JP4524060B2 - Antistatic polybenzazole composition for industrial materials - Google Patents

Antistatic polybenzazole composition for industrial materials Download PDF

Info

Publication number
JP4524060B2
JP4524060B2 JP2002032738A JP2002032738A JP4524060B2 JP 4524060 B2 JP4524060 B2 JP 4524060B2 JP 2002032738 A JP2002032738 A JP 2002032738A JP 2002032738 A JP2002032738 A JP 2002032738A JP 4524060 B2 JP4524060 B2 JP 4524060B2
Authority
JP
Japan
Prior art keywords
polybenzazole
antistatic
dope
polymer
pat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002032738A
Other languages
Japanese (ja)
Other versions
JP2003231810A (en
Inventor
享 北河
宗敦 中村
幸浩 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2002032738A priority Critical patent/JP4524060B2/en
Publication of JP2003231810A publication Critical patent/JP2003231810A/en
Application granted granted Critical
Publication of JP4524060B2 publication Critical patent/JP4524060B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は産業用資材として好適な制電性を有するポリベンザゾール組成物に関する。
【0002】
【従来の技術】
ポリベンザゾール組成物は現在市販されているスーパー繊維の代表であるポリパラフェニレンテレフタルアミド繊維の2倍以上の強度と弾性率をもち、次世代スーパー繊維として期待されている。ポリベンザゾール重合体のポリ燐酸溶液から繊維を製造することは公知であり、例えば紡糸条件については米国特許5296185号、米国特許5385702号、水洗乾燥方法についてはW094/04726号、さらに熱処理方法については米国特許5296185号にそれぞれ技術開示がなされている。
【0003】
【発明が解決しようとする課題】
しかし、該組成物は電気伝導体でないため、例えば静電気が生じやすい環境下で使用した場合静電気が蓄積し、黒煙を発生するなどの問題があった。このため該繊維を工業的に広く使用する上で障害となっていた。
【0004】
そこで、本発明者らは、軽くて強く、さらに細く加工できる制電ポリベンザゾール組成物を容易に製造する技術を開発すべく鋭意研究した。
【0005】
繊維の究極物性を実現する手段としては、カーボンナノチューブとポリマーからなるコンポジットを利用する。しなやかさや加工性を持たせるためには、カーボンナノチューブと合わせるポリマー成分としては、直線状であることが必須条件である。
【0006】
S.G.WierschkeらがMaterial Research Society Symposium Proceedings Vol.134, p.313 (1989年)に示したように、直線上のポリマーで最も高い理論弾性率を持つのはシス型のポリパラフェニレンベンゾビスオキサゾールである。この結果は田代らによっても確認され(Macromolecules. vol.24, p.3706(1991年))、ポリベンザゾールのなかでも、シス型のポリパラフェニレンベンゾビスオキサゾールが475GPaの結晶弾性率を持ち(P. GalenらMaterial Research Society Symposium Proceedings Vol. 134,p.329(1989年))、究極の一次構造を持つと考えられた。従って究極の弾性率を得るためには、ポリマーとしてポリパラフェニレンベンゾビスオキサゾールを素材とするのが理論的な帰結である。
【0007】
該ポリマーの繊維化は米国特許5296185号、米国特許5385702号に記載された方法で行われ、熱処理方法は米国特許5296185号に提案がなされている方法で行われるが、かかる方法で得られるヤーンの摩擦帯電圧は通常の高分子と同程度であった。従ってこれらの方法の改良について研究の必要性を痛感し、次に示す方法により所期の物性を工業的に容易に達成できることを見出した。
【0008】
即ち本発明は、カーボンナノチューブを含有するポリベンザゾール組成物からなることを特徴とする産業資材用制電ポリベンザゾール組成物。カーボンナノチューブの含有量がポリベンザゾールに対して0.1〜5重量%であることを特徴とする上記記載の制電ポリベンザゾール組成物。該カーボンナノチューブが外径が100nm以下、長さが0.005μm以上、10μm以下であることを特徴とする上記記載の制電ポリベンザゾール組成物である。
【0009】
【課題を解決するための手段】
上記の構造的特徴を発現させるため、本発明のポイントは以下に示す比較的簡単な手法により実現できる。
即ち、カーボンナノチューブを均一に分散配合せしめたポリパラフェニレンベンゾビスオキサゾールからなるポリマーのドープを紡糸口金又はダイから非凝固性の気体中に押し出して得られた紡出糸を抽出(凝固)浴中に導入して糸条又はフィルムが含有する燐酸を抽出した後、乾燥、巻き取りを行う。弾性率を上げる必要があるときは、更に500℃以上の温度で、張力下に熱処理することを特徴とする。
【0010】
以下、更に本発明を詳述する。本発明におけるポリベンザゾール繊維とは、PBOホモポリマー、及び実質的に85%以上のPBO成分を含みポリベンザゾール(PBZ)類とのランダム、シーケンシャルあるいはブロック共重合ポリマーをいう。ここでポリベンザゾール(PBZ)ポリマーは、例えばWolf等の「Liquid Crystalline Polymer Compositions, Process and Products」米国特許第4703103号(1987年10月27日)、「Liquid Crystalline Polymer Compositions, Process and Products」米国特許第4533692号(1985年8月6日)、「Liquid Crystalline Poly(2,6-Benzothiazole) Compositions, Process and Products」米国特許第4533724号(1985年8月6日)、「Liquid Crystalline Polymer Compositions, Process and Products」米国特許第4533693号(1985年8月6日)、Eversの「Thermooxidative-ly Stable Articulated p-Benzobisoxazole and p-Benzobisoxazole Polymers」米国特許第4539567号(1982年11月16日)、Tsaiらの「Method for making Heterocyclic Block Copolymer」米国特許第4578432号(1986年3月25日)、等に記載されている。
【0011】
カーボンナノチューブとは実質的に炭素からなる管状の化合物で、層は単層でも多層でも層の数を問わない。製造方法としては、アーク放電法、気相成長法などが知られているが(特開2001-80913)何れの方法で得たカーボンナノチューブを用いても良い。外径は100nm以下。長さは0.005μm以上10μm以下、好ましくは1μm以上5μm以下である。外径が50nmを越えると屈曲性が悪いため、完成糸の屈曲疲労に対する耐久性の悪化を招き好ましくない。長さが10μmを越えるとナノチューブ自体が機械的な延伸方向に配向しないため好ましくない。長さが0.005μm未満の場合、制電性能が出ず好ましくない。
【0012】
PBZポリマーに含まれる構造単位としては、好ましくはライオトロピック液晶ポリマーから選択される。モノマー単位は構造式(a)〜(h)に記載されているモノマー単位から成り、更に好ましくは、本質的に構造式(a)〜(d)から選択されたモノマー単位から成る。
【0013】
【化1】

Figure 0004524060
【0014】
【化2】
Figure 0004524060
【0015】
実質的にPBOから成るポリマーのドープを形成するための好適溶媒としては、クレゾールやそのポリマーを溶解し得る非酸化性の酸が含まれる。好適な酸溶媒の例としては、ポリ燐酸、メタンスルフォン酸及び高濃度の硫酸或いはそれ等の混合物があげられる。更に適する溶媒は、ポリ燐酸及びメタンスルフォン酸である。また最も適する溶媒は、ポリ燐酸である。
【0016】
溶媒中のポリマー濃度は好ましくは少なくとも約7重量%であり、更に好ましくは少なくとも10重量%、最も好ましくは14重量%である。最大濃度は、例えばポリマーの溶解性やドープ粘度といった実際上の取り扱い性により限定される。それらの限界要因のために、ポリマー濃度は20重量%を越えることはない。
【0017】
好適なポリマーやコポリマーあるいはドープは公知の手法により合成される。例えばWolfe等の米国特許第4533693号(1985年8月6日)、Sybert等の米国特許第4772678号(1988年9月20日)、Harrisの米国特許第4847350号(1989年7月11日)に記載される方法で合成される。実質的にPBOから成るポリマーはGregory等の米国特許第5089591号(1992年2月18日)によると、脱水性の酸溶媒中での比較的高温、高剪断条件下において高い反応速度での高分子量化が可能である。
【0018】
添加するカーボンナノチューブはドープを合成するときにドープ原料と同時に配合しておく。良好な制電性を発現せしめるためには、カーボンナノチューブがドープ中に均一に混合分散している必要がある。ドープを重合する前に原料を投入した後80℃以下の温度にて一旦原料同士を攪拌混合した後定法に従ってドープを調製すると良い。添加量はモノマー仕込量に対して重量分率にして0.1%以上5%未満、好ましくは1%以上3%未満である。この量より少ないと完成糸中に含有されるカーボンナノチューブが少なくなり制電性の発現が期待できない。反対に多すぎるとカーボンナノチューブの繊維中での分散製が悪くなり、繊維の色が黒みがかるため好ましくない。
【0019】
この様にして重合されるドープを繊維状に成型する方法について述べる。ドープは紡糸部に供給され、紡糸口金から通常100℃以上の温度で吐出される。口金細孔の配列は通常円周状、格子状に複数個配列されるが、その他の配列であっても良い。口金細孔数は特に限定されないが、紡糸口金面における紡糸細孔の配列は、吐出糸条間の融着などが発生しないような孔密度を保つ必要がある。
【0020】
紡出糸条は十分な延伸比(SDR)を得るため、米国特許第5296185号に記載されたように十分な長さのドローゾーン長が必要で、かつ比較的高温度(ドープの固化温度以上で紡糸温度以下)の整流された冷却風で均一に冷却されることが望ましい。ドローゾーンの長さ(L)は非凝固性の気体中で固化が完了する長さが必要であり大雑把には単孔吐出量(Q)によって決定される。良好な力学物性を得るにはドローゾーンの取り出し応力がポリマー換算で(ポリマーのみに応力がかかるとして)2g/d以上が必要である。
【0021】
ドローゾーンで延伸された糸条は次に抽出(凝固)浴に導かれる。紡糸張力が高いため、抽出浴の乱れなどに対する配慮は必要でなく如何なる形式の抽出浴でも良い。例えばファンネル型、水槽型、アスピレータ型あるいは滝型などが使用出来る。抽出液は燐酸水溶液や水が望ましい。最終的に抽出浴において糸条が含有する燐酸を99.0%以上、好ましくは99.5%以上抽出する。本発明における抽出媒体として用いられる液体に特に限定は無いが好ましくはポリベンゾオキサゾールに対して実質的に相溶性を有しない水、メタノール、エタノール、アセトン等である。また抽出(凝固)浴を多段に分離し燐酸水溶液の濃度を順次薄くし最終的に水で水洗しても良い。さらに該繊維束を水酸化ナトリウム水溶液などで中和し、水洗することが望ましい。
【0022】
フィルムに成型する方法としては、一般的な製膜法を用いれば良い。例えばドープをプレス成形する方法。また、Tダイからチルロール上にキャストしたのち、延伸、凝固、水洗、乾燥して巻き上げる加工法などが上げられる。
【0023】
制電性能を発現せしめるためにはカーボンナノチューブが均一に分散している必要がある。通常この構造はドープ中にカーボンナノチューブを均一に分散できたとき、通常の成形工程を通すことで自発的に発現することを鋭意検討の結果見出した。
【0024】
制電性の測定は、JIS L 1094 摩擦帯電圧測定法に準拠して実施した。
【0025】
以下、更に実施例を示すが本発明はこれらの実施例に限定されるものではない。
【0026】
【実施例】
(比較例1)
米国特許第4533693号に示される方法によって得られた、30℃のメタンスルホン酸溶液で測定した固有粘度が24.4dL/gのポリパラフェニレンベンゾビスオキサゾール14.0(重量)%と五酸化リン含有率83.17%のポリ燐酸から成る紡糸ドープを紡糸に用いた。ドープは金属網状の濾材を通過させ、次いで2軸から成る混練り装置で混練りと脱泡を行った後、昇圧させ、重合体溶液温度を170℃に保ち、孔数33を有する紡糸口金から170℃で紡出し、温度60℃の冷却風を用いて吐出糸条を冷却した後、ゴゼットロールに巻き付け紡糸条速度を与え、温度を20±2℃に保った20%の燐酸水溶液から成る抽出(凝固)浴中に導入した。引き続いて第2の抽出浴中でイオン交換水で糸条を洗浄した後、0.1規定の水酸化ナトリウム溶液中に浸せきし。中和処理を施した。更に水洗浴で水洗した後、巻き取り、80℃の乾燥オーブン中で乾燥した。結果を表1に示す。
【0027】
(実施例1、2、比較例2)
カーボンナノチューブをポリベンザゾール繊維の原料と投入添加し、予め均一混合せしめた後ドープを重合する事以外は比較例1と同じ方法で繊維を作成し繊維状の電気伝導体を得た。混合の均一性については目視にて判定した。即ち、カーボンナノチューブの黒色が均一になるまで攪拌を実施した。結果を表1に示す。
【0028】
(実施例3)
カーボンナノチューブをポリベンザゾール繊維の原料と投入添加し、予め均一混合せしめた後ドープを重合する事以外は比較例1と同じ方法でドープを調整した。次にプレス機をを用いてプレスすることによりドープをフィルム上に成形した。さらに20℃の水中で凝固、水洗した後80℃のオーブン中で乾燥させた。長辺10cm短辺8cm厚さ500μmのフィルムを得た。さらに得られたフィルムをスリット工程を通して幅30cmに調整してフィルム状の電気伝導体を得た。結果を表1に示す。
【0029】
【表1】
Figure 0004524060
【0030】
上記表1より本発明の組成物は従来の繊維に比べて制電性の向上が見られ、物性上、極めて優れていることが理解される。
従って本発明に係る組成物は、従来にない優れた制電性をもつポリベンザゾール組成物を工業的に容易に製造することができるため、産業用資材として実用性を高め、利用分野を拡大する効果が得られる。
具体的には、航空機材料用や宇宙開発用のコンポジット材料としての利用が期待できる。更に、ケーブル、電線や光ファイバー等のテンションメンバー、ロープ、等の資材はもとより、回路基板用の電気伝導体、コンピューター、航空機、ロケット用の回路用細径電線、ロケットインシュレーション、ロケットケイシング、圧力容器、宇宙服の紐、惑星探査気球、等の航空、宇宙資材、耐弾材等の耐衝撃用部材、手袋等の耐切創用部材、消防服、耐熱フェルト、プラント用ガスケット、耐熱織物、各種シーリング、耐熱クッション、フィルター、等の耐熱耐炎部材、ベルト、タイヤ、靴底、ロープ、ホース、等のゴム補強剤、釣り糸、釣竿、テニスラケット、卓球ラケット、バトミントンラケット、ゴルフシャフト、クラブヘッド、ガット、弦、セイルクロス、競技(走)用シューズ、スパイクシューズ、競技(走)用自転車及びその車輪、スポーク、ブレーキワイヤー、変速機ワイヤー、競技(走)用車椅子及びその車輪、スキー、ストック、ヘルメット、等のスポーツ関係資材、アバンスベルト、クラッチファーシング等の耐摩擦材、各種建築材料用補強剤及びその他ライダースーツ、スピーカーコーン、軽量乳母車、軽量車椅子、軽量介護用ベッド、救命ボート、ライフジャケット、等広範にわたる用途に使用出来る。
【0031】
【発明の効果】
本発明によると、従来にない優れた制電性をもつポリベンザゾール組成物を工業的に容易に製造することができるため、産業用資材として実用性を高め、利用分野を拡大する効果が絶大である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polybenzazole composition having antistatic properties suitable as an industrial material.
[0002]
[Prior art]
The polybenzazole composition has more than twice the strength and elastic modulus of polyparaphenylene terephthalamide fiber, which is a representative super fiber currently on the market, and is expected as a next generation super fiber. It is known to produce fibers from a polyphosphoric acid solution of a polybenzazole polymer, for example, US Pat. No. 5,296,185 for spinning conditions, US Pat. No. 5,385,702, W094 for water washing and drying, and Technical disclosures are made in US Pat. No. 5,296,185, respectively.
[0003]
[Problems to be solved by the invention]
However, since the composition is not an electrical conductor, for example, when used in an environment where static electricity is likely to occur, static electricity accumulates and black smoke is generated. For this reason, it has been an obstacle to widely using the fibers industrially.
[0004]
Accordingly, the present inventors have intensively studied to develop a technique for easily producing an antistatic polybenzazole composition that is light, strong, and can be processed further finely.
[0005]
As a means for realizing the ultimate physical properties of the fiber, a composite made of carbon nanotube and polymer is used. In order to provide flexibility and workability, it is an essential condition that the polymer component combined with the carbon nanotubes is linear.
[0006]
As shown by SGWierschke et al. In Material Research Society Symposium Proceedings Vol.134, p.313 (1989), cis-type polyparaphenylenebenzobisoxazole has the highest theoretical elastic modulus among linear polymers. . This result was confirmed by Tashiro et al. (Macromolecules.vol.24, p.3706 (1991)), and among polybenzazoles, cis-type polyparaphenylenebenzobisoxazole has a crystal elastic modulus of 475 GPa ( P. Galen et al., Material Research Society Symposium Proceedings Vol. 134, p.329 (1989)), thought to have the ultimate primary structure. Therefore, in order to obtain the ultimate elastic modulus, the theoretical consequence is to use polyparaphenylene benzobisoxazole as a polymer.
[0007]
The fiberization of the polymer is carried out by the method described in US Pat. No. 5,296,185 and US Pat. No. 5,357,702, and the heat treatment method is carried out by the method proposed in US Pat. No. 5,296,185. The frictional voltage was about the same as that of ordinary polymers. Therefore, the need for research on the improvement of these methods was felt, and it was found that the desired physical properties can be easily achieved industrially by the following methods.
[0008]
That is, the present invention is an antistatic polybenzazole composition for industrial materials, comprising a polybenzazole composition containing carbon nanotubes. The antistatic polybenzazole composition as described above, wherein the content of the carbon nanotube is 0.1 to 5% by weight based on the polybenzazole. The antistatic polybenzazole composition as described above, wherein the carbon nanotube has an outer diameter of 100 nm or less and a length of 0.005 μm or more and 10 μm or less.
[0009]
[Means for Solving the Problems]
In order to express the structural features described above, the points of the present invention can be realized by a relatively simple method described below.
That is, a spun yarn obtained by extruding a polymer dope made of polyparaphenylene benzobisoxazole, in which carbon nanotubes are uniformly dispersed and blended, from a spinneret or die into a non-solidifying gas is extracted (coagulated) in a bath. The phosphoric acid contained in the yarn or film is extracted and then dried and wound. When it is necessary to increase the elastic modulus, the heat treatment is further performed under tension at a temperature of 500 ° C. or higher.
[0010]
The present invention will be further described in detail below. The polybenzazole fiber in the present invention refers to a PBO homopolymer, and a random, sequential or block copolymer with polybenzazole (PBZ) containing substantially 85% or more of a PBO component. Here, polybenzazole (PBZ) polymer is, for example, Wolf et al., “Liquid Crystalline Polymer Compositions, Process and Products” US Pat. No. 4,703,103 (October 27, 1987), “Liquid Crystalline Polymer Compositions, Process and Products” US Patent No. 4536992 (August 6, 1985), “Liquid Crystalline Poly (2,6-Benzothiazole) Compositions, Process and Products” US Pat. No. 4,533,724 (August 6, 1985), “Liquid Crystalline Polymer Compositions, Process and Products, US Pat. No. 4,453,393 (August 6, 1985), Evers “Thermooxidative-ly Stable Articulated p-Benzobisoxazole and p-Benzobisoxazole Polymers”, US Pat. No. 4,539,567 (November 16, 1982), Tsai “Method for making Heterocyclic Block Copolymer”, US Pat. No. 4578432 (March 25, 1986), and the like.
[0011]
A carbon nanotube is a tubular compound consisting essentially of carbon, and the number of layers may be either single or multiple. As a production method, an arc discharge method, a vapor phase growth method, and the like are known (Japanese Patent Laid-Open No. 2001-80913). Carbon nanotubes obtained by any method may be used. The outer diameter is 100 nm or less. The length is 0.005 μm or more and 10 μm or less, preferably 1 μm or more and 5 μm or less. If the outer diameter exceeds 50 nm, the flexibility is poor, which is not preferable because the durability against bending fatigue of the finished yarn is deteriorated. If the length exceeds 10 μm, the nanotubes themselves are not oriented in the mechanical stretching direction, which is not preferable. When the length is less than 0.005 μm, the antistatic performance is not preferable.
[0012]
The structural unit contained in the PBZ polymer is preferably selected from lyotropic liquid crystal polymers. The monomer unit consists of the monomer units described in structural formulas (a) to (h), and more preferably consists essentially of monomer units selected from structural formulas (a) to (d).
[0013]
[Chemical 1]
Figure 0004524060
[0014]
[Chemical 2]
Figure 0004524060
[0015]
Suitable solvents for forming a polymer dope consisting essentially of PBO include cresol and a non-oxidizing acid capable of dissolving the polymer. Examples of suitable acid solvents include polyphosphoric acid, methane sulfonic acid and high concentrations of sulfuric acid or mixtures thereof. Further suitable solvents are polyphosphoric acid and methanesulfonic acid. The most suitable solvent is polyphosphoric acid.
[0016]
The polymer concentration in the solvent is preferably at least about 7% by weight, more preferably at least 10% by weight, and most preferably 14% by weight. The maximum concentration is limited by practical handling properties such as polymer solubility and dope viscosity. Due to their limiting factors, the polymer concentration does not exceed 20% by weight.
[0017]
Suitable polymers, copolymers or dopes are synthesized by known techniques. For example, Wolfe et al., U.S. Pat. No. 4,453,393 (August 6, 1985), Sybert et al., U.S. Pat. No. 4,772,678 (September 20, 1988), Harris, U.S. Pat. No. 4,847,350 (July 11, 1989). It is synthesized by the method described in 1. A polymer consisting essentially of PBO, according to Gregory et al., US Pat. No. 5,089,591 (February 18, 1992), has a high reaction rate at high reaction rates under relatively high temperature and high shear conditions in a dehydrating acid solvent. Molecular weight is possible.
[0018]
The carbon nanotube to be added is mixed with the dope raw material when the dope is synthesized. In order to achieve good antistatic properties, the carbon nanotubes need to be uniformly mixed and dispersed in the dope. It is preferable to prepare the dope according to a conventional method after the raw materials are added before the dope is polymerized, and then the raw materials are once stirred and mixed at a temperature of 80 ° C. or lower. The addition amount is 0.1% or more and less than 5%, preferably 1% or more and less than 3%, by weight fraction with respect to the monomer charge. When the amount is less than this amount, carbon nanotubes contained in the finished yarn are reduced, and antistatic properties cannot be expected. On the other hand, if the amount is too large, the dispersion of carbon nanotubes in the fiber becomes poor, and the color of the fiber becomes dark.
[0019]
A method for molding the dope thus polymerized into a fiber will be described. The dope is supplied to the spinning section and discharged from the spinneret at a temperature of usually 100 ° C. or higher. A plurality of base pores are usually arranged in a circumferential shape or a lattice shape, but other arrangements may be used. The number of nozzle holes is not particularly limited, but the arrangement of the spinning holes on the spinneret surface needs to maintain a hole density that does not cause fusion between discharged yarns.
[0020]
In order to obtain a sufficient draw ratio (SDR), the spun yarn needs a sufficiently long draw zone length as described in US Pat. No. 5,296,185, and has a relatively high temperature (above the solidification temperature of the dope). It is desirable that the air is uniformly cooled with a rectified cooling air having a temperature equal to or lower than the spinning temperature. The length (L) of the draw zone needs to be a length that completes solidification in a non-solidifying gas, and is roughly determined by the single-hole discharge amount (Q). In order to obtain good mechanical properties, the take-out stress of the draw zone needs to be 2 g / d or more in terms of polymer (assuming that only the polymer is stressed).
[0021]
The yarn drawn in the draw zone is then led to an extraction (coagulation) bath. Since the spinning tension is high, it is not necessary to consider the disturbance of the extraction bath, and any type of extraction bath may be used. For example, funnel type, water tank type, aspirator type or waterfall type can be used. The extract is preferably an aqueous phosphoric acid solution or water. Finally, 99.0% or more, preferably 99.5% or more of the phosphoric acid contained in the yarn is extracted in the extraction bath. The liquid used as the extraction medium in the present invention is not particularly limited, but is preferably water, methanol, ethanol, acetone or the like that is substantially incompatible with polybenzoxazole. Further, the extraction (coagulation) bath may be separated into multiple stages, the concentration of the phosphoric acid aqueous solution is gradually reduced, and finally washed with water. Further, the fiber bundle is desirably neutralized with an aqueous sodium hydroxide solution and washed with water.
[0022]
As a method for forming the film, a general film forming method may be used. For example, a method of press-molding a dope. In addition, after casting from a T die onto a chill roll, a drawing method such as stretching, coagulation, washing with water, drying and winding up can be raised.
[0023]
In order to develop the antistatic performance, the carbon nanotubes need to be uniformly dispersed. As a result of intensive studies, it has been found that this structure usually appears spontaneously through a normal molding process when the carbon nanotubes can be uniformly dispersed in the dope.
[0024]
The antistatic property was measured in accordance with the JIS L 1094 friction band voltage measurement method.
[0025]
Hereinafter, although an example is shown, the present invention is not limited to these examples.
[0026]
【Example】
(Comparative Example 1)
Obtained by the method shown in US Pat. No. 4,453,393, 14.0% by weight of polyparaphenylenebenzobisoxazole having an intrinsic viscosity of 24.4 dL / g measured with a methanesulfonic acid solution at 30 ° C. and a phosphorus pentoxide content of 83.17 A spinning dope consisting of% polyphosphoric acid was used for spinning. The dope is passed through a metal mesh-like filter medium, then kneaded and defoamed with a biaxial kneading apparatus, and then the pressure is increased to maintain the polymer solution temperature at 170 ° C., and from a spinneret having a pore number of 33 After spinning at 170 ° C. and cooling the discharged yarn using cooling air at a temperature of 60 ° C., an extraction consisting of a 20% phosphoric acid aqueous solution with a spinning speed wound around a gosset roll and kept at a temperature of 20 ± 2 ° C. Introduced into the coagulation bath. Subsequently, the yarn was washed with ion-exchanged water in the second extraction bath, and then immersed in 0.1N sodium hydroxide solution. Neutralization treatment was performed. Furthermore, after washing with water in a water bath, it was wound up and dried in a drying oven at 80 ° C. The results are shown in Table 1.
[0027]
(Examples 1 and 2 and Comparative Example 2)
Fibers were prepared in the same manner as in Comparative Example 1 except that carbon nanotubes were added to and added to the raw material of polybenzazole fiber, mixed in advance, and then the dope was polymerized to obtain a fibrous electrical conductor. The uniformity of mixing was determined visually. That is, stirring was performed until the black color of the carbon nanotubes became uniform. The results are shown in Table 1.
[0028]
(Example 3)
The dope was adjusted in the same manner as in Comparative Example 1 except that carbon nanotubes were added to and added to the raw material of polybenzazole fiber, and the dope was polymerized after uniform mixing in advance. Next, dope was shape | molded on the film by pressing using a press machine. Further, it was solidified in 20 ° C. water, washed with water, and then dried in an oven at 80 ° C. A film having a long side of 10 cm, a short side of 8 cm and a thickness of 500 μm was obtained. Furthermore, the obtained film was adjusted to a width of 30 cm through a slit process to obtain a film-like electric conductor. The results are shown in Table 1.
[0029]
[Table 1]
Figure 0004524060
[0030]
From Table 1 above, it is understood that the antistatic property of the composition of the present invention is improved as compared with the conventional fiber, and the physical properties are extremely excellent.
Therefore, the composition according to the present invention can easily produce a polybenzazole composition having an excellent antistatic property that has not been heretofore industrially. Effect is obtained.
Specifically, it can be expected to be used as a composite material for aircraft materials and space development. In addition to materials such as cables, tension members such as electric wires and optical fibers, ropes, etc., electrical conductors for circuit boards, thin wires for circuits for computers, aircraft and rockets, rocket insulation, rocket casing, pressure Containers, space suit strings, planetary exploration balloons, etc. aviation, space materials, impact resistant materials such as bulletproof materials, cut resistant materials such as gloves, fire clothes, heat felt, plant gaskets, heat resistant fabrics, various Heat-resistant flame-resistant members such as sealing, heat-resistant cushions, filters, belts, tires, shoe soles, ropes, hoses, rubber reinforcements, fishing lines, fishing rods, tennis rackets, table tennis rackets, badminton rackets, golf shafts, club heads, guts , Strings, sail crosses, competition (running) shoes, spiked shoes, competition (running) bicycles and Wheels, spokes, brake wires, transmission wires, sports wheelchairs and their wheels, sports-related materials such as skis, stocks, helmets, friction belts, friction materials such as clutch facings, and various building materials It can be used for a wide range of applications such as reinforcing agents and other rider suits, speaker cones, lightweight baby carriages, lightweight wheelchairs, lightweight nursing beds, lifeboats, life jackets.
[0031]
【The invention's effect】
According to the present invention, since a polybenzazole composition having an excellent antistatic property that has never been obtained can be easily produced industrially, it is highly effective as an industrial material and has a great effect of expanding the field of use. It is.

Claims (1)

ポリベンザゾールに対して0.7重量%以上、4.2重量%以下のカーボンナノチューブを含有するポリベンザゾール組成物からなることを特徴とする産業資材用制電ポリベンザゾール組成物An antistatic polybenzazole composition for industrial materials, comprising a polybenzazole composition containing carbon nanotubes of 0.7 wt% or more and 4.2 wt% or less with respect to polybenzazole.
JP2002032738A 2002-02-08 2002-02-08 Antistatic polybenzazole composition for industrial materials Expired - Fee Related JP4524060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002032738A JP4524060B2 (en) 2002-02-08 2002-02-08 Antistatic polybenzazole composition for industrial materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002032738A JP4524060B2 (en) 2002-02-08 2002-02-08 Antistatic polybenzazole composition for industrial materials

Publications (2)

Publication Number Publication Date
JP2003231810A JP2003231810A (en) 2003-08-19
JP4524060B2 true JP4524060B2 (en) 2010-08-11

Family

ID=27775768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002032738A Expired - Fee Related JP4524060B2 (en) 2002-02-08 2002-02-08 Antistatic polybenzazole composition for industrial materials

Country Status (1)

Country Link
JP (1) JP4524060B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6900264B2 (en) * 2001-08-29 2005-05-31 Georgia Tech Research Corporation Compositions comprising rigid-rod polymers and carbon nanotubes and process for making the same
JP3852681B2 (en) * 2001-10-12 2006-12-06 東洋紡績株式会社 Polybenzazole fiber

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4663153B2 (en) * 2001-05-22 2011-03-30 ポリマテック株式会社 Thermally conductive composite composition
JP4714371B2 (en) * 2001-06-06 2011-06-29 ポリマテック株式会社 Thermally conductive molded body and method for producing the same
JP2003156902A (en) * 2001-08-03 2003-05-30 Gunze Ltd Image forming apparatus belt, sleeve or tube
US6900264B2 (en) * 2001-08-29 2005-05-31 Georgia Tech Research Corporation Compositions comprising rigid-rod polymers and carbon nanotubes and process for making the same
JP2003234013A (en) * 2002-02-08 2003-08-22 Toyobo Co Ltd Electrical conductor

Also Published As

Publication number Publication date
JP2003231810A (en) 2003-08-19

Similar Documents

Publication Publication Date Title
JP3852681B2 (en) Polybenzazole fiber
EP0885987B1 (en) Polybenzazole fiber having high tensile modulus and process of manufacture thereof
WO1994012702A1 (en) Method for rapid spinning of a polybenzazole fiber
CN110359114B (en) Polyacrylonitrile fiber, polyacrylonitrile-based carbon fiber and preparation method thereof
JP4524060B2 (en) Antistatic polybenzazole composition for industrial materials
JP2003234013A (en) Electrical conductor
CN115704116B (en) Method for manufacturing aromatic polysulfonamide fiber
JP4009885B2 (en) High modulus polybenzazole fiber and process for producing the same
JP2003221778A (en) Polybenzazol fiber and method for producing the same
JPS6197415A (en) Polyacrylonitrile fiber having high strength and modulus
JP3801734B2 (en) High modulus polybenzazole fiber and process for producing the same
JP3918989B2 (en) Polybenzazole fiber and method for producing the same
KR101684874B1 (en) Polyketone Fiber with Improved Wearing Property and Method for Preparing the Same
JP3539577B2 (en) Fiber reinforced composite material
JP3541966B2 (en) Method for producing nonwoven fabric of polybenzazole fiber
JPH08504007A (en) Low denier polybenzazole fiber and method for producing the same
JP3508876B2 (en) High modulus polybenzazole fiber
JPH11335926A (en) High-modulus polybenzazole fiber and its production
JP3063064B2 (en) High-speed spinning method of polybenzazole fiber
KR102531748B1 (en) Polyimide-based carbon fibers and graphite fibers and manufacturing methods thereof
JP2006348441A (en) Polybenzazole fiber and method for producing the same
KR100368064B1 (en) Polybenzazole monofilament and its manufacturing method
KR20000061085A (en) High elastic modulus polybenzazole filer and method for production thereof
KR20220135879A (en) Composite fiber
KR20220135880A (en) Method for producing composite fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100312

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

R151 Written notification of patent or utility model registration

Ref document number: 4524060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140604

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140604

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees