder is likely to scatter during handling, such as dissolving the powder in water. There was a risk of causing inflammation.
Japanese Patent No. 2849773 JP 2002-253272 A

本発明は、上記事情に鑑みなされたものであり、ストレプトミセス(Streptomyces)属の微生物が生産するトランスグルタミナーゼを工業的規模で簡便に結晶化する方法及びこの方法を利用して結晶化されたトランスグルタミナーゼに添加剤を含ませてトランスグルタミナーゼ製剤を簡便に製造する方法を提供することを課題とする。   The present invention has been made in view of the above circumstances, a method for easily crystallizing transglutaminase produced by a microorganism of the genus Streptomyces on an industrial scale, and a transcrystallized using this method. It is an object of the present invention to provide a method for easily producing a transglutaminase preparation by adding an additive to glutaminase.

本発明者等は、上記課題を解決するために種々検討を重ねた結果、塩化ナトリウム又は塩化カリウムを用いて塩析を行えば、TGase以外の夾雑蛋白の沈殿が少ないことを見出し、本発明を完成するに至った。
すなわち、本発明は、ストレプトミセス・モバラエンシス(Streptomyces mobaraensis)又はストレプトミセス・ラベンデュラエ(Streptomyces lavendulae)の微生物を培養して培養濾液からなる粗酵素を得、該粗酵素の波長280nmにおける紫外線の吸光度当たりの酵素活性により測定した比活性が少なくとも2u(2u/Ab280nm)以上で均一になるまで精製されない部分精製酵素に、バッチ法により塩化ナトリウム及び/又は塩化カリウムを添加して塩析を行うことを特徴とするトランスグルタミナーゼの工業的結晶化方法を要旨とする。ここで、粗酵素とは、ストレプトミセス(Streptomyces)属の微生物が生産するTGaseを含む培養濾液をいう。また、粗酵素を部分精製したものとは、粗酵素に簡便な精製操作を加え、TGaseが均一になるまで精製されないTGaseをいう。
As a result of repeated studies to solve the above problems, the present inventors have found that precipitation of contaminating proteins other than TGase is less if salting out is performed using sodium chloride or potassium chloride. It came to be completed.
That is, the present invention provides a crude enzyme comprising a culture filtrate by culturing a microorganism of Streptomyces mobaraensis or Streptomyces lavendulae, and the crude enzyme per absorbance of ultraviolet light at a wavelength of 280 nm. It is characterized by salting out by adding sodium chloride and / or potassium chloride by a batch method to a partially purified enzyme that is not purified until the specific activity measured by the enzyme activity is at least 2u (2u / Ab280nm) or more and uniform. The gist is an industrial crystallization method of transglutaminase. Here, the crude enzyme refers to a culture filtrate containing TGase produced by a microorganism belonging to the genus Streptomyces. Moreover, what refine | purified the crude enzyme partially means TGase which is not refine | purified until a simple purification operation is added to a crude enzyme and TGase becomes uniform.

また、本発明は、上記のトランスグルタミナーゼの工業的結晶化方法を利用し、結晶化されたトランスグルタミナーゼに蛋白質部分分解物、トレハロース、システィン、グルタチオン、亜硫酸水素ナトリウム、クエン酸塩及びリン酸塩から選ばれた1種又は2種以上を含ませることを特徴とするトランスグルタミナーゼ製剤の製造方法を要旨とする。   Further, the present invention uses the above-described industrial crystallization method for transglutaminase, and the crystallized transglutaminase is converted from a protein partial degradation product, trehalose, cysteine, glutathione, sodium bisulfite, citrate and phosphate. The gist is a method for producing a transglutaminase preparation characterized by containing one or more selected one or more.

本発明によれば、以下の効果を奏する。粗酵素又は粗酵素を部分精製したTGaseを工業的規模でかつ高い回収率で結晶化できるので、コストの低減化と製造管理の簡便化を図ることができる。また、結晶化されたTGaseにより、液状、懸濁状、ペースト状など液体状の製品を容易に製造でき、また、TGaseによるプロテアーゼと同様な目、鼻の炎症などの問題を回避できる。さらに、結晶化されたTGaseは比活性が高いので、十分量の安定化剤を添加でき、保存安定性に優れたTGase製剤を提供できる。また、工業的な規模で結晶化されるトランスグルタミナーゼを用いることにより高品質のトランスグルタミナーゼ製剤を容易に製造できる。   The present invention has the following effects. Since the crude enzyme or TGase obtained by partially purifying the crude enzyme can be crystallized on an industrial scale and at a high recovery rate, cost reduction and production management can be simplified. In addition, the crystallized TGase can easily produce liquid products such as liquids, suspensions, and pastes, and avoid problems such as eye and nasal inflammation similar to proteases produced by TGase. Furthermore, since the crystallized TGase has a high specific activity, a sufficient amount of stabilizer can be added, and a TGase preparation excellent in storage stability can be provided. In addition, a high-quality transglutaminase preparation can be easily produced by using transglutaminase which is crystallized on an industrial scale.

TGase生産能を有する菌株の発酵により製造される発酵混合物から菌体等を除去した培養濾液からなるTGaseの粗酵素溶液を調製する。TGaseは、ストレプトミセス(Streptomyces)属の微生物が生産するものを用いることができる。ストレプトミセス属に属する微生物としては、ストレプトミセス・モバラエンシス(Streptomyces mobaraensis)(旧ストレプトベルチシリウム・モバラエンセ)、ストレプトミセス・ラベンデュラエ(Streptomyces lavendulae)などを挙げることができる。ストレプトミセス・モバラエンシス(Streptomyces mobaraensis)はS-8112株(Agric.Biol.Chem.,53(10),2613-2617,1989、FERM P-18980)、ストレプトミセス・ラベンデュラエ(Streptomyces lavendulae)は、No.466(特許文献1参照、FERM P-11657)などを例示できる。また、紫外線照射やNTG(N-methyl-N'-nitrosoguanidine)等の常法を用いて生産性を高めたり、プロテアーゼやアミラーゼなどの夾雑蛋白の生産を減らしたり、抗生物質などの生理活性物質を抑制又は欠如させたようなストレプトミセス(Streptomyces)属の微生物の変異株を使用することもでき、更には、遺伝子組換え菌等の使用もできる。既述のストレプトミセス・モバラエンシス(Streptomyces mobaraensis)S-8112株を変異させたものとして、ストレプトミセス・モバラエンシス(Streptomyces mobaraensis)No.140226株及びストレプトミセス・モバラエンシス(Streptomyces mobaraensis)No.W42228株を例示でき、これらは本出願人によりブタペスト条約に基づき、独立行政法人産業技術総合研究所特許生物寄託センター(IPOD、〒305−8566 茨城県つくば市東1丁目1番地1中央第6)に寄託されており、受託番号はそれぞれをFERM P-19448、FERM P-19449である。   A crude enzyme solution of TGase comprising a culture filtrate obtained by removing cells from a fermentation mixture produced by fermentation of a strain having TGase production ability is prepared. As TGase, those produced by microorganisms of the genus Streptomyces can be used. Examples of the microorganism belonging to the genus Streptomyces include Streptomyces mobaraensis (formerly Streptomyces mobaraensis), Streptomyces lavendulae, and the like. Streptomyces mobaraensis is strain S-8112 (Agric. Biol. Chem., 53 (10), 2613-2617, 1989, FERM P-18980), Streptomyces lavendulae is No. 466 (see Patent Document 1, FERM P-11657). In addition, by using conventional methods such as ultraviolet irradiation and NTG (N-methyl-N'-nitrosoguanidine), productivity is increased, production of contaminating proteins such as protease and amylase is reduced, and physiologically active substances such as antibiotics are added. It is possible to use mutant strains of microorganisms belonging to the genus Streptomyces that are suppressed or lacked, and furthermore, it is also possible to use genetically modified bacteria. Streptomyces mobaraensis No.140226 and Streptomyces mobaraensis No.W42228 can be exemplified as mutants of the previously described Streptomyces mobaraensis S-8112 strain. These have been deposited by the applicant under the Budapest Treaty at the National Institute of Advanced Industrial Science and Technology Patent Biological Deposit Center (IPOD, 1st, 1st, 1st Street, 1st Street, Tsukuba, Ibaraki 305-8586), The accession numbers are FERM P-19448 and FERM P-19449, respectively.

ストレプトミセス(Streptomyces)属の微生物の発酵に使用する培地としては、デンプン、蔗糖、乳糖、グリセロール、グルコース等の炭素源、ペプトン、肉エキス、酵母エキス、コーンスチープリカー、硝酸アンモニウム、塩化アンモニウム、硫酸アンモニウム等の窒素源、リン酸一カリウム、リン酸二カリウム、硫酸マグネシウム、硫酸マンガン、炭酸カルシウム等の微量金属塩など一般的に用いられる培地原料を使用できる。また、発泡を抑えるために消泡剤の添加も必要に応じて行うことができる。培養は、25℃〜35℃の範囲が一般的であり、各種発酵容器により実施され、通常3日間〜6日間の通気撹拌が行われる。菌株や発酵培地培養条件によってはこの限りでなく、例えば、培地原料をフイーヂングしたり、高濃度の培地原料を含む場合は、一般的に培養時間が更に長くなることもある。また、培地pHの制御も必要に応じて行われる。   Medium used for fermentation of microorganisms belonging to the genus Streptomyces includes carbon sources such as starch, sucrose, lactose, glycerol, glucose, peptone, meat extract, yeast extract, corn steep liquor, ammonium nitrate, ammonium chloride, ammonium sulfate, etc. Commonly used medium materials such as trace nitrogen salts such as monopotassium phosphate, monopotassium phosphate, dipotassium phosphate, magnesium sulfate, manganese sulfate, and calcium carbonate can be used. Moreover, in order to suppress foaming, addition of an antifoamer can also be performed as needed. The culture is generally in the range of 25 ° C. to 35 ° C., and is performed in various fermentation vessels, and aeration and agitation are usually performed for 3 to 6 days. This is not limited depending on the strain and fermentation medium culture conditions. For example, when the medium raw material is fed or a high concentration medium raw material is included, the culture time may generally be longer. The medium pH is also controlled as necessary.

培養終了後における発酵混合物からの菌体等の除去は、珪藻土を用いる濾過やメンブレンあるいはセラミックフイルターなどを用いる濾過あるいは遠心分離により行うことができる。濾過の場合、珪藻土を加えた加圧濾過が好ましく、また、室温以下で実施することが好ましい。得られた培養濾液、すなわちTGaseの粗酵素液は、必要に応じて冷却が行われる。また、Eur,.J,Biochem.,257,570-576(1998)に記載されているように、TGaseは前駆体として生産されることが知られており、成熟体への変換のため発酵混合物を一定時間そのまま、あるいは他のプロセッシングに使用可能なトリプシン等の酵素を添加して保温しても良い。   Removal of bacterial cells and the like from the fermentation mixture after completion of the culture can be performed by filtration using diatomaceous earth, filtration using a membrane or ceramic filter, or centrifugation. In the case of filtration, pressure filtration with diatomaceous earth added is preferable, and it is preferable to carry out at room temperature or lower. The obtained culture filtrate, ie, the crude enzyme solution of TGase, is cooled as necessary. In addition, as described in Eur, J, Biochem., 257, 570-576 (1998), TGase is known to be produced as a precursor, and the fermentation mixture is fixed for conversion to a mature form. The temperature may be kept as it is, or by adding an enzyme such as trypsin that can be used for other processing.

粗酵素液の部分精製は、濃縮処理により行うことができる。濃縮方法は、特に限定されるものではないが、濃縮と精製が同時に可能な限外濾過膜の利用が好ましい。濃縮は、10倍〜100倍程度まで行うことができるが、次の工程の他の精製操作や塩析結晶化における沈殿の生成、回収に可能な濃度に達していれば特に問題がなく、作業性や回収率等を考慮すれば高い方が好ましい。なお、限外濾過膜は、TGaseの分子量約38,000を考慮すれば、それ以下の例えば分子量13,000の平均孔径を有する旭化成社製ACP等の使用が好ましいと言えるが、必ずしもこれに限定されることはなく、分子量50,000の孔径を有する膜を使用してもほとんど酵素が漏れることがないので、必要に応じて膜の選択を行うことで精製度を高めることも可能である。脱塩濃縮において沈殿を生じることもあるが、適切な緩衝液あるいは塩類溶液等を加えることにより溶解させ、回収率を高めることが可能である。また、濃縮時の温度は、特に限定されるものではないが、10℃〜30℃が好ましい。温度が高い程濃縮は効率的に実施できるが、失活を考慮する必要がある。また、濃縮は2回以上行うことができ、濃縮液には、予め活性炭による脱色を行っても良い。   Partial purification of the crude enzyme solution can be performed by concentration treatment. The concentration method is not particularly limited, but it is preferable to use an ultrafiltration membrane capable of simultaneously concentrating and purifying. Concentration can be performed up to about 10 to 100 times, but there is no particular problem as long as it reaches a concentration that can be used for the purification and precipitation of other purification operations and salting out crystallization in the next step. Higher is preferable in consideration of properties and recovery rate. In addition, the ultrafiltration membrane can be said to be preferable to use, for example, ACP manufactured by Asahi Kasei Co., Ltd. having an average pore diameter of 13,000 or less, considering the molecular weight of TGase of about 38,000, but is not necessarily limited thereto. Furthermore, even when a membrane having a pore size of 50,000 is used, almost no enzyme leaks, so that the degree of purification can be increased by selecting a membrane as necessary. Although precipitation may occur in desalting and concentration, it can be dissolved by adding an appropriate buffer or salt solution, and the recovery rate can be increased. Moreover, the temperature at the time of concentration is not particularly limited, but is preferably 10 ° C to 30 ° C. The higher the temperature, the more efficient the concentration, but deactivation must be taken into account. Concentration can be performed twice or more, and the concentrated solution may be decolorized with activated carbon in advance.

また、粗酵素液の部分精製は、上記のように単なる脱塩濃縮や活性炭による脱色の他にも、吸着剤やイオン交換樹脂あるいはエタノール、ポリエチレングリコール等の沈殿剤を用いて行うこともできる。特に、酵素濃度が低い場合には、回収率を高めるために沈殿性が高い硫安等を併用することも有効である。   Further, the partial purification of the crude enzyme solution can be carried out using an adsorbent, an ion exchange resin, or a precipitating agent such as ethanol or polyethylene glycol, in addition to simple desalting and concentration and decolorization with activated carbon as described above. In particular, when the enzyme concentration is low, it is also effective to use ammonium sulfate or the like having a high precipitation property in order to increase the recovery rate.

TGaseは、TGaseの粗酵素あるいは粗酵素を部分精製したものに塩化ナトリウム又は塩化カリウムを添加する塩析により結晶化することができる。酵素の結晶化は、一般的に多段階で複雑な精製操作を経て均一にまで精製し濃縮した酵素溶液を用いて行うものであるが、本発明によれば、塩化ナトリウム又は塩化カリウムはTGaseの粗酵素あるいは粗酵素を部分精製したものへ添加すると他の夾雑蛋白の沈殿が少なく、結晶化が容易となり、また高い収率で結晶化できるので、工業的規模で結晶化されたTGaseを製造できる。TGaseの粗酵素あるいは粗酵素を部分精製したものにおけるAb280nmの吸光度当たりの酵素単位(u)が2単位以上であれば、塩化ナトリウム又は塩化カリウムの添加で確実に結晶化ができる。尤も、粗酵素に塩析を行うことは、部分精製した酵素に比べ、夾雑蛋白が多いことや酵素濃度が低く、酵素の回収率が低いことあるいは多量の塩類の添加が必要となることから好ましい方法ではないが、生産菌株の改良や生産培地培養条件等の改良により生産性が高くなればその限りでない。なお、塩化ナトリウムと塩化カリウムは併用しても良い。   TGase can be crystallized by salting out by adding sodium chloride or potassium chloride to TGase crude enzyme or partially purified crude enzyme. Enzyme crystallization is generally carried out using an enzyme solution that has been purified to a uniform concentration through a multi-step and complicated purification procedure, and according to the present invention, sodium chloride or potassium chloride is a TGase. Addition to crude enzyme or partially purified crude enzyme reduces the precipitation of other contaminating proteins, facilitates crystallization, and enables crystallization with high yield, so that TGase crystallized on an industrial scale can be produced. . If the enzyme unit (u) per absorbance at Ab 280 nm in the TGase crude enzyme or a partially purified crude enzyme is 2 units or more, crystallization can be ensured by addition of sodium chloride or potassium chloride. However, salting out on the crude enzyme is preferable because it contains more contaminating proteins, the enzyme concentration is low, the enzyme recovery rate is low, or the addition of a large amount of salts is required compared to the partially purified enzyme. Although it is not a method, it will not be limited if productivity becomes high by improvement of a production strain, production medium culture conditions, etc. Sodium chloride and potassium chloride may be used in combination.

TGaseの結晶化は、予め結晶種を添加しても良いが、添加しなくても可能である。 また、塩化ナトリウム又は塩化カリウムの添加方法によっては、結晶ではなく不定形の沈殿が生成することがあるので(酵素の純度と塩化ナトリウム濃度又は塩化カリウム濃度の変化が微妙に影響することによると思われる)、塩化ナトリウム又は塩化カリウムを一時に飽和させるのではなく徐々に添加して飽和させることが好ましい。なお、不定形の沈殿は、再溶解して塩析を行えば容易に結晶化できる。通常、酵素の結晶化は、僅かに不定形の沈殿を生成する過飽和状態から時間をかけて塩濃度を高めたり、何らかの刺激を酵素液に与えて行われるが、塩化ナトリウム又は塩化カリウムの場合は既述のように他の夾雑蛋白の沈殿が少ないことから結晶化が容易に行えるものと思われる。また、塩化ナトリウム又は塩化カリウムを用いて得られる結晶懸濁液の安定性は、結晶状態であることと塩濃度が高いことにより非常に優れており、長期保存も可能である。従って、必要があれば結晶懸濁液そのまま、あるいは適切な安定化剤を加えた製剤とすることも可能となった。   Crystallization of TGase may be carried out without adding a crystal seed in advance. Also, depending on the method of addition of sodium chloride or potassium chloride, an amorphous precipitate may be formed instead of crystals (it seems to be due to subtle effects of changes in enzyme purity and sodium chloride concentration or potassium chloride concentration). It is preferable to gradually add and saturate sodium chloride or potassium chloride instead of saturating at once. The amorphous precipitate can be easily crystallized by re-dissolving and salting out. Usually, enzyme crystallization is carried out by increasing the salt concentration over time from the supersaturated state that produces a slightly amorphous precipitate, or by applying some kind of stimulation to the enzyme solution. In the case of sodium chloride or potassium chloride, As described above, it is considered that crystallization can be easily performed because there is little precipitation of other contaminating proteins. In addition, the stability of the crystal suspension obtained using sodium chloride or potassium chloride is very excellent due to the crystalline state and the high salt concentration, and can be stored for a long time. Therefore, if necessary, the crystal suspension can be used as it is, or a preparation containing an appropriate stabilizer can be prepared.

また、粗酵素又は粗酵素を部分精製したものからのTGaseの結晶化後に得られた結晶母液の温度を高めたり、pHを変えたり、微量のリン酸塩や硫酸塩等の塩類を加えることにより結晶母液からのTGaseの結晶化を行え、TGaseの回収率を高めることができる。   Also, by increasing the temperature of the crystal mother liquor obtained after crystallization of TGase from the crude enzyme or partially purified crude enzyme, changing the pH, or adding a small amount of phosphate or sulfate salt TGase can be crystallized from the crystal mother liquor, and the TGase recovery rate can be increased.

結晶の回収は、濾過や遠心分離など一般的な方法により実施できる。いずれの場合も結晶母液に含まれる夾雑蛋白を十分に除くため洗浄を行うことが好ましい。また、得られた結晶(粗結晶)は、水あるいは塩類溶液等を用いて溶解した後、再度塩類を用いて結晶化を行ういわゆる再結晶化操作を行うことで、更に不純物の除去が可能である。   Crystals can be collected by a general method such as filtration or centrifugation. In any case, it is preferable to perform washing in order to sufficiently remove contaminating proteins contained in the crystal mother liquor. Further, after the obtained crystal (crude crystal) is dissolved using water or a salt solution or the like, the so-called recrystallization operation in which crystallization is performed again using the salt can further remove impurities. is there.

得られた結晶は、水あるいは塩類溶液等を用いて溶解した後、塩析に使用した塩類を除くため、限外濾過膜その他の方法を用いて脱塩濃縮を行い、凍結乾燥などの方法により粉末化できる。乾燥方法は、他に噴霧乾燥、減圧乾燥、フイルム乾燥、あるいはアルコール等の有機溶媒により沈殿させた後、真空乾燥すること等で可能である。脱塩濃縮は、乾燥効率を考慮すればできる限り濃度を高めることが好ましいが、濃度を高めることによりTGaseが沈殿として析出することもあるので、この場合、低濃度の塩類溶液を添加して溶解性を高めることができる。   The obtained crystals are dissolved using water or a salt solution, etc., and then desalted and concentrated using an ultrafiltration membrane or other methods to remove the salts used for salting out. Can be powdered. Other drying methods are possible, such as spray drying, vacuum drying, film drying, or precipitation with an organic solvent such as alcohol, followed by vacuum drying. In desalting and concentration, it is preferable to increase the concentration as much as possible in consideration of the drying efficiency, but TGase may precipitate as a precipitate by increasing the concentration. In this case, a salt solution with a low concentration is added and dissolved. Can increase the sex.

回収率を高めるなどの目的のためにTGaseの安定化に寄与する効果の高い物質を添加することが好ましく、例えば、グルタミンペプチド、ペプチーノなどの蛋白質部分分解物、トレハロース、システィン、グルタチオン、亜硫酸水素ナトリウム、クエン酸塩及びリン酸塩からなる1種又は2種以上を添加剤として加え製剤化することができる。また、糖類などの賦形剤などを添加剤として加え製剤化することができる。これらの添加剤は、いずれの部分精製工程においても可能であるが、好ましくは、結晶化後に行うのが好ましい。   For the purpose of increasing the recovery rate, it is preferable to add a substance having a high effect that contributes to stabilization of TGase. For example, a partial protein degradation product such as glutamine peptide and peptino, trehalose, cysteine, glutathione, sodium bisulfite In addition, one or more of citrate and phosphate can be added as an additive to prepare a formulation. In addition, excipients such as saccharides can be added as additives to prepare a formulation. These additives can be used in any partial purification step, but are preferably performed after crystallization.

次いで、本発明を実施例を挙げて説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated, this invention is not limited to a following example.

〔実施例1〕(結晶化に用いる塩類の検討)
TGaseを結晶化する塩類の種類について検討を行った。
市販品のTGase(味の素社製ActivaTG、ストレプトミセス・モバラエンシス(Streptomyces mobaraensis)が生産するTGaseの部分精製酵素製剤)から賦形剤等を除く目的で、0.2Mトリス−塩酸緩衝液pH6.0に溶解後、硫安塩析を行い、得られた沈殿物を同緩衝液に溶解した。この溶解液を限外濾過膜(旭化成社製ACP1010)を用いて脱塩濃縮した。この操作で賦形剤等が除かれたTGaseの部分精製酵素液を得た。なお、本酵素液のTGase活性は、326u/ml、比活性は8.7u/Ab280nmであった。
[Example 1] (Examination of salts used for crystallization)
The types of salts that crystallize TGase were examined.
Dissolved in 0.2M Tris-HCl buffer solution pH6.0 for the purpose of removing excipients from commercially available TGase (ActivaTG manufactured by Ajinomoto Co., Inc., a partially purified enzyme preparation of TGase produced by Streptomyces mobaraensis) Thereafter, ammonium sulfate salting out was performed, and the resulting precipitate was dissolved in the same buffer. This solution was desalted and concentrated using an ultrafiltration membrane (ACP1010 manufactured by Asahi Kasei Corporation). By this operation, a partially purified enzyme solution of TGase from which excipients and the like were removed was obtained. The enzyme solution had a TGase activity of 326 u / ml and a specific activity of 8.7 u / Ab 280 nm.

TGaseの活性の測定は、特開昭64−27471号公報に記載の方法により行った。すなわち、ベンジルオキシカルボニル−L−グルタミニルグリシンとヒドロキシルアミンを基質としてCa2+非存在下で反応を行い、生成したヒドロキサム酸をトリクロロ酢酸共存下で鉄錯体を形成させ、525nmの吸収を測定し、ヒドロキサム酸の量を検量線より求め算出する。以下、具体的に示す。
試薬A:0.2Mトリス塩酸緩衝液(pH6.0)、0.1Mヒドロキシルアミン、0.01M還元型グルタチオン、0.03Mベンジルオキシカルボニル−L−グルタミニルグリシン
試薬B:3N塩酸、12%トリクロロ酢酸、5%FeCl3・6H2O(O.1N−HClに溶解)
これらの溶液の1:1:1の混合液を試薬Bとした。
酵素液の0.05mlに試薬Aを0.5mlを加えて混合し、37℃で10分間反応後、試薬Bを加えて反応停止とFe錯体の形成を行った後、525nmの吸光度を測定する。対照として予め熱失活させた酵素液を用いて同様に反応させたものの吸光度を測定し、酵素液との吸光度差を求める。別に酵素液のかわりにL−グルタミン酸−γ−モノヒドロキサム酸を用いて検量線を作成し、前記吸光度差より生成されたヒドロキサム酸の量を求め、1分間に1μモルのヒドロキサム酸を生成する酵素活性を1単位とした。
また、比活性は、波長280nmにおける紫外線の吸光度を測定し、その吸光度当たりの酵素活性で表した。TGaseの活性の測定及び比活性の測定は、後記の各実施例においても同様に行った。
The TGase activity was measured by the method described in JP-A No. 64-27471. Namely, benzyloxycarbonyl-L-glutaminylglycine and hydroxylamine as substrates are reacted in the absence of Ca 2+ to form an iron complex in the presence of trichloroacetic acid, and the absorption at 525 nm is measured. The amount of hydroxamic acid is calculated from a calibration curve. Specific description will be given below.
Reagent A: 0.2 M Tris-HCl buffer (pH 6.0), 0.1 M hydroxylamine, 0.01 M reduced glutathione, 0.03 M benzyloxycarbonyl-L-glutaminylglycine
Reagent B: 3N hydrochloric acid, 12% trichloroacetic acid, 5% FeCl 3 · 6H 2 O (dissolved in O.1N-HCl)
A 1: 1 mixture of these solutions was designated as reagent B.
Add 0.5 ml of reagent A to 0.05 ml of the enzyme solution, mix and react at 37 ° C. for 10 minutes, add reagent B to stop the reaction and form an Fe complex, and then measure the absorbance at 525 nm. As a control, the absorbance of an enzyme solution that has been reacted in the same manner using a previously heat-inactivated enzyme solution is measured, and the difference in absorbance from the enzyme solution is determined. Separately, a calibration curve is prepared using L-glutamic acid-γ-monohydroxamic acid instead of the enzyme solution, the amount of hydroxamic acid generated from the difference in absorbance is obtained, and 1 μmol hydroxamic acid is produced per minute The activity was defined as 1 unit.
Further, the specific activity was measured by measuring the absorbance of ultraviolet rays at a wavelength of 280 nm and expressed as enzyme activity per absorbance. The measurement of the activity of TGase and the measurement of the specific activity were carried out in the same manner in the examples described later.

試験管に上記で得た部分精製酵素液を各5ml分注して各種塩類を固体のまま添加溶解して飽和とした後、4℃1日間保存後、遠心分離を行い、沈殿物を0.2Mトリス−塩酸緩衝液pH6.0に溶解した。この溶解液を7mlとした後、TGase活性とAb280nmにおける吸光度を測定してそれぞれの回収率と比活性を求め、使用可能な塩類について検討を行った。結果は、表1に示した。   Dispense 5 ml each of the partially purified enzyme solution obtained above into a test tube, add and dissolve various salts as solids to saturate, store at 4 ° C for 1 day, centrifuge, and deposit 0.2M Dissolved in Tris-HCl buffer pH 6.0. After making this solution 7 ml, TGase activity and absorbance at Ab 280 nm were measured to determine the recovery rate and specific activity, and the available salts were examined. The results are shown in Table 1.

Figure 0004383131
Figure 0004383131

表1から、塩化ナトリウムと塩化カリウムは、対照に比べ沈殿の比活性が上昇し、この沈殿は既に結晶性の沈殿となっていることも確認されたので、TGaseを容易かつ高度に結晶化できることが明らかとなった。塩化カリウムの場合、沈殿からの回収率は48%と低いが、結晶母液から高い回収率でTGaseを結晶化できるので、全体として高い回収率で結晶化ができる。一方、硫酸アンモニウム、酒石酸ナトリウム・カリウム、リン酸一カリウムとリン酸二カリウムの混合物では、対照に比べ比活性の上昇は認められないが沈殿の回収が高いため、分画沈殿を行うなど煩雑な操作を加えれば塩析に使用が可能かと思われる。また、これらの塩類は、塩化ナトリウムや塩化カリウムを用いる塩析において補助的に添加することも可能である。塩化ナトリウムと塩化カリウムでは本酵素液のような部分精製酵素液から結晶化が可能であったが、他の塩類では分画沈殿など煩雑な操作を行った後の酵素であることが必要であった。なお、結果は示さないが、塩化ナトリウムあるいは塩化カリウムによる結晶化はバッチ法の他にも、微量結晶の調製に有用なハンギングドロップ法においても採用できる。   From Table 1, it was confirmed that sodium chloride and potassium chloride had a higher specific activity of the precipitate than the control, and this precipitate was already a crystalline precipitate, so that TGase can be easily and highly crystallized. Became clear. In the case of potassium chloride, the recovery rate from precipitation is as low as 48%, but TGase can be crystallized from the crystal mother liquor with a high recovery rate, so that crystallization can be performed with a high recovery rate as a whole. On the other hand, with ammonium sulfate, sodium / potassium tartrate, and a mixture of monopotassium phosphate and dipotassium phosphate, the specific activity is not increased compared to the control, but the precipitate recovery is high. It seems that it can be used for salting out. Moreover, these salts can also be supplementarily added in salting out using sodium chloride or potassium chloride. For sodium chloride and potassium chloride, crystallization was possible from a partially purified enzyme solution such as this enzyme solution, but for other salts, it was necessary to use the enzyme after complicated operations such as fractional precipitation. It was. Although the results are not shown, crystallization with sodium chloride or potassium chloride can be employed not only in the batch method but also in the hanging drop method useful for the preparation of trace crystals.

〔実施例2〕(TGaseの結晶化1)
TGase生産菌のストレプトミセス・モバラエンシス(Streptomyces mobaraensis)S-8112株とストレプトミセス・ラベンデュラエ(Streptomyces lavendulae)No.466株を使用して可溶性デンプン2%、ショ糖5%、ポリペプトン2%、酵母エキス0.2%、硫酸マグネシウム0.1%、リン酸二カリウム0.2%、アデカノール0.05%を含む培地を用い、500ml容坂口フラスコに入れ、4日間30℃にて振とう培養しそれぞれ粗酵素液450mlと930mlを得た。なお、%は重量%で以下の各実施例においても同様である。
Example 2 (TGase crystallization 1)
Using the TGase producing strains Streptomyces mobaraensis S-8112 and Streptomyces lavendulae No.466, soluble starch 2%, sucrose 5%, polypeptone 2%, yeast extract 0.2 %, Magnesium sulfate 0.1%, dipotassium phosphate 0.2%, adecanol 0.05%, put into a 500 ml Sakaguchi flask and shake cultured at 30 ° C. for 4 days to obtain 450 ml and 930 ml of a crude enzyme solution, respectively. . Note that “%” is “% by weight” and is the same in the following examples.

上記の粗酵素液を限外濾過膜(旭化成社製ACP1010)を用いて脱塩濃縮し、最終的に194mlと255mlの濃縮液を得た。この濃縮液を予め50mMのリン酸緩衝液pH7.0で透析し、同緩衝液で平衡化した約40mlのブルーセファロースCL-6Bカラム(アマシャム バイオサイエンス社製)に通して酵素を吸着した後、塩化ナトリウム0.5Mを含む同緩衝液による一段階のみで溶出した。硫安飽和として酵素蛋白を沈殿として回収し、約10mlの0.2Mトリス塩酸緩衝液pH6.0に溶解して部分精製酵素液を得た。その後、この部分精製酵素液に塩化ナトリウムを徐々に添加してTGaseの結晶化を行った(粗結晶)。回収率は、酵素濃度が低いために約10%であった。部分精製後の酵素液(表2の各カラム溶出液を参照)の比活性がそれぞれ6.2u/Ab280nmと1.74u/Ab280nmであったが、粗結晶の比活性はそれぞれ13.08u/Ab280nmと6.86u/Ab280nmであった。結晶化における各工程の結果を表2に示した。また、結晶は、図1の光学顕微鏡写真像で示されるように、長さ数十μmの針状結晶であった。   The above crude enzyme solution was desalted and concentrated using an ultrafiltration membrane (ACP1010 manufactured by Asahi Kasei Co., Ltd.), and finally 194 ml and 255 ml concentrated solutions were obtained. The concentrated solution was dialyzed in advance with 50 mM phosphate buffer pH 7.0, passed through an approximately 40 ml Blue Sepharose CL-6B column (manufactured by Amersham Biosciences) equilibrated with the same buffer, and the enzyme was adsorbed. Elution was performed in only one step with the same buffer containing 0.5 M sodium chloride. Enzyme protein was collected as a precipitate as ammonium sulfate saturation and dissolved in about 10 ml of 0.2 M Tris-HCl buffer pH 6.0 to obtain a partially purified enzyme solution. Thereafter, sodium chloride was gradually added to the partially purified enzyme solution to crystallize TGase (crude crystal). The recovery rate was about 10% due to the low enzyme concentration. The specific activity of the partially purified enzyme solution (see each column eluate in Table 2) was 6.2u / Ab280nm and 1.74u / Ab280nm, respectively, but the specific activity of the crude crystals was 13.08u / Ab280nm and 6.86u, respectively. / Ab 280 nm. The results of each step in crystallization are shown in Table 2. The crystal was a needle-like crystal having a length of several tens of μm, as shown in the optical micrograph image of FIG.

Figure 0004383131
Figure 0004383131

〔実施例3〕(TGaseの結晶化2)
実施例2に記載のTGase生産菌のストレプトミセス・モバラエンシス(Streptomyces mobaraensis)S-8112株を使用して、可溶性澱粉4%、極東ペプトン2%、酵母エキス0.2%、肉エキス 0.2%、リン酸1カリウム 0.5%、リン酸2カリウム0.5%、硫酸マグネシウム0.05%、アデカノール0.04%を含む培地を用いて3L容ミニジャーファーメンターにより培養を行い、珪藻土を用いる濾過により粗酵素液を2800ml得た。
Example 3 (TGase crystallization 2)
Using the TGase producing strain Streptomyces mobaraensis S-8112 described in Example 2, soluble starch 4%, Far East peptone 2%, yeast extract 0.2%, meat extract 0.2%, phosphoric acid 1 Cultivation was performed with a 3L mini jar fermenter using a medium containing 0.5% potassium, 0.5% dipotassium phosphate, 0.05% magnesium sulfate and 0.04% adecanol, and 2800 ml of crude enzyme solution was obtained by filtration using diatomaceous earth. .

限外濾過膜(旭化成社製ACP1010)による1次脱塩濃縮を行い液量を270mlとした後、活性炭2%添加による脱色処理を行ない、さらに珪藻土を用いる濾過により活性炭を除去して澄明な酵素液 310mlを得た。濃縮を行うと同時にリン酸塩緩衝液を含む酵素液とするため限外濾過膜(旭化成社製ACP1010)により2次脱塩濃縮を行い液量が54mlの部分精製酵素液を得た。この部分精製酵素液に塩化ナトリウムを飽和に達するまで徐々に添加すると同時に微量の種結晶を加えて塩析結晶化を行った。実施例2がストレプトミセス・モバラエンシス(Streptomyces mobaraensis)S-8112株が生産する粗酵素液をブルーセファロースクロマトグラフィーを行い部分精製化したものを結晶化したものであるのに対し、本実施例は同じストレプトミセス・モバラエンシス(Streptomyces mobaraensis)S-8112株が生産する粗酵素を濃縮と活性炭による脱色処理のみで部分精製化し、結晶化を行ったものである点で異なる。回収率は、結晶母液からの回収を含めれば結晶化工程のみでは約34%、全行程収率では約18%であった。また、部分精製後の酵素液(表3の2次限外濾過膜処理液を参照)の比活性は2.03u/Ab280nmであったが、粗結晶酵素の比活性は4.37u/Ab280nm(1回目と2回目の結晶溶解液の結果より算出)であった。結晶化における各行程の結果を表3に示した。   Perform primary desalination and concentration with an ultrafiltration membrane (ACP1010 manufactured by Asahi Kasei Co., Ltd.) to make the volume 270 ml, then decolorize by adding 2% activated carbon, and remove the activated carbon by filtration using diatomaceous earth to clear enzyme 310 ml of liquid was obtained. At the same time as the concentration, an enzyme solution containing a phosphate buffer solution was subjected to secondary desalting and concentration using an ultrafiltration membrane (ACP1010 manufactured by Asahi Kasei Co., Ltd.) to obtain a partially purified enzyme solution having a volume of 54 ml. To this partially purified enzyme solution, sodium chloride was gradually added until saturation was reached, and at the same time, a small amount of seed crystal was added for salting out crystallization. Example 2 is the same as that of Example 2, except that the crude enzyme solution produced by Streptomyces mobaraensis S-8112 was partially purified by blue sepharose chromatography and crystallized. The difference is that the crude enzyme produced by Streptomyces mobaraensis strain S-8112 was partially purified by concentration and decolorization treatment with activated carbon, followed by crystallization. The recovery was about 34% for the crystallization step alone and about 18% for the total process yield, including recovery from the crystal mother liquor. The specific activity of the partially purified enzyme solution (see the secondary ultrafiltration membrane treatment solution in Table 3) was 2.03 u / Ab 280 nm, while the crude crystal enzyme had a specific activity of 4.37 u / Ab 280 nm (first time). And calculated from the results of the second crystal solution. The results of each step in crystallization are shown in Table 3.

Figure 0004383131
Figure 0004383131

〔実施例4〕(TGaseの結晶化3)
実施例2に記載のストレプトミセス・モバラエンシス(Streptomyces mobaraensis)S-8112株の変異により得たNo.140226株を使用して、可溶性デンプン4%、極東ペプトン2%、酵母エキス0.2%、肉エキス0.2%、リン酸一カリウム0.5%、リン酸二カリウム0.5%、硫酸マグネシウム0.05%、アデカノール0.04%含む培地を用い、3L容ミニジャーファーメンターにより培養を行い、珪藻土を用いる濾過により粗酵素液3800mlを得た。
[Example 4] (crystallization of TGase 3)
Using No. 140226 strain obtained by mutation of Streptomyces mobaraensis S-8112 strain described in Example 2, soluble starch 4%, Far East peptone 2%, yeast extract 0.2%, meat extract 0.2 %, Monopotassium phosphate 0.5%, dipotassium phosphate 0.5%, magnesium sulfate 0.05%, adecanol 0.04%, culture using a 3L mini jar fermenter, and 3800ml of crude enzyme solution by filtration using diatomaceous earth Obtained.

上記の粗酵素液を限外濾過膜(旭化成社製ACP1010)による1次脱塩濃縮を行い液量を750mlとした後、活性炭2%添加による脱色処理を行い、さらに珪藻土を用いる濾過により活性炭を除去して澄明な酵素液950mlを得た。濃縮を行うと同時にリン酸塩緩衝液を含む酵素液とするため、限外濾過膜(旭化成社製ACP1010)による2次脱塩濃縮を行い液量が180mlの部分精製酵素液を得た。この部分精製酵素液に塩化ナトリウムを飽和に達するまで添加すると同時に微量の種結晶を加え、4℃で3日間放置して塩析結晶化を行った。また、2回目の結晶化は、結晶母液にリン酸一カリウムを加え、室温で7時間放置して行った。 回収率は、結晶母液からの回収を含めれば、結晶化工程のみでは約68%、全工程の回収率は約28%であった。また、部分精製酵素液(表4の2次限外濾過膜処理液を参照)の比活性は2.67u/Ab280nmであったが、粗結晶酵素の比活性は9.03u/Ab280nm(1回目と2回目の結晶溶解液の結果より算出)であった。結晶化における各工程の結果を表4に示した。   The above crude enzyme solution is first desalted and concentrated using an ultrafiltration membrane (ACP1010 manufactured by Asahi Kasei Co., Ltd.) to make the liquid volume 750 ml, then decolorized by adding 2% activated carbon, and the activated carbon is filtered by using diatomaceous earth. Removal of 950 ml of a clear enzyme solution was obtained. In order to obtain an enzyme solution containing a phosphate buffer at the same time as the concentration, secondary desalting and concentration using an ultrafiltration membrane (ACP1010 manufactured by Asahi Kasei Co., Ltd.) was performed to obtain a partially purified enzyme solution having a liquid volume of 180 ml. Sodium chloride was added to this partially purified enzyme solution until saturation was reached, and a small amount of seed crystal was added, and the mixture was allowed to stand at 4 ° C. for 3 days for salting out crystallization. The second crystallization was performed by adding monopotassium phosphate to the crystal mother liquor and leaving it at room temperature for 7 hours. The recovery rate, including recovery from the crystal mother liquor, was about 68% for the crystallization step alone, and the recovery rate for all steps was about 28%. The specific activity of the partially purified enzyme solution (see the secondary ultrafiltration membrane treatment solution in Table 4) was 2.67 u / Ab 280 nm, while the specific activity of the crude crystal enzyme was 9.03 u / Ab 280 nm (first and second). It was calculated from the result of the first crystal solution. The results of each step in crystallization are shown in Table 4.

Figure 0004383131
Figure 0004383131

〔実施例5〕(TGaseの結晶化4)
実施例2に記載のストレプトミセス・モバラエンシス(Streptomyces mobaraensis)S-8112株の変異により得たNo.W42228株を使用して、可溶性澱粉4%、極東ペプトン2%、酵母エキス0.2%、肉エキス 0.2%、リン酸1カリウム 0.5%、リン酸2カリウム0.5%、硫酸マグネシウム0.05%、アデカノール0.04%を含む培地を用いて3L容ミニジャーファーメンターにより培養を行い、珪藻土を用いる濾過により粗酵素液を3600ml得た。
Example 5 (TGase crystallization 4)
Using No.W42228 strain obtained by mutation of Streptomyces mobaraensis S-8112 strain described in Example 2, soluble starch 4%, Far East peptone 2%, yeast extract 0.2%, meat extract 0.2 %, 1% potassium phosphate 0.5%, 2 potassium phosphate 0.5%, magnesium sulfate 0.05%, adecanol 0.04% culture medium with a 3L mini jar fermenter, crude enzyme by filtration using diatomaceous earth 3600 ml of liquid was obtained.

上記の粗酵素液を限外濾過膜(旭化成社製ACP1010)による1次脱塩濃縮を行い液量を320mlとした後、活性炭2% 添加による脱色処理を行ない、珪藻土を用いる濾過により活性炭を除去して澄明な酵素液 390mlを得た。濃縮を行うと同時にリン酸塩緩衝液を含む酵素液とするため、限外濾過膜(旭化成社製ACP1010)による第2次脱塩濃縮を行い液量が58mlの部分精製酵素液を得た。この部分精製酵素液に塩化ナトリウムを飽和に達するまで添加すると同時に微量の種結晶を加え、4℃で3日間放置して塩析結晶化を行った。また、2回目の結晶化は、1回目の結晶化で得た結晶母液を室温で7時間放置して行った。回収率は、結晶母液からの回収を含めれば、結晶化工程のみでは約48%、全工程の回収率は約19%であった。また、部分精製酵素液(表5の2次限外濾過膜処理液を参照)の比活性は2.10u/Ab280nmであったが、粗結晶酵素の比活性は4.75u/Ab280nm(1回目と2回目の結晶溶解液の結果より算出)であった。結晶化における各工程の結果を表5に示した。   The above crude enzyme solution is first desalted and concentrated with an ultrafiltration membrane (ACP1010 manufactured by Asahi Kasei Co., Ltd.) to make the volume 320 ml, then decolorized by adding 2% activated carbon, and the activated carbon is removed by filtration using diatomaceous earth. As a result, 390 ml of a clear enzyme solution was obtained. In order to obtain an enzyme solution containing a phosphate buffer at the same time as the concentration, secondary desalting and concentration using an ultrafiltration membrane (ACP1010 manufactured by Asahi Kasei Co., Ltd.) was performed to obtain a partially purified enzyme solution having a liquid volume of 58 ml. Sodium chloride was added to this partially purified enzyme solution until saturation was reached, and a small amount of seed crystal was added, and the mixture was allowed to stand at 4 ° C. for 3 days for salting out crystallization. The second crystallization was performed by leaving the crystal mother liquid obtained in the first crystallization for 7 hours at room temperature. Including the recovery from the crystal mother liquor, the recovery rate was about 48% in the crystallization step alone, and the recovery rate in all steps was about 19%. The specific activity of the partially purified enzyme solution (see the secondary ultrafiltration membrane treatment solution in Table 5) was 2.10 u / Ab 280 nm, while the specific activity of the crude crystal enzyme was 4.75 u / Ab 280 nm (first and second). It was calculated from the result of the first crystal solution. The results of each step in crystallization are shown in Table 5.

Figure 0004383131
Figure 0004383131

〔実施例6〕(TGaseの結晶化5)
市販品のTGase(味の素社製ActivaTG、ストレプトミセス・モバラエンシス(Streptomyces mobaraensis)が生産するTGaseの部分精製酵素製剤)200gを0.2Mトリス−塩酸緩衝液pH6.0 1000mlに溶解した後、賦形剤等を除く目的で不溶物を珪藻土を用いた濾過により除き(濾液:1000ml)、硫安を450g加えて塩析した。4℃、3時間放置後、遠心分離により沈殿を集め、約1000mlの上記緩衝液に溶解後、限外濾過膜(旭化成社製ACP1010)を用いて脱塩濃縮して500mlとした。この部分精製酵素液に塩化ナトリウムを徐々に加え塩析結晶化を行った。得られた粗結晶の比活性は、結晶化前が8.7u/Ab280nmであったのに対し、10.9u/Ab280nmであった。また、珪藻土で濾過した製品溶解濾液の比活性は、7.1u/Ab280nmであった。回収率は、部分精製酵素液(表6の限外濾過膜処理液を参照)からは66%で、製品溶解濾液(表6の珪藻土濾過処理液を参照)からは60%であった。結晶化における各工程の結果を表6に示した。
Example 6 (TGase crystallization 5)
After 200 g of commercially available TGase (ActivaTG manufactured by Ajinomoto Co., Ltd., partially purified enzyme preparation of TGase produced by Streptomyces mobaraensis) is dissolved in 1000 ml of 0.2M Tris-HCl buffer solution, excipient, etc. Insoluble matters were removed by filtration using diatomaceous earth (filtrate: 1000 ml), and 450 g of ammonium sulfate was added for salting out. After standing at 4 ° C. for 3 hours, the precipitate was collected by centrifugation, dissolved in about 1000 ml of the above buffer, and desalted and concentrated to 500 ml using an ultrafiltration membrane (ACP1010 manufactured by Asahi Kasei Co., Ltd.). Sodium chloride was gradually added to the partially purified enzyme solution for salting out crystallization. The specific activity of the obtained crude crystals was 10.9 u / Ab 280 nm, compared to 8.7 u / Ab 280 nm before crystallization. The specific activity of the product-dissolved filtrate filtered through diatomaceous earth was 7.1 u / Ab 280 nm. The recovery rate was 66% from the partially purified enzyme solution (see the ultrafiltration membrane treatment solution in Table 6) and 60% from the product dissolution filtrate (see the diatomaceous earth filtration treatment solution in Table 6). The results of each step in crystallization are shown in Table 6.

Figure 0004383131
Figure 0004383131

以上説明した実施例2〜実施例6において、結晶化されたTGaseの比活性が結晶化前に比べいずれも顕著に上昇している(表2〜表6参照)ことから、結晶化前のTGaseは均一にまで精製されない部分精製酵素であることが明らかである。     In Examples 2 to 6 described above, the specific activity of the crystallized TGase is significantly higher than that before crystallization (see Tables 2 to 6). It is clear that is a partially purified enzyme that is not purified to homogeneity.

本発明によるトランスグルタミナーゼの結晶の光学顕微鏡写真像である。It is an optical microscope photograph image of the crystal | crystallization of transglutaminase by this invention.

Claims (2)

ストレプトミセス・モバラエンシス(Streptomyces mobaraensis)又はストレプトミセス・ラベンデュラエ(Streptomyces lavendulae)の微生物を培養して培養濾液からなる粗酵素を得、該粗酵素の波長280nmにおける紫外線の吸光度当たりの酵素活性により測定した比活性が少なくとも2u(2u/Ab280nm)以上で均一になるまで精製されない部分精製酵素に、バッチ法により塩化ナトリウム及び/又は塩化カリウムを添加して塩析を行うことを特徴とするトランスグルタミナーゼの工業的結晶化方法。 A crude enzyme comprising a culture filtrate was obtained by culturing a microorganism of Streptomyces mobaraensis or Streptomyces lavendulae, and the ratio of the crude enzyme measured by the enzyme activity per absorbance of ultraviolet rays at a wavelength of 280 nm Industrial production of transglutaminase, characterized in that sodium chloride and / or potassium chloride is added to a partially purified enzyme that is not purified until the activity becomes uniform at least 2u (2u / Ab280nm) and uniform, and salted out by batch method. Crystallization method. 請求項1に記載のトランスグルタミナーゼの工業的結晶化方法を利用し、結晶化されたトランスグルタミナーゼに蛋白質部分分解物、トレハロース、システィン、グルタチオン、亜硫酸水素ナトリウム、クエン酸塩及びリン酸塩から選ばれた1種又は2種以上を含ませることを特徴とするトランスグルタミナーゼ製剤の製造方法。   The transglutaminase industrial crystallization method according to claim 1, wherein the crystallized transglutaminase is selected from a protein partial degradation product, trehalose, cysteine, glutathione, sodium bisulfite, citrate and phosphate. Or a method for producing a transglutaminase preparation, comprising one or more of them.
JP2003309771A 2003-09-02 2003-09-02 Method for industrial crystallization of transglutaminase and method for producing transglutaminase preparation Expired - Lifetime JP4383131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003309771A JP4383131B2 (en) 2003-09-02 2003-09-02 Method for industrial crystallization of transglutaminase and method for producing transglutaminase preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003309771A JP4383131B2 (en) 2003-09-02 2003-09-02 Method for industrial crystallization of transglutaminase and method for producing transglutaminase preparation

Publications (2)

Publication Number Publication Date
JP2005073628A JP2005073628A (en) 2005-03-24
JP4383131B2 true JP4383131B2 (en) 2009-12-16

Family

ID=34411829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003309771A Expired - Lifetime JP4383131B2 (en) 2003-09-02 2003-09-02 Method for industrial crystallization of transglutaminase and method for producing transglutaminase preparation

Country Status (1)

Country Link
JP (1) JP4383131B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5239159B2 (en) * 2006-12-28 2013-07-17 日油株式会社 Method for producing mushroom extract having proteolytic activity
WO2009101762A1 (en) 2008-02-13 2009-08-20 Amano Enzyme Inc. Stabilized transglutaminase and process for production thereof
WO2012077817A1 (en) * 2010-12-07 2012-06-14 味の素株式会社 Stabilized enzyme composition and method for producing same
CN112126613B (en) * 2020-09-29 2022-07-05 江南大学 Recombinant Streptomyces mobaraensis and application thereof in production of glutamine transaminase

Also Published As

Publication number Publication date
JP2005073628A (en) 2005-03-24

Similar Documents

Publication Publication Date Title
EP2096176B1 (en) Method of obtaining crystal of hydrochloride of basic amino acid
US7358072B2 (en) Fermentative production of mannitol
WO2009101762A1 (en) Stabilized transglutaminase and process for production thereof
AU708588B2 (en) Process for producing aspartase and process for producing L-aspartic acid
JP4383131B2 (en) Method for industrial crystallization of transglutaminase and method for producing transglutaminase preparation
JP4524076B2 (en) Stabilized transglutaminase
US6479657B1 (en) Crystalline 1-kestose and process for preparing the same
US6403350B1 (en) Method for rapidly obtaining enzyme crystals with desirable morphologies
KR20080085377A (en) Method for preparing l-ornithine salts
JP6692232B2 (en) 3HB manufacturing method
JPS6244188A (en) Production of optically active lactic acid
JP7014240B2 (en) (S) Method for producing -3-halogeno-2-methyl-1,2-propanediol
US6338957B2 (en) Method for producing halo-L-tryptophan
JP2003088392A (en) Method for producing d-lactic acid
JP2731100B2 (en) Dextran sucrase-producing novel microorganism and method for producing dextran sucrase using the novel microorganism
JP2931623B2 (en) Method for producing L-phenylalanine
SU1339129A1 (en) Method of producing aubasidan
JPS6228678B2 (en)
JPH07274991A (en) Production of dextran
JPH0923873A (en) Processing of refined 'sake'
JPH04262791A (en) Production of moranoline derivative
JPS588837B2 (en) Humarsankara L- Asparaginsano Tsukuruhouhou
JPH09313194A (en) Production of l-aspartic acid
JPH0523741B2 (en)
JPS62198396A (en) Production of l-threonine by fermentation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090702

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4383131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term