JP2002302680A - Refining method for heavy oil - Google Patents

Refining method for heavy oil

Info

Publication number
JP2002302680A
JP2002302680A JP2001107530A JP2001107530A JP2002302680A JP 2002302680 A JP2002302680 A JP 2002302680A JP 2001107530 A JP2001107530 A JP 2001107530A JP 2001107530 A JP2001107530 A JP 2001107530A JP 2002302680 A JP2002302680 A JP 2002302680A
Authority
JP
Japan
Prior art keywords
oil
hydrogen content
solvent extraction
hydrorefining
refined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001107530A
Other languages
Japanese (ja)
Inventor
Makoto Inomata
誠 猪俣
Takeshi Okada
剛 岡田
Akira Azuma
晃 東
Motoi Sasaki
基 佐々木
Susumu Kasahara
進 笠原
Yasushi Fujimura
靖 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP2001107530A priority Critical patent/JP2002302680A/en
Priority to TW091106473A priority patent/TWI257423B/en
Priority to EP02713282A priority patent/EP1386954A4/en
Priority to US10/473,433 priority patent/US20040168956A1/en
Priority to KR10-2003-7012895A priority patent/KR20030087047A/en
Priority to RU2003129450/04A priority patent/RU2273658C2/en
Priority to PCT/JP2002/003298 priority patent/WO2002081594A1/en
Priority to MXPA03008994A priority patent/MXPA03008994A/en
Priority to BR0208623-9A priority patent/BR0208623A/en
Priority to PL02353151A priority patent/PL353151A1/en
Publication of JP2002302680A publication Critical patent/JP2002302680A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including solvent extraction as the refining step in the absence of hydrogen
    • C10G67/0454Solvent desasphalting
    • C10G67/049The hydrotreatment being a hydrocracking
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including solvent extraction as the refining step in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including solvent extraction as the refining step in the absence of hydrogen
    • C10G67/0454Solvent desasphalting
    • C10G67/0463The hydrotreatment being a hydrorefining
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins

Abstract

PROBLEM TO BE SOLVED: To provide a refining method for a heavy oil which refines a low-cost heavy oil and is simple, reliable, and economically excellent. SOLUTION: The raw material oil for this method is a heavy oil with a hydrogen content of 12 wt.% or lower. After the oil is subjected to solvent extraction so as to increase the hydrogen content by 0.2 wt.% or higher, the oil is hydrogenated so as to further increase the hydrogen content by 0.5 wt.% or higher, thus giving a refined oil.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原油起源の不純物
を効率的に除去できる溶剤抽出処理と水素化精製処理と
による重質油の精製方法に関し、特に、従来、低級オレ
フィン製造用原料に用いられなかった重質油から低級オ
レフィン製造用原料にも適した精製油を得ることができ
る重質油の精製方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying heavy oil by a solvent extraction treatment and a hydrorefining treatment capable of efficiently removing impurities derived from crude oil. The present invention relates to a heavy oil refining method capable of obtaining a refined oil suitable also as a raw material for lower olefin production from heavy oil that has not been obtained.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】原油を
出発物質とする石油製品は、原油中にその起源に由来す
る不純物が存在するため、常圧および減圧蒸留分離を始
めとした物理的または化学的な各種の精製処理を施して
生産されている。一般に、石油留分すなわち、蒸留によ
り塔頂から分離される留出油は、上記不純物が少なく、
簡単な精製処理で不純物を除去できることから、高度に
不純物が除去された高品質の石油製品である自動車燃料
やガスタービン燃料等の高級燃料油や石油化学用原料等
として利用されている。
2. Description of the Related Art Petroleum products starting from crude oil contain impurities derived from their origin in the crude oil. It is produced after various chemical purification processes. Generally, a petroleum fraction, i.e., a distillate separated from the top by distillation, has less of the above impurities,
Since impurities can be removed by a simple refining process, it is used as a high-quality petroleum product, a high-grade fuel oil such as an automobile fuel or a gas turbine fuel, a petrochemical raw material, or the like, from which impurities are highly removed.

【0003】一方、蒸留残渣油等の重質油に関しては、
不純物が濃縮されてその量が多いだけでなく、非常に除
去されにくい形態で存在しており、基本的な精製手段で
ある水素化精製ではその不純物除去に限界がある。特に
高度に精製する場合には、水素と触媒の存在下で高温・
高圧の過酷な反応条件が要求され、多量の水素や触媒を
消費しかつ、設備費も含め多額の投資が必要となり経済
的でないのが現状である。したがって、重質油から付加
価値が高い、すなわち高度に不純物が除去された高品質
な精製油を簡便に、かつ経済的に得る方法が待望されて
いる。
On the other hand, for heavy oils such as distillation residue oils,
Impurities are not only concentrated and present in a large amount but also in a form that is very difficult to remove, and there is a limit to the removal of the impurities in hydrorefining, which is a basic purification means. Particularly in the case of highly refined, high temperature and high temperature in the presence of hydrogen and a catalyst
At present, severe reaction conditions at high pressure are required, a large amount of hydrogen and catalyst are consumed, and a large investment including equipment cost is required, which is not economical at present. Therefore, a method for easily and economically obtaining a high-quality refined oil having high added value from heavy oil, that is, from which impurities are highly removed has been desired.

【0004】高品質な精製油は、その用途の一つとして
石油化学用の原料としての利用がある。石油化学分野の
基幹物質であるエチレンやプロピレン等の低級オレフィ
ンは、エタンやナフサ等の軽質な油が主な原料として熱
分解により製造されているが、一部で軽質軽油や減圧軽
油などの重質な留分も原料としても利用されている。天
然ガスが豊富で安価な米国や中東では前者のエタンを原
料としたエチレンプラントが主流であるが、ナフサの方
が安価な日本、アジア、ヨーロッパでは、後者のナフサ
を原料とする場合がほとんどである。
[0004] One of the uses of high quality refined oil is as a raw material for petrochemicals. Lower olefins such as ethylene and propylene, which are key substances in the petrochemical field, are produced by thermal cracking using light oils such as ethane and naphtha as main raw materials, but some heavy oils such as light gas oil and vacuum gas oil are used. Quality fractions are also used as raw materials. In the U.S. and the Middle East where natural gas is abundant and inexpensive, ethylene plants using the former ethane are the mainstream, but in Japan, Asia and Europe where naphtha is cheaper, the latter is mostly used in most cases. is there.

【0005】ナフサを原料としたエチレンプラントで
は、タール、ピッチなどの副生成物の生成がエタンを原
料とした場合より多くなるため、主反応器である熱分解
管、その後段の急冷熱交換器でのコーキングやファウリ
ングへの対応が必要となる。そして、ナフサより分子量
の大きく、金属や硫黄分が多い減圧軽油がエチレンプラ
ントの原料として、商業運転が可能な限界と考えられて
いる。
In an ethylene plant using naphtha as a raw material, by-products such as tar and pitch are generated more than when ethane is used as a raw material, so that a pyrolysis tube as a main reactor and a quenching heat exchanger in a subsequent stage are used. It is necessary to cope with coking and fouling. It is considered that vacuum gas oil having a higher molecular weight than naphtha and containing more metals and sulfur is the limit of commercial operation as a raw material for an ethylene plant.

【0006】一方、原料供給量および原料コストの観点
から、軽油留分より重質な原料油を低級オレフィン製造
用原料として用いることができれば、原料コストが安価
であるとともに石油資源の重質化に伴う原料油の安定供
給上の問題も解決できることとなり、産業上極めて大き
な貢献となる。
[0006] On the other hand, from the viewpoint of the amount of raw material supplied and the raw material cost, if a raw oil that is heavier than a gas oil fraction can be used as a raw material for producing lower olefins, the raw material cost is low and the petroleum resources are heavier. This also solves the problem of stable supply of feedstock, which makes an extremely large contribution to industry.

【0007】本発明は、上記の状況に鑑みて為されたも
のであり、原油起源の不純物を高い濃度で含有する重質
油から付加価値の高い精製油を経済的に回収する方法を
提供するものであり、特に低級オレフィン用原料として
は従来不適とされてきた常圧残渣などの重質油を簡単で
確実な方法で精製処理することにより、経済的に低級オ
レフィン製造用原料にも適した精製油を回収することが
できる重質油の精製方法を提供することである。
The present invention has been made in view of the above circumstances, and provides a method for economically recovering a high-value-added refined oil from a heavy oil containing a high concentration of crude oil-derived impurities. It is particularly suitable as a raw material for lower olefin production by refining heavy oil such as atmospheric residue, which has been previously unsuitable as a raw material for lower olefins, by a simple and reliable method. An object of the present invention is to provide a method for refining heavy oil from which refined oil can be recovered.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく鋭意研究した結果、水素含有量が12wt
%以下の重質油を原料とし、溶剤抽出により水素含有量
を一定量以上増加するよう処理し、続いて、得られた脱
アスファルテン油を水素化精製処理により水素含有量を
一定量以上増加するよう処理することにより、重質油中
の不純物が効率的に除去でき、高度に不純物が除去され
た高品質の精製油が得られることを見出し、本発明を完
成した。
Means for Solving the Problems The present inventors have conducted intensive studies to achieve the above object, and as a result, the hydrogen content was 12 wt.
% Of heavy oil as a raw material, and then subjected to solvent extraction to increase the hydrogen content by a certain amount or more, and then to increase the hydrogen content by a hydrorefining treatment of the obtained deasphalted oil. By such treatment, it was found that impurities in heavy oil could be efficiently removed, and a high-quality refined oil from which impurities were highly removed was obtained, and the present invention was completed.

【0009】すなわち、本発明は、原料油を、溶剤抽出
処理して抽出油を得る溶剤抽出工程と、得られた抽出油
を水素と触媒の存在下に水素化処理して精製油を得る水
素化精製工程とを含む処理により精製油を得る重質油の
精製方法であって、原料油は、水素含有量が12wt%
以下の重質油であり、その原料油を溶剤抽出工程に導入
し、水素含有量が原料油に対して0.2wt%以上増加
するように溶剤抽出処理して抽出油である脱アスファル
テン油(DAO)を得る溶剤抽出工程と、脱アスファル
テン油を水素化精製工程に導入し、水素含有量が脱アス
ファルテン油に対して0.5wt%以上増加するように
水素化精製して精製油を得る水素化精製工程とを有する
ことを特徴とする重質油の精製方法を提供するものであ
る。
[0009] That is, the present invention provides a solvent extraction step in which a raw oil is subjected to a solvent extraction treatment to obtain an extracted oil, and a hydrogenation treatment in which the obtained extracted oil is hydrogenated in the presence of hydrogen and a catalyst to obtain a refined oil. A method for refining heavy oil, wherein a refined oil is obtained by a treatment including a refining step, wherein the raw material oil has a hydrogen content of 12 wt%.
The following heavy oils are introduced into the solvent extraction step, and the solvent extraction process is performed so that the hydrogen content is increased by 0.2% by weight or more with respect to the base oil. DAO) to obtain a refined oil by introducing a deasphalted oil to a hydrorefining process and subjecting the deasphalted oil to hydrorefining so that the hydrogen content is increased by 0.5% by weight or more with respect to the deasphalted oil. And a refining process.

【0010】かかる構成をとることにより、後段の水素
化精製で除去されにくい不純物を予め溶剤抽出により一
定量以上水素含有量が増加する条件で処理し、その後に
水素化精製工程により一定量以上水素含有量が増加する
条件で処理するため、それぞれの精製工程単独では予想
できない高度に不純物が除去された高品質の精製油を、
確実に得ることができる。本発明者等は、溶剤抽出工程
と水素化精製処理とを単純に実施するだけでは、不純物
を確実には実施できないことに着目し、処理する重質油
の水素含有量を指標として、溶剤抽出工程とそれに続く
水素化精製工程でそれぞれ所定量の水素含有量を増加さ
せるように処理することにより、確実に、かつ効率的に
高度に不純物が除去された精製油を得ることができるこ
とを見出したものであり、溶剤抽出工程と水素化精製工
程の条件を過酷な条件とすることがなく、負荷のバラン
スが保たれる経済的な条件で得ることができる。
[0010] With this configuration, impurities that are difficult to remove in the subsequent hydrorefining are treated in advance by solvent extraction under a condition in which the hydrogen content increases by a certain amount or more, and then a certain amount of hydrogen is purified by the hydrorefining step. In order to process under the condition that the content increases, high-quality refined oil from which impurities are highly unpredictable that cannot be predicted by each refining process alone,
Can be obtained reliably. The present inventors have focused on the fact that simply carrying out the solvent extraction step and the hydrorefining treatment cannot reliably carry out the impurities, and the solvent extraction using the hydrogen content of the heavy oil to be treated as an index. It has been found that by performing the treatment so as to increase the hydrogen content by a predetermined amount in each of the step and the subsequent hydrorefining step, it is possible to reliably and efficiently obtain a highly purified oil from which impurities have been removed. Therefore, the conditions of the solvent extraction step and the hydrorefining step are not made severe, and can be obtained under economic conditions in which the load balance is maintained.

【0011】さらに本発明においては、上記で得られた
精製油の水素含有量が11.5wt%以上、好ましくは
12.0wt%以上であることを特徴とする重質油の精
製方法を提供するものである。これにより得られた精製
油は、石油化学用原料である低級オレフィン製造用原料
に適用した場合には、熱分解反応の際にもコーキングや
ファウリングの発生が抑えられて商業運転が可能となる
ものである。かかる理由から、本発明の精製方法は、付
加価値の高い精製油を確実に、かつ効率的に得ることが
できる経済的に優れた方法である。
Further, the present invention provides a method for refining heavy oil, characterized in that the hydrogen content of the refined oil obtained above is 11.5 wt% or more, preferably 12.0 wt% or more. Things. When the refined oil thus obtained is used as a raw material for producing lower olefins, which is a raw material for petrochemicals, the occurrence of coking and fouling is suppressed even during the pyrolysis reaction, and commercial operation becomes possible. Things. For this reason, the refining method of the present invention is an economically superior method capable of reliably and efficiently obtaining a high-value-added refined oil.

【0012】[0012]

【発明の実施の形態】本発明は、水素含有量が12wt
%以下、好ましくは10〜12wt%の重質油を原料と
して、溶剤抽出工程と水素化精製処理工程においてそれ
ぞれ所定の精製度を達成する条件でそれぞれ処理する。
本発明に用いる12wt%以下の重質油は、一般に常圧
残油等の残渣油、超重質原油等が相当し、不純物濃度が
高いためその用途が限定されていた。これら重質油の水
素含有量は、一般に9〜12.5重量%、多くは9〜1
1.5重量%であり、従来は精製しても不純物が充分に
は除去できず低級オレフィン用などの石油化学用原料に
は不適とされて用いられてなかった。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention has a hydrogen content of 12 wt.
%, Preferably 10 to 12 wt% of a heavy oil as a raw material, in the solvent extraction step and the hydrorefining treatment step, each of which is processed under a condition to achieve a predetermined degree of purification.
Heavy oils of 12 wt% or less used in the present invention generally correspond to residual oils such as atmospheric residual oils, ultra-heavy crude oils and the like, and their use is limited due to high impurity concentration. The hydrogen content of these heavy oils is generally 9-12.5% by weight, often 9-1-1% by weight.
In the prior art, the impurities were not sufficiently removed even by refining, and thus were not suitable for petrochemical materials such as those for lower olefins and were not used.

【0013】本発明は、水素含有量が12wt%以下の
重質油を原料油として、第1の工程として溶剤抽出処理
を行い、水素含有量を0.2wt%以上増加した抽出油
である脱アスファルテン油を回収する。この溶剤抽出処
理工程では、水素含有量が少ないアスファルテン分を選
択的に除去する。このアスファルテン分は、縮合多環芳
香族やシクロパラフィン環などの水素含有量が少ない化
合物からなるミセル構造をしており、その内部には残留
炭素やV、Niなどの金属類のポルフィリン化合物が含
有され、不純物が濃縮されていることが知られている。
そしてアスファルテン分は、水素化精製反応を著しく抑
制し、触媒の劣化を促進させることも知られており、本
発明においては水素含有量が0.2wt%以上増加する
条件で溶剤抽出処理することにより、その結果アスファ
ルテンの所定量を選択的に除去する。
According to the present invention, a heavy oil having a hydrogen content of 12 wt% or less is used as a raw material oil, and a solvent extraction treatment is carried out as a first step to obtain an extracted oil having a hydrogen content of 0.2 wt% or more. Recover asphalten oil. In this solvent extraction treatment step, asphaltene components having a low hydrogen content are selectively removed. This asphaltene component has a micellar structure composed of a compound having a low hydrogen content such as a condensed polycyclic aromatic or cycloparaffin ring, and contains therein a porphyrin compound of residual carbon and metals such as V and Ni. It is known that impurities are concentrated.
It is also known that the asphaltene component significantly suppresses the hydrorefining reaction and promotes the deterioration of the catalyst. In the present invention, the solvent extraction treatment is carried out under the condition that the hydrogen content increases by 0.2 wt% or more. As a result, a predetermined amount of asphaltene is selectively removed.

【0014】溶剤抽出処理は、従来知られている溶剤脱
歴処理が適用でき、重質油を溶剤抽出塔においてC3〜
C5の溶剤と向流接触させることにより、脱アスファル
テン油と、水素含有量が少なくかつメタルや残留炭素が
濃縮されているアスファルテンとに分離する。そして、
用いる溶剤の種類や重質油に対する溶剤量、抽出温度条
件を適宜に選択することにより、水素含有量を0.2w
t%以上増加するように抽出処理条件を制御して本発明
の抽出油を得ることができる。C3〜C5の溶剤として
は、プロパン、ブタン、ペンタンから選ばれる少なくと
も一つが好ましく用いられる。
For the solvent extraction treatment, a conventionally known solvent de-history treatment can be applied.
By countercurrent contact with the C5 solvent, the oil is separated into deasphalted oil and asphaltene having a low hydrogen content and enriched in metals and residual carbon. And
By appropriately selecting the type of solvent used, the amount of solvent with respect to heavy oil, and the extraction temperature conditions, the hydrogen content can be reduced to 0.2 watts.
The extraction oil of the present invention can be obtained by controlling the extraction treatment conditions so as to increase by at least t%. As the C3 to C5 solvent, at least one selected from propane, butane, and pentane is preferably used.

【0015】脱アスファルテン油は、抽出塔の塔頂部か
ら溶剤とともに抽出液として回収し、抽出液中の溶剤を
超臨界状態で分離除去することによって得ることができ
る。アスファルテンについては、これを塔底部から一部
の溶剤とともに抽残液として回収し、抽残液中の溶剤を
蒸発によって回収する。
The deasphaltenated oil can be obtained by recovering the extract together with the solvent as an extract from the top of the extraction column, and separating and removing the solvent in the extract in a supercritical state. Asphaltene is recovered from the bottom of the column together with a portion of the solvent as a raffinate, and the solvent in the raffinate is recovered by evaporation.

【0016】本発明においては、かかる溶剤抽出処理工
程で得られた脱アスファルテン油の水素含有量は、原料
重質油の水素含有量より0.2wt%以上増加してい
る。さらに、0.2〜1.5wt%増加することが好ま
しく、0.2〜1.2wt%増加することが特に好まし
い。
In the present invention, the hydrogen content of the deasphalted oil obtained in the solvent extraction step is increased by 0.2% by weight or more than the hydrogen content of the raw heavy oil. Furthermore, it is preferable to increase by 0.2 to 1.5 wt%, and it is particularly preferable to increase by 0.2 to 1.2 wt%.

【0017】さらに、原料重質油の水素含有量の値によ
り、溶剤抽出処理の水素含有量の増加量を変えることが
好ましい。すなわち、原料油の水素含有量が11wt%
以上の場合には、溶剤抽出工程において原料油に対して
0.2〜1.0wt%、特に0.2〜0.5wt%の水
素含有量増加になるように抽出処理条件を制御すること
が好ましい。また、水素含有量が11.0wt%未満で
あれば、0.5〜1.5wt%、特に0.8〜1.3w
t%の範囲の増加量が好ましい。
Further, it is preferable that the amount of increase in the hydrogen content in the solvent extraction treatment is changed depending on the value of the hydrogen content of the raw material heavy oil. That is, the hydrogen content of the feedstock is 11 wt%
In the above case, the extraction processing conditions may be controlled so that the hydrogen content is increased by 0.2 to 1.0 wt%, particularly 0.2 to 0.5 wt% with respect to the feed oil in the solvent extraction step. preferable. Further, when the hydrogen content is less than 11.0 wt%, 0.5 to 1.5 wt%, particularly 0.8 to 1.3 w%.
Increases in the range of t% are preferred.

【0018】溶剤抽出工程における水素含有量の増加
は、0.2wt%以下であると不純物であるアスファル
テンの除去が不十分となり、後段の水素化精製工程で処
理しても不純物の除去が十分にできなくなるため必須の
条件である。一方、その増加量の上限は精製度の観点か
らは大きければ大きいほどよいが、1.5wt%以上増
加させる場合には脱アスファルテン油の回収率が低下す
るため経済的でない。
When the content of hydrogen in the solvent extraction step is increased to 0.2 wt% or less, the removal of asphaltene, which is an impurity, becomes insufficient, and the impurity is sufficiently removed even in the subsequent hydrorefining step. This is an indispensable condition because it becomes impossible. On the other hand, the upper limit of the increase is better from the viewpoint of the degree of refining, but it is not economical to increase the amount by 1.5 wt% or more because the recovery of the deasphaltenated oil decreases.

【0019】本発明は、上記の溶剤抽出処理で水素含有
量が0.2wt%以上増加するように溶剤抽出処理した
脱アスファルテン油を、続く第2の工程として水素化精
製処理する。本発明の水素化精製処理においては、水素
含有量が0.5wt%以上増加する条件で処理する。こ
の水素化精製処理は、触媒と水素の存在下、高温高圧で
炭化水素を処理する代表的な精製処理であり、水素化分
解、水素化脱硫、水素化脱金属、水素化脱窒素等の反応
のすべてを含むことができる。すなわち、原料重質油か
ら低分子量精製油を得る水素化分解、炭化水素中の硫黄
化合物を水素と反応させ、硫化水素にして分離し、原料
油より低硫黄濃度の精製油を得る水素化脱硫、高温高圧
水素下で炭化水素中にある金属化合物を水素化し、元素
状の金属にして触媒上に沈着させ、低金属濃度の精製油
を得る水素化脱金属、高温高圧水素下で炭化水素中の窒
素化合物を水素と反応させ、アンモニアにして分離し、
原料油から低窒素濃度の精製油を得る水素化脱窒素等の
反応の総てを含んでもよい。
In the present invention, the deasphaltenated oil which has been subjected to the solvent extraction treatment so as to increase the hydrogen content by 0.2% by weight or more in the solvent extraction treatment is subjected to a hydrorefining treatment as a subsequent second step. In the hydrorefining treatment of the present invention, treatment is performed under the condition that the hydrogen content increases by 0.5 wt% or more. This hydrorefining treatment is a typical purification treatment for treating hydrocarbons at high temperature and pressure in the presence of a catalyst and hydrogen, and includes reactions such as hydrocracking, hydrodesulfurization, hydrodemetallation, and hydrodenitrogenation. Can be included. That is, hydrocracking to obtain a low molecular weight refined oil from a raw heavy oil, hydrodesulfurization in which a sulfur compound in a hydrocarbon is reacted with hydrogen and separated into hydrogen sulfide to obtain a refined oil having a lower sulfur concentration than the raw oil Hydrogenation of metal compounds in hydrocarbons under high-temperature and high-pressure hydrogen, turning them into elemental metals and depositing them on catalysts to obtain refined oils with low metal concentration, hydrodemetallization in hydrocarbons under high-temperature and high-pressure hydrogen Reacting with nitrogen, hydrogen and ammonia to separate,
It may include all reactions such as hydrodenitrogenation to obtain a refined oil having a low nitrogen concentration from the feedstock.

【0020】重質油には不純物として硫黄分、金属等が
含まれるが、前段の溶剤抽出処理工程で予め水素化精製
工程のみで除去することが困難な不純物を除去している
ため、過酷な条件にすることなく効率的に、不純物を低
濃度まで除去できる。本発明の水素化精製処理に用いら
れる触媒としては、水素化脱金属触媒、水素化脱硫触
媒、水素化脱硫脱金属触媒、水素化分解触媒から選ばれ
る少なくとも2種類を組み合わせて用いることが好まし
い。水素化精製に用いる触媒として好ましくは、Co/
Mo、Ni/Co/Mo、Ni/Mo系である。
Heavy oil contains impurities such as sulfur and metal as impurities. However, since it is difficult to remove impurities which are difficult to remove in the preceding solvent extraction step only by the hydrorefining step, severe oil is removed. The impurities can be efficiently removed to a low concentration without setting the conditions. As the catalyst used in the hydrorefining treatment of the present invention, it is preferable to use a combination of at least two kinds selected from a hydrodemetallation catalyst, a hydrodesulfurization catalyst, a hydrodesulfurization demetallation catalyst, and a hydrocracking catalyst. Preferably, the catalyst used for hydrorefining is Co /
Mo, Ni / Co / Mo, and Ni / Mo.

【0021】水素化精製反応の条件に特に制限はない
が、一般的に行われている水素化精製反応条件の範囲が
好ましい。すなわち、水素分圧は60〜150kg/c
2が好ましく、80〜130kg/cm2が特に好まし
い。また、水素/油比は、400〜1200Nm3/k
lが好ましく、600〜1000Nm3/klが特に好
ましい。LHSVは、0.1〜1.0/hrが好まし
く、0.2〜0.8/hrが特に好ましい。反応温度
は、340〜440℃が好ましく、350〜420℃が
特に好ましい。
There are no particular restrictions on the conditions for the hydrorefining reaction, but the range of commonly used hydrorefining reaction conditions is preferred. That is, the hydrogen partial pressure is 60 to 150 kg / c.
m 2 is preferred, and 80 to 130 kg / cm 2 is particularly preferred. Further, the hydrogen / oil ratio is 400 to 1200 Nm 3 / k.
1 is preferable, and 600 to 1000 Nm 3 / kl is particularly preferable. LHSV is preferably 0.1 to 1.0 / hr, particularly preferably 0.2 to 0.8 / hr. The reaction temperature is preferably from 340 to 440 ° C, particularly preferably from 350 to 420 ° C.

【0022】かかる条件は水素化精製の一般的条件であ
り、本発明においては前段の溶剤抽出工程の後に水素含
有量が0.5wt%以上増加する条件で水素化精製工程
を行えば、最終精製油としての不純物を効率的に除去す
ることができる。本発明においては、原料油の水素含有
量が11〜12wt%である場合、水素化精製工程で得
られる精製油の脱アスファルテン油に対する水素含有量
の増加は、0.5〜1.0wt%、特に0.5〜0.9
wt%であることが好ましい。また、原料油の水素含有
量が11wt%未満である場合、水素化精製工程で得ら
れる精製油の脱アスファルテン油に対する水素含有量の
増加は、0.6〜1.5wt%、特に0.8〜1.3w
t%であることが好ましい。
Such conditions are general conditions for hydrorefining. In the present invention, if the hydrotreating step is carried out under the condition that the hydrogen content increases by 0.5 wt% or more after the preceding solvent extraction step, the final purification Impurities as oil can be efficiently removed. In the present invention, when the hydrogen content of the feedstock is 11 to 12 wt%, the increase in the hydrogen content of the refined oil obtained in the hydrorefining step with respect to the deasphalted oil is 0.5 to 1.0 wt%. Especially 0.5 to 0.9
It is preferably in wt%. When the hydrogen content of the feedstock is less than 11 wt%, the increase in the hydrogen content of the refined oil obtained in the hydrorefining step with respect to the deasphalted oil is 0.6 to 1.5 wt%, particularly 0.8 wt%. ~ 1.3w
It is preferably t%.

【0023】さらに、本発明の水素化精製処理工程にお
ける水素含有量の増加量は、前段の溶剤抽出工程で得ら
れた脱アスファルテン油の水素含有量が11.5wt%
以上であれば、0.5〜1.0wt%の増加量であるこ
とが好ましく、11.5wt%未満であれば0.6〜
1.5wt%の増加量であることが好ましい。水素化精
製処理工程で水素含有量の増加量が0.5wt%未満で
あると、脱アスファルテン油の不純物除去が不十分にな
り、1.5wt%以上の増加量にする場合には、水素分
圧、反応温度、触媒充填量等の水素化精製反応の処理条
件を過酷にしなければならないため経済的でない。
Further, the increase in the hydrogen content in the hydrorefining treatment step of the present invention is based on the fact that the hydrogen content of the deasphalted oil obtained in the preceding solvent extraction step is 11.5 wt%.
If it is not less than 0.5 wt%, the amount is preferably 0.5 to 1.0 wt%, and if it is less than 11.5 wt%, it is 0.6 to 1.0 wt%.
Preferably, the amount is 1.5 wt%. If the amount of increase in the hydrogen content in the hydrorefining treatment step is less than 0.5 wt%, the removal of impurities from the deasphalted oil becomes insufficient. It is not economical because the processing conditions of the hydrorefining reaction, such as pressure, reaction temperature, and catalyst loading, must be severe.

【0024】すなわち、水素化精製の反応条件の観点か
ら述べれば、溶剤抽出処理工程において、水素化精製処
理工程で除去されにくい不純物であるアスファルテン分
を予め選択的に除去することにより、続く水素化精製処
理工程において、水素分圧や反応温度を極端に高くする
ことなく、また触媒量を大幅に増加させて反応時間を長
くしなくても不純物を効率的に低濃度まで除去できるこ
ととなる。その結果、アスファルテン中に濃縮されて除
去されにくい形態で存在しているコンラドソン残留炭素
やNiやV等の金属分が溶剤抽出によって選択的に除去
され、次いで水素化精製処理では、除去されやすい形態
で存在している硫黄、NiやV等の金属等の不純物を集
中的に除去できるものである。
That is, from the viewpoint of the reaction conditions for hydrorefining, in the solvent extraction step, asphaltene, which is an impurity which is difficult to be removed in the hydrorefining step, is selectively removed in advance, so that the subsequent hydrogenation step is carried out. In the purification treatment step, impurities can be efficiently removed to a low concentration without extremely increasing the hydrogen partial pressure or the reaction temperature, and without significantly increasing the amount of catalyst and lengthening the reaction time. As a result, Conradson residual carbon and metals such as Ni and V, which are present in a form that is difficult to remove by being concentrated in asphaltenes, are selectively removed by solvent extraction, and then easily removed by hydrorefining treatment. In this way, impurities such as sulfur and metals such as Ni and V which are present can be intensively removed.

【0025】上記の本発明による精製工程で処理した精
製油は、低級オレフィン製造用原料に適用して高温熱分
解する場合においても、コーキングやファウリングの原
因物質となる不純物は確実に、かつ効率的に低減されて
いるため、低級オレフィンの収率および連続運転性から
商業生産に適用することができる。これは従来低級オレ
フィン原料としては不適と考えられていた残渣油や超重
質原油などの重質油を出発物質として簡便な精製により
高品質な精製油を得ることができることを意味する。
The refined oil treated in the refining process according to the present invention can be used as a raw material for producing lower olefins, and when it is subjected to high-temperature pyrolysis, impurities which cause caulking and fouling are reliably and efficiently produced. Therefore, it can be applied to commercial production due to the lower olefin yield and continuous operation. This means that a high-quality refined oil can be obtained by a simple refining process using a heavy oil such as a residual oil or a super-heavy crude oil, which has conventionally been considered unsuitable as a lower olefin raw material, as a starting material.

【0026】また、本発明においては、上記を満足する
条件で処理した精製油であれば本発明の精製油として有
効であるが、特に低級オレフィン製造用原料として用い
る場合には、水素含有量が11.5wt%以上であるこ
とが必要であり、12.0wt%以上であることがより
好ましい。
In the present invention, any refined oil treated under the conditions satisfying the above conditions is effective as the refined oil of the present invention, but when used as a raw material for producing lower olefins, the hydrogen content is particularly low. It is necessary to be 11.5 wt% or more, and it is more preferable that it is 12.0 wt% or more.

【0027】本発明においては、重質油を溶剤抽出及び
水素化精製の2段階の精製により得られた精製油の水素
含有量は、原料重質油より0.7重量%以上増加してい
ることが必要であり、0.8〜2.7wt%であること
が好ましく、さらに1.0〜2.2wt%であることが
好ましい。また、低級オレフィン製造用原料として用い
る場合には、最終精製油の水素含有量は、11.5wt
%以上であることが好ましく、12.0〜13.5wt
%であることがさらに好ましい。
In the present invention, the hydrogen content of the refined oil obtained by two-stage refining of heavy oil by solvent extraction and hydrorefining is increased by 0.7% by weight or more compared with the raw heavy oil. And it is preferably 0.8 to 2.7 wt%, more preferably 1.0 to 2.2 wt%. When used as a raw material for producing lower olefins, the hydrogen content of the final refined oil is 11.5 wt.
%, Preferably 12.0 to 13.5 wt%
% Is more preferable.

【0028】精製油の水素含有量が11.5wt%以
上、かつ原料重質油より0.7wt%以上増加するよう
に溶剤抽出処理及び水素化精製処理を行うことにより、
各処理における特性が相互に補完され、各工程の溶剤抽
出および水素化精製のための装置に過大な負荷をかける
ことがなく、高度に精製された精製油を高収率で得るこ
とができ、石油化学用原料に適用した場合においてもコ
ーキングやファウリングが生じ難くなり、高収率で石油
化学用原料に適した精製油を製造することができる。
The solvent extraction process and the hydrorefining process are performed so that the hydrogen content of the refined oil is 11.5 wt% or more and 0.7 wt% or more than that of the heavy fuel oil.
The characteristics in each treatment are complemented with each other, and a highly refined refined oil can be obtained in high yield without imposing an excessive load on equipment for solvent extraction and hydrorefining in each step. Even when applied to petrochemical raw materials, caulking and fouling hardly occur, and a refined oil suitable for petrochemical raw materials can be produced in high yield.

【0029】本発明の重質油を溶剤抽出処理する工程に
おいては、その原料油の水素含有量を0.2wt%以上
増加する条件で抽出操作するが、Ni+V金属は、残渣
油、超重質原油中に数十〜数千wtppm含まれてい
る。これらはアスファルテンに濃縮されて存在してお
り、溶剤抽出工程ではアスファルテンを選択的に除去で
きるため、溶剤抽出処理で脱アスファルテン油中の含有
量を抽出精製油である脱アスファルテン油中のNi+V
のメタル濃度を70wtppm以下、特に50wtpp
m以下にすることが好ましい。また、残留炭素含量が1
5wt%以下、特に12wt%以下となるように、溶剤
抽出処理を行うことが好ましい。すなわち、溶剤抽出処
理で水素含有量を0.2wt%増加させるとともに、N
i+V金属濃度を70wtppm以下、コンラドソン残
留炭素を15wt%以下とすることが好ましく、これに
より後段の水素化精製処理の条件を過酷にすることな
く、確実に不純物を除去でき、高品質の精製油を得るこ
とができる。
In the step of solvent-extracting heavy oil of the present invention, the extraction operation is performed under the condition that the hydrogen content of the raw oil is increased by 0.2 wt% or more. It contains tens to thousands of wtppm. Since these are concentrated in asphaltene and asphaltene can be selectively removed in the solvent extraction step, the content in the deasphalted oil is extracted by the solvent extraction treatment to obtain Ni + V in the deasphalted oil which is a refined oil.
Metal concentration of 70 wtppm or less, especially 50 wtpp
m or less. In addition, the residual carbon content is 1
It is preferable to perform the solvent extraction treatment so as to be 5 wt% or less, particularly 12 wt% or less. That is, the solvent extraction process increases the hydrogen content by 0.2 wt%,
It is preferable that the concentration of i + V metal be 70 wtppm or less and the residual carbon of Conradson be 15 wt% or less, whereby impurities can be reliably removed without making the subsequent hydrorefining treatment conditions severe, and high-quality refined oil can be obtained. Obtainable.

【0030】また、脱アスファルテン油の硫黄濃度を5
wt%以下、特に4wt%以下とすることが好ましい。
それにより、続く水素化精製処理で得られる最終精製油
の硫黄分を0.5wt%以下、好ましくは0.3wt%
以下となるように確実に処理することができる。脱アス
ファルテン油のNi+V濃度を70wtppm以下、残
留炭素濃度が15wt%以下、硫黄濃度が5wt%以下
とすることにより、続く水素化精製処理で得られる最終
精製油のNi+V濃度を2wtppm以下、好ましくは
1wtppm以下、残留炭素濃度を1wt%以下、硫黄
濃度を0.5wt%以下、好ましくは0.3wt%以下
となるように確実に処理することができる。最終精製油
の硫黄分を0.5重量%以下とすることによって、低級
オレフィン用原料油として用いた場合においても熱分解
装置の腐食を材料の許容範囲内に抑えることができ、実
質的な低級オレフィン用原料のコマーシャル製造を可能
にすることができる。
Further, the sulfur concentration of the deasphalted oil was adjusted to 5%.
It is preferably set to not more than 4 wt%, especially not more than 4 wt%.
Thereby, the sulfur content of the final refined oil obtained in the subsequent hydrorefining treatment is 0.5 wt% or less, preferably 0.3 wt%.
The processing can be reliably performed as follows. By setting the Ni + V concentration of the deasphalted oil to 70 wtppm or less, the residual carbon concentration to 15 wt% or less, and the sulfur concentration to 5 wt% or less, the Ni + V concentration of the final refined oil obtained in the subsequent hydrorefining treatment is 2 wtppm or less, preferably 1 wtppm. In the following, the treatment can be reliably performed so that the residual carbon concentration is 1 wt% or less and the sulfur concentration is 0.5 wt% or less, preferably 0.3 wt% or less. By setting the sulfur content of the final refined oil to 0.5% by weight or less, even when used as a raw oil for lower olefins, corrosion of the thermal cracking unit can be suppressed within the allowable range of the material, and substantially lower Commercial production of olefin raw materials can be enabled.

【0031】本発明においては、最終精製油のNi+V
金属含有量が2wtppm以下、特に1.0wtppm
以下となるように溶剤抽出処理と水素化精製処理とを行
うことが好ましい。溶剤抽出処理でNi+V金属含有量
が70重量ppm以下になった脱アスファルテン油を、
水素化精製でさらにNi+V金属含有量を1wtppm
以下とすることにより、コーキングを著しく低減させる
ことができ、高収率で精製油を得ることができ、その精
製油を低級オレフィン製造用熱分解原料として用いるこ
とができる。
In the present invention, Ni + V of the final refined oil is used.
Metal content is 2wtppm or less, especially 1.0wtppm
It is preferable to perform the solvent extraction treatment and the hydrorefining treatment as described below. Deasphaltened oil whose Ni + V metal content is reduced to 70 wt ppm or less by solvent extraction treatment,
Hydrogen refining further increases Ni + V metal content by 1 wtppm
By setting the content as described below, coking can be remarkably reduced and a refined oil can be obtained in a high yield, and the refined oil can be used as a raw material for thermal decomposition for producing lower olefins.

【0032】エチレンとプロピレンを含む低級オレフィ
ンを熱分解反応により製造する工業的な方法において
は、デコーキングや副生重質油によるファウリングに対
するメンテナンス性とオレフィン収率がその経済性を左
右し、特に低級オレフィンの収率25%以上が目安とな
る。さらに低級オレフィンを詳しく見れば、エチレン収
率が15%以上、プロピレン収率10%以上が目安にな
る。
In an industrial process for producing a lower olefin containing ethylene and propylene by a pyrolysis reaction, the maintenance efficiency against decoking and fouling due to heavy by-product oil and the olefin yield determine the economic efficiency. In particular, the yield of the lower olefin is at least 25%. A closer look at lower olefins shows that the ethylene yield is at least 15% and the propylene yield is at least 10%.

【0033】また、熱分解装置のメンテナンス性を左右
するコーキングや副生重質油によるファウリングに関し
ては、定期的なデコーキング、クリーニングで対応して
いる。特に、副生重質油に関しては、分解管で分解され
た高温の分解生成物は過度な分解を防ぐ為に下流の熱交
換で急冷される際、重質油の生成量が多い場合には熱交
換器や配管を閉塞し、長期連続運転を不能とする。本発
明のように重質油から出発する場合には、熱分解反応に
おける副生重質油の生成量が商業運転の目安とすること
ができる。
In addition, coking and fouling with by-product heavy oil, which affect the maintainability of the thermal decomposition apparatus, are dealt with by regular decoking and cleaning. In particular, as for by-product heavy oil, when the high-temperature decomposition products decomposed in the decomposition tube are quenched by downstream heat exchange to prevent excessive decomposition, when the amount of heavy oil generated is large, Blocks heat exchangers and piping, making long-term continuous operation impossible. When starting from heavy oil as in the present invention, the amount of by-produced heavy oil generated in the thermal cracking reaction can be used as a standard for commercial operation.

【0034】本発明で得られる精製油は、従来エチレン
などの低級オレフィン製造用原料には用いられていない
水素含有量が12wt%以下の重質油を精製処理し、低
級オレフィン製造用原料として提供した場合に、熱分解
時におけるオレフィン収率およびコーキング特性が良好
で工業生産を可能とするものである。
The refined oil obtained by the present invention is obtained by refining a heavy oil having a hydrogen content of 12% by weight or less, which has not been used as a raw material for producing lower olefins such as ethylene, as a raw material for producing lower olefins. In this case, the olefin yield and coking properties during thermal decomposition are good, and industrial production is possible.

【0035】本発明においては、原油等の単なる蒸留分
離において得られる留出油中の不純物の含有量が少ない
場合、または簡単な精製で不純物の含有量を低減できる
場合には、原油を出発原料として留出油と残渣油とに分
離し、残渣油である常圧蒸留残渣油や減圧蒸留残渣油を
上記のように溶剤抽出及び水素化精製処理して精製油と
し、この精製油に上記留出油を水素化精製した少なくと
も一部を混合して精製油とすることもできる。
In the present invention, when the content of impurities in the distillate obtained by simple distillation separation of crude oil or the like is small, or when the content of impurities can be reduced by simple purification, the crude oil is used as a starting material. As a distillate oil and a residual oil, and the residual oil, that is, the atmospheric distillation residual oil or the vacuum distillation residual oil, is subjected to solvent extraction and hydrorefining treatment as described above to obtain a refined oil, and the refined oil is subjected to the above distillation. A refined oil can be obtained by mixing at least a part of the refined oil after hydrorefining.

【0036】この場合、溶剤抽出工程と水素化精製工程
とが本発明の水素含有量の増加基準を満足するならば、
不純物含有量の少ない留出油を混合することにより、全
体の不純物濃度を減少させ、さらに精製油の供給量を増
加させることができことになる。低級オレフィン製造用
原料油として供給する場合には、熱分解反応におけるコ
ーキングやファウリングがさらに生じ難くなり、商業生
産を可能にすることができる。
In this case, if the solvent extraction step and the hydrorefining step satisfy the criteria for increasing the hydrogen content of the present invention,
By mixing the distillate oil having a low impurity content, the total impurity concentration can be reduced and the supply amount of the refined oil can be increased. When supplied as a raw oil for producing lower olefins, coking and fouling in the thermal decomposition reaction are further less likely to occur, and commercial production can be made possible.

【0037】[0037]

【実施例】次に実施例を示して本発明をさらに詳細に説
明するが、本発明は以下の実施例に限定されるものでは
ない。
EXAMPLES Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.

【0038】実施例1〜4及び比較例1〜5 実施例1 API比重が14.3の残渣油である重質油(水素含有
量:11.25[wt%]、Ni+V金属:65[wtp
pm]、コンラドソン残留炭素(以下CCRという):
11.1[wt%]、S:3.95[wt%])を原料油と
して溶剤抽出処理装置に導入し、ノルマルペンタン溶媒
を用いて(solvent/Oil比:8/1)抽出率
81wt%になるように抽出分離して脱アスファルテン
油(以下DA0という)を得た後、脱アスファルテン油
を以下の水素化精製条件で精製処理して本発明の精製油
1を得た。 水素化精製条件:Ni/Mo+Ni/Co/Mo触媒
(体積比で1/9)、水素分圧:90[atm]、H2
Oil比:600[Nm3/kl]、温度:380℃、L
HSV:0.5[1/hr] 得られた脱アスファルテン油および精製油1の原料油に
対する得率、水素含有量、各工程における水素含有量の
増加量、V+Ni含有量、CCR、硫黄濃度を表1に示
す。水素含有量はCHN元素分析法により測定した。
Examples 1 to 4 and Comparative Examples 1 to 5 Example 1 Heavy oil which is a residual oil having an API specific gravity of 14.3 (hydrogen content: 11.25 [wt%], Ni + V metal: 65 [wtp]
pm], Conradson carbon residue (CCR):
11.1 [wt%], S: 3.95 [wt%]) as a feed oil were introduced into a solvent extraction treatment apparatus, and the extraction rate was 81 wt% using a normal pentane solvent (solvent / Oil ratio: 8/1). After extraction and separation to obtain a deasphalted oil (hereinafter referred to as DA0), the deasphalted oil was purified under the following hydrorefining conditions to obtain a purified oil 1 of the present invention. Hydrorefining conditions: Ni / Mo + Ni / Co / Mo catalyst (1/9 by volume ratio), hydrogen partial pressure: 90 [atm], H 2 /
Oil ratio: 600 [Nm 3 / kl], temperature: 380 ° C, L
HSV: 0.5 [1 / hr] The yield, hydrogen content, increase in hydrogen content in each step, V + Ni content, CCR, and sulfur concentration of the obtained deasphalted oil and refined oil 1 with respect to the base oil, It is shown in Table 1. The hydrogen content was measured by CHN elemental analysis.

【0039】実施例2 実施例1で用いた原料油を溶剤抽出処理装置に導入し、
ノルマルペンタン溶媒を用いて(solvent/Oi
l比:8/1)抽出率84wt%になるように抽出分離
して脱アスファルテン油を得た後、DAOを実施例1と
同様の条件で水素化精製して本発明の精製油2を得た。
得られたDAOおよび精製油2の原料油に対する得率、
水素含有量、各工程における水素含有量の増加量、V+
Ni含有量、CCR、硫黄濃度を表1に示す。
Example 2 The raw material oil used in Example 1 was introduced into a solvent extraction treatment apparatus,
Using normal pentane solvent (solvent / Oi
1 ratio: 8/1) After extracting and separating to obtain an extraction rate of 84 wt% to obtain deasphalted oil, DAO was hydrorefined under the same conditions as in Example 1 to obtain a purified oil 2 of the present invention. Was.
The yield of the obtained DAO and refined oil 2 with respect to the feed oil,
Hydrogen content, increase in hydrogen content in each step, V +
Table 1 shows the Ni content, CCR, and sulfur concentration.

【0040】実施例3 実施例1で用いた原料油を溶剤抽出処理装置に導入し、
ノルマルペンタン溶媒を用いて(solvent/Oi
l比:8/1)抽出率81wt%になるように抽出分離
してDAOを得た後、DAOを以下の水素化精製条件で
精製処理して本発明の精製油3を得た。 水素化精製条件:Ni/Mo+Ni/Co/Mo触媒
(体積比で1/9)、水素分圧:85[atm]、H2
Oil比:600[Nm3/kl]、温度:360℃、L
HSV:0.5[1/hr] 得られたDAOおよび精製油3の原料油に対する得率、
水素含有量、各工程における水素含有量の増加量、V+
Ni含有量、CCR、硫黄濃度を表1に示す。
Example 3 The raw material oil used in Example 1 was introduced into a solvent extraction treatment apparatus.
Using normal pentane solvent (solvent / Oi
1 ratio: 8/1) DAO was obtained by extraction and separation so as to have an extraction rate of 81 wt%, and then the DAO was purified under the following hydrorefining conditions to obtain a purified oil 3 of the present invention. Hydrorefining conditions: Ni / Mo + Ni / Co / Mo catalyst (1/9 by volume ratio), hydrogen partial pressure: 85 [atm], H 2 /
Oil ratio: 600 [Nm 3 / kl], temperature: 360 ° C, L
HSV: 0.5 [1 / hr] Yield of the obtained DAO and refined oil 3 with respect to the feed oil,
Hydrogen content, increase in hydrogen content in each step, V +
Table 1 shows the Ni content, CCR, and sulfur concentration.

【0041】実施例4 実施例1で用いた原料油を溶剤抽出処理装置に導入し、
イソブタン/ノルマルペンタン混合溶媒を用いて(so
lvent/Oil比:8/1)抽出率76wt%にな
るように抽出分離してDAOを得た後、DAOを以下の
水素化精製条件で精製処理して本発明の精製油4を得
た。 水素化精製条件:Ni/Mo+Ni/Co/Mo触媒
(体積比で1/9)、水素分圧:110[atm]、H2
/Oil比:800[Nm3/kl]、温度:380℃、
LHSV:0.3[1/hr] 得られたDAOおよび精製油3の原料油に対する得率、
水素含有量、各工程における水素含有量の増加量、V+
Ni含有量、CCR、硫黄濃度を表1に示す。
Example 4 The raw material oil used in Example 1 was introduced into a solvent extraction treatment apparatus.
Using an isobutane / normal pentane mixed solvent (so
lvent / Oil ratio: 8/1) After extraction and separation to obtain an extraction rate of 76 wt% to obtain DAO, the DAO was purified under the following hydrorefining conditions to obtain a purified oil 4 of the present invention. Hydrorefining conditions: Ni / Mo + Ni / Co / Mo catalyst (1/9 in volume ratio), hydrogen partial pressure: 110 [atm], H 2
/ Oil ratio: 800 [Nm 3 / kl], temperature: 380 ° C,
LHSV: 0.3 [1 / hr] Yield of the obtained DAO and refined oil 3 with respect to the feed oil,
Hydrogen content, increase in hydrogen content in each step, V +
Table 1 shows the Ni content, CCR, and sulfur concentration.

【0042】[0042]

【表1】 [Table 1]

【0043】比較例1 実施例1と同様の原料油を用いて、溶剤抽出率を88%
とした以外は実施例1と同様の抽出条件で抽出分離して
DAOを得た後、DAOを以下の水素化精製条件で水素
化精製して比較の精製油Aを得た。 水素化精製条件:Ni/Mo+Co/Mo触媒(体積比
で1/9)、水素分圧:90[atm]、H2/Oil:
600[Nm3/kl]、温度:360℃、LHSV:
0.5[1/hr] 得られたDAOおよび精製油Aの原料油に対する得率、
水素含有量、各工程における水素含有量の増加量、V+
Ni含有量、CCR、硫黄濃度を表2に示す。
Comparative Example 1 Using the same raw oil as in Example 1, the solvent extraction rate was 88%.
After extracting and separating under the same extraction conditions as in Example 1 to obtain DAO, DAO was hydrorefined under the following hydrorefining conditions to obtain comparative purified oil A. Hydrorefining conditions: Ni / Mo + Co / Mo catalyst (1/9 by volume ratio), hydrogen partial pressure: 90 [atm], H 2 / Oil:
600 [Nm 3 / kl], temperature: 360 ° C, LHSV:
0.5 [1 / hr] The yield of the obtained DAO and refined oil A with respect to the feed oil,
Hydrogen content, increase in hydrogen content in each step, V +
Table 2 shows the Ni content, CCR, and sulfur concentration.

【0044】比較例2 実施例1と同様の原料油を用いて、ノルマルペンタン溶
媒を用いて(solvent/Oil比:8/1)抽出
率86wt%になるように抽出分離してDAOを得た
後、DAOを以下の水素化精製条件で精製処理して比較
の精製油Bを得た。 水素化精製条件:Ni/Mo+Co/Mo触媒(体積比
で1/9)、水素分圧:90[atm]、H2/Oil:
600[Nm3/kl]、温度:360℃、LHSV:
0.5[1/hr] 得られたDAOおよび精製油Bの原料油に対する得率、
水素含有量、各工程における水素含有量の増加量、V+
Ni含有量、CCR、硫黄濃度を表2に示す。
COMPARATIVE EXAMPLE 2 DAO was obtained by using the same feedstock oil as in Example 1 and extracting and separating it using a normal pentane solvent (solvent / Oil ratio: 8/1) so that the extraction rate became 86 wt%. Thereafter, the DAO was purified under the following hydrorefining conditions to obtain a purified oil B for comparison. Hydrorefining conditions: Ni / Mo + Co / Mo catalyst (1/9 by volume ratio), hydrogen partial pressure: 90 [atm], H 2 / Oil:
600 [Nm 3 / kl], temperature: 360 ° C, LHSV:
0.5 [1 / hr] The yield of the obtained DAO and refined oil B with respect to the feed oil,
Hydrogen content, increase in hydrogen content in each step, V +
Table 2 shows the Ni content, CCR, and sulfur concentration.

【0045】比較例3 実施例1と同様の原料油を用いて、ノルマルペンタン溶
媒を用いて(solvent/Oil比:8/1)抽出
率81wt%になるように抽出分離ししてDAOを得た
後、DAOを以下の水素化精製条件で精製処理して比較
の精製油Cを得た。 水素化精製条件:Ni/Mo+Co/Mo触媒(体積比
で1/9)、水素分圧:90[atm]、H2/Oil:
600[Nm3/kl]、温度:345℃、LHSV:
0.6[1/hr] 得られたDAOおよび精製油Cの原料油に対する得率、
水素含有量、各工程における水素含有量の増加量、V+
Ni含有量、CCR、硫黄濃度を表2に示す。
Comparative Example 3 The same raw oil as in Example 1 was extracted and separated using a normal pentane solvent (solvent / Oil ratio: 8/1) to an extraction rate of 81 wt% to obtain DAO. After that, the DAO was purified under the following hydrorefining conditions to obtain comparative purified oil C. Hydrorefining conditions: Ni / Mo + Co / Mo catalyst (1/9 by volume ratio), hydrogen partial pressure: 90 [atm], H 2 / Oil:
600 [Nm 3 / kl], temperature: 345 ° C., LHSV:
0.6 [1 / hr] The yield of the obtained DAO and refined oil C with respect to the feed oil,
Hydrogen content, increase in hydrogen content in each step, V +
Table 2 shows the Ni content, CCR, and sulfur concentration.

【0046】比較例4 実施例1と同様の原料油を用いて、プロパン溶媒を用い
て(solvent/Oil比:8/1)抽出率45w
t%になるように抽出分離して比較の精製油Dを得た。
得られた精製油Dの原料油に対する得率、水素含有量、
各工程における水素含有量の増加量、V+Ni含有量、
CCR、硫黄濃度を表2に示す。
Comparative Example 4 Using the same raw material oil as in Example 1, and using a propane solvent (solvent / oil ratio: 8/1), an extraction rate of 45 w
Extraction and separation were performed so as to obtain a purified oil D for comparison.
Yield of the obtained refined oil D with respect to the feed oil, hydrogen content,
Increase in hydrogen content in each step, V + Ni content,
Table 2 shows the CCR and sulfur concentrations.

【0047】比較例5 実施例1と同様の原料油を用いて、以下の水素化精製条
件で精製処理して比較の精製油Eを得た。 水素化精製条件:Ni/Mo+Co/Mo触媒(体積比
で1/9)、水素分圧:150[atm]、H2/Oi
l:1000[Nm3/kl]、温度:380℃、LHS
V:0.25[1/hr] 得られた精製油Eの原料油に対する得率、水素含有量、
各工程における水素含有量の増加量、V+Ni含有量、
CCR、硫黄濃度を表2に示す。
Comparative Example 5 A refined oil E for comparison was obtained by using the same raw oil as in Example 1 and purifying it under the following hydrorefining conditions. Hydrorefining conditions: Ni / Mo + Co / Mo catalyst (1/9 by volume ratio), hydrogen partial pressure: 150 [atm], H 2 / Oi
l: 1000 [Nm 3 / kl], temperature: 380 ° C, LHS
V: 0.25 [1 / hr] Yield of the obtained refined oil E with respect to the base oil, hydrogen content,
Increase in hydrogen content in each step, V + Ni content,
Table 2 shows the CCR and sulfur concentrations.

【0048】[0048]

【表2】 [Table 2]

【0049】低級オレフィン製造例 実施例1〜4及び比較例1〜5で得られた最終精製油を
それぞれ用いて、以下の条件で熱分解した。 反応条件: 反応管 :内径28mmφ、長さ1440mm(加熱
部分1200mm)のHPM材エチレン分解管を使用 原料供給 :原料油=1.69[L/Hr]、水は原料油
に対して重量比で1.0になるよう供給量を調整 反応温度 :900℃ 圧力 :常圧 滞留時間 :0.5秒 得られた低級オレフィン(エチレンおよびプロピレン)
の収率は、生成ガス量とガスクロを用いて分析した生成
ガス中のガス組成から求めた。副生重質油の生成量は、
熱分解ガスを冷却した後の生成油を蒸留でナフサ留分を
分離した後のボトム油量から求めた。また、連続運転性
の判断は、反応管から分岐する急冷却部に析出したファ
ウリングの原因となる副生重質油を原料油に対する生成
重量比で、30wt%以下=○、30wt%以上=×と
して判定した。結果を表3に示す。
Production Examples of Lower Olefins The final refined oils obtained in Examples 1 to 4 and Comparative Examples 1 to 5 were respectively pyrolyzed under the following conditions. Reaction conditions: Reaction tube: Uses an HPM material ethylene cracking tube having an inner diameter of 28 mm and a length of 1440 mm (heating portion: 1200 mm). Raw material supply: 1.69 [L / Hr] of raw material oil, and water is weight ratio to raw material oil. Adjust the supply amount to be 1.0 Reaction temperature: 900 ° C Pressure: Normal pressure Residence time: 0.5 seconds Obtained lower olefin (ethylene and propylene)
Was determined from the amount of product gas and the gas composition in the product gas analyzed using gas chromatography. The amount of by-product heavy oil produced is
The oil produced after cooling the pyrolysis gas was determined from the bottom oil amount after the naphtha fraction was separated by distillation. In addition, the determination of the continuous operability is based on the weight ratio of the by-product heavy oil, which is a cause of fouling, precipitated in the quenching portion branched from the reaction tube to the feed oil, 30 wt% or less = ○, 30 wt% or more = It was determined as x. Table 3 shows the results.

【0050】[0050]

【表3】 [Table 3]

【0051】本発明の実施例1〜4では、溶剤抽出処理
により得られるDAOを重質原料油に比べて水素含有量
が0.2wt%以上増加するように抽出し、続く水素化
精製油ではDAOに比べて水素含有量が0.5wt%以
上増加するように処理し、結果として最終精製油は重質
原料油に比べて0.7wt%以上増加するように処理し
た。本発明の精製油においては、いずれもV+Niは
0.1wtppm以下、コンラドソン残留炭素が0.8
wt%以下、硫黄濃度0.3wt%以下に不純物が除去
された精製油が得られた。これに対し、本発明の水素含
有量の増加を満足していない比較例1〜5は、最終精製
油のコンラドソン残留炭素が0.8wt%以上であり、
硫黄濃度は0.3wt%以上である。
In Examples 1 to 4 of the present invention, DAO obtained by the solvent extraction treatment was extracted such that the hydrogen content was increased by 0.2% by weight or more as compared with the heavy feed oil. The hydrogen content was treated to increase by 0.5 wt% or more compared to DAO, and as a result, the final refined oil was treated to increase by 0.7 wt% or more compared to heavy feed oil. In the refined oil of the present invention, V + Ni is 0.1 wtppm or less and Conradson residual carbon is 0.8% or less.
A refined oil from which impurities were removed to a wt% or less and a sulfur concentration of 0.3 wt% or less was obtained. On the other hand, in Comparative Examples 1 to 5 which do not satisfy the increase in the hydrogen content of the present invention, Conradson residual carbon in the final refined oil is 0.8 wt% or more,
The sulfur concentration is 0.3 wt% or more.

【0052】特に溶剤抽出処理のみではDAOの抽出率
を小さくしても硫黄濃度が下がっておらず、水素化精製
処理のみでは、水素消費量を大幅に増加してもコンラド
ソン残留炭素が除去できていないことがわかる。また、
得られた精製油を熱分解処理して低級オレフィンを製造
した結果では、本発明の精製油ではいずれもエチレン収
率が15%を超え、プロピレン収率は10%を超えてお
り、さらに、副生重質油の生成状況から連続運転性は可
能な範囲と判断された。一方、本発明を満足しない比較
例では、エチレン収率が15%を超えておらず、さら
に、副生重質油の生成量が多く連続運転性はいずれも問
題があることがわかる。
In particular, with the solvent extraction treatment alone, the sulfur concentration did not decrease even when the DAO extraction rate was reduced, and with the hydrorefining treatment alone, Conradson residual carbon could be removed even if the hydrogen consumption was greatly increased. It turns out there is no. Also,
As a result of producing a lower olefin by subjecting the obtained refined oil to a thermal decomposition treatment, the refined oil of the present invention has an ethylene yield of more than 15%, a propylene yield of more than 10%, and The continuous operability was judged to be within the possible range based on the production status of fresh heavy oil. On the other hand, in Comparative Examples that do not satisfy the present invention, the ethylene yield does not exceed 15%, and furthermore, the amount of by-produced heavy oil generated is large, and it can be seen that there is a problem in any of the continuous operability.

【0053】実施例5 API比重4.2の残渣油である重質油(水素含有量:
10.68wt%、Ni+V金属:246wtppm、
CCR:25wt%、S:5.5wt%)を原料油とし
て溶剤抽出処理装置に導入し、イソブタン溶媒を用いて
(solvent/Oil比:8/1)抽出率63wt
%になるように抽出分離してDAOを得た後、DAOを
以下の条件で水素化精製して本発明の精製油5を得た。 水素化精製条件:Ni/Co/Mo+Co/Mo触媒
(体積比で2/8)、水素分圧:110[atm]、H2
/Oil比:800[Nm3/kl]、温度:380℃、
LHSV:0.3[1/hr] 得られたDAOおよび精製油5の原料油に対する得率、
水素含有量、各工程における水素含有量の増加量、V+
Ni含有量、CCR、硫黄濃度を表4に示す。
Example 5 Heavy oil which is a residual oil having an API specific gravity of 4.2 (hydrogen content:
10.68 wt%, Ni + V metal: 246 wt ppm,
(CCR: 25 wt%, S: 5.5 wt%) as a feed oil into a solvent extraction treatment apparatus, and using an isobutane solvent (solvent / Oil ratio: 8/1), an extraction rate of 63 wt.
% To obtain DAO, and then DAO was hydrorefined under the following conditions to obtain a purified oil 5 of the present invention. Hydrorefining conditions: Ni / Co / Mo + Co / Mo catalyst (2/8 by volume ratio), hydrogen partial pressure: 110 [atm], H 2
/ Oil ratio: 800 [Nm 3 / kl], temperature: 380 ° C,
LHSV: 0.3 [1 / hr] Yield of the obtained DAO and refined oil 5 with respect to the feedstock,
Hydrogen content, increase in hydrogen content in each step, V +
Table 4 shows the Ni content, CCR, and sulfur concentration.

【0054】実施例6 実施例5と同様の原料油を用いて、イソブタン溶媒を用
いて(solvent/Oil比:8/1)抽出率65
wt%になるように抽出分離してDAOを得た後、DA
Oを以下の水素化精製条件で精製処理して本発明の精製
油6を得た。 水素化精製条件:Ni/Mo+Co/Mo触媒(体積比
で2/8)、水素分圧:140[atm]、H2/Oi
l:1000[Nm3/kl]、温度:375℃、LHS
V:0.2[1/hr] 得られたDAOおよび精製油6の原料油に対する得率、
水素含有量、各工程における水素含有量の増加量、V+
Ni含有量、CCR、硫黄濃度を表4に示す。
Example 6 Using the same feedstock oil as in Example 5, and using an isobutane solvent (solvent / oil ratio: 8/1), the extraction rate was 65.
wt% to obtain DAO,
O was purified under the following hydrorefining conditions to obtain a purified oil 6 of the present invention. Hydrorefining conditions: Ni / Mo + Co / Mo catalyst (2/8 by volume ratio), hydrogen partial pressure: 140 [atm], H 2 / Oi
l: 1000 [Nm 3 / kl], temperature: 375 ° C, LHS
V: 0.2 [1 / hr] The yield of the obtained DAO and refined oil 6 with respect to the feed oil,
Hydrogen content, increase in hydrogen content in each step, V +
Table 4 shows the Ni content, CCR, and sulfur concentration.

【0055】[0055]

【表4】 [Table 4]

【0056】比較例6 実施例5と同様の原料油を用いて、イソブタン溶媒を用
いて(solvent/Oil比:8/1)抽出率65
wt%になるように抽出分離してDAOを得た後、DA
Oを以下の水素化精製条件で精製処理して比較の精製油
Fを得た。 水素化精製条件:Ni/Mo+Co/Mo触媒(体積比
で2/8)、水素分圧:80[atm]、H2/Oil:
800[Nm3/kl]、温度:340℃、LHSV:
0.5[1/hr] 得られたDAOおよび精製油Fの原料油に対する得率、
水素含有量、各工程における水素含有量の増加量、V+
Ni含有量、CCR、硫黄濃度を表5に示す。
Comparative Example 6 Using the same raw oil as in Example 5, using an isobutane solvent (solvent / oil ratio: 8/1), the extraction rate was 65.
wt% to obtain DAO,
O was purified under the following hydrorefining conditions to obtain a purified oil F for comparison. Hydrorefining conditions: Ni / Mo + Co / Mo catalyst (2/8 by volume ratio), hydrogen partial pressure: 80 [atm], H 2 / Oil:
800 [Nm 3 / kl], temperature: 340 ° C., LHSV:
0.5 [1 / hr] The yield of the obtained DAO and refined oil F with respect to the feed oil,
Hydrogen content, increase in hydrogen content in each step, V +
Table 5 shows the Ni content, CCR, and sulfur concentration.

【0057】比較例7 実施例5と同様の原料油を用いて、イソブタン溶媒を用
いて(solvent/Oil比:8/1)抽出率55
wt%になるように抽出分離して比較の精製油Gを得
た。得られた精製油Gの原料油に対する得率、水素含有
量、各工程における水素含有量の増加量、V+Ni含有
量、CCR、硫黄濃度を表5に示す。
Comparative Example 7 Using the same raw oil as in Example 5, and using an isobutane solvent (solvent / Oil ratio: 8/1), the extraction rate was 55.
It was extracted and separated so as to be wt% to obtain comparative purified oil G. Table 5 shows the yield, hydrogen content, increase in hydrogen content in each step, V + Ni content, CCR, and sulfur concentration of the obtained refined oil G with respect to the feedstock oil.

【0058】比較例8 実施例5と同様の原料油を用いて、以下の水素化精製条
件で精製処理して比較の精製油Hを得た。 水素化精製条件:Ni/Mo+Co/Mo触媒(体積比
で3/7)、水素分圧:140[atm]、H2/Oi
l:1000[Nm3/kl]、温度:375℃、LHS
V:0.2[1/hr] 得られた精製油Hの原料油に対する得率、水素含有量、
各工程における水素含有量の増加量、V+Ni含有量、
CCR、硫黄濃度を表5に示す。
Comparative Example 8 The same raw oil as in Example 5 was subjected to a refining treatment under the following hydrorefining conditions to obtain a comparative purified oil H. Hydrorefining conditions: Ni / Mo + Co / Mo catalyst (3/7 by volume ratio), hydrogen partial pressure: 140 [atm], H 2 / Oi
l: 1000 [Nm 3 / kl], temperature: 375 ° C, LHS
V: 0.2 [1 / hr] Yield of the obtained refined oil H with respect to the feed oil, hydrogen content,
Increase in hydrogen content in each step, V + Ni content,
Table 5 shows CCR and sulfur concentrations.

【0059】[0059]

【表5】 [Table 5]

【0060】低級オレフィン製造例 実施例5〜6及び比較例6〜8で得られた最終精製油を
それぞれ用いて、前記と同様の条件で熱分解し、得られ
た低級オレフィンの収率、副生重質油の生成率および連
続運転性の判断結果を表6に示す。
Production Example of Lower Olefins Each of the final refined oils obtained in Examples 5 to 6 and Comparative Examples 6 to 8 was pyrolyzed under the same conditions as described above, and the yield of lower olefins Table 6 shows the production rate of fresh heavy oil and the results of determination of continuous operation.

【0061】[0061]

【表6】 [Table 6]

【0062】本発明の実施例5〜6では、溶剤抽出処理
工程において重質原料油に比べて水素含有量が0.2w
t%以上増加するように抽出し、続く水素化精製処理工
程においてDAOに比べて水素含有量が0.5wt%以
上増加するように処理しており、結果として最終精製油
は、原料油に対して0.7wt%以上増加している。得
られた本発明の精製油においては、いずれもNi+V濃
度が0.1wtppm以下、CCRは1wt%以下、硫
黄濃度は0.5wt%以下であり、高度に不純物が除去
された高品質の精製油が得られている。
In Examples 5 to 6 of the present invention, in the solvent extraction treatment step, the hydrogen content was 0.2 w
Extraction is performed to increase the hydrogen content by 0.5% or more in comparison with DAO in the subsequent hydrorefining process. As a result, the final refined oil is Therefore, it has increased by 0.7% by weight or more. In the obtained refined oil of the present invention, the Ni + V concentration is 0.1 wtppm or less, the CCR is 1 wt% or less, and the sulfur concentration is 0.5 wt% or less. Has been obtained.

【0063】これに対し、溶剤抽出処理のみで精製した
比較7では回収率を55%にまで低くして抽出精製して
も不純物の除去が充分でないことがわかる。また、本発
明の実施例6と水素化精製のみで精製した比較8とを比
較すると、水素化精製は同一条件であるにもかかわら
ず、不純物の除去に大きな差があることがわかり、予め
溶剤抽出処理により所定の水素含有量を増加した後、水
素化精製処理することにより格段に不純物が除去されて
高品質の精製油が得られていることがわかる。さらに、
得られた精製油を熱分解処理して低級オレフィンを製造
した結果では、本発明の精製油ではエチレン収率が15
%を超え、プロピレン収率は10%を超えており、さら
に、副生重質油の生成状況から連続運転性は可能な範囲
と判断された。一方、本発明を満足しない比較例では、
エチレン収率が15%を超えておらず、さらに、副生重
質油の生成量が多く連続運転性はいずれも問題があるこ
とがわかる。
On the other hand, in Comparative Example 7, which was purified only by the solvent extraction treatment, it was found that the impurities were not sufficiently removed even when the recovery was reduced to 55% and the extraction and purification were performed. In addition, comparing Example 6 of the present invention with Comparative Example 8 purified only by hydrorefining, it was found that there was a large difference in the removal of impurities despite the same conditions for hydrorefining. It can be seen that, after the predetermined hydrogen content is increased by the extraction treatment, the impurities are remarkably removed by the hydrorefining treatment, and a high-quality refined oil is obtained. further,
As a result of producing a lower olefin by subjecting the obtained refined oil to a thermal decomposition treatment, the purified oil of the present invention showed an ethylene yield of 15%.
%, The propylene yield exceeded 10%, and the continuous operation was judged to be in a possible range from the state of production of heavy by-product oil. On the other hand, in Comparative Examples not satisfying the present invention,
It can be seen that the ethylene yield did not exceed 15%, and that the amount of by-produced heavy oil was large, and that all of the continuous operability had problems.

【0064】実施例10 重質原油を出発ベースとした精製油の製造 API比重27.4のアラビアンヘビー原油を蒸留によ
り留出油と残渣油に分離し、留出油の一部を水素化精製
してGOを得た。一方、残渣油であるAPI比重10.
9の重質油を原料油1として、本発明の実施例1と同様
の条件で溶剤抽出処理と、水素化精製処理とを実施して
精製油10を得た。この精製油10の一部(原油100
重量部に対して20重量部)と上記GOを原料油2との
一部(原油100重量部に対して10重量部)を混合
し、低級オレフィン製造用熱分解原料として用い、低級
オレフィンを製造した。実施例10の常圧残油、脱アス
ファルテン油、水素化精製脱アスファルテン油及び重質
エチレン原料の得率、水素含有量、Ni+V金属含有
量、CCR含有量、及びS含有量を表7に示す。
Example 10 Production of Refined Oil Starting from Heavy Crude Oil Arabian heavy crude oil having an API specific gravity of 27.4 was separated into a distillate oil and a residual oil by distillation, and a part of the distillate oil was hydrorefined. And got GO. On the other hand, API specific gravity as residual oil is 10.
Using the heavy oil No. 9 as the raw material oil 1, a solvent extraction treatment and a hydrorefining treatment were performed under the same conditions as in Example 1 of the present invention to obtain a refined oil 10. Part of this refined oil 10 (crude oil 100
(20 parts by weight based on parts by weight) and the above GO and a part of the feedstock 2 (10 parts by weight based on 100 parts by weight of crude oil) are mixed and used as a pyrolysis raw material for producing lower olefins to produce lower olefins did. Table 7 shows the yield, hydrogen content, Ni + V metal content, CCR content, and S content of the atmospheric residue, deasphalted oil, hydrorefined deasphalted oil, and heavy ethylene feedstock of Example 10. .

【0065】[0065]

【表7】 [Table 7]

【0066】実施例10では、残渣油を原料油として、
本発明の精製処理を施して得られた精製油に、別途調製
した不純物濃度が低い留出油を混合して低級オレフィン
製造用原料としたものであり、エチレンおよびプロピレ
ンの収率、連続運転性のいずれも満足できる結果である
ことを確認できた。
In Example 10, the residual oil was used as the raw material oil.
A refined oil obtained by performing the refining treatment of the present invention is mixed with a separately prepared distillate having a low impurity concentration to obtain a raw material for producing lower olefins. Were confirmed to be satisfactory results.

【0067】[0067]

【発明の効果】本発明の精製方法を用いれば、水素含有
量が12wt%以下の重質油を、確実にかつ経済的に精
製して不純物を低減した精製油を得ることが可能とな
り、従来限定されて重質油の用途が大幅に拡大させるこ
とができる。また、本方法で得られた精製油を低級オレ
フィン製造用原料として用いた場合には、エチレンおよ
びプロピレンを経済的に見合う収率で製造することがで
き、さらに、連続運転性に関しても商業運転が可能な範
囲とすることができるものである。
According to the refining method of the present invention, a heavy oil having a hydrogen content of 12% by weight or less can be reliably and economically refined to obtain a refined oil with reduced impurities. Limited, the use of heavy oil can be greatly expanded. In addition, when the refined oil obtained by the present method is used as a raw material for producing lower olefins, ethylene and propylene can be produced at an economically reasonable yield. It is possible to set the range as possible.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 東 晃 神奈川県横浜市西区みなとみらい2−3− 1 日揮株式会社内 (72)発明者 佐々木 基 神奈川県横浜市西区みなとみらい2−3− 1 日揮株式会社内 (72)発明者 笠原 進 神奈川県横浜市西区みなとみらい2−3− 1 日揮株式会社内 (72)発明者 藤村 靖 茨城県東茨城郡大洗町成田町2205 日揮株 式会社技術研究所内 Fターム(参考) 4H029 DA02 DA05 DA09  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Akira Higashi 2-3-1 Minatomirai, Nishi-ku, Yokohama-shi, Kanagawa Prefecture Inside JGC Corporation (72) Inventor Motoi Sasaki 2-3-1 Minatomirai, Nishi-ku, Yokohama-shi, Kanagawa Prefecture JGC Corporation (72) Inventor Susumu Kasahara 2-3-1 Minatomirai, Nishi-ku, Yokohama-shi, Kanagawa Prefecture Within JGC Corporation (72) Inventor Yasushi Fujimura 2205 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki Prefecture F-term (in Japanese) Reference) 4H029 DA02 DA05 DA09

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 原料油を、溶剤抽出処理して抽出油を得
る溶剤抽出工程と、得られた抽出油を水素と触媒の存在
下に水素化処理して精製油を得る水素化精製工程とを含
む処理により精製油を得る重質油の精製方法であって、
原料油は、水素含有量が12wt%以下の重質油であ
り、その原料油を溶剤抽出工程に導入し、水素含有量が
原料油に対して0.2wt%以上増加するように溶剤抽
出処理して抽出油である脱アスファルテン油(DAO)
を得る溶剤抽出工程と、脱アスファルテン油を水素化精
製工程に導入し、水素含有量が脱アスファルテン油に対
して0.5wt%以上増加するように水素化精製して精
製油を得る水素化精製工程とを有することを特徴とする
重質油の精製方法。
1. A solvent extraction step for obtaining an extracted oil by subjecting a raw oil to solvent extraction, and a hydrorefining step for hydrotreating the obtained extracted oil in the presence of hydrogen and a catalyst to obtain a refined oil. A method for refining heavy oil to obtain a refined oil by a treatment comprising:
The feedstock is a heavy oil having a hydrogen content of 12 wt% or less. The feedstock is introduced into the solvent extraction step, and the solvent extraction treatment is performed so that the hydrogen content is increased by 0.2 wt% or more with respect to the feedstock. Asphaltene oil (DAO) which is extracted oil
And a hydro-refining process in which the deasphalted oil is introduced into the hydrorefining process, and the hydrogen content is increased by 0.5% by weight or more with respect to the deasphalted oil to obtain a purified oil. And a process for refining heavy oil.
【請求項2】 原料油を、溶剤抽出処理して抽出油を得
る溶剤抽出工程と、得られた抽出油を水素と触媒の存在
下に水素化処理して精製油を得る水素化精製工程とを含
む処理により精製油を得る重質油の精製方法であって、
原料油は、水素含有量が12wt%以下の重質油であ
り、その原料油を溶剤抽出工程に導入し、水素含有量が
重質油に対して0.2wt%以上増加するように溶剤抽
出処理して抽出油である脱アスファルテン油(DAO)
を得る溶剤抽出工程と、脱アスファルテン油を水素化精
製工程に導入し、水素含有量が脱アスファルテン油に対
して0.5wt%以上増加するように水素化精製して精
製油を得る水素化精製工程とを有し、水素化精製工程で
得られる水素含有量が原料油に対して0.7wt%以上
増加した精製油の水素含有量が、11.5wt%以上で
あることを特徴とする重質油の精製方法。
2. A solvent extraction step of subjecting the raw oil to solvent extraction to obtain an extracted oil, and a hydrorefining step of hydrotreating the obtained extracted oil in the presence of hydrogen and a catalyst to obtain a refined oil. A method for refining heavy oil to obtain a refined oil by a treatment comprising:
The feedstock is a heavy oil having a hydrogen content of 12 wt% or less, and the feedstock is introduced into the solvent extraction step, and the solvent extraction is performed so that the hydrogen content is increased by 0.2 wt% or more with respect to the heavy oil. Deasphaltened oil (DAO) which is processed and extracted oil
And a hydro-refining process in which the deasphalted oil is introduced into the hydrorefining process, and the hydrogen content is increased by 0.5% by weight or more with respect to the deasphalted oil to obtain a purified oil. Wherein the hydrogen content of the refined oil whose hydrogen content obtained in the hydrorefining step has increased by 0.7 wt% or more with respect to the feed oil is 11.5 wt% or more. For refining high quality oil.
【請求項3】 溶剤抽出工程で得られる脱アスファルテ
ン油の原料油に対する水素含有量の増加が、0.2〜
1.5wt%であり、水素化精製工程で得られる精製油
の脱アスファルテン油に対する水素含有量の増加が、
0.5〜1.5wt%である請求項1または2の重質油
の精製方法。
3. An increase in the hydrogen content of the deasphaltenated oil obtained in the solvent extraction step with respect to the feed oil, which is 0.2 to 0.2%.
1.5 wt%, the increase in hydrogen content of the refined oil obtained in the hydrorefining step with respect to the deasphalted oil is
The method for refining heavy oil according to claim 1 or 2, wherein the amount is 0.5 to 1.5 wt%.
【請求項4】 前記原料油の水素含有量が11〜12w
t%であり、溶剤抽出工程で得られる脱アスファルテン
油の原料油に対する水素含有量の増加が、0.2〜1.
0wt%であり、水素化精製工程で得られる精製油の脱
アスファルテン油に対する水素含有量の増加が、0.5
〜1.0wt%である請求項1〜3のいずれか1項記載
の重質油の精製方法。
4. The feedstock having a hydrogen content of 11 to 12 watts.
t%, and the increase in the hydrogen content of the deasphalted oil obtained in the solvent extraction step with respect to the feedstock oil is 0.2 to 1.
0 wt%, and the increase in the hydrogen content of the refined oil obtained in the hydrorefining step with respect to the deasphalted oil was 0.5%.
The method for refining heavy oil according to any one of claims 1 to 3, wherein the amount is from 1.0 to 1.0 wt%.
【請求項5】 前記原料油の水素含有量が11wt%未
満であり、溶剤抽出工程で得られる脱アスファルテン油
の原料油に対する水素含有量の増加が、0.5〜1.5
wt%であり、水素化精製工程で得られる精製油の脱ア
スファルテン油に対する水素含有量の増加が、0.6〜
1.5wt%である請求項1〜4のいずれか1項記載の
重質油の精製方法。
5. The method according to claim 1, wherein the hydrogen content of the base oil is less than 11 wt%, and the increase in the hydrogen content of the deasphalted oil obtained in the solvent extraction step with respect to the base oil is 0.5 to 1.5.
wt%, and the increase in the hydrogen content of the refined oil obtained in the hydrorefining step with respect to the deasphalted oil is from 0.6 to 0.6%.
The method for refining heavy oil according to any one of claims 1 to 4, wherein the amount is 1.5 wt%.
【請求項6】 前記脱アスファルテン油中のNiとVの
合計量が70wtppm以下でコンラドソン残留炭素が
15wt%以下となるように溶剤抽出処理する請求項1
〜5のいずれか1項記載の記載の重質油の精製方法。
6. The solvent extraction treatment so that the total amount of Ni and V in the deasphalted oil is 70 wt ppm or less and Conradson residual carbon is 15 wt% or less.
The method for refining heavy oil according to any one of claims 1 to 5.
【請求項7】 溶剤抽出工程と水素化精製工程で処理し
て得られた精製油のV+Niの含有量が2wtppm以
下であり、コンラドソン残留炭素含有量が1wt%以下
であり、硫黄含有量が0.5wt%以下である請求項1
〜6のいずれか1項記載の重質油の精製方法。
7. The purified oil obtained by the solvent extraction step and the hydrorefining step has a V + Ni content of 2 wtppm or less, a Conradson residual carbon content of 1 wt% or less, and a sulfur content of 0% or less. 2. The composition according to claim 1, wherein the content is not more than 0.5 wt%.
7. The method for refining heavy oil according to any one of claims 6 to 6.
【請求項8】 前記精製油の少なくとも一部を低級オレ
フィン製造用熱分解原料油として用いるとともに、その
熱分解原料油中の水素含有量が12.0wt%以上であ
る請求項1〜7のいずれか1項記載の重質油の精製方
法。
8. The method according to claim 1, wherein at least a part of the refined oil is used as a pyrolysis feedstock for producing lower olefins, and a hydrogen content in the pyrolysis feedstock is 12.0 wt% or more. 3. The method for purifying heavy oil according to claim 1.
JP2001107530A 2001-04-05 2001-04-05 Refining method for heavy oil Withdrawn JP2002302680A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2001107530A JP2002302680A (en) 2001-04-05 2001-04-05 Refining method for heavy oil
TW091106473A TWI257423B (en) 2001-04-05 2002-04-01 Refining method for heavy oil
EP02713282A EP1386954A4 (en) 2001-04-05 2002-04-02 Heavy oil refining method
US10/473,433 US20040168956A1 (en) 2001-04-05 2002-04-02 Heavy oil refining method
KR10-2003-7012895A KR20030087047A (en) 2001-04-05 2002-04-02 Heavy Oil Refining Method
RU2003129450/04A RU2273658C2 (en) 2001-04-05 2002-04-02 Heavy petroleum fraction purification process
PCT/JP2002/003298 WO2002081594A1 (en) 2001-04-05 2002-04-02 Heavy oil refining method
MXPA03008994A MXPA03008994A (en) 2001-04-05 2002-04-02 Heavy oil refining method.
BR0208623-9A BR0208623A (en) 2001-04-05 2002-04-02 Heavy Oil Refining Method
PL02353151A PL353151A1 (en) 2001-04-05 2002-04-03 Method of refining heavy oils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001107530A JP2002302680A (en) 2001-04-05 2001-04-05 Refining method for heavy oil

Publications (1)

Publication Number Publication Date
JP2002302680A true JP2002302680A (en) 2002-10-18

Family

ID=18959839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001107530A Withdrawn JP2002302680A (en) 2001-04-05 2001-04-05 Refining method for heavy oil

Country Status (10)

Country Link
US (1) US20040168956A1 (en)
EP (1) EP1386954A4 (en)
JP (1) JP2002302680A (en)
KR (1) KR20030087047A (en)
BR (1) BR0208623A (en)
MX (1) MXPA03008994A (en)
PL (1) PL353151A1 (en)
RU (1) RU2273658C2 (en)
TW (1) TWI257423B (en)
WO (1) WO2002081594A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025873A3 (en) * 2004-08-30 2008-01-03 Kellogg Brown & Root Inc Heavy oil and bitumen upgrading
US7611676B2 (en) 2005-09-26 2009-11-03 Hitachi, Ltd. Method for producing gas turbine fuel, and method and system for generating electric power by gas turbine
JP2014500506A (en) * 2010-12-16 2014-01-09 エクソンモービル リサーチ アンド エンジニアリング カンパニー Formation of petroleum composition models by high resolution mass spectrometry and related analyses.
JP2020514489A (en) * 2017-02-02 2020-05-21 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ Process for preparing feedstock for hydrotreating units for producing olefinic and aromatic petrochemicals, and integrated hydrotreating and steam pyrolysis for direct treatment of crude oil

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3362901A (en) * 1966-01-11 1968-01-09 Sinclair Research Inc Two stage hydrogenation of reduced crude
US4454023A (en) * 1983-03-23 1984-06-12 Alberta Oil Sands Technology & Research Authority Process for upgrading a heavy viscous hydrocarbon
JPS63258985A (en) * 1987-04-16 1988-10-26 Kawasaki Heavy Ind Ltd Hydrogenation treatment of heavy oil
US5258117A (en) * 1989-07-18 1993-11-02 Amoco Corporation Means for and methods of removing heavy bottoms from an effluent of a high temperature flash drum
US5242578A (en) * 1989-07-18 1993-09-07 Amoco Corporation Means for and methods of deasphalting low sulfur and hydrotreated resids
US5770044A (en) * 1994-08-17 1998-06-23 Exxon Research And Engineering Company Integrated staged catalytic cracking and hydroprocessing process (JHT-9614)
JP3902841B2 (en) * 1997-09-05 2007-04-11 新日本石油株式会社 Production of non-carcinogenic aromatic hydrocarbon oils by solvent extraction and hydrorefining
ZA989153B (en) * 1997-10-15 1999-05-10 Equistar Chem Lp Method of producing olefins and feedstocks for use in olefin production from petroleum residua which have low pentane insolubles and high hydrogen content
JPH11349961A (en) * 1998-04-08 1999-12-21 Idemitsu Kosan Co Ltd Hydrogenation for heavy hydrocarbon oil
JP4495791B2 (en) * 1998-07-03 2010-07-07 日揮株式会社 Combined cycle power generation system
JP5057315B2 (en) * 1998-10-30 2012-10-24 日揮株式会社 Method for producing gas turbine fuel oil

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025873A3 (en) * 2004-08-30 2008-01-03 Kellogg Brown & Root Inc Heavy oil and bitumen upgrading
US7381320B2 (en) * 2004-08-30 2008-06-03 Kellogg Brown & Root Llc Heavy oil and bitumen upgrading
US7611676B2 (en) 2005-09-26 2009-11-03 Hitachi, Ltd. Method for producing gas turbine fuel, and method and system for generating electric power by gas turbine
JP2014500506A (en) * 2010-12-16 2014-01-09 エクソンモービル リサーチ アンド エンジニアリング カンパニー Formation of petroleum composition models by high resolution mass spectrometry and related analyses.
JP2020514489A (en) * 2017-02-02 2020-05-21 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ Process for preparing feedstock for hydrotreating units for producing olefinic and aromatic petrochemicals, and integrated hydrotreating and steam pyrolysis for direct treatment of crude oil

Also Published As

Publication number Publication date
RU2003129450A (en) 2005-03-27
TWI257423B (en) 2006-07-01
EP1386954A1 (en) 2004-02-04
MXPA03008994A (en) 2004-02-12
EP1386954A4 (en) 2005-08-17
WO2002081594A1 (en) 2002-10-17
BR0208623A (en) 2004-03-09
KR20030087047A (en) 2003-11-12
PL353151A1 (en) 2002-10-07
RU2273658C2 (en) 2006-04-10
US20040168956A1 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
US4285804A (en) Process for hydrotreating heavy hydrocarbons in liquid phase in the presence of a dispersed catalyst
KR102308554B1 (en) Process and installation for the conversion of crude oil to petrochemicals having an improved btx yield
RU2495911C2 (en) Multistage hydrocracking of refining residues
CA2516562C (en) Process and installation including solvent deasphalting and ebullated-bed processing
EP2834325B1 (en) Integrated hydroprocessing, steam pyrolysis and slurry hydroprocessing of crude oil to produce petrochemicals
EP3577199B1 (en) Integrated hydrotreating and steam pyrolysis process for the direct processing of a crude oil to produce olefinic and aromatic petrochemicals
US11168271B2 (en) Integrated hydrotreating and steam pyrolysis process for the direct processing of a crude oil to produce olefinic and aromatic petrochemicals
KR101716989B1 (en) Residue hydrocracking
CN105793395B (en) Deasphalting method of the refining containing heavy hydrocarbon feedstocks of making choice property cascade
JP2009046657A (en) Method for producing raw material for preparing high-grade lubricating base oil from unconverted oil
EA020738B1 (en) Integrated unsupported slurry catalyst preconditioning process
CN107075392B (en) Hydrocracking process integrated with vacuum distillation and solvent deasphalting to reduce build-up of multiple polycyclic aromatics
CN113227330A (en) Integrated aromatics separation process with selective hydrocracking and steam pyrolysis processes
KR20210148303A (en) Systems and Processes for Inhibiting Heavy Polynuclear Aromatics Deposition in Hydrocracking Processes
EP3204473B1 (en) A hydrocracking process integrated with solvent deasphalting to reduce heavy polycyclic aromatic buildup in heavy oil hydrocracker recycle stream
CN114555760B (en) Process for the preparation of olefins comprising deasphalting, hydroconversion, hydrocracking and steam cracking
JP2002513848A (en) Multi-stage hydrotreatment of middle distillates to avoid hue bodies
KR102335299B1 (en) Conversion of crude oil to petrochemical products
EP0697455B1 (en) Process for producing a hydrowax
JP2002302680A (en) Refining method for heavy oil
US11142704B2 (en) Methods and systems of steam stripping a hydrocracking feedstock
CN114599768B (en) Process for the preparation of olefins comprising deasphalting, hydrocracking and steam cracking
KR20230146210A (en) Method of treating pyrolysis oil from waste plastics
KR20160080167A (en) A heavy waste refined and manufacture method
EA038032B1 (en) Integrated hydroprocessing, steam pyrolysis and resid hydrocracking process for direct conversion of crude oil to produce olefinic and aromatic petrochemicals

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080701