JP4522179B2 - Method of treating rainwater or snowmelt water with steel slag - Google Patents

Method of treating rainwater or snowmelt water with steel slag Download PDF

Info

Publication number
JP4522179B2
JP4522179B2 JP2004212258A JP2004212258A JP4522179B2 JP 4522179 B2 JP4522179 B2 JP 4522179B2 JP 2004212258 A JP2004212258 A JP 2004212258A JP 2004212258 A JP2004212258 A JP 2004212258A JP 4522179 B2 JP4522179 B2 JP 4522179B2
Authority
JP
Japan
Prior art keywords
slag
steelmaking slag
rainwater
water
steelmaking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004212258A
Other languages
Japanese (ja)
Other versions
JP2006026593A (en
Inventor
礼治 大島
直人 堤
公一 遠藤
和彦 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004212258A priority Critical patent/JP4522179B2/en
Publication of JP2006026593A publication Critical patent/JP2006026593A/en
Application granted granted Critical
Publication of JP4522179B2 publication Critical patent/JP4522179B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Road Paving Structures (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Furnace Details (AREA)

Description

本発明は、雨水または融雪水の処理方法に関し、詳細には、化石燃料の燃焼によって燃焼気体中に生じる硫黄酸化物や窒素酸化物が、大気中で化学変化を起こして硫酸や硝酸等になり、それらが雨や霧、雪に取り込まれることによりpHが5.6以下となる、いわゆる「酸性雨」や「酸性霧」の雨水または「酸性雪」の融雪水の処理方法に関し、製鉄所の精錬工程にて発生する鉄鋼スラグの再利用方法に関する。   The present invention relates to a method for treating rainwater or snowmelt water. More specifically, sulfur oxides and nitrogen oxides generated in combustion gas by combustion of fossil fuels cause chemical changes in the atmosphere to become sulfuric acid, nitric acid and the like. In regard to a method of treating so-called “acid rain” or “acid mist” rainwater or “acid snow” snowmelt water, which has a pH of 5.6 or less when they are taken into rain, fog, or snow. The present invention relates to a method for reusing steel slag generated in a refining process.

(1)酸性雨、酸性雪などの対策に関する技術
近年、産業の発展に伴い様々な環境汚染が進展しているが、中でも化石燃料の燃焼によって燃焼気体中に生じる硫黄酸化物や窒素酸化物が、大気中で化学変化を起こして 硫酸や硝酸等になり、それらが雨や霧に取り込まれることによりpHが5.6以下となる、いわゆる「酸性雨」や「酸性霧」ないしは「酸性雪」による環境汚染や環境破壊は年々深刻化している。
(1) Technology for measures against acid rain, acid snow, etc. In recent years, various environmental pollutions have progressed with the development of industry. Among them, sulfur oxides and nitrogen oxides generated in the combustion gas due to the combustion of fossil fuels. , Causing chemical changes in the atmosphere to become sulfuric acid, nitric acid, etc., and when they are taken into rain or mist, the pH becomes 5.6 or less, so-called "acid rain" or "acid mist" or "acid snow" Environmental pollution and environmental destruction caused by the environment are getting worse year by year.

幸い、岩石地盤が多い欧米に比べて、我が国の地盤はアルカリ成分を含む土壌や火山灰土から形成されており、これらが酸性雨を吸収した際に中性化の方向に作用するため、その被害の程度は欧米ほど激しくはないものの、各種調査に基づけば、各地でスギ枯れや松の立ち枯れなどが観測され始めているし、また、酸性雨が流れ込んだ陸水への影響として山岳地帯の河川のpH低下が報告される等、徐々にその被害が顕在化し始めている。   Fortunately, compared to Europe and the United States, where there are many rock grounds, Japan's ground is formed from soil containing alkaline components and volcanic ash soil, which acts in the direction of neutralization when it absorbs acid rain. Although it is not as severe as in Europe and the United States, based on various surveys, cedar withering and pine withering have begun to be observed in various parts of the country. The damage is gradually beginning to become evident, such as a report of a drop in pH.

このように、酸性雨や酸性霧は、森林および農作物に直接的、或いは土壌の変化を通じて間接的に被害を与えたり、湖沼や河川の酸性化を招き、激しい場合には魚類を死滅に至らせたり等、生態系に大きな影響を及ぼしている。   In this way, acid rain and acid mist cause damage to forests and crops directly or indirectly through soil changes, and cause acidification of lakes and rivers. In severe cases, fish are killed. It has a great influence on the ecosystem.

また、冬場は化石燃料を多く使用するため大気中の硫酸や硝酸の量が多く、さらに雪は雨に比べて空間を浮遊する時間が長いこととあいまって、酸性雪の酸性度は酸性雨よりも高いと言われている。   In winter, the amount of sulfuric acid and nitric acid in the atmosphere is large because fossil fuels are used. In addition, snow has a longer time to float in space than rain. Is also said to be expensive.

これらの酸性物質は積雪期間中には積雪中に蓄積されているが、春先の雪解け時に融雪水中に酸性物質が一度に溶け出し、この融雪水が、未だ土壌が凍っている場合には、土壌の緩衝をあまり受けずに河川や湖沼に大量に流れ込むことから、汚染程度が低い清浄な河川では一気にpHが低下し、川魚の稚魚などが突然に生息できなくなるアシッドショックなる現象も報告されている。   These acidic substances are accumulated in the snow during the snowfall period, but when the snow melts at the beginning of spring, the acidic substances melt into the melted water all at once. Since it flows into rivers and lakes in large quantities without receiving much buffer, the pH is lowered at once in a clean river with a low degree of pollution, and a phenomenon of acid shock that makes fry of river fish suddenly unable to live has been reported. .

さらに、この酸性雪の融雪水による被害は生態系のみならず、例えば舗装がなされた都市部においても、土壌の緩衝を受けることがなく、地下水のpHが瞬間的に低下することに伴い、構造物や地中配管などの腐食を誘発・促進することから、降雪地域では、雪解け時に腐食によって生成した酸化鉄(赤錆)が地表を被うような現象も顕著になってきている。   Furthermore, the damage caused by the melted water of acid snow is not limited to the ecosystem, for example, in urban areas with pavements, it does not receive soil buffering, and the pH of groundwater drops instantaneously, resulting in a structure. Inducing and accelerating corrosion of objects and underground pipes, in snowfall areas, iron oxide (red rust) generated by corrosion during snow melting has become prominent.

従来、前記の如く酸性雨や酸性霧などによって田畑や森林および湖沼等、土壌や水質が酸性化した場合には、それを中和反応化するために石灰粉などアルカリ成分の撒布が広く一般的に行なわれる。   Conventionally, when soil or water quality such as fields, forests and lakes is acidified by acid rain or acid mist as described above, the distribution of alkaline components such as lime powder has been widely used to neutralize it. To be done.

さらには、これらの酸性化された貯水池や土壌をより効率的に改善する技術として、例えば特許文献1の方法が開示されている。   Furthermore, as a technique for more efficiently improving these acidified reservoirs and soils, for example, the method of Patent Document 1 is disclosed.

特許文献1に記載されている方法は、海底地層に存在するミネラルを含有する軟質多孔性古代海洋腐植質とSi18型の高分子珪素を含む焼成バイオセラミックに関し、中和化のみならずミネラル分の供給も可能とするものである。 The method described in Patent Document 1 relates not only to neutralization but also to a calcined bioceramic containing soft porous ancient marine humus containing minerals present in the seabed and Si 6 O 18 type polymer silicon. Mineral content can also be supplied.

また、春先の酸性雪の融雪水に伴う被害については、雪解け時期がその年の気候によって不定期であり、また、限られた期間に一時的に生じる現象であることから、これまでにさほど効果的な対策手段は講じられていない。   In addition, the damage caused by melted water of acid snow in early spring is not so effective because the melting time is irregular depending on the climate of the year and occurs temporarily for a limited period. No specific countermeasures are taken.

(2)鉄鋼スラグの再資源化に関する技術
一方、高炉スラグや製鋼スラグに代表される鉄鋼スラグは、製鉄所における鉄鋼生産時に発生する副産物として、その再利用は製鉄業にとって極めて重要であり、産業副生物の再資源化を目的に古くから多々の試みが行われてきた。
(2) Technology for recycling steel slag On the other hand, steel slag, represented by blast furnace slag and steelmaking slag, is a by-product generated during steel production at steelworks, and its reuse is extremely important for the steel industry. Many attempts have been made for a long time to recycle by-products.

この結果、高炉スラグは、化学成分がポルトランドセメントに近く、優れた水硬性が潜在している等の理由により、その用途はセメント用原料への適用が圧倒的な割合を占めているが、それ以外にも道路用路盤材やコンクリート骨材といった土木・建築用の材料として、その再利用率は100%に近い。   As a result, blast furnace slag has an overwhelming proportion of its use in cement raw materials because its chemical composition is close to that of Portland cement and has excellent hydraulic properties. Besides, the reuse rate is close to 100% for civil engineering and building materials such as roadbed materials and concrete aggregates.

これに対して、製鋼スラグは主成分である全CaOの中に、転炉等における精錬工程において副原料として使用される生石灰が完全には溶融・滓化されず、最終的に一部が未反応のまま、いわゆる「遊離CaO」と称する状態で残留していることが多く、この遊離CaOが大気中の水と反応して水和すると体積が約2倍に膨張し、製鋼スラグそのものが崩壊するといった短所を有するため、構造物や道路路盤用の骨材、石材といった長期に安定な形状を保持する用途にはその使用が難しく、土木工事用材料として利用を図る際の阻害要因の一つとなって再利用の拡大が図れずにいる。   On the other hand, in the steelmaking slag, the quick lime used as an auxiliary material in the refining process in the converter or the like is not completely melted and hatched in all the CaO as the main component, and finally a part of it is not yet formed In many cases, the reaction remains in a so-called “free CaO” state. When this free CaO reacts with water in the atmosphere and hydrates, the volume expands approximately twice and the steelmaking slag itself collapses. Therefore, it is difficult to use for long-term stable applications such as structures, aggregates for roadbeds, and stones, and it is one of the obstacles when using it as a material for civil engineering work. As a result, reuse cannot be expanded.

そこで、この膨張現象については、その原因である遊離CaOを減少させてスラグの膨張性を安定化させるための処理方法として、大気雰囲気下に数ヶ月から数年、暴露させて十分に水和反応を施す「大気エージング」処理が一般的に行われている。   Therefore, as a treatment method for stabilizing the expansion of slag by reducing the free CaO that is the cause of this expansion phenomenon, it can be exposed to the atmosphere for several months to several years and fully hydrated. An “atmospheric aging” process is generally performed.

さらにこの安定化処理をより短時間に行う技術として、例えば、非特許文献1や非特許文献2の方法が開示されている。   Further, as a technique for performing this stabilization processing in a shorter time, for example, methods of Non-Patent Document 1 and Non-Patent Document 2 are disclosed.

非特許文献1に記載されている方法は、大気圧下において強制的に水蒸気と反応させて水和処理反応を促進させる「蒸気エージング」法であり、また非特許文献2に記載されている方法は加圧下において強制的に水蒸気と反応させて水和処理反応を促進させる「加圧エージング」法に関するものである。   The method described in Non-Patent Document 1 is a “vapor aging” method in which a hydration treatment reaction is promoted by forcibly reacting with water vapor at atmospheric pressure, and the method described in Non-Patent Document 2 is used. Relates to a “pressure aging” method in which a hydration treatment reaction is promoted by forcibly reacting with water vapor under pressure.

特開平6−9280号公報JP-A-6-9280 日本鉄鋼協会 講演大会要旨集、材料とプロセス、Vol.9、No.1、p-244 (1996)Abstracts of Lecture Meeting of Japan Iron and Steel Institute, Materials and Processes, Vol.9, No.1, p-244 (1996) 日本鉄鋼協会 講演大会要旨集、材料とプロセス、Vol.8、No.4、p-1102 (1995)Abstracts of Lecture Meeting of the Japan Iron and Steel Institute, Materials and Processes, Vol.8, No.4, p-1102 (1995)

しかし、上記の従来技術においては、以下のような問題点がある。   However, the above prior art has the following problems.

すなわち、広く一般的な、石灰などアルカリ成分の撒布による、酸性化された田畑や森林等の土壌及び湖沼等の中和化技術においては、単に土壌や湖沼水質を中和反応させるにすぎず、農作物や魚類等の植生物が繁殖するために必要とされる各種ミネラルを供与することができないという問題点を有している。   In other words, in the neutralization technology of acidified fields, forests, etc., and lakes, etc., by the distribution of alkaline components such as lime, which is widely common, it is merely a neutralization reaction of soil and lake water quality, There is a problem that it is impossible to provide various minerals necessary for breeding vegetation such as agricultural crops and fish.

このような土壌において農作物等の育成を続けると、土壌に含有された各種ミネラルが減少し、農作物の生育、収穫量の低下を招くため、定期的な化学肥料等の撒布が、広く一般に行なわれてきた。   If the cultivation of crops, etc. is continued in such soil, the various minerals contained in the soil will decrease, leading to the growth of crops and the decline in yields, so regular chemical fertilizers are widely distributed. I came.

しかしながら、中和剤である石灰粉や化学肥料などは、通常は市販品が用いられることが多く、一般的に処理にかかるコストは、土壌や湖沼水トン当たり数万円以上と高額なため、これらの処理を行うに際して、できるだけ安価な中和剤の出現が切望されている。   However, lime powder and chemical fertilizers that are neutralizers are usually commercially available products, and the cost of processing is generally high, such as tens of thousands of yen per ton of soil or lake water, In carrying out these treatments, the appearance of a neutralizing agent that is as inexpensive as possible is eagerly desired.

特許文献1に記載されている方法は、海底地層に存在するミネラルを含有する軟質多孔性古代海洋腐植質とSi18型の高分子珪素を含む、中和反応のみならずミネラル分の供給も可能な、従来よりも処理効率の高い焼成バイオセラミック製品であるが、これらの原料の確保ならびにセラミックの焼成のための焼成炉といった設備や必要な熱エネルギーを考えても、そのコストが格段に低下することは考えにくい。 The method described in Patent Document 1 includes a soft porous ancient marine humus containing minerals present in the seabed and a Si 6 O 18 type polymer silicon, as well as a neutralization reaction, as well as a mineral content supply. Although it is a calcined bioceramic product with higher processing efficiency than before, the cost is much higher considering the availability of these raw materials and the equipment such as the firing furnace for firing the ceramic and the necessary thermal energy. It is unlikely to decline.

また、これらの中和剤である石灰粉は、細かな粉状のため大気中に広がりやすく、使用時には皮膚などへの炎症を引き起こさないよう、その取り扱いには留意を要する。   In addition, lime powder, which is a neutralizing agent, is a fine powder and easily spreads in the atmosphere. Care must be taken in handling the lime powder so as not to cause irritation to the skin during use.

一方、鉄鋼スラグ、中でも製鋼スラグの再利用に関しては、その中に残留している遊離CaOが大気中の水と反応して水和する際に生じる膨張現象によって製鋼スラグそのものが崩壊するといった理由から、例えば、道路路盤材といった土木工事用材料として利用を図るには、この水和反応を促進して製鋼スラグそのものを安定化させる必要があり、広く一般的には、冷却後に大気雰囲気下に数ヶ月から数年、暴露させて十分に水和反応を施す「大気エージング」処理が行われている。   On the other hand, regarding the reuse of steel slag, especially steel slag, steelmaking slag itself collapses due to the expansion phenomenon that occurs when free CaO remaining in it reacts with water in the atmosphere to hydrate. For example, in order to use it as a civil engineering material such as road roadbed material, it is necessary to stabilize the steelmaking slag itself by promoting this hydration reaction. “Atmospheric aging” is performed for months to years to expose and fully hydrate.

しかし、この製鋼スラグは鋼材1tあたり120kgほど発生するために、大型の製鉄所では百万トン以上ものスラグを保管するための土地や設備が必要であり、その維持管理のために莫大な費用を要している。   However, because this steelmaking slag is generated at about 120kg per ton of steel, large steelworks require land and equipment to store more than 1 million tons of slag, and enormous costs are required for its maintenance. I need it.

非特許文献1に記載されている方法は、この安定化のための時間を短縮するために、大気圧下において強制的に水蒸気と反応させて水和処理反応を促進させる「蒸気エージング」法であるが、この処理のためには、一定の仕切られた区間に製鋼スラグを山積みして、例えば、底部から水蒸気を万遍なく製鋼スラグに数日間、吹き込む必要があり、前後の準備も含めると大気エージング処理よりもコストがかかる。   The method described in Non-Patent Document 1 is a “steam aging” method in which a hydration treatment reaction is promoted by forcibly reacting with water vapor at atmospheric pressure in order to shorten the time for stabilization. However, for this treatment, it is necessary to pile steelmaking slag in a certain partitioned section and, for example, to uniformly blow water vapor into the steelmaking slag from the bottom for several days. More expensive than atmospheric aging treatment.

非特許文献2に記載されている方法も、同様に安定化のための時間を短縮するために加圧下において強制的に水蒸気と反応させて水和処理反応を促進させる「加圧エージング」法であるが、この処理のためには、専用の高圧容器の中に製鋼スラグを入れて加圧した水蒸気を吹き込む必要があり、前述の蒸気エージング法に比べれば処理にかかる日数は少ないものの、そもそも専用の高圧容器で処理できるスラグ量は1回に50トン程度であり、専用高圧容器以外にも高圧の水蒸気を作るための高圧ボイラーや耐圧配管などの相当に大掛かりな設備を要するために蒸気エージング処理よりもさらにコストがかかるのが実情である。   Similarly, the method described in Non-Patent Document 2 is also a “pressure aging” method in which a hydration treatment reaction is promoted by forcibly reacting with water vapor under pressure in order to shorten the stabilization time. However, for this treatment, it is necessary to put the steelmaking slag into a special high-pressure vessel and blow the pressurized water vapor. Although the treatment takes less time compared to the steam aging method described above, it is exclusively used in the first place. The amount of slag that can be processed in a high-pressure vessel is about 50 tons at a time, and in addition to a dedicated high-pressure vessel, steam aging treatment is required because it requires considerably large equipment such as a high-pressure boiler and pressure-resistant piping to produce high-pressure steam. Actually, it costs more than that.

本発明は、上記の様々な事情に鑑みてなされたものであり、化石燃料の燃焼によって燃焼気体中に生じる硫黄酸化物や窒素酸化物が、大気中で化学変化を起こして硫酸や硝酸等になり、それらが雨や霧に取り込まれることによりpHが5.6以下となる、いわゆる「酸性雨」や「酸性霧」の雨水または「酸性雪」の融雪水の処理方法に関して、製鉄所の精錬工程にて発生する鋼スラグの有する特性を有効に活用できる手段として、鋼スラグ中に該雨水または融雪水を通過させ、もしくは鋼スラグを該雨水または融雪水に浸漬させる等により、鋼スラグと、雨水または融雪水を接触させることで、鋼スラグが中和剤の機能を果たして、雨水または融雪水を中和反応させると共に鋼スラグから下層用路盤材を製造することが可能な、安価かつ省資源を兼ねた鋼スラグによる雨水または融雪水の処理方法を提供するものである。 The present invention has been made in view of the various circumstances described above, and sulfur oxides and nitrogen oxides generated in combustion gas by combustion of fossil fuels cause chemical changes in the atmosphere to sulfuric acid and nitric acid. The refining of steel mills is related to the so-called “acid rain”, “acid fog” rainwater or “acid snow” snowmelt water treatment method, in which the pH becomes 5.6 or less when they are taken into rain or fog. as means for effectively utilizing the characteristics possessed by the steelmaking slag generated in the process, is passed through the該雨water or meltwater in steelmaking slag, or by such dipping the steelmaking slag該雨water or snowmelt, Ltd. and steel slag, by contacting the rainwater or snow melting water can steelmaking slag fulfill the function of neutralizing agent to produce a lower layer subgrade material from steelmaking slag causes a neutralization reaction rainwater or meltwater Na There is provided a method of processing rainwater or meltwater by steelmaking slag also serves as valence and resource saving.

発明者は、上記の様々な課題を解決するために、鉄鋼スラグの有する化学的性質の有効利用法について検討を行った。   In order to solve the above-mentioned various problems, the inventor has examined an effective utilization method of chemical properties of steel slag.

鉄鋼スラグの化学的性質としては、主成分はCaO分を含有している。   As a chemical property of steel slag, the main component contains CaO.

従って、このCaO分が、酸性である雨水または融雪水の中和反応に寄与し、酸性化した雨水や融雪水の中和化という機能であれば、これらが有効に利用できるのではないかと着眼し、本発明を新たに見出すに至った。   Therefore, if this CaO content contributes to the neutralization reaction of acid rainwater or snowmelt water and neutralizes the acidified rainwater or snowmelt water, it can be used effectively. As a result, the present invention has been newly found.

また、鉄鋼スラグの中でも、特に製鋼スラグにおいては、再利用が十分に図られている高炉スラグと比較すると、精錬中に完全に溶融・滓化されない一部の生石灰が遊離CaOとして多く残留しており、冷却後にこの遊離CaOが大気中の水と反応して水和するために膨張し、製鋼スラグそのものの崩壊を生じさせることから、土木工事用の骨材といった安定性が求められる材料にはなかなか適用が難しく、その安定化促進のためのコストが要しているわけである。   In addition, among steel slag, especially in steelmaking slag, compared with blast furnace slag, which is sufficiently reused, a part of quick lime that is not completely melted and hatched during refining remains as free CaO. Since this free CaO reacts with water in the atmosphere after cooling and expands due to hydration, causing collapse of the steelmaking slag itself, materials that require stability such as aggregates for civil engineering work It is very difficult to apply, and costs for promoting its stabilization are required.

しかしながら、いいかえれば、この製鋼スラグは、その主成分たる全CaO分中に、いまだ酸と十分に反応しうる遊離CaOのみならず、2CaO・SiOや3CaO・SiO、2CaO・Fe2などといった鉱物分が豊富に含まれている訳であり、酸性化した雨水や融雪水の中和化という機能であれば、これらが有効に利用できるのではないかと着眼した。 However, other words, the steel slag is in its main component serving total CaO content not only free CaO can sufficiently react with yet acid, 2CaO · SiO 2 or 3CaO · SiO 2, 2CaO · Fe 2 O 3 It is a reason why it can be used effectively if it has the function of neutralizing acidified rainwater and snowmelt water.

本発明の要旨は、以下の通りである。   The gist of the present invention is as follows.

第1の発明に係る鋼スラグによる雨水または融雪水の処理方法は、雨水または融雪水を、中和反応処理後下層用路盤材に再利用する製鋼スラグで中和反応処理することを特徴としている Processing method rainwater or meltwater by steelmaking slag according to the first invention, the rain or snow melting water, and Turkey to neutralize the reaction treated with steelmaking slag to be reused in the neutralization reaction treatment after undercoating roadbeds It is characterized by .

の発明に係る鋼スラグによる雨水または融雪水の処理方法は、第1の発明において、鋼スラグの見掛け気孔率が10%以上とすることを特徴としており、中和反応の処理効率をより高めるものである。
の発明に係る鋼スラグによる雨水または融雪水の処理方法は、第1の発明又は第2の発明において、前記鋼スラグを金網状の容器に充填し、当該充填後の容器を、雨水または融雪水の流路に設置する、または、雨水または融雪水の貯水池に浸漬することを特徴としている。
Processing method rainwater or meltwater by steelmaking slag according to the second invention, Oite the first inventions, the apparent porosity of the steelmaking slag are characterized by a 10% or more, the neutralization reaction The processing efficiency is further increased.
Processing method rainwater or meltwater by steelmaking slag according to the third invention, in the first or second aspect, the manufactured steel slag filler wire mesh shaped container, the container after the filling, It is characterized by being installed in the flow path of rainwater or snowmelt water, or immersed in a reservoir of rainwater or snowmelt water.

本発明によれば、鋼スラグ中に雨水または融雪水を通過させ、もしくは鋼スラグを雨水または融雪水に浸漬させる等により、鋼スラグと雨水または融雪水を接触させることで、酸性である雨水または融雪水に対して、鋼スラグの主成分であるCaO分がアルカリ性のために、鋼スラグが中和剤の機能を果たして、雨水または融雪水を中和反応させて、前記雨水または融雪水を中和反応処理すると共に、前記鋼スラグから下層用路盤材を製造することができる。 According to the present invention, it passed through a rain or snow melting water steelmaking slag or the steelmaking slag by such dipping rainwater or snow melt water, by contacting the steelmaking slag and rain or snow melting water, an acidic for a rain or snow melting water to CaO content which is the main component of the steelmaking slag is alkaline, steelmaking slag fulfill the function of neutralizing agent, by neutralization reaction rainwater or snow melting water, the rainwater or meltwater while neutralization process, it is possible to produce the lower layer subgrade material from the steel steel slag.

前述のように、鋼スラグは製鉄業における副生物であるから、これを中和剤に適用することにより市販の高価な中和剤を購入する必要がなく、雨水や融雪水の処理費低減が可能となるばかりでなく、鋼スラグ中に含まれる、鉄分や珪素分、マグネシア分、リン酸分と言ったミネラル分も水中に溶解することから、処理を行った雨水や融雪水が農作物への肥料的な効果をも発揮して、肥料の散布量を減らす、あるいはなくすことができるという副次的な効果をも有する。 As described above, since steelmaking slag is a by-product in the steel industry, it is not necessary to purchase a commercial expensive neutralizing agent by applying it to the neutralizing agent, of rainwater and snow melting water treatment costs reduced not only it is possible, included in the steelmaking slag, iron and silicon content, magnesia content, since the dissolving minerals which said phosphoric acid content in water, processing was carried out rainwater and snow melting water crops It also has the secondary effect of reducing or eliminating the amount of fertilizer applied.

また、従来、広く用いられてきた石灰粉は細かな粉状のため大気中に広がりやすく、使用時には皮膚などへの炎症を引き起こさないよう、その取り扱いには留意を要していたが、鋼スラグは、鉄鉱石が溶解して、鉄分が抽出された残りの酸化物が凝固した、安定な鉱物層からなる、あたかも石のような素手で触れることのできる固体物であり、使用時に粉塵などが発生することも少なく、作業環境的にも取り扱い易い。 Conventionally, lime powder that has been used widely spreads easily in the atmosphere for fine powder, so as not to cause irritation to such skin during use, but the handling has required noted, steelmaking Slag is a solid material that consists of a stable mineral layer, in which iron ore dissolves and the remaining oxide from which iron has been extracted is solidified, as if it were touched with bare hands like a stone. Is less likely to occur and is easy to handle in terms of work environment.

さらには、主成分であるCaO分が中和反応に寄与することから、製鋼スラグに顕著であった遊離CaOが原因であるスラグ膨張問題による再利用が阻害されていた点についても、酸性化した雨水や融雪水の中和反応により、製鋼スラグ中の遊離CaOが消費されることから、同時に製鋼スラグの安定化処理が施され、製鋼スラグの再利用をも可能とするものである。 Furthermore, since the CaO content is the main component contributes to the neutralization reaction, the points of free CaO was remarkable in steelmaking slag reuse by slag expansion problem is caused had been inhibited, acidified Since the free CaO in the steelmaking slag is consumed by the neutralization reaction of rainwater and snowmelt water, the steelmaking slag is simultaneously stabilized and the steelmaking slag can be reused.

従って、従来、路盤材や骨材といった工事用原料として、製鋼スラグの再利用のために必要であった大気エージングや蒸気エージング、加圧エージングといった安定化処理も不要となり、コストが増大することもない。   Therefore, conventionally, stabilization processing such as air aging, steam aging, and pressure aging, which has been necessary for reusing steelmaking slag as a construction material such as roadbed material and aggregate, is unnecessary, and the cost may increase. Absent.

すなわち、中和反応の能力が低下ないしは終了した製鋼スラグは、その後、路盤材や骨材といった工事用原料のほか、鉄分や珪素などのミネラル分供給を特徴とした陸上での農業用肥料や、河川や海水中における藻場用の天然石代替材料として、さらなる再利用に活用ができるという新たなメリットをもたらす。 In other words, the steelmaking slag capacity of the neutralization reaction is reduced or terminated, then, in addition to the construction work for the raw materials such as roadbed material or aggregate, agricultural fertilizer on land that was characterized by mineral supply such as iron and silicon and, as a natural stone substitute material for the seagrass beds in the rivers and in the sea water, dripping also a new advantage that can take advantage of to further re-use.

以下、本発明の方法を詳細に説明する。   Hereinafter, the method of the present invention will be described in detail.

本発明では、雨水または融雪水、詳細には、化石燃料の燃焼によって燃焼気体中に生じる硫黄酸化物や窒素酸化物が、大気中で化学変化を起こして硫酸や硝酸等になり、それらが雨や霧、雪に取り込まれることによりpHが5.6以下となる、いわゆる「酸性雨」や「酸性霧」の雨水または「酸性雪」の融雪水を、鋼スラグで中和反応処理させる。 In the present invention, rainwater or snowmelt water, more specifically, sulfur oxides and nitrogen oxides generated in the combustion gas by the combustion of fossil fuels cause chemical changes in the atmosphere to sulfuric acid, nitric acid, etc. and fog, pH becomes 5.6 or less by being incorporated into the snow, the snow melting water of the so-called "acid rain" and rainwater or "acidic snow" in "acid fog", to neutralization treatment with steelmaking slag.

鋼スラグの主成分であるCaOと、硫酸成分あるいは硝酸成分が溶解して酸性化した雨水ないしは融雪水の中和反応は以下のように示される。 And CaO is a main component of the steelmaking slag, neutralization reaction of rainwater or snow melting water acidified by dissolving sulfuric component or nitric acid component is shown as follows.

CaO+HO → Ca(OH) → Ca2++2OH
2SO4 → 2H+SO4 2−
CaO+H2SO4 → CaSO4↓+H2
CaO+H2O → Ca(OH)2 → Ca2++2OH
2HNO → 2H + 2NO3 -
CaO+2HNO → Ca(NO)↓+2H2
CaO + H 2 O → Ca (OH) 2 → Ca 2+ + 2OH
H 2 SO 4 → 2H + + SO 4 2−
CaO + H 2 SO 4 → CaSO 4 ↓ + H 2 O
CaO + H 2 O → Ca ( OH) 2 → Ca 2+ + 2OH -
2HNO 3 → 2H + + 2NO 3 -
CaO + 2HNO 3 → Ca (NO 3 ) 2 ↓ + 2H 2 O

ただし、本発明の中和反応処理における鋼スラグの量や粒度、使用温度等の条件は、雨水または融雪水の厳密な中和化に限定されるものではなく、対象となる雨水または融雪水の酸性度合いや水量ないしは流量に応じて、酸性化の悪影響が緩和できる範囲に、望ましくは酸性雨や酸性雪の定義から外れるpHが5.6以上の範囲に、さらに望ましくは、pHが7に近い十分に改善の図れる範囲に、雨水や融雪水を適切に中和反応できるように制御すればよい。 However, the amount and particle size of the steelmaking slag in the neutralization reaction treatment of the present invention, conditions such as operating temperature is not intended to be limited to the exact neutralization of the rain or snow melting water, rain or snow melting water of interest Depending on the degree of acidity of water, the amount of water or the flow rate, the adverse effect of acidification can be alleviated, preferably the pH deviates from the definition of acid rain or acid snow, more preferably in the range of 5.6 or more, and more preferably pH 7 What is necessary is just to control so that rainwater and snowmelt water can be neutralized appropriately in the range where improvement can be achieved.

鋼スラグとしては、製鉄所における鉄鋼生産時に各精錬工程で発生する副産物である高炉スラグや製鋼スラグが代表的であるが、中でも、精錬中に完全に溶融・滓化されない一部の生石灰が遊離CaOとして多く残留している製鋼スラグ用できる。 The iron steel slag, but blast furnace slag and steel slag, a by-product generated in each refining process during steel production in steel works is typical, among others, some of the quick lime is not completely melted and slag formation during refining steelmaking slag remaining number as the free CaO is cut with a utilization.

従って、以下では製鋼スラグを例に挙げて説明する。   Therefore, the steelmaking slag will be described below as an example.

実際には、上記の製鋼スラグは、一般的に次のような工程を経て、副産物として製造処理される。すなわち、目的の精錬工程が終了すると、製鋼スラグは所要の溶融金属(溶鋼)から分離されて専用の容器に移されたあと、製鉄所構内の特定の場所に集めて排出され、散水あるいはそのまま大気中にて放冷されて、岩石状の凝固物となる。   In practice, the steelmaking slag is generally manufactured and processed as a by-product through the following steps. In other words, when the desired refining process is completed, the steelmaking slag is separated from the required molten metal (molten steel), transferred to a dedicated container, and then collected and discharged at a specific location within the steelworks premises, sprinkling water or air as it is. It is allowed to cool inside and becomes a rock-like solidified product.

この凝固した製鋼スラグは、その後、重機などによって粗破砕され、該スラグ中に残留している地金と称される鉄分が回収される。この結果、主に酸化物成分のみとなった製鋼スラグは、例えば、土木工事用材料として要求される最大粒径40mm以下の粒度分布を持つスラグ粒の集合体(JIS A5015 道路用鉄鋼スラグにて規定される下層用路盤材向けのクラッシャラン鉄鋼スラグCS−40などに相当)にまで、さらに破砕・分級(篩い分け)される。   The solidified steelmaking slag is then roughly crushed by a heavy machine or the like, and the iron content remaining in the slag is recovered. As a result, steelmaking slag mainly composed of oxide components is, for example, an aggregate of slag grains having a maximum particle size distribution of 40 mm or less required for civil engineering materials (JIS A5015 in steel slag for roads). It is further crushed and classified (sieved) to the specified crusher run steel slag CS-40 for the subbase material for the lower layer.

このようにして、比較的、粒径分布が揃った状態にまで整えられるため、あとは、当該スラグ中の遊離CaO分を化学分析法(例えば、エチレングリコール抽出−原子吸光光度法など)にて測定しておけば、製鋼スラグが有する中和反応に必要とされるCaO量をも求めることができる。   In this way, since the particle size distribution is relatively uniform, the free CaO content in the slag is then analyzed by chemical analysis (eg, ethylene glycol extraction-atomic absorption photometry). If it measures, the amount of CaO required for the neutralization reaction which steelmaking slag has can also be calculated | required.

また、任意の期間、中和反応処理を行い製鋼スラグの中和化能力が低下ないしは終了した場合は、新しい製鋼スラグに交換し、取り出した製鋼スラグは、路盤材や骨材といった工事用材料のほか、鉄分や珪素などのミネラル分供給を特徴とした陸上での農業用肥料や、河川や海水中における藻場用の天然石代替材料としてさらに再利用できる。   In addition, when the neutralization ability of steelmaking slag is reduced or terminated after an arbitrary period of time, the steelmaking slag is replaced with new steelmaking slag. In addition, it can be further reused as a fertilizer for agriculture on land characterized by the supply of minerals such as iron and silicon, and as a substitute for natural stone for seaweed beds in rivers and seawater.

この製鋼スラグによって、雨水または融雪水を中和反応させる具体的な方法としては、例えば、金網状の専用容器に上述の40mm以下の製鋼スラグを適度な空間(空隙率)を持って充填したものを複数個、準備し、雨水または融雪水が流れる流路に適切な間隔で設置し、製鋼スラグ中を該雨水または融雪水が一定量の流速で通過するようにすればよい。また、貯水池のように、一定水量がたまった場所では、その水中に、これら製鋼スラグを充填した専用容器を浸漬させてもよい。   As a specific method for neutralizing and reacting rainwater or snowmelt water with this steelmaking slag, for example, a metal mesh-like special container filled with the above steelmaking slag of 40 mm or less with an appropriate space (porosity) Are prepared, and installed in a flow path through which rainwater or snowmelt water flows at an appropriate interval so that the rainwater or snowmelt water passes through the steelmaking slag at a constant flow rate. Further, in a place where a certain amount of water is accumulated, such as a reservoir, a dedicated container filled with these steelmaking slags may be immersed in the water.

この際に、先にも示した中和反応は、製鋼スラグ中の遊離CaOが水に溶解して水和化することが律速段階であることが推定されることから、製鋼スラグと雨水または融雪水の接触面積を増大させるためにも、比較的、大きめの製鋼スラグは予め粉砕し、整粒しておくことが望ましい。   At this time, it is estimated that the neutralization reaction shown earlier is a rate-limiting step in which free CaO in steelmaking slag dissolves in water and hydrates, so that steelmaking slag and rainwater or snowmelt In order to increase the contact area of water, it is desirable that a relatively large steel slag is pulverized and sized in advance.

整粒するスラグ粒度としては理論的には細かいに越したことはないが、雨水や融雪水の水量を人為的に操作することは難しく、実際には集中的な豪雨や大量の雪解け水の発生なども想定され、スラグの充填度合いをあまり緻密にしても洪水のような状態を引き起こしてしまう懸念があることから、下限としては1.0mm程度が好ましく、また、この中和反応処理後に別の新たな用途にさらに再利用することを考えると、上限としては10mm程度が好ましい。   The slag particle size to be sized is not fine in theory, but it is difficult to artificially control the amount of rainwater and snowmelt water, and in fact, it is a heavy rainstorm and a lot of snowmelt The lower limit is preferably about 1.0 mm because there is a concern that even if the degree of slag filling is too dense, it may cause a flood-like state. Considering further reuse for new applications, the upper limit is preferably about 10 mm.

また、これらの製鋼スラグの粒同士を、例えばポルトランドセメントや高炉セメントなどをバインダーとして用いて、任意の充填率ならびに形状を要したブロック状に塊成化を図れば、上述のような金網状の専用容器も不用となり、中和反応のための製鋼スラグの設置や中和反応後の製鋼スラグの除去ならびに新たな製鋼スラグへの交換作業をより効率的にすることも可能である。   In addition, if the steelmaking slag grains are agglomerated into blocks that require an arbitrary filling rate and shape using, for example, Portland cement or blast furnace cement as a binder, a wire mesh like as described above A dedicated container is also unnecessary, and it is possible to more efficiently install steelmaking slag for the neutralization reaction, remove the steelmaking slag after the neutralization reaction, and replace it with new steelmaking slag.

さらには、山林や田畑などのように、直接、酸性雨が降り注ぐような場所に対しては、該土壌の上に製鋼スラグを任意の厚みになるように直接に層状に敷設し、この製鋼スラグ層中を降水が通過するような形態を取ることも可能である。   Furthermore, for places where acid rain falls directly, such as in forests and fields, steel slag is laid directly on the soil so as to have an arbitrary thickness. It is also possible to take a form in which precipitation passes through the strata.

以上のことから、前記第1の発明は、雨水または融雪水の処理方法において、雨水または融雪水を鋼スラグで中和反応することと規定した。 From the above, the first invention is a method of treating rainwater or snow melting water was defined as the neutralizing reaction at steelmaking slag rainwater or snow melting water.

次に、この鋼スラグによる雨水または融雪水の中和反応を、同一のスラグ量ないしはスラグ粒度においても、さらに促進させる方法を検討した。 Then, the neutralization reaction of rainwater or meltwater by the steelmaking slag, in the same amount of slag or slag grain size was investigated a method for further promoted.

尚、ここでも同様に、製鋼スラグを例に挙げて説明する。   Here, similarly, steel slag will be described as an example.

先にも、この中和反応は、製鋼スラグ中の遊離CaOが水に溶解して水和化することが律速段階であることが推定され、製鋼スラグと該雨水または融雪水の接触面積を増大させるために大きめの製鋼スラグを予め粉砕、整粒しておくことが好ましいと述べたが、スラグの粒度を細かくして容器内でのスラグの充填度合いをあまりに緻密にしてしまうと単位時間当たりに通過可能な水量が減少するため、例えば、春先の雪解け水のように短時間に大量の融雪水が流れるような場合には、通過可能な水量と実際の水量とのバランスが崩れて、洪水のような状態を引き起こしてしまう懸念もある。   Previously, it is estimated that this neutralization reaction is the rate-limiting step in which free CaO in steelmaking slag dissolves in water and hydrates, increasing the contact area between steelmaking slag and rainwater or snowmelt water. It is said that it is preferable to pulverize and size a large steelmaking slag in advance, but if the particle size of the slag is made fine and the slag filling degree in the container is too dense, it will be per unit time. Since the amount of water that can be passed decreases, for example, when a large amount of snow melt flows in a short time, such as the snowmelt in early spring, the balance between the amount of water that can pass and the actual amount of water is lost, and There is also a concern of causing such a situation.

そこで、発明者は、同じスラグの粒度ないしはスラグ量で、製鋼スラグの表面積をさらに増大させるために、製鋼スラグの物理的性状に着目した。   Therefore, the inventor focused attention on the physical properties of the steelmaking slag in order to further increase the surface area of the steelmaking slag with the same slag particle size or slag amount.

すなわち、製鋼スラグの各粒が天然の石のように緻密ではなく、軽石のように多孔質な状態であれば、該製鋼スラグの内部に雨水または融雪水がより容易に浸透し、反応界面積が確保できると考えた。   That is, if each grain of steelmaking slag is not as dense as natural stone and is in a porous state like pumice, rainwater or snowmelt water penetrates into the steelmaking slag more easily, and the reaction interface area We thought that we could secure.

ここで、一般的な精錬工程で発生する製鋼スラグの密度は2g/cm程度で、スラグ中に存在する見掛けの気孔率は5〜10%程度である。しかしながら、精錬工程における特定の操業条件下においては、溶融した製鋼スラグ中に細かなガスが大量に存在している、いわゆる「フォーミング」状態の製鋼スラグが発生する場合があり、この状態の製鋼スラグを急冷すると、製鋼スラグの内部にガスが残留する結果、非常に多孔質な軽石状のものを得ることができる。 Here, the density of the steelmaking slag generated in a general refining process is about 2 g / cm 3 , and the apparent porosity existing in the slag is about 5 to 10%. However, under certain operating conditions in the refining process, steelmaking slag in a so-called “forming” state, in which a large amount of fine gas is present in the molten steelmaking slag, may be generated. When is rapidly cooled, as a result of the gas remaining inside the steelmaking slag, a very porous pumice-like one can be obtained.

これらの多孔質な製鋼スラグの見掛け気孔率を測定すると、おおむね10%以上、場合によっては50%程度の状態のものも散見され、これらの製鋼スラグを用いれば、中和反応処理のために必要な反応界面積を増大することが容易に可能になるとの知見を得ることができた。ここで、この製鋼スラグの見掛け気孔率の測定方法としては、例えば、「JIS R2205 耐火れんがの見掛け気孔率・吸水率・比重の測定方法」などを用いればよい。   When the apparent porosity of these porous steelmaking slags is measured, some of them are found to be approximately 10% or more, and in some cases about 50%. If these steelmaking slags are used, they are necessary for the neutralization reaction treatment. It has been found that it is possible to increase the reaction interfacial area easily. Here, as a method for measuring the apparent porosity of this steelmaking slag, for example, “Measurement method of apparent porosity / water absorption / specific gravity of JIS R2205 refractory brick” may be used.

以上のことから、前記第2の発明は、前記第1の発明において、中和反応処理の効率を高めるために、鋼スラグの見掛け気孔率が10%以上であることと規定した。 From the above, the second invention, in the first invention, in order to increase the efficiency of the neutralization reaction treatment, the apparent porosity of the steelmaking slag was defined as 10% or more.

(実施例1)
製鉄所構内の道路脇にある降雨水を排水するための側溝ライン(U字溝)の一部を用いて、本発明に係る方法を適用した実験を行った。中和反応処理に用いる鋼スラグとしては、製鋼スラグの代表である転炉スラグの中から、安定化のための大気エージングをほとんど行なわずに、「JIS A5015道路用鉄鋼スラグ」に規定される「下層用路盤材向けクラッシャラン鉄鋼スラグCS−40」の規格にあう最大粒径40mm以下に、破砕・分級により粒度調整したものを準備した。この製鋼スラグの化学成分の分析結果例を表1に示す。
Example 1
An experiment using the method according to the present invention was performed by using a part of a gutter line (U-shaped groove) for draining rainwater on the side of the road in the steelworks. The steelmaking slag used for the neutralization reaction process is defined from the representative of steelmaking slag converter slag, without almost atmospheric aging for stabilization, in "JIS A5015 for roads Slag" The maximum particle size of 40 mm or less meeting the standard of “Crusheran Iron and Steel Slag CS-40 for Subbase Material for Lower Layers” was prepared by adjusting the particle size by crushing and classification. Table 1 shows an example of analysis results of chemical components of this steelmaking slag.

Figure 0004522179
Figure 0004522179

上記の製鋼スラグから任意の粒径のスラグ粒を複数個採取し、見掛け気孔率を「JIS R2205 耐火れんがの見掛け気孔率・吸水率・比重の測定方法」で測定したところ、いずれも10%未満、平均で約7%程度と、一般的な緻密状態であることを確認した。   A plurality of slag grains having an arbitrary particle size were collected from the steelmaking slag, and the apparent porosity was measured by “Measurement method of apparent porosity / water absorption / specific gravity of JIS R2205 refractory brick”. The average density was about 7%, which was confirmed to be a general dense state.

また、同じく「JIS A5015道路用鉄鋼スラグ」の附属書2にて規定される、「鉄鋼スラグの水浸膨張試験方法」に基づき、この製鋼スラグの水浸膨張比を測定したところ、2.5%という大きな数値であることを確認した。   In addition, when the water immersion expansion ratio of this steelmaking slag was measured based on the “method of water immersion expansion test of steel slag” defined in Annex 2 of “JIS A5015 road steel slag”, 2.5. % Was confirmed to be a large number.

図1に示すような、幅0.3m×高さ0.2m×長さ0.3mの金網製のかご1の中に、前記のとおり準備した製鋼スラグ2を約20kg、嵩密度で1ton/m程度になるように適度な空間を作りながら充填したものを5個作成して、該かご同士の間隔が0.3mとなるように、上記のU字溝内部に流水方向3のようにセットした。 As shown in FIG. 1, a steelmaking slag 2 prepared as described above is placed in a wire mesh cage 1 having a width of 0.3 m, a height of 0.2 m, and a length of 0.3 m. those filled while creating an appropriate space to be approximately m 3 to create five, as in the interval of the cage with each other is 0.3 m, as flowing water direction 3 inside the above U-shaped groove I set it.

この状態で、降雨に伴う雨水がU字溝内に集まり、製鋼スラグを充填した該かごの中を雨水が通過し始めた時点から、製鋼スラグを詰めたかご群の上流ならびに下流で、一定時間毎に一定量の雨水を採取してそれぞれのpHを測定した。なお、今回、実験を行った降雨期間の平均的な1時間雨量は5mmであった。   In this state, rainwater accompanying the rain gathers in the U-shaped groove, and when the rainwater begins to pass through the cage filled with steelmaking slag, the upstream and downstream of the group of cages filled with steelmaking slag for a certain period of time. A certain amount of rainwater was collected every time and the pH of each was measured. In addition, the average hourly rainfall during the rainfall period in which the experiment was conducted this time was 5 mm.

こうして測定した雨水のpH値は、かごの上流側の4.3〜4.7の値に対して、中和反応処理後のかごの下流側では4.8〜5.2の値であり、酸性化が改善されていることが確認された。なお、pH測定は市販のポータブルpHメーターを用いた。   The pH value of the rainwater thus measured is a value of 4.8 to 5.2 on the downstream side of the cage after the neutralization reaction treatment, whereas the pH value of the upstream side of the cage is 4.3 to 4.7. It was confirmed that the acidification was improved. The pH was measured using a commercially available portable pH meter.

また、同様にかご群の上流・下流の採取水の微量成分分析を行なったところ、上流側ではほとんど検知されない、鉄や珪素、リン酸といったミネラル分が、下流側では僅かながらも検出された。   Similarly, when the trace component analysis of the collected water upstream and downstream of the car group was performed, minerals such as iron, silicon, and phosphoric acid, which were hardly detected on the upstream side, were detected slightly on the downstream side.

この製鋼スラグを入れたかご群を、自然の降雨状態下にそのまま6ヶ月放置した後に取り出して、中の製鋼スラグについて、「JIS A5015道路用鉄鋼スラグ」の附属書2にて規定される「鉄鋼スラグの水浸膨張試験方法」に基づき、水浸膨張比を測定したところ、0.4%にまで数値が改善されており、本製鋼スラグは、当該の「下層用路盤材向けクラッシャラン鉄鋼スラグCS−40」に十分に使用が可能であることがわかった。   The cages containing the steelmaking slag are left undisturbed for 6 months in a natural rain condition and then taken out, and the steelmaking slag in the “steel slag for steel road slag” defined in Annex 2 of “JIS A5015 road steel slag” Based on the water immersion expansion test method for slag, the water expansion ratio was measured, and the numerical value was improved to 0.4%. This steelmaking slag is the “crusheran steel slag CS for roadbed materials for lower layers”. It was found that it can be used sufficiently for -40 ".

(実施例2)
実施例1に示した本発明に係る方法を適用した実験を行なった際に、先に表1に示したものと同じ製鋼スラグを、最大粒径が10mmとなるように、さらに分級・整粒したものを準備した。
(Example 2)
When an experiment using the method according to the present invention shown in Example 1 was performed, the same steelmaking slag as that previously shown in Table 1 was further classified and sized so that the maximum particle size would be 10 mm. I prepared what I did.

同じく実施例1と全く同様の、幅0.3m×高さ0.2m×長さ0.3mの金網製のかごの中に、この製鋼スラグ約20kgを、嵩密度で1.2ton/m程度になるように、適度な空間を作りながら充填したものを5個作成し、該かご同士の間隔が0.3mとなるように、道路の反対側のU字溝内部にセットした。 Also the same manner as in Example 1, in a wire mesh basket width 0.3 m × height 0.2 m × length 0.3 m, the steel slag about 20 kg, with a bulk density 1.2 ton / m 3 In order to obtain a suitable level, five pieces were filled while creating a suitable space, and set inside the U-shaped groove on the opposite side of the road so that the distance between the cages was 0.3 m.

この状態で、降雨に伴う雨水がU字溝内に集まり、製鋼スラグを充填した該かごの中を雨水が通過し始めた時点から、製鋼スラグを詰めたかご群の上流ならびに下流で、一定時間毎に一定量の雨水を採取して、それぞれのpHを実施例1と同じ市販のポータブルpHメーターを用いて測定した。実験を行った降雨期間の平均的な1時間雨量は5mmであった。   In this state, rainwater accompanying the rain gathers in the U-shaped groove, and when the rainwater begins to pass through the cage filled with steelmaking slag, the upstream and downstream of the group of cages filled with steelmaking slag for a certain period of time. A certain amount of rainwater was collected every time, and each pH was measured using the same commercially available portable pH meter as in Example 1. The average hourly rainfall during the rainy period in which the experiment was conducted was 5 mm.

降雨量が激しくなりU字溝内の水量が増加すると、かごの上流側に時折、水がたまるような状態も観察されたが、測定した雨水のpH値は、かごの上流側の4.3〜4.7の値に対して、中和反応処理後のかごの下流側では5.2〜5.8の値となり、実施例1よりもさらに酸性化が改善されていることが確認された。   When the amount of rainfall increased and the amount of water in the U-shaped groove increased, water was occasionally collected on the upstream side of the car, but the measured rainwater pH value was 4.3 on the upstream side of the car. With respect to the value of ˜4.7, the downstream side of the cage after the neutralization reaction treatment has a value of 5.2 to 5.8, and it was confirmed that the acidification was further improved compared to Example 1. .

また、実施例1と同様に、かごの下流側の雨水のミネラル分は微量ながら増加していた。   In addition, as in Example 1, the mineral content of rainwater on the downstream side of the cage increased with a slight amount.

(実施例3)
実施例2に示した本発明に係る方法を適用した実験結果から、使用する製鋼スラグ粒を細かくした場合に、降雨量の増加に伴い、U字溝内の水量が増加すると、かごの上流側で水がたまってしまうような状態が観察されたことから、次に多孔質な製鋼スラグを用いた実験を行なった。
(Example 3)
From the experimental results of applying the method according to the present invention shown in Example 2, when the steelmaking slag grain to be used is made finer, when the amount of water in the U-shaped groove increases with the increase in rainfall, the upstream side of the car In this case, an experiment using porous steelmaking slag was conducted.

すなわち、中和反応処理に用いる鋼スラグとして、製鋼スラグの代表である転炉スラグの中から、溶融状態のスラグ中に細かなガスが大量に存在する「フォーミング」状のものを急冷した、目視でも明らかに多孔質な軽石状の製鋼・転炉スラグを選び、安定化のための大気エージング処理は行なわずに、実施例2と同様に最大粒径が10mmとなるように、分級・整粒したものを準備した。この製鋼スラグの化学成分の分析結果例を表2に示す。 That is, steelmaking slag used for the neutralization reaction process, from among the representative of steelmaking slag converter slag was quenched ones "forming" shape with fine gas is present in large amounts in slag in a molten state, Visually apparent porous pumice-like steelmaking / converter slag is selected and classified and adjusted so that the maximum particle size becomes 10 mm as in Example 2, without air aging treatment for stabilization. Prepared a grain. Table 2 shows an example of the analysis results of the chemical components of this steelmaking slag.

Figure 0004522179
Figure 0004522179

上記の製鋼スラグから任意の粒径のスラグ粒を複数個採取し、見掛け気孔率を同じく「JIS R2205 耐火れんがの見掛け気孔率・吸水率・比重の測定方法」で測定したところ、12%から45%の数値が得られ、平均でも約25%程度と、多孔質な状態であることを確認した。   A plurality of slag grains having an arbitrary particle diameter were sampled from the steelmaking slag, and the apparent porosity was measured in the same manner as “Measurement method of apparent porosity / water absorption / specific gravity of JIS R2205 refractory brick”. % Was obtained, and it was confirmed that the porous state was about 25% on average.

また、同じく「JIS A5015道路用鉄鋼スラグ」の附属書2にて規定される、「鉄鋼スラグの水浸膨張試験方法」に基づき、この製鋼スラグの水浸膨張比を測定したところ、2.0%という数値であった。   In addition, when the water immersion expansion ratio of this steelmaking slag was measured based on the “Method of water immersion expansion test of steel slag” defined in Annex 2 of “JIS A5015 road steel slag”, 2.0. %.

実施例1および実施例2で用いたものと同じ、幅0.3m×高さ0.2m×長さ0.3mの金網製のかごの中に、この製鋼スラグ約20kgを、嵩密度で1.0ton/m程度になるように、適度な空間を作りながら充填したものを5個作成し、該かご同士の間隔が0.3mとなるように、上記のU字溝内部にセットした。 About 20 kg of this steelmaking slag is placed in a bulk density of 1 in a cage made of wire mesh of the same width 0.3 m × height 0.2 m × length 0.3 m as used in Example 1 and Example 2. Five items were prepared while creating an appropriate space so as to be about 0.0 ton / m 3 , and set inside the U-shaped groove so that the distance between the cages was 0.3 m.

この状態で、降雨に伴う雨水がU字溝内に集まり、製鋼スラグを充填した該かごの中を雨水が通過し始めた時点から、製鋼スラグを詰めたかご群の上流ならびに下流で、一定時間毎に一定量の雨水を採取しそれぞれのpHを、実施例1および2と同じ市販のポータブルpHメーターで測定した。なお、今回、実験を行った降雨期間の平均的な1時間雨量は6mmであった。   In this state, rainwater accompanying the rain gathers in the U-shaped groove, and when the rainwater begins to pass through the cage filled with steelmaking slag, the upstream and downstream of the group of cages filled with steelmaking slag for a certain period of time. A fixed amount of rainwater was collected every time, and the pH of each was measured with the same commercially available portable pH meter as in Examples 1 and 2. In addition, the average hourly rainfall during the rainfall period in which the experiment was conducted this time was 6 mm.

こうして測定した雨水のpH値は、かごの上流側の4.4〜4.9の値に対して、中和反応処理後のかごの下流側では5.3〜5.9の値であり、実施例2と同程度の酸性化の改善がなされており、さらには、降雨量が激しくなってU字溝内の水量が増加しても、かごの上流側に雨水がたまるような状態は全く観察されなかった。   The pH value of the rainwater thus measured is a value of 5.3 to 5.9 on the downstream side of the cage after the neutralization reaction treatment, whereas the pH value of the upstream side of the cage is 4.4 to 4.9. The improvement of acidification to the same extent as in Example 2 has been made. Furthermore, even if the amount of rainfall increases and the amount of water in the U-shaped groove increases, there is no state in which rainwater accumulates on the upstream side of the cage. Not observed.

また、実施例1および2と同様に、かごの下流側の雨水のミネラル分は微量に増加していた。   In addition, as in Examples 1 and 2, the mineral content of the rainwater on the downstream side of the car increased in a trace amount.

この製鋼スラグを入れたかご群を、自然の降雨状態下にそのまま6ヶ月放置した後に取り出して、中の製鋼スラグについて、「JIS A5015道路用鉄鋼スラグ」の附属書2にて規定される「鉄鋼スラグの水浸膨張試験方法」に基づき、水浸膨張比を測定したところ、0.5%にまで数値が改善されており、本製鋼スラグも、当該の「下層用路盤材向けクラッシャラン鉄鋼スラグCS−20」に使用可能であることがわかった。   The cages containing the steelmaking slag are left undisturbed for 6 months in a natural rain condition and then taken out, and the steelmaking slag in the “steel slag for steel road slag” defined in Annex 2 of “JIS A5015 road steel slag” Based on the “water immersion expansion test method for slag”, the water expansion ratio was measured, and the numerical value was improved to 0.5%. This steelmaking slag is also used in the “crusheran steel slag CS for roadbed materials for lower layers”. It was found to be usable for “-20”.

鋼スラグを充填した、金網状の専用容器を示す図である。Was charged with steelmaking slag is a diagram showing a wire mesh-like special container.

符号の説明Explanation of symbols

1 金網状のかご容器
鋼スラグ
3 流水方向
1 wire mesh-like basket container 2 made of steel slag 3 flowing water direction

Claims (3)

雨水または融雪水を、中和反応処理後下層用路盤材に再利用する製鋼スラグで中和反応処理することを特徴とする鋼スラグによる雨水または融雪水の処理方法。 Rainwater or snow melting water treatment method of rainwater or meltwater by steelmaking slag, wherein the Neutralization reaction treatment to Turkey with steelmaking slag to be reused in the neutralization reaction treatment after undercoating roadbeds. 前記鋼スラグの見掛け気孔率が10%以上であることを特徴とする請求項1に記載の鋼スラグによる雨水または融雪水の処理方法。 Processing method rainwater or meltwater by steelmaking slag according to claim 1, wherein the apparent porosity of the manufactured steel slag is 10% or more. 前記鋼スラグを金網状の容器に充填し、当該充填後の容器を、雨水または融雪水の流路に設置する、または、雨水または融雪水の貯水池に浸漬することを特徴とする請求項1又は2に記載の鋼スラグによる雨水または融雪水の処理方法。 The manufactured steel slag filler wire mesh shaped container, according to claim 1, the container after the filling, is placed in the flow path of rainwater or snow melting water, or, characterized in that immersion in reservoirs rainwater or meltwater or treatment method of rainwater or meltwater by steelmaking slag described.
JP2004212258A 2004-07-20 2004-07-20 Method of treating rainwater or snowmelt water with steel slag Expired - Fee Related JP4522179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004212258A JP4522179B2 (en) 2004-07-20 2004-07-20 Method of treating rainwater or snowmelt water with steel slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004212258A JP4522179B2 (en) 2004-07-20 2004-07-20 Method of treating rainwater or snowmelt water with steel slag

Publications (2)

Publication Number Publication Date
JP2006026593A JP2006026593A (en) 2006-02-02
JP4522179B2 true JP4522179B2 (en) 2010-08-11

Family

ID=35893554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004212258A Expired - Fee Related JP4522179B2 (en) 2004-07-20 2004-07-20 Method of treating rainwater or snowmelt water with steel slag

Country Status (1)

Country Link
JP (1) JP4522179B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4790368B2 (en) * 2005-10-14 2011-10-12 新日本製鐵株式会社 Water quality improvement method using steelmaking slag
CN106167311B (en) * 2016-07-26 2019-02-05 昆明理工大学 A kind of technique using slag processing rainwater
CN109574270A (en) * 2018-12-14 2019-04-05 博大绿泽生态建设集团有限公司 A method of utilizing active carbon and slag processing rainwater

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05345187A (en) * 1992-06-11 1993-12-27 Nippon Solid Co Ltd Environmental cleaning material
JP2004091277A (en) * 2002-09-02 2004-03-25 Kenji Sasaki Sintered compact, alkaline water preparation unit, bacteria-containing water preparation apparatus, deodorization plant, concrete product and method for manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05345187A (en) * 1992-06-11 1993-12-27 Nippon Solid Co Ltd Environmental cleaning material
JP2004091277A (en) * 2002-09-02 2004-03-25 Kenji Sasaki Sintered compact, alkaline water preparation unit, bacteria-containing water preparation apparatus, deodorization plant, concrete product and method for manufacturing the same

Also Published As

Publication number Publication date
JP2006026593A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
Stolaroff et al. Using CaO-and MgO-rich industrial waste streams for carbon sequestration
Park et al. The suitability evaluation of dredged soil from reservoirs as embankment material
US5161470A (en) Process for the water-saving ecologic collection, transport and deposition of slag and flyash from coal-fired thermal power stations with the simultaneous utilization of physical and chemical properties
Sakharova et al. New construction solutions for geoenvironment protection of transport infrastructure
Sorvari et al. Industrial by-products
JP4522179B2 (en) Method of treating rainwater or snowmelt water with steel slag
JP4817787B2 (en) Soil improved granular material
Ganjyal et al. Freezing points and small-scale deicing tests for salts of levulinic acid made from grain sorghum
Makarov et al. Dusting suppression at tailings storage facilities
JP5705029B2 (en) Herbicide material using steelmaking slag
Kotiranta et al. Towards a “minimum impact” copper concentrator: A sustainability assessment
CN110453700A (en) A kind of falling zone slope reinforcement concrete construction injection method
Wiltshire Innovations in marine ferromanganese oxide tailings disposal
Ratkevicius et al. Reduction of negative impact of salts used for winter road maintenance on the environment
Vignisdottir et al. Life Cycle assessment of Anti-and De-icing Operations in Norway
Butalia et al. The utilization of flue-gas desulfurization materials
JP4997687B2 (en) How to improve water environment
Suponik et al. Heavy metals and sulfate removal from water by means of Al powder-cement-based filtration
CN107056458A (en) Solid waste ecological restoring method and medicament and building, the method for mine solid wastes kind tea tree
US20210095175A1 (en) Environment-friendly snow removal agent using component of starfish
Broers et al. Life Cycle Assessment of a Road Embankment in Phosphogypsum Preliminary Results
Krasilnikova et al. Using of soda production waste
Radulescu et al. SOIL QUALITY, A PERMANENT PROBLEM IN THE MANAGEMENT OF CRITICAL AREAS FACED WITH ACCIDENTAL OR CONTINUOUS POLLUTION
Korobkina ICE CONTROL IN RUSSIA AND ABROAD
Helepciuc The Environmental Impact of Concrete Production and the Necessity of Its Greening

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100525

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees