JP4523458B2 - Hydrocracking method of heavy petroleum oil - Google Patents

Hydrocracking method of heavy petroleum oil Download PDF

Info

Publication number
JP4523458B2
JP4523458B2 JP2005059263A JP2005059263A JP4523458B2 JP 4523458 B2 JP4523458 B2 JP 4523458B2 JP 2005059263 A JP2005059263 A JP 2005059263A JP 2005059263 A JP2005059263 A JP 2005059263A JP 4523458 B2 JP4523458 B2 JP 4523458B2
Authority
JP
Japan
Prior art keywords
pressure
solid
hydrocracking
liquid separation
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005059263A
Other languages
Japanese (ja)
Other versions
JP2006241317A (en
Inventor
利明 奥井
信行 小松
憲幸 奥山
正明 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005059263A priority Critical patent/JP4523458B2/en
Priority to CA2536557A priority patent/CA2536557C/en
Priority to BRPI0601018A priority patent/BRPI0601018B1/en
Publication of JP2006241317A publication Critical patent/JP2006241317A/en
Application granted granted Critical
Publication of JP4523458B2 publication Critical patent/JP4523458B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、石油系重質油の水素化分解方法に関する技術分野に属するものであり、詳細には、重金属成分を含有する石油系重質油の水素化分解方法に関し、特には、常圧蒸留残渣油、減圧蒸留残渣油のような重金属成分を含有する石油系重質油を触媒の存在下で水添し、高度に軽質化された製品を得る方法に関する技術分野に属するものである。   TECHNICAL FIELD The present invention belongs to a technical field related to a hydrocracking method for petroleum heavy oil, and particularly relates to a hydrocracking method for petroleum heavy oil containing a heavy metal component, and in particular, atmospheric distillation. The present invention belongs to a technical field relating to a method of hydrogenating petroleum heavy oil containing heavy metal components such as residual oil and vacuum distillation residual oil in the presence of a catalyst to obtain a highly lightened product.

原油の重質化と需要の軽質化が同時に進行するという需要構造の急激な変化を背景に、不足する軽質製品を余剰の重質油から製造する重質油分解技術が注目されており、有限な石油埋蔵量の減少が不可避の情勢にあってその重要度がますます増大してきている。   Heavy oil cracking technology that produces a shortage of light products from surplus heavy oil is attracting attention against the background of the rapid change in the demand structure where heavy crude oil and lighter demand are progressing simultaneously. The importance of oil reserves is increasing due to the unavoidable decline in oil reserves.

これまでに、重質油の熱分解、水素化分解について多くの方法が提案されているが、これらの方法は、減圧残渣油等のような重質油の軽質化に対しては、なんらかの問題点を有している。   So far, many methods have been proposed for thermal cracking and hydrocracking of heavy oils, but these methods have some problems for lightening heavy oils such as vacuum residue oils. Has a point.

即ち、このようなタイプの重質油中には、かなり大量の窒素化合物及び硫黄化合物を含む傾向にあり、さらに、重質油分解を触媒存在下で行わせる場合、極めて有害となりがちな多量の有機金属性不純物を含有する。このような有機金属性不純物(金属不純物)としては、ニッケル(Ni)やバナジウム(V)を含むものが最も多いが、他の金属を含むものも多い。これらの金属不純物は、重質油中のアスファルテン等の比較的高分子量の有機化合物と化学的に結合しており、これらが存在すると、窒素、硫黄及び酸素含有化合物の分解除去に対する触媒活性がかなり阻害される。   That is, these types of heavy oils tend to contain a fairly large amount of nitrogen and sulfur compounds, and in addition, when heavy oil decomposition is carried out in the presence of a catalyst, a large amount that tends to be extremely harmful. Contains organometallic impurities. As such organometallic impurities (metal impurities), most of them contain nickel (Ni) and vanadium (V), but many contain other metals. These metal impurities are chemically bonded to relatively high molecular weight organic compounds such as asphaltenes in heavy oil, and their presence has a considerable catalytic activity for the decomposition and removal of nitrogen, sulfur and oxygen containing compounds. Be inhibited.

触媒を用いずに,減圧残渣油等を処理する方法としては、熱分解方法である、いわゆるコーカー法が知られているが、この方法は、多量に副生するコークスの処理の問題に加えて、過分解によるガス生成量の増加のため、得られる留出油の収率低下が免れない上、芳香族分、オレフィン成分が多く、品質の悪いものになるという欠点を有する。   A so-called coker method, which is a thermal decomposition method, is known as a method for treating residual oil under reduced pressure and the like without using a catalyst. This method is in addition to the problem of treating coke produced as a by-product in large quantities. In addition, due to an increase in the amount of gas produced by over-cracking, the yield of distillate obtained is inevitably reduced, and there are disadvantages that the aromatic content and olefin component are large and the quality is poor.

粒状の触媒を反応器内に充填して行う固定床方式の水素化分解方法では、高度に軽質化を行うと、上述のごとく原料中のアスファルテンやV、Niなどの重金属の影響を受け、副生するコークや重金属が次第に触媒層に沈積し、その結果、触媒の活性低下や触媒層の閉塞をもたらし、長期連続運転に限界がある。   In the fixed-bed hydrocracking method in which a granular catalyst is packed in the reactor, when lightening is carried out to a high degree, as described above, it is affected by heavy metals such as asphaltene, V, Ni, etc. The resulting coke and heavy metal gradually deposit on the catalyst layer, resulting in a decrease in catalyst activity and clogging of the catalyst layer, and there is a limit to long-term continuous operation.

Co-Mo 系等の押出成形粒子触媒を使用して沸騰床方式の反応器で水素化分解を行わせる方法においては、沸騰床反応器内の激しい混合状態により、コーク等の蓄積による圧力損失の増加の問題はなく、また、運転中に触媒の抜き出しと、補給が可能なことから触媒の活性を一定に保ったまま、長期に連続運転ができ、固定床方式に比べ利点を有している。しかしながら、触媒を循環させて運転するため、ポンプ等のメカニカルな問題があり、固定床方式に比べ運転の難しさがある。また、触媒が高価であり、反応圧力は一般的に15〜20MPaGと高く、反応生成物の脱硫、脱窒素は不十分である。さらには、重質油の種類によっては、転化率を向上させると触媒の失活がおこり、頻繁に反応器内触媒を抜き出すと共に、新触媒を反応器に供給するという運転が必要となるため、50〜60%程度に転化率を抑制して運転される。   In a method in which hydrocracking is performed in an ebullated bed reactor using an extruded particle catalyst such as a Co-Mo system, pressure loss due to accumulation of coke, etc. is caused by vigorous mixing in the ebullated bed reactor. There is no problem of increase, and since the catalyst can be extracted and replenished during operation, it can be operated continuously for a long time while keeping the activity of the catalyst constant, and has advantages over the fixed bed system. . However, since the catalyst is circulated and operated, there is a mechanical problem such as a pump, which is difficult to operate as compared with the fixed bed system. Further, the catalyst is expensive, the reaction pressure is generally as high as 15 to 20 MPaG, and desulfurization and denitrogenation of the reaction product are insufficient. Furthermore, depending on the type of heavy oil, when the conversion rate is improved, the catalyst is deactivated, and it is necessary to frequently remove the catalyst in the reactor and supply a new catalyst to the reactor. It is operated with the conversion rate suppressed to about 50-60%.

上記のような従来法の欠点を克服する技術として、石油系重質油を、低廉な使い捨ての鉄系触媒と循環された反応生成重質物と共に、懸濁床(スラリー床)反応器に供給し、水素化分解反応させることにより、90%以上の高転化率を得る方法がある。この方法では、選択した鉄系の触媒活性が極端に悪くない限り、反応圧力を15MPa 以上の高圧にすれば、重質油の種類によらず、温度:450 ℃程度、反応時間:60〜90分、循環重質残渣(+525℃)の流量:0〜50質量%(原料の石油系重質油供給量に対する割合)の条件下で90%以上の高転化率が可能である。このような方法(以下、鉄系触媒を使用する懸濁床方式の水素化分解方法ともいう)は、例えば、特開2001−89772 号公報に記載されている。
特開2001−89772 号公報
As a technique for overcoming the disadvantages of the conventional methods as described above, petroleum heavy oil is supplied to a suspension bed (slurry bed) reactor together with an inexpensive disposable iron-based catalyst and a circulated reaction product heavy material. There is a method of obtaining a high conversion rate of 90% or more by hydrocracking reaction. In this method, unless the reaction activity of the selected iron-based catalyst is extremely bad, if the reaction pressure is increased to 15 MPa or higher, the temperature is about 450 ° C. and the reaction time is 60 to 90 regardless of the type of heavy oil. A high conversion rate of 90% or more is possible under the condition of a flow rate of heavy heavy oil (+ 525 ° C): 0 to 50% by mass (ratio of feedstock to heavy oil supply of raw materials). Such a method (hereinafter also referred to as a suspension bed type hydrocracking method using an iron-based catalyst) is described in, for example, JP-A-2001-89772.
JP 2001-88772 A

しかしながら、この方法(鉄系触媒を使用する懸濁床方式の水素化分解方法)は、反応圧力が高圧であることから、設備投資額が前述の熱分解法の場合よりも高くなり、鉄系触媒を使用する懸濁床方式の水素化分解方法においては低圧化を図ることが重要となる。確かに、天然のリモナイト鉄鉱石触媒等、安価で高活性の鉄系触媒を使用することにより、低圧の圧力として、例えば10MPa の反応圧力とし、かつ、上記に示すような反応温度、反応時間、循環重質残渣流量とした条件下で、90%以上の転化率を得ることは可能である。しかし、重質油の種類(例えば、重質油中のアスファルテンの縮合環数が13以上もある重質油)によっては、水素化分解工程でのコーク〔Toluene Insoluble (以下、TIともいう)〕の収率が大きく、反応生成重質物の循環(以下、ボトムリサイクルともいう)を行うと、リサイクルする重質残渣(+525℃)中のTI濃度が増大する。このような場合には、TIの分解反応性はほとんどないことから、リサイクル重質残渣の分解性が低下し、ボトムリサイクルの効果が発揮できなくなり、従って、転化率およびオイル収率が低くなる。   However, this method (suspension bed type hydrocracking method using an iron-based catalyst) has a high reaction pressure, so the capital investment is higher than in the case of the above-mentioned thermal cracking method. In the suspension bed type hydrocracking method using a catalyst, it is important to reduce the pressure. Certainly, by using an inexpensive and highly active iron-based catalyst such as a natural limonite iron ore catalyst, a low pressure, for example, a reaction pressure of 10 MPa, and a reaction temperature, a reaction time as shown above, It is possible to obtain a conversion rate of 90% or more under the condition of circulating heavy residue flow rate. However, depending on the type of heavy oil (for example, a heavy oil having 13 or more condensed rings of asphaltenes in heavy oil), coke in the hydrocracking process (Toluene Insoluble (hereinafter also referred to as TI)) When the reaction product heavy substances are circulated (hereinafter also referred to as bottom recycling), the TI concentration in the heavy residue (+ 525 ° C.) to be recycled increases. In such a case, since there is almost no decomposition reactivity of TI, the decomposability of the recycled heavy residue is lowered, and the bottom recycling effect cannot be exhibited, and therefore the conversion rate and oil yield are lowered.

TI収率を抑制するためには、反応圧力を高圧にすることが有効であるが、これでは経済性が悪くなる。従って、低圧の反応圧力を指向した場合、低圧の条件下でTI収率が増大しても、リサイクルする重質残渣中のTI濃度を低く保つためには、選択的にTIを系外に抜き出すこと(以下、TI選択的除去ともいう)が必要となる。   In order to suppress the TI yield, it is effective to increase the reaction pressure, but this is not economical. Therefore, when a low reaction pressure is directed, even if the TI yield increases under low pressure conditions, TI is selectively extracted out of the system in order to keep the TI concentration in the heavy residue to be recycled low. (Hereinafter also referred to as TI selective removal).

選択的にTIを系外に抜き出す方法(以下、TI選択的除去法ともいう)としては、重質残渣(固体を含む)を含む重質反応生成物に軽質の溶剤を添加し、沈降槽(沈降式の固液分離器)にて、軽質溶剤に溶解するものを沈降槽のオーバーフローから抜き出し、一方、軽質溶剤に不溶なもの(TI:触媒の固体成分が主体)を沈降槽のアンダーフローから抜き出すという、いわゆる溶剤添加沈降式固液分離法(以下、溶剤添加方式の沈降式固液分離法ともいう)がある。しかし、本方式の沈降式固液分離法においては、一般的に、溶剤として軽質なナフサ相当品を使用し、沈降槽は200 ℃以上の温度で操作されることから、沈降槽内を液状に保つために1〜2MPa 以上の圧力を必要とし、かつ、オーバーフロー側、アンダーフロー側の両方から使用溶剤を回収する必要があるため、コストが比較的高くなるという問題点がある。   As a method of selectively extracting TI out of the system (hereinafter also referred to as TI selective removal method), a light solvent is added to a heavy reaction product containing a heavy residue (including a solid), and a sedimentation tank ( In the sedimentation-type solid-liquid separator), those that dissolve in the light solvent are extracted from the overflow of the sedimentation tank, while those that are insoluble in the light solvent (TI: mainly the solid component of the catalyst) are extracted from the underflow of the sedimentation tank. There is a so-called solvent addition precipitation type solid-liquid separation method (hereinafter also referred to as a solvent addition type precipitation type solid-liquid separation method). However, in this type of sedimentation-type solid-liquid separation method, generally, a light naphtha equivalent is used as the solvent, and the sedimentation tank is operated at a temperature of 200 ° C or higher. In order to maintain the pressure, a pressure of 1 to 2 MPa or more is required, and the solvent used needs to be recovered from both the overflow side and the underflow side.

TI収率の高い重質油を取り扱う場合に、より経済的なプロセスとするためには、低コストのTI選択的除去法(固液分離法)が望まれる。   In order to make a more economical process when handling heavy oil with a high TI yield, a low-cost TI selective removal method (solid-liquid separation method) is desired.

上記のような軽質な溶剤の添加をしなくても(即ち、溶剤添加方式ではなく、非溶剤添加方式の沈降式固液分離法によって)TI選択的除去が可能になれば、上記のような問題点は解消することができ、ひいては低コスト化がはかれる。   If TI selective removal is possible without the addition of a light solvent as described above (that is, not by a solvent addition method but by a non-solvent addition type solid-liquid separation method), The problem can be solved and the cost can be reduced.

本発明はこのような事情に着目してなされたものであって、その目的は、鉄系触媒を使用する懸濁床方式の水素化分解方法における沈降式固液分離法によるTI選択的除去の際に軽質な溶剤を添加しなくてもよいようにすることにある。即ち、重金属成分を含有する石油系重質油を懸濁床反応器に供給し、鉄系触媒の存在下で水素化分解すると共に、この水素化分解の反応生成物を気液分離して得られる液相流体(重質反応生成物およびTIを含む)から沈降式固液分離法によりTI(コーク)選択的除去をした後、この液相流体を前記懸濁床反応器に循環するに際し、前記沈降式固液分離法によるTI選択的除去の際に軽質な溶剤を添加しなくても(即ち、溶剤添加方式ではなく、非溶剤添加方式の沈降式固液分離法によって)TI選択的除去をすることができる石油系重質油の水素化分解方法を提供しようとするものである。   The present invention has been made paying attention to such circumstances, and the object thereof is to selectively remove TI by a sedimentation-type solid-liquid separation method in a suspension bed type hydrocracking method using an iron-based catalyst. In this case, a light solvent need not be added. That is, petroleum heavy oil containing heavy metal components is supplied to a suspension bed reactor and hydrocracked in the presence of an iron catalyst, and the hydrocracked reaction product is obtained by gas-liquid separation. TI (coke) is selectively removed from the liquid phase fluid (including heavy reaction products and TI) by sedimentation solid-liquid separation, and then the liquid phase fluid is circulated to the suspension bed reactor. TI selective removal without the addition of a light solvent during the selective removal of TI by the sedimentation-type solid-liquid separation method (that is, by the non-solvent addition-type solid-liquid separation method instead of the solvent addition method) It is an object of the present invention to provide a hydrocracking method for heavy petroleum oil that can be used.

本発明者らは、上記目的を達成するため、鋭意研究を行なった結果、本発明を完成するに至った。本発明によれば上記目的を達成することができる。   In order to achieve the above object, the present inventors have intensively studied, and as a result, completed the present invention. According to the present invention, the above object can be achieved.

このようにして完成され上記目的を達成することができた本発明は、石油系重質油の水素化分解方法に係わり、特許請求の範囲の請求項1〜6記載の石油系重質油の水素化分解方法(第1〜6発明に係る石油系重質油の水素化分解方法)であり、それは次のような構成としたものである。   The present invention, which has been completed in this way and has achieved the above object, relates to a hydrocracking method for heavy petroleum oils, and the petroleum heavy oils according to claims 1 to 6 of the claims. This is a hydrocracking method (hydrocracking method of heavy petroleum oil according to the first to sixth inventions), which has the following configuration.

即ち、請求項1記載の石油系重質油の水素化分解方法は、重金属成分を含有する石油系重質油を水素化分解するに際し、水素化分解のための反応器として懸濁床反応器を用いると共に触媒として鉄系触媒を用いる石油系重質油の水素化分解方法であって、下記(1) 〜(4) の工程を有することを特徴とする石油系重質油の水素化分解方法である〔第1発明〕。   That is, the method for hydrocracking petroleum heavy oil according to claim 1 is a suspension bed reactor as a reactor for hydrocracking when hydrocracking petroleum heavy oil containing heavy metal components. A hydrocracking method for petroleum heavy oil using an iron catalyst as a catalyst and comprising the following steps (1) to (4): This is a method [first invention].

(1) 前記懸濁床反応器からの反応生成物を高圧気液分離器において、圧力:前記懸濁床反応器と実質的に同圧の圧力、温度:200 〜350 ℃の条件で、気相流体と液相流体(固体を含む)とに分離する高圧気液分離工程。
(2) 前記高圧気液分離工程にて分離された液相流体を低圧気液分離器に供給し、圧力:常圧〜1MPaG、温度:190 〜340 ℃の条件で、気相流体と液相流体(固体を含む)とに分離する低圧気液分離工程。
(3) 前記低圧気液分離工程にて分離された液相流体を沈降式の固液分離器に供給し、圧力:常圧〜1MPaG、温度:190 〜340 ℃の条件で固体を沈降させ、該固液分離器の上部より該固液分離器内上層部の流体を抜き出す一方、該固液分離器の下部から固体成分と油成分とからなる流体を抜き出す固液分離工程。
(4) 前記固液分離工程にて固液分離器の上部より抜き出された流体の一部または全部を前記懸濁床反応器に循環する循環工程。
(1) The reaction product from the suspension bed reactor is gasified in a high-pressure gas-liquid separator under the conditions of pressure: substantially the same pressure as the suspension bed reactor, temperature: 200 to 350 ° C. A high-pressure gas-liquid separation process that separates into a phase fluid and a liquid phase fluid (including a solid).
(2) The liquid-phase fluid separated in the high-pressure gas-liquid separation step is supplied to a low-pressure gas-liquid separator, and the gas phase fluid and the liquid phase are subjected to the conditions of pressure: normal pressure to 1 MPaG and temperature: 190 to 340 ° C. Low-pressure gas-liquid separation process that separates into fluid (including solid).
(3) The liquid phase fluid separated in the low-pressure gas-liquid separation step is supplied to a sedimentation type solid-liquid separator, and the solid is precipitated under the conditions of pressure: normal pressure to 1 MPaG, temperature: 190 to 340 ° C., A solid-liquid separation step of extracting the fluid of the upper part in the solid-liquid separator from the upper part of the solid-liquid separator, and extracting the fluid composed of the solid component and the oil component from the lower part of the solid-liquid separator;
(4) A circulation step in which part or all of the fluid extracted from the upper part of the solid-liquid separator in the solid-liquid separation step is circulated to the suspension bed reactor.

請求項2記載の石油系重質油の水素化分解方法は、前記懸濁床反応器での反応条件が、反応圧力:6〜14MPaG、反応温度:430 〜450 ℃、反応時間:30〜120 分である請求項1記載の石油系重質油の水素化分解方法である〔第2発明〕。   The method for hydrocracking heavy petroleum oil according to claim 2, wherein the reaction conditions in the suspension bed reactor are as follows: reaction pressure: 6-14 MPaG, reaction temperature: 430-450 ° C, reaction time: 30-120. The method for hydrocracking petroleum heavy oil according to claim 1, wherein the second invention is.

請求項3記載の石油系重質油の水素化分解方法は、前記鉄系触媒が石油系溶剤中で機械的に粉砕された平均粒子径2μm 以下のリモナイト鉄鉱石触媒であり、その添加量が石油系重質油の量に対して鉄成分として0.3 〜2質量%である請求項1または2記載の石油系重質油の水素化分解方法である〔第3発明〕。   The method for hydrocracking heavy petroleum oil according to claim 3 is a limonite iron ore catalyst having an average particle diameter of 2 μm or less, wherein the iron-based catalyst is mechanically pulverized in a petroleum-based solvent. 3. The method for hydrocracking heavy petroleum oil according to claim 1, wherein the iron component is 0.3 to 2% by mass with respect to the amount of heavy petroleum oil [third invention].

請求項4記載の石油系重質油の水素化分解方法は、前記高圧気液分離工程での温度条件が温度:250 〜320 ℃である請求項1〜3のいずれかに記載の石油系重質油の水素化分解方法である〔第4発明〕。   The method for hydrocracking petroleum heavy oil according to claim 4, wherein the temperature condition in the high-pressure gas-liquid separation step is temperature: 250 to 320 ° C. This is a method for hydrocracking a crude oil [fourth invention].

請求項5記載の石油系重質油の水素化分解方法は、前記低圧気液分離工程での圧力および温度条件が圧力:0.3 〜0.5MPaG 、温度:245 〜315 ℃であると共に、前記固液分離工程での圧力および温度条件が圧力:0.3 〜0.5MPaG 、温度:245 〜315 ℃である請求項1〜4のいずれかに記載の石油系重質油の水素化分解方法である〔第5発明〕。   The method for hydrocracking petroleum heavy oil according to claim 5, wherein the pressure and temperature conditions in the low-pressure gas-liquid separation step are pressure: 0.3 to 0.5 MPaG, temperature: 245 to 315 ° C, and The method for hydrocracking petroleum heavy oil according to any one of claims 1 to 4, wherein the pressure and temperature conditions in the separation step are pressure: 0.3 to 0.5 MPaG, and temperature: 245 to 315 ° C. invention〕.

請求項6記載の石油系重質油の水素化分解方法は、前記循環工程において懸濁床反応器に循環する流体の量を、この流体中の沸点:525 ℃以上の重質油成分の量が懸濁床反応器への石油系重質油供給量に対して10〜100 質量%となる量とする請求項1〜5のいずれかに記載の石油系重質油の水素化分解方法である〔第6発明〕。   The method for hydrocracking petroleum heavy oil according to claim 6, wherein the amount of fluid circulated to the suspension bed reactor in the circulation step is the amount of heavy oil component having a boiling point in the fluid of 525 ° C or higher. The method for hydrocracking petroleum heavy oil according to any one of claims 1 to 5, wherein the amount is 10 to 100% by mass relative to the amount of petroleum heavy oil supplied to the suspension bed reactor. There is [Sixth Invention].

本発明に係る石油系重質油の水素化分解方法によれば、鉄系触媒を使用する懸濁床方式の水素化分解方法における沈降式固液分離法によるTI選択的除去の際に軽質な溶剤を添加しなくてもよいようになる。即ち、重金属成分を含有する石油系重質油を懸濁床反応器に供給し、鉄系触媒の存在下で水素化分解すると共に、この水素化分解の反応生成物を気液分離して得られる液相流体(重質反応生成物およびTIを含む)から沈降式固液分離法によりTI(コーク)選択的除去をした後、この液相流体を前記懸濁床反応器に循環するに際し、前記沈降式固液分離法によるTI選択的除去の際に軽質な溶剤を添加しなくても(即ち、溶剤添加方式ではなく、非溶剤添加方式の沈降式固液分離法によって)TI選択的除去をすることができるようになる。   According to the hydrocracking method of heavy petroleum oils according to the present invention, light weight can be obtained at the time of TI selective removal by sedimentation-type solid-liquid separation method in the hydrocracking method of a suspension bed system using an iron-based catalyst. It becomes unnecessary to add a solvent. That is, petroleum heavy oil containing heavy metal components is supplied to a suspension bed reactor and hydrocracked in the presence of an iron catalyst, and the hydrocracked reaction product is obtained by gas-liquid separation. TI (coke) is selectively removed from the liquid phase fluid (including heavy reaction products and TI) by sedimentation solid-liquid separation, and then the liquid phase fluid is circulated to the suspension bed reactor. TI selective removal without the addition of a light solvent during the selective removal of TI by the sedimentation-type solid-liquid separation method (that is, by the non-solvent addition-type solid-liquid separation method instead of the solvent addition method) You will be able to

本発明に係る石油系重質油の水素化分解方法は、前述のように、重金属成分を含有する石油系重質油を水素化分解するに際し、水素化分解のための反応器として懸濁床反応器を用いると共に触媒として鉄系触媒を用いる石油系重質油の水素化分解方法であって、下記(1) 〜(4) の工程を有することを特徴とする石油系重質油の水素化分解方法である。   The hydrocracking method for petroleum heavy oil according to the present invention is a suspension bed as a reactor for hydrocracking, as described above, when hydrocracking petroleum heavy oil containing heavy metal components. A method for hydrocracking petroleum heavy oil using a reactor and an iron-based catalyst as a catalyst, comprising the following steps (1) to (4): It is a chemical decomposition method.

(1) 前記懸濁床反応器からの反応生成物を高圧気液分離器において、圧力:前記懸濁床反応器と実質的に同圧の圧力、温度:200 〜350 ℃の条件で、気相流体と液相流体(固体を含む)とに分離する高圧気液分離工程。
(2) 前記高圧気液分離工程にて分離された液相流体を低圧気液分離器に供給し、圧力:常圧〜1MPaG、温度:190 〜340 ℃の条件で、気相流体と液相流体(固体を含む)とに分離する低圧気液分離工程。
(3) 前記低圧気液分離工程にて分離された液相流体を沈降式の固液分離器に供給し、圧力:常圧〜1MPaG、温度:190 〜340 ℃の条件で固体を沈降させ、該固液分離器の上部より該固液分離器内上層部の流体を抜き出す一方、該固液分離器の下部から固体成分と油成分とからなる流体を抜き出す固液分離工程。
(4) 前記固液分離工程にて固液分離器の上部より抜き出された流体の一部または全部を前記懸濁床反応器に循環する循環工程。
(1) The reaction product from the suspension bed reactor is gasified in a high-pressure gas-liquid separator under the conditions of pressure: substantially the same pressure as the suspension bed reactor, temperature: 200 to 350 ° C. A high-pressure gas-liquid separation process that separates into a phase fluid and a liquid phase fluid (including a solid).
(2) The liquid-phase fluid separated in the high-pressure gas-liquid separation step is supplied to a low-pressure gas-liquid separator, and the gas phase fluid and the liquid phase are subjected to the conditions of pressure: normal pressure to 1 MPaG and temperature: 190 to 340 ° C. Low-pressure gas-liquid separation process that separates into fluid (including solid).
(3) The liquid phase fluid separated in the low-pressure gas-liquid separation step is supplied to a sedimentation type solid-liquid separator, and the solid is precipitated under the conditions of pressure: normal pressure to 1 MPaG, temperature: 190 to 340 ° C., A solid-liquid separation step of extracting the fluid of the upper part in the solid-liquid separator from the upper part of the solid-liquid separator, and extracting the fluid composed of the solid component and the oil component from the lower part of the solid-liquid separator;
(4) A circulation step in which part or all of the fluid extracted from the upper part of the solid-liquid separator in the solid-liquid separation step is circulated to the suspension bed reactor.

上記(1) の高圧気液分離工程では、懸濁床反応器での水素化分解の反応生成物を高圧気液分離器に供給し、この反応生成物を圧力:前記懸濁床反応器と実質的に同圧の圧力、温度:200 〜350 ℃の条件で、気相流体と液相流体(固体を含む)とに分離する。このようにして分離された液相流体には、重質油成分(重質反応生成物)、固体(コーク、触媒)が含まれているが、これらの他に軽質油成分も含まれている。なお、上記重質油成分は、沸点:+525℃(525 ℃以上)の油成分であり、上記軽質油成分は、上記重質油成分以外の油成分であって上記重質油成分よりも沸点が低いものである。 In the high-pressure gas-liquid separation step (1) above, the reaction product of the hydrocracking in the suspension bed reactor is supplied to the high-pressure gas-liquid separator, and the reaction product is pressurized with the suspension bed reactor. Separation into a gas phase fluid and a liquid phase fluid (including a solid) under conditions of substantially the same pressure and temperature: 200 to 350 ° C. The liquid phase fluid thus separated contains a heavy oil component (heavy reaction product) and a solid (coke, catalyst), but also contains a light oil component in addition to these. . The heavy oil component is an oil component having a boiling point of + 525 ° C. (525 ° C. or higher), and the light oil component is an oil component other than the heavy oil component and is more than the heavy oil component. The boiling point is low.

この液相流体中の軽質油成分の量をA1 、上記反応生成物中の軽質油成分の量をA0 、上記気相流体中の軽質油成分の量をA2 とすると、A1 =A0 −A2 である。即ち、上記反応生成物中の軽質油成分の中、一部(より沸点の低い軽質油成分)は気相流体中に含まれることになるが、残部(より沸点の高い軽質油成分)は液相流体中に含まれることになる。この液相流体中の軽質油成分の量(A1)は、従来の鉄系触媒を使用する懸濁床方式の水素化分解方法(以下、従来法ともいう)の場合に比較して多い。即ち、この液相流体中には比較的多量の軽質油成分が含まれている。これは、上記高圧気液分離の際の温度が200 〜350 ℃であり、前記従来法の場合に比較して低いことによるものである。 Assuming that the amount of the light oil component in the liquid phase fluid is A 1 , the amount of the light oil component in the reaction product is A 0 , and the amount of the light oil component in the gas phase fluid is A 2 , A 1 = A 0 -A 2 . That is, among the light oil components in the reaction product, a part (light oil component having a lower boiling point) is contained in the gas phase fluid, but the remaining part (light oil component having a higher boiling point) is liquid. It will be contained in the phase fluid. The amount of light oil component (A 1 ) in the liquid phase fluid is larger than that in the case of a conventional suspension bed type hydrocracking method using an iron-based catalyst (hereinafter also referred to as a conventional method). That is, this liquid phase fluid contains a relatively large amount of light oil component. This is because the temperature during the high-pressure gas-liquid separation is 200 to 350 ° C., which is lower than that in the conventional method.

上記(2) の低圧気液分離工程では、前記高圧気液分離工程にて分離された液相流体を低圧気液分離器に供給し、圧力:常圧〜1MPaG、温度:190 〜340 ℃の条件で、気相流体と液相流体(固体を含む)とに分離する。このようにして分離された液相流体には、重質油成分(重質反応生成物)、固体(コーク、触媒)が含まれているが、これらの他に軽質油成分も含まれている。なお、この液相流体は、軽質油成分に重質油成分(重質反応生成物)の一部が溶解し、この油成分に固体(コーク、触媒)が混ざった状態のものである。   In the low-pressure gas-liquid separation step (2), the liquid phase fluid separated in the high-pressure gas-liquid separation step is supplied to the low-pressure gas-liquid separator, and the pressure is normal pressure to 1 MPaG, and the temperature is 190 to 340 ° C. Under certain conditions, gas phase fluid and liquid phase fluid (including solid) are separated. The liquid phase fluid thus separated contains a heavy oil component (heavy reaction product) and a solid (coke, catalyst), but also contains a light oil component in addition to these. . In addition, this liquid phase fluid is a state in which a part of a heavy oil component (heavy reaction product) is dissolved in a light oil component, and a solid (coke, catalyst) is mixed in this oil component.

この液相流体(低圧気液分離器で分離された液相流体)中の軽質油成分の量をB1 、前記高圧気液分離工程にて分離された液相流体中の軽質油成分の量をB0 、上記気相流体(低圧気液分離器で分離された気相流体)中の軽質油成分の量をB2 とすると、B1 =B0 −B2 =A1 −B2 である。即ち、前記高圧気液分離工程にて分離された液相流体中の軽質油成分の中、一部(より沸点の低い軽質油成分)は気相流体中に含まれることになるが、残部(より沸点の高い軽質油成分)は液相流体中に含まれることになる。この液相流体中の軽質油成分の量(B1)は従来法の場合に比較して多く、この液相流体中には比較的多量の軽質油成分が含まれている。これは、前記高圧気液分離工程にて分離された液相流体中の軽質油成分の量(A1)が従来法の場合に比較して多いことによるものである。この液相流体中の軽質油成分の量(B1)は後工程の固液分離工程において軽質な溶剤を添加しなくてもTI(コーク)選択的除去を可能にするに充分な量である。 The amount of light oil component in this liquid phase fluid (liquid phase fluid separated by the low pressure gas-liquid separator) is B 1 , and the amount of light oil component in the liquid phase fluid separated in the high pressure gas-liquid separation step the B 0, the amount of light oil component in the gas phase fluid (vapor-phase fluid is separated in a low pressure gas-liquid separator) When B 2, in B 1 = B 0 -B 2 = a 1 -B 2 is there. That is, among the light oil components in the liquid phase fluid separated in the high-pressure gas-liquid separation step, a part (light oil component having a lower boiling point) is contained in the gas phase fluid, but the remainder ( A light oil component having a higher boiling point) is contained in the liquid phase fluid. The amount of light oil component (B 1 ) in the liquid phase fluid is larger than that in the conventional method, and a relatively large amount of light oil component is contained in the liquid phase fluid. This is because the amount (A 1 ) of the light oil component in the liquid phase fluid separated in the high-pressure gas-liquid separation step is larger than that in the conventional method. The amount of light oil component (B 1 ) in this liquid phase fluid is sufficient to enable selective removal of TI (coke) without adding a light solvent in the subsequent solid-liquid separation step. .

上記(3) の固液分離工程では、前記低圧気液分離工程にて分離された液相流体を沈降式の固液分離器に供給し、圧力:常圧〜1MPaG、温度:190 〜340 ℃の条件で固体を沈降させ、該固液分離器の上部より該固液分離器内上層部の流体を抜き出す一方、該固液分離器の下部から固体成分と油成分とからなる流体を抜き出す。なお、上記固液分離器に供給される液相流体は、既に(固液分離器への供給前の時点において)軽質油成分に重質油成分(重質反応生成物)の一部が溶解し、この油成分に固体(コーク、触媒)が混ざった状態のものであるので、この液相流体に軽質な溶剤を添加しなくてもTI選択的除去をすることができる。即ち、この液相流体を上記固液分離器に供給すると、軽質な溶剤を添加しなくても、上記固液分離器において、この液相流体中の固体(コーク、触媒)が沈降し、その結果、TI選択的除去される。   In the solid-liquid separation step (3), the liquid phase fluid separated in the low-pressure gas-liquid separation step is supplied to a sedimentation type solid-liquid separator, and pressure: normal pressure to 1 MPaG, temperature: 190 to 340 ° C. Under this condition, the solid is settled, and the fluid in the upper part of the solid-liquid separator is extracted from the upper part of the solid-liquid separator, while the fluid composed of the solid component and the oil component is extracted from the lower part of the solid-liquid separator. In addition, the liquid phase fluid supplied to the solid-liquid separator has already dissolved a part of the heavy oil component (heavy reaction product) in the light oil component (before the supply to the solid-liquid separator). However, since this oil component is in a state where a solid (coke, catalyst) is mixed, TI can be selectively removed without adding a light solvent to the liquid phase fluid. That is, when the liquid phase fluid is supplied to the solid-liquid separator, the solid (coke, catalyst) in the liquid-phase fluid settles in the solid-liquid separator without adding a light solvent. As a result, TI is selectively removed.

このようにして固液分離器の上部より抜き出された流体には、重質油成分(重質反応生成物)の残部と軽質油成分が含まれている。これは軽質油成分に重質油成分(重質反応生成物)の残部が溶解した状態のものである。一方、固液分離器の下部から抜き出された流体には、固体成分(コーク、触媒)と油成分が含まれている。これは油成分に固体成分が混ざった状態のスラリー状のものである。   The fluid extracted from the upper part of the solid-liquid separator in this way contains the remainder of the heavy oil component (heavy reaction product) and the light oil component. This is a state in which the remainder of the heavy oil component (heavy reaction product) is dissolved in the light oil component. On the other hand, the fluid extracted from the lower part of the solid-liquid separator contains a solid component (coke, catalyst) and an oil component. This is a slurry in which a solid component is mixed with an oil component.

従って、TI(コーク)選択的除去をすることができる。即ち、沈降式固液分離法によるTI選択的除去の際に軽質な溶剤を添加しなくても(即ち、溶剤添加方式ではなく、非溶剤添加方式の沈降式固液分離法によって)TI選択的除去をすることができる。   Therefore, TI (coke) selective removal can be performed. In other words, TI selective removal without the addition of a light solvent during the selective removal of TI by the precipitation-type solid-liquid separation method (that is, not by the solvent addition method but by the non-solvent addition method) Can be removed.

このように軽質な溶剤を添加しなくてもTI選択的除去をすることができるのは、前記低圧気液分離工程にて分離された液相流体には比較的多量の軽質油成分が含まれており、この軽質油成分に重質油成分(重質反応生成物)の一部が溶解し、この油成分に重質油成分の残部(即ちコークと触媒)が混ざった状態のものとなっているからである。即ち、沈降式の固液分離器に供給される液相流体が既に(供給される前の時点において)上記のような状態のものとなっているので、さらに重質油成分(重質反応生成物)を溶解する必要がなく、このため、かかる溶解のための軽質な溶剤の添加が必要でなくなるからである。   The reason why TI can be selectively removed without adding a light solvent is that the liquid phase fluid separated in the low-pressure gas-liquid separation step contains a relatively large amount of light oil components. In this light oil component, part of the heavy oil component (heavy reaction product) is dissolved, and the remainder of the heavy oil component (that is, coke and catalyst) is mixed with this oil component. Because. That is, since the liquid phase fluid supplied to the sedimentation type solid-liquid separator has already been in the above state (before being supplied), the heavy oil component (heavy reaction production) This is because it is not necessary to add a light solvent for such dissolution.

上記(4) の循環工程では、前記固液分離工程にて固液分離器の上部より抜き出された流体の一部または全部を前記懸濁床反応器に循環する。この循環された流体は懸濁床反応器において水素化分解され、この流体中の重質油成分(重質反応生成物)は軽質油成分を含むものになる。   In the circulation step (4), part or all of the fluid extracted from the upper part of the solid-liquid separator in the solid-liquid separation step is circulated to the suspension bed reactor. The circulated fluid is hydrocracked in the suspension bed reactor, and the heavy oil component (heavy reaction product) in the fluid contains a light oil component.

このように、本発明に係る石油系重質油の水素化分解方法によれば、沈降式固液分離法によるTI選択的除去の際に軽質な溶剤を添加しなくても(即ち、溶剤添加方式ではなく、非溶剤添加方式の沈降式固液分離法によって)TI選択的除去をすることができるようになる。このため、ひいては、沈降式固液分離の際の圧力を高くする必要がなく、常圧〜1MPaGに下げることができ、また、軽質な溶剤の回収の必要性がなくなる。即ち、軽質な溶剤を添加する場合には、沈降槽内を液状に保つために1〜2MPa 以上の圧力を必要とし、かつ、オーバーフロー側、アンダーフロー側の両方から使用溶剤を回収する必要があり、コスト高となるが、本発明に係る石油系重質油の水素化分解方法の場合には、軽質な溶剤を添加しなくてもよいので、圧力を常圧〜1MPaGに下げることができ、上記のような溶剤の回収も必要でなくなり、コスト低減が可能となる。   As described above, according to the hydrocracking method of heavy petroleum oil according to the present invention, a light solvent is not added at the time of TI selective removal by the precipitation solid-liquid separation method (that is, solvent addition). TI selective removal (by non-solvent addition precipitation solid-liquid separation method). As a result, it is not necessary to increase the pressure during the precipitation-type solid-liquid separation, and the pressure can be lowered to normal pressure to 1 MPaG, and the necessity of recovering the light solvent is eliminated. That is, when adding a light solvent, a pressure of 1 to 2 MPa or more is required to keep the inside of the sedimentation tank in a liquid state, and the solvent used must be recovered from both the overflow side and the underflow side. However, in the case of the hydrocracking method for petroleum heavy oil according to the present invention, since it is not necessary to add a light solvent, the pressure can be lowered to normal pressure to 1 MPaG. It is not necessary to recover the solvent as described above, and the cost can be reduced.

上記(1) の高圧気液分離工程において、温度:200 〜350 ℃としているのは、下記理由による。350 ℃超の場合には、分離されて得られる液相流体中の軽質油成分の量(A1)が少なくなり、ひいては、低圧気液分離工程において分離されて得られる液相流体中の軽質油成分の量(B1)が少なくなって、後工程の固液分離工程において軽質な溶剤を添加しなくてもTI(コーク)選択的除去を可能にするに必要な量を確保し難くなり、軽質な溶剤を添加することなくTI選択的除去をすることが難しくなる。200 ℃未満の場合には、低圧気液分離器の温度が高圧気液分離器の温度よりも数℃低くなり、従って、固液分離器の温度は最大約200 ℃で操作することになるが、この温度域(200 ℃未満)で固液分離すると、液体粘度がより高くなるため、固液分離性能が悪化する。このため、高圧気液分離工程での温度:200 〜350 ℃としている。 In the high-pressure gas-liquid separation step (1) above, the temperature is set to 200 to 350 ° C. for the following reason. When the temperature exceeds 350 ° C., the amount of light oil component (A 1 ) in the liquid phase fluid obtained by separation is reduced, and as a result, the light oil component in the liquid phase fluid obtained by separation in the low-pressure gas-liquid separation step. The amount of oil component (B 1 ) is reduced, making it difficult to secure the amount necessary to enable selective removal of TI (coke) without adding a light solvent in the subsequent solid-liquid separation process. This makes it difficult to selectively remove TI without adding a light solvent. If it is below 200 ° C, the temperature of the low-pressure gas-liquid separator will be several degrees lower than the temperature of the high-pressure gas-liquid separator, so the temperature of the solid-liquid separator will operate at a maximum of about 200 ° C. If the solid-liquid separation is performed in this temperature range (below 200 ° C.), the liquid viscosity becomes higher, and the solid-liquid separation performance deteriorates. For this reason, the temperature in the high-pressure gas-liquid separation step is set to 200 to 350 ° C.

前記(1) の高圧気液分離工程において、圧力:前記懸濁床反応器と実質的に同圧の圧力としている。この圧力は、前記懸濁床反応器からの反応生成物をそのまま高圧気液分離器に供給した場合の圧力であり、前記懸濁床反応器と等しい場合もあり得るが、それよりも低い場合もあり得る。このような場合を全て含む意味で前記懸濁床反応器と実質的に同圧の圧力と表現した。即ち、前記懸濁床反応器と実質的に同圧の圧力は、前記懸濁床反応器と同じ圧力に限定されず、それよりも自然に低くなった場合の圧力を含むものである。   In the high-pressure gas-liquid separation step (1), the pressure is set to substantially the same pressure as the suspension bed reactor. This pressure is a pressure when the reaction product from the suspension bed reactor is supplied to the high-pressure gas-liquid separator as it is, and may be equal to the suspension bed reactor, but lower than that. There is also a possibility. In order to include all such cases, the pressure was expressed as substantially the same pressure as the suspension bed reactor. That is, the pressure of substantially the same pressure as that of the suspension bed reactor is not limited to the same pressure as that of the suspension bed reactor, but includes the pressure when the pressure is naturally lower than that.

前記(2) の低圧気液分離工程において、圧力:常圧〜1MPaG、温度:190 〜340 ℃の条件としている。この圧力はゲージ圧での圧力である。例えば、1MPaGは絶対圧では1.1MPaであり、常圧はゲージ圧では0MPaG、絶対圧では0.101MPaである。1MPaG=1×106Pa であり、9.80665 ×104 Pa=1kgf/cm2 (即ち、0.980665×105Pa =1kgf/cm2 )であるので、0.980665MPa =10kgf/cm2 である。従って、上記の1MPaGは、10/0.980665kgf/cm2 であり、約10kgf/cm2 である。上記の常圧は、0.101MPa(常圧=1atm =1.033kgf/cm2=1.033 ×0.0980665MPa=0.101MPa)である。 In the low-pressure gas-liquid separation step (2), the pressure is set to normal pressure to 1 MPaG, and the temperature is set to 190 to 340 ° C. This pressure is a gauge pressure. For example, 1 MPaG is 1.1 MPa in absolute pressure, normal pressure is 0 MPaG in gauge pressure, and 0.101 MPa in absolute pressure. Since 1 MPaG = 1 × 10 6 Pa and 9.80665 × 10 4 Pa = 1 kgf / cm 2 (that is, 0.980665 × 10 5 Pa = 1 kgf / cm 2 ), 0.980665 MPa = 10 kgf / cm 2 . Therefore, the above 1MPaG is 10 / 0.980665kgf / cm 2, about 10 kgf / cm 2. The normal pressure is 0.101 MPa (normal pressure = 1 atm = 1.033 kgf / cm 2 = 1.033 × 0.0980665 MPa = 0.101 MPa).

前記(3) の固液分離工程において、圧力:常圧〜1MPaG、温度:190 〜340 ℃の条件としている。このように圧力:常圧〜1MPaGとしているのは、下記理由による。即ち、前述のように、本発明に係る石油系重質油の水素化分解方法によれば、沈降式固液分離法によるTI選択的除去の際に軽質な溶剤を添加しなくてもTI選択的除去をすることができ、ひいては、沈降式固液分離の際の圧力を高くする必要がなく、常圧〜1MPaGに下げることができるので、前記(3) の固液分離工程での圧力:常圧〜1MPaGとしているのである。これはコスト低減につながる。   In the solid-liquid separation step (3), the pressure is set to normal pressure to 1 MPaG, and the temperature is set to 190 to 340 ° C. The reason why the pressure is set to normal pressure to 1 MPaG is as follows. That is, as described above, according to the hydrocracking method of heavy petroleum oil according to the present invention, TI selection can be performed without adding a light solvent when selectively removing TI by the precipitation solid-liquid separation method. Therefore, there is no need to increase the pressure during the precipitation-type solid-liquid separation, and the pressure in the solid-liquid separation step (3) can be reduced to normal pressure to 1 MPaG. Normal pressure to 1 MPaG. This leads to cost reduction.

本発明に係る石油系重質油の水素化分解方法において、懸濁床反応器での反応条件に関しては、特には限定されず、例えば、反応圧力:6〜14MPaG、反応温度:430 〜450 ℃、反応時間:30〜120 分とする〔第2発明〕。   In the hydrocracking method for heavy petroleum oil according to the present invention, the reaction conditions in the suspension bed reactor are not particularly limited. For example, the reaction pressure is 6 to 14 MPaG, the reaction temperature is 430 to 450 ° C. Reaction time: 30 to 120 minutes [second invention].

前記鉄系触媒としては、石油系溶剤中で機械的に粉砕された平均粒子径2μm 以下のリモナイト鉄鉱石触媒を用い、その添加量が石油系重質油の量に対して鉄成分として0.3 〜2質量%となるようにすることが望ましい〔第3発明〕。このようなリモナイト鉄鉱石触媒を用いるのは、Fe2O3 (ヘマタイト)、FeS2(パイライト)、FeSO4 (硫酸鉄)等の鉄系触媒に比べ高活性であり、しかも天然で採取される安価な触媒であるからである。その添加量が0.3 質量%未満の場合は、コーク生成量が急激に高くなる傾向があり、2質量%超の場合は、オイル収率がほとんど増加せず、かえってコスト高になる傾向がある。 As the iron-based catalyst, a limonite iron ore catalyst having an average particle diameter of 2 μm or less mechanically pulverized in a petroleum-based solvent is used, and the added amount is 0.3 to 0.3 as an iron component with respect to the amount of heavy petroleum oil. It is desirable to make it 2% by mass [third invention]. The use of such a limonite iron ore catalyst is more active than iron-based catalysts such as Fe 2 O 3 (hematite), FeS 2 (pyrite), and FeSO 4 (iron sulfate), and is collected in nature. This is because it is an inexpensive catalyst. When the amount added is less than 0.3% by mass, the amount of coke produced tends to increase rapidly, and when it exceeds 2% by mass, the oil yield hardly increases and the cost tends to increase.

前記高圧気液分離工程での温度条件を温度:250 〜320 ℃とすることが望ましい〔第4発明〕。このようにすると、分離されて得られる液相流体中の軽質油成分の量(A1)がより高水準で多くなり、ひいては、低圧気液分離工程において分離されて得られる液相流体中の軽質油成分の量(B1)がより高水準で多くなって、後工程の固液分離工程において軽質な溶剤を添加しなくてもTI(コーク)選択的除去を可能にするに必要な量をより確保しやすくなり、より確実に、軽質な溶剤を添加することなくTI選択的除去をすることができるようになる。 The temperature condition in the high-pressure gas-liquid separation step is preferably set to a temperature of 250 to 320 ° C. [fourth invention]. In this way, the amount (A 1 ) of the light oil component in the liquid phase fluid obtained by separation is increased at a higher level, and as a result, in the liquid phase fluid obtained by separation in the low pressure gas-liquid separation step. The amount of light oil component (B 1 ) increases at a higher level, and the amount necessary to enable selective removal of TI (coke) without adding a light solvent in the subsequent solid-liquid separation process It becomes easier to secure the TI, and it becomes possible to selectively remove TI more reliably without adding a light solvent.

前記低圧気液分離工程での圧力および温度条件が圧力:0.3 〜0.5MPaG 、温度:245 〜315 ℃であると共に、前記固液分離工程での圧力および温度条件が圧力:0.3 〜0.5MPaG 、温度:245 〜315 ℃であることが望ましい〔第5発明〕。この理由等について以下記述する。前記第4発明において高圧気液分離工程の温度を250 〜320 ℃にすることが望ましいとした。その高圧気液分離工程の液相流体を0.3 〜0.5MPaG の低圧気液分離工程に供給する際、低圧力下で気相と液相の各流体にフラッシュ分離されるので、温度が高圧気液分離工程よりも低くなる。その際の温度が245 〜315 ℃である。0.5MPaG 〜1MPaGの低圧気液分離工程(LPS )の圧力域では、高圧気液分離工程液相流体中の軽質油成分が気相に行く量(B2)は少なく、B1 が高水準で維持されるが、圧力が高い分、機器コスト高となる。常圧〜0.3MPaG のLPS 圧力域では機器コストは安いものの、B2 は比較的多くなり(即ち、B1 が比較的少なくなり)、固液分離性能がやや劣る。0.3 〜0.5MPaG のLPS 圧力域では、B1 が比較的高水準で維持され、固液分離性能が良好であり、機器コストも安いことから、望ましい条件といえる。 Pressure and temperature conditions in the low-pressure gas-liquid separation step are pressure: 0.3 to 0.5 MPaG, temperature: 245 to 315 ° C., and pressure and temperature conditions in the solid-liquid separation step are pressure: 0.3 to 0.5 MPaG, temperature : 245-315 ° C. is desirable [fifth invention]. The reason for this will be described below. In the fourth invention, it is desirable that the temperature of the high-pressure gas-liquid separation step is 250 to 320 ° C. When the liquid phase fluid of the high pressure gas-liquid separation process is supplied to the low pressure gas-liquid separation process of 0.3 to 0.5 MPaG, it is flash-separated into each gas phase and liquid phase fluid at low pressure, so the temperature is high pressure gas-liquid Lower than the separation step. The temperature in that case is 245-315 degreeC. The pressure range of 0.5 MPaG ~1MPaG low-pressure gas-liquid separation step (LPS), the amount of light oil components of the high-pressure gas-liquid separation step liquid phase fluid goes into the vapor phase (B 2) is less, B 1 is a high level Although it is maintained, the cost of equipment increases due to the higher pressure. In the LPS pressure range of normal pressure to 0.3 MPaG, the equipment cost is low, but B 2 is relatively large (that is, B 1 is relatively small), and the solid-liquid separation performance is slightly inferior. In the LPS pressure range of 0.3 to 0.5 MPaG, B 1 is maintained at a relatively high level, the solid-liquid separation performance is good, and the equipment cost is low.

前記循環工程において懸濁床反応器に循環する流体の量を、この流体中の沸点:525 ℃以上の重質油成分の量が懸濁床反応器への石油系重質油供給量に対して10〜100 質量%となる量とすることが望ましい〔第6発明〕。上記循環量が10質量%未満の場合は、オイル収率がほとんど増加せず、ボトムリサイクル効果が発揮されない。一方、上記循環量が100 質量%超の場合は、上記循環量10質量%未満の場合よりもオイル収率が格段に高くなるものの、オイル収率の増加率は上記循環量10〜100 質量%の場合よりも少なく循環効率が低下する。   The amount of fluid circulated to the suspension bed reactor in the circulation step is determined based on the amount of heavy oil component having a boiling point of 525 ° C. or higher in the fluid relative to the amount of petroleum heavy oil supplied to the suspension bed reactor. It is desirable that the amount be 10 to 100% by mass [Sixth Invention]. When the amount of circulation is less than 10% by mass, the oil yield hardly increases and the bottom recycling effect is not exhibited. On the other hand, when the circulation rate is more than 100% by mass, the oil yield is much higher than when the circulation rate is less than 10% by mass, but the increase rate of the oil yield is 10 to 100% by mass of the circulation rate. The circulation efficiency is lower than in the case of.

本発明に係る石油系重質油の水素化分解方法に関するプロセスフローの例を図1〜2に示す。図1〜2において、(1) はスラリー調整槽、(2) は予熱器、(3) は懸濁床反応器、(4) は高圧気液分離器、(5) は高圧低温気液分離器、(6) は蒸留塔1、(7) はガス精製工程、(8) は低圧気液分離器、(9) は沈降槽、(10)は蒸留塔2を示すものである。この中、懸濁床反応器(3) は本発明に係る懸濁床反応器の例、高圧気液分離器(4) は本発明に係る高圧気液分離器の例、低圧気液分離器(8) は本発明に係る低圧気液分離器の例に相当し、沈降槽(9) は本発明に係る沈降式の固液分離器の例に相当する。図1に示すものは、沈降式の固液分離器(沈降槽)が回分式のものである。図2に示すものは、沈降式の固液分離器(沈降槽)が流通式のものである。   An example of a process flow relating to the hydrocracking method of heavy petroleum oil according to the present invention is shown in FIGS. 1-2, (1) is a slurry preparation tank, (2) is a preheater, (3) is a suspension bed reactor, (4) is a high-pressure gas-liquid separator, and (5) is a high-pressure low-temperature gas-liquid separation. (6) is a distillation column 1, (7) is a gas purification step, (8) is a low-pressure gas-liquid separator, (9) is a settling tank, and (10) is a distillation column 2. Among these, the suspension bed reactor (3) is an example of a suspension bed reactor according to the present invention, the high pressure gas-liquid separator (4) is an example of a high pressure gas-liquid separator according to the present invention, and a low pressure gas-liquid separator. (8) corresponds to an example of a low-pressure gas-liquid separator according to the present invention, and the settling tank (9) corresponds to an example of a settling-type solid-liquid separator according to the present invention. In FIG. 1, a sedimentation type solid-liquid separator (sedimentation tank) is a batch type. The thing shown in FIG. 2 is a circulation type solid-liquid separator (sedimentation tank).

なお、本発明において、重質反応生成物中の油成分の中、重質油成分とは、沸点:+525℃(525 ℃以上)の油成分のことであり、軽質油成分とは、前記重質油成分以外の油成分であって前記重質油成分よりも沸点が低いもののことである。   In the present invention, among the oil components in the heavy reaction product, the heavy oil component is an oil component having a boiling point: + 525 ° C. (525 ° C. or higher), and the light oil component is the above-mentioned It is an oil component other than the heavy oil component and has a boiling point lower than that of the heavy oil component.

本発明の実施例および比較例について、以下説明する。なお、本発明はこの実施例に限定されるものではなく、本発明の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   Examples of the present invention and comparative examples will be described below. The present invention is not limited to this embodiment, and can be implemented with appropriate modifications within a range that can be adapted to the gist of the present invention, all of which are within the technical scope of the present invention. include.

〔実施例1〕
図1と同等の装置によって重金属を有する石油系重質油の水素化分解法を実施した。この詳細を以下説明する。
[Example 1]
The hydrocracking method of heavy petroleum oil with heavy metals was carried out using the same equipment as in FIG. Details will be described below.

重金属成分を含有する石油系重質油を鉄系触媒と共に懸濁床反応器に供給し、水素化分解する水素化分解反応工程を遂行した。このとき、重金属を含有する石油系重質油としては、減圧蒸留残渣(以下、VRという)を用いた。鉄系触媒としては、リモナイト鉄鉱石触媒を用いた。このリモナイト鉄鉱石触媒の添加量は、石油系重質油の量に対して鉄成分として1質量%とした。助触媒の添加量は、前記鉄成分の量の1.2 倍とした。懸濁床反応器での水素化分解反応の条件は、反応圧力:10MPa 、反応温度:450 ℃、反応時間:90分、循環蒸留残渣量:VR量の50質量%とした。   A petroleum heavy oil containing heavy metal components was supplied to a suspension bed reactor together with an iron catalyst, and a hydrocracking reaction step was carried out for hydrocracking. At this time, a vacuum distillation residue (hereinafter referred to as VR) was used as a petroleum heavy oil containing heavy metals. As the iron-based catalyst, a limonite iron ore catalyst was used. The addition amount of this limonite iron ore catalyst was 1 mass% as an iron component with respect to the amount of heavy petroleum oil. The amount of the cocatalyst added was 1.2 times the amount of the iron component. The hydrocracking reaction conditions in the suspension bed reactor were as follows: reaction pressure: 10 MPa, reaction temperature: 450 ° C., reaction time: 90 minutes, amount of circulating distillation residue: 50% by mass of VR amount.

前記懸濁床反応器で得られた反応生成物を前記懸濁床反応器から反応生成物を高圧気液分離器に供給し、気相流体と液相流体(固体を含む)とに分離する高圧気液分離工程を遂行した。このとき、高圧気液分離器の圧力、温度条件は、圧力:前記懸濁床反応器と実質的に同圧の圧力である10MPa 、温度:310 ℃とした。   The reaction product obtained in the suspension bed reactor is separated from the suspension bed reactor into a gas phase fluid and a liquid phase fluid (including a solid) by supplying the reaction product to a high-pressure gas-liquid separator. A high pressure gas-liquid separation process was performed. At this time, the pressure and temperature conditions of the high-pressure gas-liquid separator were as follows: pressure: 10 MPa, which is substantially the same pressure as the suspension bed reactor, and temperature: 310 ° C.

前記高圧気液分離工程にて分離された液相流体を低圧気液分離器に供給し、気相流体と液相流体(固体を含む)とに分離する低圧気液分離工程を遂行した。このとき、低圧気液分離器の圧力、温度条件は、圧力:0.5MPa、温度:300 ℃とした。   The liquid-phase fluid separated in the high-pressure gas-liquid separation step was supplied to a low-pressure gas-liquid separator, and a low-pressure gas-liquid separation step for separating the gas-phase fluid and the liquid-phase fluid (including solid) was performed. At this time, the pressure and temperature conditions of the low-pressure gas-liquid separator were set to pressure: 0.5 MPa, temperature: 300 ° C.

前記低圧気液分離工程にて分離された液相流体を沈降式の固液分離器(沈降槽)に供給し、圧力:0.5MPa、温度:300 ℃の条件下で30分間静置した。しかる後、沈降槽の最上部から挿入された挿入管(その最終端すなわち吸い込み口が沈降槽高さHの85%の高さのところに位置する)の吸い込み口から、沈降槽内上層部流体を抜き出すと共に、残りの下層部流体を沈降槽下部から取り出した。このようにして固液分離工程を遂行した。   The liquid phase fluid separated in the low-pressure gas-liquid separation step was supplied to a sedimentation type solid-liquid separator (sedimentation tank) and allowed to stand for 30 minutes under conditions of pressure: 0.5 MPa and temperature: 300 ° C. Thereafter, the upper layer fluid in the settling tank is inserted from the suction port of the insertion tube (its final end, ie, the suction port is located at a height of 85% of the settling tank height H) inserted from the top of the settling tank. And the remaining lower layer fluid was removed from the lower part of the settling tank. Thus, the solid-liquid separation process was performed.

前記固液分離工程にて抜き出された沈降槽内上層部流体および下層部流体の組成は表1に示す通りであった。表1から、下層部流体にTI及び触媒が濃縮しており、沈降槽内上層部流体中のTI及び触媒の量が少ないことがわかる。   Table 1 shows the composition of the upper layer fluid and the lower layer fluid in the settling tank extracted in the solid-liquid separation step. From Table 1, it can be seen that TI and catalyst are concentrated in the lower layer fluid, and the amount of TI and catalyst in the upper layer fluid in the sedimentation tank is small.

前記固液分離工程にて抜き出された沈降槽内上層部流体の一部を前記懸濁床反応器に循環する循環工程を遂行した。   A circulation step was performed in which a part of the upper layer fluid in the sedimentation tank extracted in the solid-liquid separation step was circulated to the suspension bed reactor.

その結果、転化率:91%、蒸留残渣(+525℃)収率:VR量に対し7.3 質量%、オイル収率:VR量に対し85質量%であった。ここで、転化率は下記式(1) により求められるものである。   As a result, the conversion rate was 91%, the distillation residue (+ 525 ° C.) yield: 7.3% by mass with respect to the VR amount, and the oil yield: 85% by mass with respect to the VR amount. Here, the conversion rate is obtained by the following formula (1).

転化率(%)=100 ×〔(原料VR中+525℃のwt%)−(蒸留残渣収率)〕/(原料VR 中+525℃のwt%) ------------------ 式(1)     Conversion (%) = 100 × [(in raw material VR + wt% at 525 ° C.) − (Distillation residue yield)] / (raw material VR + wt% at 525 ° C.) ---------- -------- Formula (1)

なお、原料VRの留分構成は表2に示す通りであった。   The fraction composition of the raw material VR was as shown in Table 2.

〔比較例1〕
実施例1の場合と同様の石油系重質油、鉄系触媒を用い、同様の懸濁床反応器にて、同様の条件で水素化分解反応工程を遂行した。この反応生成物を高圧気液分離器に供給し、高圧気液分離工程を遂行した。このとき、高圧気液分離器の圧力、温度条件は、圧力:前記懸濁床反応器と実質的に同圧の圧力である10MPa 、温度:370 ℃とした。この高圧気液分離工程にて分離された液相流体を低圧気液分離器に供給し、実施例1の場合と同様の圧力、温度条件で低圧気液分離工程を遂行した。
[Comparative Example 1]
The hydrocracking reaction step was performed under the same conditions in the same suspension bed reactor using the same petroleum heavy oil and iron catalyst as in Example 1. This reaction product was supplied to a high-pressure gas-liquid separator, and a high-pressure gas-liquid separation step was performed. At this time, the pressure and temperature conditions of the high-pressure gas-liquid separator were set to pressure: 10 MPa, which is substantially the same pressure as the suspension bed reactor, and temperature: 370 ° C. The liquid phase fluid separated in this high-pressure gas-liquid separation step was supplied to a low-pressure gas-liquid separator, and the low-pressure gas-liquid separation step was performed under the same pressure and temperature conditions as in Example 1.

即ち、高圧気液分離器の温度条件を実施例1の場合(310 ℃)よりも高温度(370 ℃)とし、この点を除き実施例1の場合と同様の水素化分解反応工程、高圧気液分離工程、低圧気液分離工程を遂行した。   That is, the temperature condition of the high-pressure gas-liquid separator is set to a temperature (370 ° C.) higher than that in the case of Example 1 (310 ° C.). A liquid separation process and a low-pressure gas-liquid separation process were performed.

前記低圧気液分離工程にて分離された液相流体を沈降槽に供給し、圧力:0.5MPa、温度:300 ℃の条件下で60分間静置した後、実施例1の場合と同様の方法により沈降槽内上層部流体の抜き出し、残りの下層部流体の取り出しを行った。即ち、沈降槽での静置時間を実施例1の場合(30分間)よりも長時間(60分間)とし、この点を除き実施例1の場合と同様の方法により固液分離工程を遂行した。   The liquid phase fluid separated in the low-pressure gas-liquid separation step is supplied to a settling tank, left to stand for 60 minutes under the conditions of pressure: 0.5 MPa, temperature: 300 ° C., and the same method as in Example 1 Thus, the upper layer fluid in the sedimentation tank was extracted, and the remaining lower layer fluid was extracted. That is, the standing time in the sedimentation tank was set longer (60 minutes) than in Example 1 (30 minutes), and the solid-liquid separation process was performed in the same manner as in Example 1 except for this point. .

前記固液分離工程にて抜き出された沈降槽内上層部流体および下層部流体の組成は表3に示す通りであった。表3から、下層部流体でのTI及び触媒の濃縮度が実施例1の場合に比較して極めて少なく、沈降槽内上層部流体中のTI及び触媒の量が実施例1の場合に比較して著しく多いことがわかる。   The composition of the upper layer fluid and the lower layer fluid in the settling tank extracted in the solid-liquid separation step was as shown in Table 3. From Table 3, the concentration of TI and catalyst in the lower layer fluid is extremely small compared to that in Example 1, and the amount of TI and catalyst in the upper layer fluid in the settling tank is compared with that in Example 1. It can be seen that the number is extremely high.

前記固液分離工程にて抜き出された沈降槽内上層部流体の一部を前記懸濁床反応器に循環する循環工程を遂行した。   A circulation step was performed in which a part of the upper layer fluid in the sedimentation tank extracted in the solid-liquid separation step was circulated to the suspension bed reactor.

その結果、転化率:81%、蒸留残渣(+525℃)収率:VR量に対し15.6質量%、オイル収率:VR量に対し75.1質量%であった。ここで、転化率は前記式(1) により求められるものである。   As a result, the conversion rate was 81%, the distillation residue (+ 525 ° C.) yield: 15.6% by mass with respect to the VR amount, and the oil yield: 75.1% by mass with respect to the VR amount. Here, the conversion rate is obtained by the above formula (1).

以上のように、比較例1の場合は、沈降槽での静置時間が長時間(60分間)であるにもかかわらず、固液分離工程での下層部流体でのTI及び触媒の濃縮度が少なく、沈降槽内上層部流体中のTI及び触媒の量が多く、このため、沈降槽内上層部流体を懸濁床反応器に循環し水素化分解反応させた際の転化率が低く、蒸留残渣(+525℃)収率が高く、ひいてはオイル収率が低い。   As described above, in the case of Comparative Example 1, the concentration of TI and catalyst in the lower layer fluid in the solid-liquid separation step, although the standing time in the sedimentation tank is long (60 minutes). The amount of TI and catalyst in the upper layer fluid in the sedimentation tank is large, and for this reason, the conversion rate when circulating the upper layer fluid in the sedimentation tank to the suspension bed reactor and hydrocracking reaction is low, The distillation residue (+ 525 ° C) yield is high, and the oil yield is low.

これに対し、実施例1の場合は、沈降槽での静置時間が短時間(30分間)であるにもかかわらず、固液分離工程での下層部流体でのTI及び触媒の濃縮度が極めて高く、沈降槽内上層部流体中のTI及び触媒の量が著しく少なく、このため、沈降槽内上層部流体を懸濁床反応器に循環し水素化分解反応させた際の転化率が極めて高く、蒸留残渣(+525℃)収率が著しく低く、ひいてはオイル収率が極めて高い。   On the other hand, in the case of Example 1, the concentration of TI and catalyst in the lower layer fluid in the solid-liquid separation process is low, although the standing time in the sedimentation tank is short (30 minutes). The amount of TI and catalyst in the upper layer fluid in the sedimentation tank is extremely low, and therefore the conversion rate when the upper layer fluid in the sedimentation tank is circulated to the suspension bed reactor and subjected to the hydrocracking reaction is extremely high. High, distillation residue (+ 525 ° C.) yield is very low, and oil yield is very high.

これは、実施例1の場合は、比較例1の場合に比べ、高圧気液分離器での温度が低いことに起因するものであり、TI選択的除去性に極めて優れているからである。即ち、比較例1の場合には、TI選択的除去性が低く、上記の転化率、蒸留残渣(+525℃)収率、オイル収率を実施例1の場合の水準に改善するには、沈降式固液分離法によるTI選択的除去の際に軽質な溶剤を添加する必要があるが、実施例1の場合は、沈降式固液分離法によるTI選択的除去の際に軽質な溶剤を添加しなくても高水準のTI選択的除去をすることができるからである。   This is because the temperature in the high-pressure gas-liquid separator is lower in the case of Example 1 than in the case of Comparative Example 1, and the TI selective removability is extremely excellent. That is, in the case of Comparative Example 1, the TI selective removability is low, and in order to improve the above conversion, distillation residue (+ 525 ° C.) yield, and oil yield to the levels of Example 1, In the case of Example 1, a light solvent is required for selective removal of TI by the sedimentation-type solid-liquid separation method. This is because a high level of TI selective removal can be achieved without addition.

Figure 0004523458
Figure 0004523458

Figure 0004523458
Figure 0004523458

Figure 0004523458
Figure 0004523458

本発明に係る石油系重質油の水素化分解方法は、重金属成分を含有する石油系重質油を懸濁床反応器にて鉄系触媒の存在下で水素化分解し、その反応生成物中の重質成分を前記懸濁床反応器に循環して水素化分解する際に、前述のような効果があるので、重金属成分を含有する石油系重質油の水素化分解方法として好適に用いることができ、経済性の向上がはかれて有用である。   The method of hydrocracking petroleum heavy oil according to the present invention comprises hydrocracking a petroleum heavy oil containing heavy metal components in the presence of an iron catalyst in a suspension bed reactor, and the reaction product. Since the above-mentioned effects can be obtained when the heavy components therein are circulated to the suspension bed reactor for hydrocracking, it is suitable as a hydrocracking method for petroleum heavy oil containing heavy metal components. It can be used, and it is useful because it is economically improved.

本発明に係る石油系重質油の水素化分解方法を行うための装置の例を示す模式図である。It is a schematic diagram which shows the example of the apparatus for performing the hydrocracking method of petroleum heavy oil which concerns on this invention. 本発明に係る石油系重質油の水素化分解方法を行うための装置の例(上記図1に示す例とは別の例)を示す模式図である。It is a schematic diagram which shows the example (an example different from the example shown in the said FIG. 1) of the apparatus for performing the hydrocracking method of petroleum heavy oil which concerns on this invention.

符号の説明Explanation of symbols

(1) --スラリー調整槽、(2) --予熱器、(3) --懸濁床反応器、(4) --高圧気液分離器、(5) --高圧低温気液分離器、(6) --蒸留塔1、(7) --ガス精製工程、(8) --低圧気液分離器、(9) --沈降槽、(10)--蒸留塔2。
(1) --Slurry conditioning tank, (2) --Preheater, (3) --Suspension bed reactor, (4) --High pressure gas / liquid separator, (5) --High pressure low temperature gas / liquid separator (6) --Distillation column 1, (7) --Gas purification step, (8) --Low pressure gas-liquid separator, (9) --Sedimentation tank, (10) -Distillation column 2.

Claims (6)

重金属成分を含有する石油系重質油を水素化分解するに際し、水素化分解のための反応器として懸濁床反応器を用いると共に触媒として鉄系触媒を用いる石油系重質油の水素化分解方法であって、下記(1) 〜(4) の工程を有することを特徴とする石油系重質油の水素化分解方法。
(1) 前記懸濁床反応器からの反応生成物を高圧気液分離器において、圧力:前記懸濁床反応器と実質的に同圧の圧力、温度:200 〜350 ℃の条件で、気相流体と液相流体(固体を含む)とに分離する高圧気液分離工程。
(2) 前記高圧気液分離工程にて分離された液相流体を低圧気液分離器に供給し、圧力:常圧〜1MPaG、温度:190 〜340 ℃の条件で、気相流体と液相流体(固体を含む)とに分離する低圧気液分離工程。
(3) 前記低圧気液分離工程にて分離された液相流体を沈降式の固液分離器に供給し、圧力:常圧〜1MPaG、温度:190 〜340 ℃の条件で固体を沈降させ、該固液分離器の上部より該固液分離器内上層部の流体を抜き出す一方、該固液分離器の下部から固体成分と油成分とからなる流体を抜き出す固液分離工程。
(4) 前記固液分離工程にて固液分離器の上部より抜き出された流体の一部または全部を前記懸濁床反応器に循環する循環工程。
Hydrocracking of heavy petroleum oils using a suspension bed reactor as a reactor for hydrocracking and using an iron-based catalyst as a catalyst for hydrocracking petroleum heavy oils containing heavy metal components A method for hydrocracking petroleum heavy oil, comprising the following steps (1) to (4):
(1) The reaction product from the suspension bed reactor is gasified in a high-pressure gas-liquid separator under the conditions of pressure: substantially the same pressure as the suspension bed reactor, temperature: 200 to 350 ° C. A high-pressure gas-liquid separation process that separates into a phase fluid and a liquid phase fluid (including a solid).
(2) The liquid-phase fluid separated in the high-pressure gas-liquid separation step is supplied to a low-pressure gas-liquid separator, and the gas phase fluid and the liquid phase are subjected to the conditions of pressure: normal pressure to 1 MPaG and temperature: 190 to 340 ° C. Low-pressure gas-liquid separation process that separates into fluid (including solid).
(3) The liquid phase fluid separated in the low-pressure gas-liquid separation step is supplied to a sedimentation type solid-liquid separator, and the solid is precipitated under the conditions of pressure: normal pressure to 1 MPaG, temperature: 190 to 340 ° C., A solid-liquid separation step of extracting the fluid of the upper part in the solid-liquid separator from the upper part of the solid-liquid separator, and extracting the fluid composed of the solid component and the oil component from the lower part of the solid-liquid separator;
(4) A circulation step in which part or all of the fluid extracted from the upper part of the solid-liquid separator in the solid-liquid separation step is circulated to the suspension bed reactor.
前記懸濁床反応器での反応条件が、反応圧力:6〜14MPaG、反応温度:430 〜450 ℃、反応時間:30〜120 分である請求項1記載の石油系重質油の水素化分解方法。   The hydrocracking of heavy petroleum oil according to claim 1, wherein the reaction conditions in the suspension bed reactor are: reaction pressure: 6-14 MPaG, reaction temperature: 430-450 ° C, reaction time: 30-120 minutes. Method. 前記鉄系触媒が石油系溶剤中で機械的に粉砕された平均粒子径2μm 以下のリモナイト鉄鉱石触媒であり、その添加量が石油系重質油の量に対して鉄成分として0.3 〜2質量%である請求項1または2記載の石油系重質油の水素化分解方法。   The iron-based catalyst is a limonite iron ore catalyst having an average particle size of 2 μm or less, which is mechanically pulverized in a petroleum-based solvent, and the amount added is 0.3-2 mass as an iron component with respect to the amount of heavy petroleum-based oil. The method for hydrocracking heavy petroleum oils according to claim 1 or 2, wherein the hydrocracking method is at least%. 前記高圧気液分離工程での温度条件が温度:250 〜320 ℃である請求項1〜3のいずれかに記載の石油系重質油の水素化分解方法。   The method for hydrocracking petroleum heavy oil according to any one of claims 1 to 3, wherein a temperature condition in the high-pressure gas-liquid separation step is a temperature: 250 to 320 ° C. 前記低圧気液分離工程での圧力および温度条件が圧力:0.3 〜0.5MPaG 、温度:245 〜315 ℃であると共に、前記固液分離工程での圧力および温度条件が圧力:0.3 〜0.5MPaG 、温度:245 〜315 ℃である請求項1〜4のいずれかに記載の石油系重質油の水素化分解方法。   Pressure and temperature conditions in the low-pressure gas-liquid separation step are pressure: 0.3 to 0.5 MPaG, temperature: 245 to 315 ° C., and pressure and temperature conditions in the solid-liquid separation step are pressure: 0.3 to 0.5 MPaG, temperature The method for hydrocracking petroleum heavy oil according to any one of claims 1 to 4, wherein the temperature is 245 to 315 ° C. 前記循環工程において懸濁床反応器に循環する流体の量を、この流体中の沸点:525 ℃以上の重質油成分の量が懸濁床反応器への石油系重質油供給量に対して10〜100 質量%となる量とする請求項1〜5のいずれかに記載の石油系重質油の水素化分解方法。
The amount of fluid circulated to the suspension bed reactor in the circulation step is determined based on the amount of heavy oil component having a boiling point of 525 ° C. or higher in the fluid relative to the amount of petroleum heavy oil supplied to the suspension bed reactor. The method for hydrocracking petroleum heavy oil according to any one of claims 1 to 5, wherein the amount is 10 to 100% by mass.
JP2005059263A 2005-03-03 2005-03-03 Hydrocracking method of heavy petroleum oil Expired - Fee Related JP4523458B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005059263A JP4523458B2 (en) 2005-03-03 2005-03-03 Hydrocracking method of heavy petroleum oil
CA2536557A CA2536557C (en) 2005-03-03 2006-02-14 Process of hydrocracking petroleum heavy oil
BRPI0601018A BRPI0601018B1 (en) 2005-03-03 2006-03-03 heavy oil hydrocracking process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005059263A JP4523458B2 (en) 2005-03-03 2005-03-03 Hydrocracking method of heavy petroleum oil

Publications (2)

Publication Number Publication Date
JP2006241317A JP2006241317A (en) 2006-09-14
JP4523458B2 true JP4523458B2 (en) 2010-08-11

Family

ID=36955316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005059263A Expired - Fee Related JP4523458B2 (en) 2005-03-03 2005-03-03 Hydrocracking method of heavy petroleum oil

Country Status (3)

Country Link
JP (1) JP4523458B2 (en)
BR (1) BRPI0601018B1 (en)
CA (1) CA2536557C (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4813933B2 (en) * 2006-03-16 2011-11-09 株式会社神戸製鋼所 Hydrocracking method of heavy petroleum oil
US8123933B2 (en) 2008-06-30 2012-02-28 Uop Llc Process for using iron oxide and alumina catalyst for slurry hydrocracking
US8062505B2 (en) 2008-06-30 2011-11-22 Uop Llc Process for using iron oxide and alumina catalyst with large particle diameter for slurry hydrocracking
US7820135B2 (en) 2008-06-30 2010-10-26 Uop Llc Catalyst composition with nanometer crystallites for slurry hydrocracking
US8128810B2 (en) 2008-06-30 2012-03-06 Uop Llc Process for using catalyst with nanometer crystallites in slurry hydrocracking
US8025793B2 (en) 2008-06-30 2011-09-27 Uop Llc Process for using catalyst with rapid formation of iron sulfide in slurry hydrocracking
EP2404649A1 (en) 2010-07-06 2012-01-11 Total Raffinage Marketing Flakes management in hydrocarbon processing units
CN105586088B (en) * 2014-10-23 2017-10-20 中国石油化工股份有限公司 A kind of dry gas lime set processing method
JP6725112B6 (en) * 2016-07-29 2020-08-19 国立研究開発法人産業技術総合研究所 Method, apparatus, and program for estimating properties of multi-component solution

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000506561A (en) * 1996-03-15 2000-05-30 ペトロ―カナダ Hydrotreatment of heavy hydrocarbon oils with control of particle size of particulate additives
JP2001089772A (en) * 1999-07-21 2001-04-03 Kobe Steel Ltd Method for hydrogenolysis of petroleium-based heavy oil

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4495060A (en) * 1982-12-27 1985-01-22 Hri, Inc. Quenching hydrocarbon effluent from catalytic reactor to avoid precipitation of asphaltene compounds

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000506561A (en) * 1996-03-15 2000-05-30 ペトロ―カナダ Hydrotreatment of heavy hydrocarbon oils with control of particle size of particulate additives
JP2001089772A (en) * 1999-07-21 2001-04-03 Kobe Steel Ltd Method for hydrogenolysis of petroleium-based heavy oil

Also Published As

Publication number Publication date
CA2536557A1 (en) 2006-09-03
BRPI0601018B1 (en) 2016-07-19
BRPI0601018A (en) 2007-05-08
CA2536557C (en) 2011-05-24
JP2006241317A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
JP4813933B2 (en) Hydrocracking method of heavy petroleum oil
JP4523458B2 (en) Hydrocracking method of heavy petroleum oil
JP5651281B2 (en) Method and apparatus for conversion of heavy petroleum fraction in ebullated bed with production of middle distillate with very low sulfur content
JP4874977B2 (en) Recycling method of active slurry catalyst composition in heavy oil upgrade
RU2656273C2 (en) Integration of residue hydrocracking and solvent deasphalting
US7214308B2 (en) Effective integration of solvent deasphalting and ebullated-bed processing
US7651604B2 (en) Process for the catalytic hydrotreatment of heavy hydrocarbons of petroleum
JP2008163097A (en) Method for hydrocracking heavy oil
JP7126443B2 (en) Improved ebullated bed reactor with timely feed
JPH0772274B2 (en) Long-term high hydroconversion method for petroleum residual oil feedstock
KR101716989B1 (en) Residue hydrocracking
TWI486435B (en) Residue hydrocracking processing
JP2018168352A (en) Improved ebullated bed reactor accompanying deposit capable of suppressing occurence of fouling
EP3353267B1 (en) Method of upgrading an ebullated bed reactor for increased production rate of converted products
US20170128929A1 (en) Vacuum resid upgradation and graphite production
CN107001952A (en) The method of the decompression residuum of upgrading part conversion
JP3875001B2 (en) Hydrocracking method of heavy petroleum oil
JP2011084649A (en) Method for hydrocracking petroleum-based heavy oil
RU2339680C2 (en) Method for catalytic hydro-treatment of heavy hydrocarbons of oil and product received by this method
JP4338254B2 (en) Heavy oil hydroprocessing method
JP2002302680A (en) Refining method for heavy oil
CN117701303A (en) Heavy oil processing technology and processing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100527

R150 Certificate of patent or registration of utility model

Ref document number: 4523458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees