JP4521937B2 - Anisotropic heat transfer sheet manufacturing method and anisotropic heat transfer sheet - Google Patents

Anisotropic heat transfer sheet manufacturing method and anisotropic heat transfer sheet Download PDF

Info

Publication number
JP4521937B2
JP4521937B2 JP2000180259A JP2000180259A JP4521937B2 JP 4521937 B2 JP4521937 B2 JP 4521937B2 JP 2000180259 A JP2000180259 A JP 2000180259A JP 2000180259 A JP2000180259 A JP 2000180259A JP 4521937 B2 JP4521937 B2 JP 4521937B2
Authority
JP
Japan
Prior art keywords
transfer sheet
heat transfer
anisotropic heat
anisotropic
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000180259A
Other languages
Japanese (ja)
Other versions
JP2001353736A (en
Inventor
直之 下山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polymatech Co Ltd
Original Assignee
Polymatech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polymatech Co Ltd filed Critical Polymatech Co Ltd
Priority to JP2000180259A priority Critical patent/JP4521937B2/en
Publication of JP2001353736A publication Critical patent/JP2001353736A/en
Application granted granted Critical
Publication of JP4521937B2 publication Critical patent/JP4521937B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子機器中に用いられる半導体素子、電源、光源等の部品から発生する熱を伝える異方性伝熱シートの製造方法に関するものである。
【0002】
【従来の技術】
従来より、電子機器中に用いられる半導体素子等から発生する熱をヒートシンク等に伝えるものとして伝熱シートがある。伝熱シートの中には、異方性の熱伝導性のある熱伝導性繊維を同一方向に配向させた異方性伝熱シートがある。これは熱伝導性繊維が有する径方向よりも軸方向に熱伝導率が高い性質を利用したものである。
【0003】
異方性伝熱シートの製造方法がいくつか報告されている。例えば、高分子組成物中に熱伝導性繊維を分散させ、押出成形、カレンダー成形等を用いて熱伝導性繊維を流動配向させた後、高分子組成物を固化し異方性伝熱シートを製造する方法がある。
【0004】
また、シートの厚み方向に繊維が配向した異方性伝熱シートの製造方法については、特開平11−302545号公報に記載されている。これは、液状シリコーンゴム中に熱伝導性長繊維を一方向に配向させ硬化させた複合材ブロックを作製し、さらに複合材ブロックを熱伝導性長繊維の配向方向に対して垂直に切断して異方性伝熱シートを製造する方法である。
【0005】
【発明が解決しようとする課題】
しかしながら、高分子組成物中に熱伝導性繊維を分散させ、押出成形、カレンダー成形等を用いて熱伝導性繊維を配向させた後、高分子組成物を固化し異方性伝熱シートを製造する方法では、伝熱シートの厚み方向に繊維を配向させることが難しいこと、また、液状シリコーンゴム中に熱伝導性長繊維を含浸させシリコーンゴムをブロック状に硬化し切断する方法では、繊維の配向を保ったままで数mm程度の厚みに薄くブロックを切断することが困難であること等により、伝熱シートの厚み方向に繊維が配向した異方性伝熱シートを低コストで生産することが難しかった。
【0006】
【課題を解決するための手段】
本発明は、上記の課題を解決するため、伝熱シートの厚み方向に繊維を配向させる方法として静電植毛の手法を用いることにより、任意の厚さで厚み方向の熱伝導性が高い異方性伝熱シートを容易に製造する方法を提供するものである。
【0007】
すなわち、熱伝導性繊維が高分子シート中の厚み方向に配向された異方性伝熱シートの製造方法であって、静電植毛により熱伝導性繊維を配向する異方性伝熱シートの製造方法である。
【0008】
さらに、熱伝導性繊維が高分子シート中の厚み方向に配向された異方性伝熱シートの製造方法であって、静電植毛により熱伝導性繊維を被植毛層の表面に配向させ、液状高分子を配向した熱伝導性繊維の間に含浸させた後固化させる異方性伝熱シートの製造方法である。
【0009】
さらに、熱伝導性繊維が高分子シート中の厚み方向に配向された異方性伝熱シートの製造方法であって、静電植毛により熱伝導性繊維を被植毛層の表面に配向させ、液状高分子を配向した熱伝導性繊維の間に含浸させた後固化させ、次いで被植毛層を剥離する異方性伝熱シートの製造方法である。
【0010】
【発明の実施の形態】
以下に、本発明をさらに詳しく説明する。
本発明の異方性伝熱シートの製造方法は、静電植毛により熱伝導性繊維を配向することにより、伝熱シートの厚み方向に容易に熱伝導性繊維を配向することができる。
本発明の代表的な実施の形態は、図4に示すように静電植毛により熱伝導性繊維1を被植毛層2の表面に直立して配向させた後、被植毛層を固化させる。次に図5に示すように液状高分子3を、配向した熱伝導性繊維の間に塗布・含浸させた後、固化させて異方性伝熱シートを製造する。次いで図6に示すように被植毛層2を剥離する。以上の工程により、図7に示すような伝熱シートの両表面に熱伝導性繊維端部4が表出した異方性伝熱シート5が得られる。
【0011】
本発明の静電植毛は、アップ方法、ダウン方法、サイド方法、噴射器により圧縮空気で塗布面に吹き付ける吹きつけ法など従来より行われてきたいずれの方法でもよく、全面植毛もしくは捺染植毛にて、電極間にフロックである熱伝導性繊維を飛ばし、被植毛層の表面に直立して配向させる。植毛された熱伝導性繊維は、被植毛層の表面に対して鉛直方向に植毛されていることが熱伝導の効率から最も好ましが、斜めに植毛されていると鉛直方向からの圧力を緩衝することもできる。
さらに、植毛をする際に高電圧電極板に振動を与えたり、フロックを攪拌・振動を与えることも好ましい。
【0012】
本発明の液状高分子の含浸は、静電植毛された熱伝導性繊維間に含浸させるため、100〜20000cPの液状高分子で硬化する必要があるが、好ましくは低粘度の液状高分子で100〜1500cP、さらに好ましくは、有機溶剤で希釈して一時的に粘度を下げ、含浸後に有機溶剤を飛散等により除くことで、ある程度まで高粘度の液状高分子でも用いることも可能である。さらに含浸を促進するために、減圧下にて行うことも有効である。
【0013】
本発明の熱伝導性繊維は、50W/m・K以上の熱伝導性を有する繊維であれば、繊維の径や表面状態は特定されるるものではないが、植毛に使用する繊維長がそろっていることが好ましい。熱伝導性繊維の種類も特に限定されるものではないが、炭素繊維、グラファイト繊維、金属繊維、ポリエチレン繊維、ポリベンザゾール繊維、セラミックス繊維から選ばれる少なくとも1種の繊維であることが好ましい。特に高熱伝導性を有するピッチ系炭素繊維が最も好ましい。さらに、使用する熱伝導性繊維のアスペクト比が、7.2〜25000であれば好ましい。さらに、導電性のある炭素繊維を帯電させるため、炭素繊維の表面を帯電しやすい材料で処理してあれば好ましい。さらに、炭素繊維を表面処理したものの抵抗が50〜10×1010Ωであれば好ましい。
【0014】
本発明の高分子シートは、公知の有機高分子からなる高分子シートであり、耐熱性の熱硬化性有機高分子が好ましい。有機高分子の種類には、シリコーンゴム、フッ素ゴム、ウレタンゴム、塩素化ポリエチレン、エチレンプロピレンゴム、エポキシ樹脂、ウレタン樹脂、シリコーン樹脂、ポリイミド樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、ベンゾシクロブテン樹脂、熱硬化型ポリフェニレンエーテルおよび変性PPE樹脂などの熱硬化性高分子が挙げられ、さらにそれらのアロイ材も用いることができる。高分子シートには、補強剤、難燃剤、着色剤、耐熱向上剤、粘着剤、可塑剤、オイル、硬化遅延剤等が含まれていても良い。
【0015】
さらに、本発明の高分子シート中に、熱伝導性充填剤が分散配合されていてもかまわない。熱伝導性充填剤を配合することで熱伝導性を高めることができる。熱伝導性充填剤には、酸化アルミニウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、炭化ケイ素、水酸化アルミニウムなどの金属酸化物、金属窒化物、金属炭化物、金属水酸化物や金、銀、銅、アルミニウム、マグネシウム等の金属や合金、並びにダイヤモンドやグラファイトなどのうち少なくとも一種類からなる球状、粉体状、繊維状、針状、鱗片状、ウィスカー状、ペレット状などの充填剤が好ましい。これらの熱伝導性充填剤の中でも、電気絶縁性に優れ安価な酸化アルミニウム、酸化マグネシウム、窒化アルミニウム、窒化ホウ素、水酸化アルミニウム、炭化ケイ素から選ばれる少なくとも一種類の熱伝導性充填剤がより好ましい。
【0016】
本発明の被植毛層は、静電植毛された熱伝導性繊維を直立させたまま固定するための薄く形成された層である。被植毛層に液状高分子と剥離可能な素材を用いることで、液状高分子の硬化後に被植毛層を除去して、異方性伝熱シートの両表面に熱伝導性繊維の端部を表出させることができるので、得られる異方性伝熱シートの熱伝導性を低下することがなくなる。また、被植毛層に前述の熱伝導性充填剤を分散配合すれば、被植毛層の熱伝導性への影響が小さくなるため、液状高分子の固化後、被植毛層を剥離せず積層したままの形態で異方性伝熱シートとしてもよい。さらに、剥離しない被植毛層に前述の補強剤、難燃剤、着色剤、耐熱向上剤、粘着剤、可塑剤、オイル、硬化遅延剤等が含まれていても良い。この時、被植毛層を電気絶縁層にすると、被植毛層側の面が電気絶縁性である異方性伝熱シートとなる。
【0017】
【実施例1】
液状付加型シリコーンゴム(GE東芝シリコーン株式会社製)をテフロンコーティングした剥離シート上に被植毛層として厚さ60μmにスクリーン印刷によって塗布し、アップ法の静電植毛により、長さ1mmのポリベンザゾール短繊維(東洋紡績株式会社製 ザイロンAS)からなる熱伝導性繊維1を被植毛層の表面に配向させた後、液状付加型シリコーンゴムを加熱硬化させた。
【0018】
さらに、熱伝導性繊維間の間隙に未硬化のエポキシ樹脂(日立化成工業株式会社製)からなる液状高分子を熱伝導性繊維1の先端が完全に隠れないように含浸させ表面を平らにし、エポキシ樹脂を加熱硬化した。被植毛層であるシリコーンゴムを剥がし、厚さ1mmの異方性伝熱シート5を得た。図1に本実施例1による異方性伝熱シートの断面図を示す。表裏面に熱伝導性繊維端部4が表出している異方性伝熱シート5である。ポリベンザゾール短繊維のエポキシ樹脂に対する体積比率は3.8体積%であり、熱伝導率は1.5W/m・Kであった。
【0019】
【実施例2】
液状付加型シリコーンゲル(GE東芝シリコーン株式会社製)に熱伝導性充填剤6として酸化アルミニウム粉末(昭和電工株式会社製 球状アルミナA-20)を配合したシリコーンコンパウンドを、テフロンコーティングした剥離シート上に被植毛層2として厚さ60μmにスクリーン印刷によって塗布し、繊維長さ方向の熱伝導率が1000W/m・Kの短繊維グラファイト(株式会社ペトカ製 メルブロンミルド:直径9μm、平均長さ100μm)からなる熱伝導性繊維1をアップ法の静電植毛により被植毛層2の表面に直立配向させた後、シリコーンコンパウンドを硬化させた。
【0020】
さらに、熱伝導性繊維間の間隙に上記同様の配合であるシリコーンコンパウンドからなる液状高分子を熱伝導性繊維1の先端が完全に隠れないように含浸させ表面を平らにした後、シリコーンコンパウンドを加熱硬化した。厚さ220μmの異方性伝熱シート5を得た。図2に本実施例2による異方性伝熱シートの断面図を示す。片面に熱伝導性繊維端部4が表出し、片面が電気絶縁性の異方性伝熱シート5である。炭素短繊維のシリコーンコンパウンドに対する体積比率は3.6体積%であり、熱伝導率は5.0W/m・Kであった。
【0021】
【実施例3】
液状付加型シリコーンゲル(GE東芝シリコーン株式会社製)に熱伝導性充填剤6として酸化アルミニウム粉末(昭和電工株式会社製 球状アルミナA-20)を配合したシリコーンコンパウンドを、テフロンコーティングした剥離シート上に被植毛層2として厚さ60μmにスクリーン印刷によって塗布し、繊維長さ方向の熱伝導率が1000W/m・Kの短繊維グラファイト(株式会社ペトカ製 メルブロンミルド:直径9μm、平均長さ100μm)からなる熱伝導性繊維1をアップ法の静電植毛により被植毛層2の表面に直立配向させた後、シリコーンコンパウンドを硬化させた。
【0022】
さらに、熱伝導性繊維間の間隙に 液状付加型シリコーンゴム(GE東芝シリコーン株式会社製)を熱伝導性繊維1の先端が完全に隠れないように含浸させ表面を平らにした後、液状シリコーン樹脂を加熱硬化した。厚さ200μmの異方性伝熱シート5を得た。図2に本実施例2による異方性伝熱シートの断面図を示す。片面に熱伝導性繊維端部4が表出し、片面が電気絶縁性の異方性伝熱シート5である。炭素短繊維のシリコーンコンパウンドに対する体積比率は3.6体積%であり、熱伝導率は6.1W/m・Kであった。
【0023】
【実施例4】
紫外線硬化型インキ(帝国インキ製造株式会社製)をPETシート上に被植毛層として厚さ60μmにスクリーン印刷によって塗布し、アップ法の静電植毛により、長さ0.5mmの高強度ポリエチレン短繊維(東洋紡績株式会社製)からなる熱伝導性繊維1を被植毛層の表面に配向させた後、紫外線を照射して硬化させた。
【0024】
さらに、熱伝導性繊維間の間隙に未硬化のエポキシ樹脂(日立化成工業株式会社製)からなる液状高分子を熱伝導性繊維1の先端が完全に隠れないように含浸させ表面を平らにし、エポキシ樹脂を加熱硬化した。被植毛層を剥がし、厚さ1mmの異方性伝熱シート5を得た。図1に本実施例1による異方性伝熱シートの断面図を示す。表裏面に熱伝導性繊維端部4が表出している異方性伝熱シート5である。高強度ポリエチレンのエポキシ樹脂に対する体積比率は4.0体積%であり、熱伝導率は1.1W/m・Kであった。
【0025】
【実施例5】
液状付加型シリコーンゲル(GE東芝シリコーン株式会社製)に熱伝導性充填剤6として酸化アルミニウム粉末(昭和電工株式会社製 球状アルミナA-20)を配合したシリコーンコンパウンドを、テフロンコーティングした剥離シート上に被植毛層2として厚さ60μmにスクリーン印刷によって塗布し、繊維長さ方向の熱伝導率が140W/m・Kの炭素長繊維(三菱化学株式会社製・k6371T )を長さ0.5mmに切断した熱伝導性繊維1をアップ法の静電植毛により被植毛層2の表面に直立配向させた後、シリコーンコンパウンドを硬化させた。
【0026】
さらに、熱伝導性繊維間の間隙に 液状付加型シリコーンゴム(GE東芝シリコーン株式会社製)を熱伝導性繊維1の先端が完全に隠れないように含浸させ表面を平らにした後、液状シリコーン樹脂を加熱硬化した。厚さ500μmの異方性伝熱シート5を得た。図2に本実施例2による異方性伝熱シートの断面図を示す。片面に熱伝導性繊維端部4が表出し、片面が電気絶縁性の異方性伝熱シート5である。炭素短繊維のシリコーンコンパウンドに対する体積比率は3.2体積%であり、熱伝導率は3.8W/m・Kであった。
【0027】
【実施例6】
紫外線硬化型インキ(帝国インキ製造株式会社製)をPETシート上に被植毛層として厚さ60μmにスクリーン印刷によって塗布し、アップ法の静電植毛により、びびり振動切削により製造した長さ1mmの銅短繊維(直径9μm)からなる熱伝導性繊維1を被植毛層の表面に配向させた後、紫外線を照射して硬化させた。
【0028】
さらに、熱伝導性繊維間の間隙に未硬化のエポキシ樹脂(日立化成工業株式会社製)からなる液状高分子を熱伝導性繊維1の先端が完全に隠れないように含浸させ表面を平らにし、エポキシ樹脂を加熱硬化した。被植毛層を剥がし、厚さ1mmの異方性伝熱シート5を得た。
図1に本実施例1による異方性伝熱シートの断面図を示す。表裏面に熱伝導性繊維端部4が表出している異方性伝熱シート5である。高強度ポリエチレンのエポキシ樹脂に対する体積比率は6.0体積%であり、熱伝導率は8.1W/m・Kであった。
【0029】
【比較例1】
液状付加型シリコーンゲル(GE東芝シリコーン株式会社製)に熱伝導性充填剤6として酸化アルミニウム粉末(昭和電工株式会社製 球状アルミナA−20)シリコーンコンパウンド50体積%と短繊維グラファイト(株式会社ペトカ製メルブロンミルド:直径9μm、平均長さ100μm)からなる熱伝導性繊維1を50体積%を配合したシリコーンコンパウンドを調製し、プレス成形により厚さ1mmのシートを得た。
図3に比較例1の断面図を示す。熱伝導率は1.8W/m・Kであった。
【0030】
静電植毛により熱伝導性繊維を配向することができる為、繊維長により伝熱シートの厚みが調節できることで薄いシートの形成が大変簡便になり、さらに熱伝導性繊維が異方性伝熱シートを貫通することで熱抵抗を低く抑え高い熱伝導性が得られた。実施例1〜6に示した異方性伝熱シートは、比較例1と比べてシートに含まれる繊維濃度が大変低いにもかかわらず、比較例1と同等以上の熱伝導性が得られた。
【0031】
【発明の効果】
本発明により従来と比べて大変簡便に、熱伝導性繊維を伝熱シートの厚み方向に配向させた異方性伝熱シートを得ることができた。
本発明は、繊維配向に静電植毛の手法を用いることで、容易に熱伝導性繊維が配向した異方性伝熱シートが得られ、さらに静電植毛に使用した繊維長を選択することによりシートを任意の厚さに設計できる。
【図面の簡単な説明】
【図1】本実施例1による異方性伝熱シートの縦断面図
【図2】本実施例2による異方性伝熱シートの縦断面図
【図3】比較例1の縦断面図
【図4】本発明の実施の工程の縦断面図
【図5】本発明の実施の工程の縦断面図
【図6】本発明の実施の工程の縦断面図
【図7】本発明の実施の工程の縦断面図
【符号の説明】
1 熱伝導性繊維
2 被植毛層
3 液状高分子
4 熱伝導性繊維端部
5 異方性伝熱シート
6 熱伝導性充填剤
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing an anisotropic heat transfer sheet that transfers heat generated from components such as semiconductor elements, power supplies, and light sources used in electronic equipment.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there is a heat transfer sheet that transfers heat generated from a semiconductor element or the like used in an electronic device to a heat sink or the like. Among heat transfer sheets, there is an anisotropic heat transfer sheet in which thermally conductive fibers having anisotropic thermal conductivity are oriented in the same direction. This utilizes the property that the thermal conductivity is higher in the axial direction than in the radial direction of the thermally conductive fibers.
[0003]
Several methods for producing anisotropic heat transfer sheets have been reported. For example, the thermally conductive fibers are dispersed in the polymer composition, and the thermally conductive fibers are flow-oriented using extrusion molding, calender molding, etc., and then the polymer composition is solidified to form an anisotropic heat transfer sheet. There is a manufacturing method.
[0004]
A method for producing an anisotropic heat transfer sheet in which fibers are oriented in the thickness direction of the sheet is described in JP-A-11-302545. This is to produce a composite block in which thermally conductive long fibers are oriented in one direction in liquid silicone rubber and cured, and further, the composite block is cut perpendicularly to the orientation direction of the thermally conductive long fibers. This is a method for producing an anisotropic heat transfer sheet.
[0005]
[Problems to be solved by the invention]
However, after dispersing thermally conductive fibers in the polymer composition and orienting the thermally conductive fibers using extrusion molding, calendering, etc., the polymer composition is solidified to produce an anisotropic heat transfer sheet. In this method, it is difficult to orient the fibers in the thickness direction of the heat transfer sheet. In addition, in the method in which liquid silicone rubber is impregnated with heat conductive long fibers and the silicone rubber is cured into blocks and cut, It is possible to produce an anisotropic heat transfer sheet in which the fibers are oriented in the thickness direction of the heat transfer sheet at low cost due to the difficulty of cutting the block thinly to a thickness of about several mm while maintaining the orientation. was difficult.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention uses anisotropic flocking as a method for orienting fibers in the thickness direction of the heat transfer sheet, and is anisotropic with high thermal conductivity in the thickness direction at any thickness. The present invention provides a method for easily producing a heat conductive sheet.
[0007]
That is, a method for producing an anisotropic heat transfer sheet in which heat conductive fibers are oriented in a thickness direction in a polymer sheet, and manufacturing an anisotropic heat transfer sheet in which heat conductive fibers are oriented by electrostatic flocking Is the method.
[0008]
Furthermore, the method for producing an anisotropic heat transfer sheet in which the heat conductive fibers are oriented in the thickness direction in the polymer sheet, wherein the heat conductive fibers are oriented on the surface of the hair-implanted layer by electrostatic flocking, and are liquid. This is a method for producing an anisotropic heat transfer sheet in which a polymer is impregnated between oriented heat conductive fibers and then solidified.
[0009]
Furthermore, the method for producing an anisotropic heat transfer sheet in which the heat conductive fibers are oriented in the thickness direction in the polymer sheet, wherein the heat conductive fibers are oriented on the surface of the hair-implanted layer by electrostatic flocking, and are liquid. This is a method for producing an anisotropic heat transfer sheet in which a polymer is impregnated between oriented heat conductive fibers and then solidified, and then the planted layer is peeled off.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
In the method for producing an anisotropic heat transfer sheet of the present invention, the heat conductive fibers can be easily oriented in the thickness direction of the heat transfer sheet by orienting the heat conductive fibers by electrostatic flocking.
In a typical embodiment of the present invention, as shown in FIG. 4, the thermally conductive fiber 1 is oriented upright on the surface of the to-be-grafted layer 2 by electrostatic flocking, and then the to-be-grafted layer is solidified. Next, as shown in FIG. 5, the liquid polymer 3 is applied and impregnated between oriented heat conductive fibers, and then solidified to produce an anisotropic heat transfer sheet. Subsequently, as shown in FIG. 6, the to-be-grafted layer 2 is peeled. Through the above steps, an anisotropic heat transfer sheet 5 in which the heat conductive fiber end portions 4 are exposed on both surfaces of the heat transfer sheet as shown in FIG. 7 is obtained.
[0011]
The electrostatic flocking of the present invention may be any conventional method such as an up method, a down method, a side method, or a spraying method in which air is sprayed onto a coated surface by a jet, Then, heat conductive fibers that are flocks are blown between the electrodes, and are oriented upright on the surface of the to-be-grafted layer. It is most preferable from the efficiency of heat conduction that the implanted thermal conductive fiber is implanted in the vertical direction with respect to the surface of the planted layer, but if it is implanted obliquely, the pressure from the vertical direction is buffered. You can also
Furthermore, it is also preferable to apply vibration to the high voltage electrode plate or to stir and vibrate the flocs when planting.
[0012]
In the impregnation of the liquid polymer of the present invention, it is necessary to cure with 100 to 20000 cP of liquid polymer in order to impregnate between the electrostatically implanted thermal conductive fibers. ˜1500 cP, more preferably, it is possible to use a liquid polymer having a high viscosity to some extent by diluting with an organic solvent to temporarily lower the viscosity, and removing the organic solvent by scattering after impregnation. Further, in order to promote the impregnation, it is also effective to carry out under reduced pressure.
[0013]
As long as the heat conductive fiber of the present invention is a fiber having a heat conductivity of 50 W / m · K or more, the diameter and surface state of the fiber are not specified, but the fiber length used for flocking is aligned. Preferably it is. The type of heat conductive fiber is not particularly limited, but is preferably at least one fiber selected from carbon fiber, graphite fiber, metal fiber, polyethylene fiber, polybenzazole fiber, and ceramic fiber. In particular, pitch-based carbon fibers having high thermal conductivity are most preferable. Furthermore, it is preferable that the aspect ratio of the heat conductive fiber used is 7.2 to 25000. Furthermore, in order to charge the conductive carbon fiber, it is preferable that the surface of the carbon fiber is treated with a material that is easily charged. Furthermore, it is preferable that the resistance of the carbon fiber surface-treated is 50 to 10 × 10 10 Ω.
[0014]
The polymer sheet of the present invention is a polymer sheet made of a known organic polymer, and is preferably a heat-resistant thermosetting organic polymer. The types of organic polymers include silicone rubber, fluoro rubber, urethane rubber, chlorinated polyethylene, ethylene propylene rubber, epoxy resin, urethane resin, silicone resin, polyimide resin, phenol resin, unsaturated polyester resin, diallyl phthalate resin, benzo Thermosetting polymers such as cyclobutene resin, thermosetting polyphenylene ether, and modified PPE resin can be used, and alloy materials thereof can also be used. The polymer sheet may contain a reinforcing agent, a flame retardant, a colorant, a heat resistance improver, an adhesive, a plasticizer, an oil, a curing retarder, and the like.
[0015]
Furthermore, a heat conductive filler may be dispersed and blended in the polymer sheet of the present invention. Thermal conductivity can be increased by blending a thermally conductive filler. Thermally conductive fillers include metal oxides such as aluminum oxide, magnesium oxide, boron nitride, aluminum nitride, silicon carbide, aluminum hydroxide, metal nitride, metal carbide, metal hydroxide, gold, silver, copper, A filler such as a spherical shape, a powder shape, a fiber shape, a needle shape, a scale shape, a whisker shape, a pellet shape, or the like made of at least one of metals and alloys such as aluminum and magnesium, and diamond and graphite is preferable. Among these thermally conductive fillers, at least one kind of thermally conductive filler selected from aluminum oxide, magnesium oxide, aluminum nitride, boron nitride, aluminum hydroxide, and silicon carbide, which is excellent in electrical insulation and inexpensive, is more preferable. .
[0016]
The to-be-grafted layer of the present invention is a thin layer for fixing electrostatically-planted thermally conductive fibers in an upright state. By using a material that can be peeled from the liquid polymer for the grafted hair layer, the grafted layer is removed after the liquid polymer is cured, and the ends of the thermally conductive fibers are displayed on both surfaces of the anisotropic heat transfer sheet. Therefore, the thermal conductivity of the obtained anisotropic heat transfer sheet is not lowered. In addition, if the above-described thermally conductive filler is dispersed and blended in the flocked layer, the influence on the thermal conductivity of the flocked layer is reduced, so that after the liquid polymer is solidified, the flocked layer is laminated without peeling. An anisotropic heat transfer sheet may be used as it is. Further, the above-described reinforcing agent, flame retardant, colorant, heat resistance improver, pressure-sensitive adhesive, plasticizer, oil, curing retarder and the like may be contained in the to-be-grafted layer. At this time, when the hair-implanted layer is an electrical insulating layer, an anisotropic heat transfer sheet having an electrically insulating surface on the hair-implanted layer side is obtained.
[0017]
[Example 1]
A liquid addition type silicone rubber (manufactured by GE Toshiba Silicone Co., Ltd.) was coated on a release sheet coated with Teflon as a flocking layer by screen printing to a thickness of 60 μm, and polybenzazole having a length of 1 mm by electrostatic flocking by the up method. After orienting the heat conductive fibers 1 made of short fibers (Zylon AS manufactured by Toyobo Co., Ltd.) on the surface of the flocked layer, the liquid addition type silicone rubber was heated and cured.
[0018]
Further, a liquid polymer made of uncured epoxy resin (manufactured by Hitachi Chemical Co., Ltd.) is impregnated in the gap between the heat conductive fibers so that the tip of the heat conductive fiber 1 is not completely hidden, and the surface is flattened. The epoxy resin was heat cured. Silicone rubber which is a to-be-planted layer was peeled off to obtain an anisotropic heat transfer sheet 5 having a thickness of 1 mm. FIG. 1 shows a cross-sectional view of an anisotropic heat transfer sheet according to the first embodiment. It is the anisotropic heat-transfer sheet | seat 5 which the heat conductive fiber edge part 4 has exposed on the front and back. The volume ratio of the polybenzazole short fibers to the epoxy resin was 3.8% by volume, and the thermal conductivity was 1.5 W / m · K.
[0019]
[Example 2]
On a Teflon-coated release sheet, a silicone compound in which aluminum oxide powder (spherical alumina A-20 made by Showa Denko KK) is blended as a heat conductive filler 6 in a liquid addition type silicone gel (GE Toshiba Silicone Co., Ltd.) Short fiber graphite having a thermal conductivity in the fiber length direction of 1000 W / m · K (Melbron milled by Petka Co., Ltd .: diameter 9 μm, average length 100 μm) The thermal conductive fiber 1 made of the above was oriented upright on the surface of the to-be-grafted layer 2 by electrostatic flocking using the up method, and then the silicone compound was cured.
[0020]
Further, after impregnating the liquid polymer composed of the silicone compound having the same composition as described above in the gap between the heat conductive fibers so that the tip of the heat conductive fiber 1 is not completely hidden, the surface is flattened, and then the silicone compound is added. Heat cured. An anisotropic heat transfer sheet 5 having a thickness of 220 μm was obtained. FIG. 2 shows a cross-sectional view of the anisotropic heat transfer sheet according to the second embodiment. The thermally conductive fiber end 4 is exposed on one side, and the one side is an electrically insulating anisotropic heat transfer sheet 5. The volume ratio of the short carbon fibers to the silicone compound was 3.6% by volume, and the thermal conductivity was 5.0 W / m · K.
[0021]
[Example 3]
On a Teflon-coated release sheet, a silicone compound in which aluminum oxide powder (spherical alumina A-20 made by Showa Denko KK) is blended as a heat conductive filler 6 in a liquid addition type silicone gel (GE Toshiba Silicone Co., Ltd.) Short fiber graphite having a thermal conductivity in the fiber length direction of 1000 W / m · K (Melbron milled by Petka Co., Ltd .: diameter 9 μm, average length 100 μm) The thermal conductive fiber 1 made of the above was oriented upright on the surface of the to-be-grafted layer 2 by electrostatic flocking using the up method, and then the silicone compound was cured.
[0022]
Furthermore, liquid addition silicone rubber (manufactured by GE Toshiba Silicone Co., Ltd.) is impregnated in the gaps between the heat conductive fibers so that the tips of the heat conductive fibers 1 are not completely hidden, and the surface is flattened. Was cured by heating. An anisotropic heat transfer sheet 5 having a thickness of 200 μm was obtained. FIG. 2 shows a cross-sectional view of the anisotropic heat transfer sheet according to the second embodiment. The thermally conductive fiber end 4 is exposed on one side, and the one side is an electrically insulating anisotropic heat transfer sheet 5. The volume ratio of the short carbon fibers to the silicone compound was 3.6% by volume, and the thermal conductivity was 6.1 W / m · K.
[0023]
[Example 4]
UV curable ink (produced by Teikoku Mfg. Co., Ltd.) was applied onto a PET sheet as a to-be-implanted layer by screen printing to a thickness of 60 μm, and high-strength polyethylene short fibers having a length of 0.5 mm by electrostatic flocking using the up method. After orienting the heat conductive fiber 1 made of (Toyobo Co., Ltd.) on the surface of the to-be-grafted layer, it was cured by irradiation with ultraviolet rays.
[0024]
Furthermore, the gap between the heat conductive fibers is impregnated with a liquid polymer made of an uncured epoxy resin (manufactured by Hitachi Chemical Co., Ltd.) so that the tip of the heat conductive fiber 1 is not completely hidden, and the surface is flattened. The epoxy resin was heat cured. The to-be-grafted layer was peeled off to obtain an anisotropic heat transfer sheet 5 having a thickness of 1 mm. FIG. 1 shows a cross-sectional view of an anisotropic heat transfer sheet according to the first embodiment. It is the anisotropic heat-transfer sheet | seat 5 which the heat conductive fiber edge part 4 has exposed on the front and back. The volume ratio of the high-strength polyethylene to the epoxy resin was 4.0% by volume, and the thermal conductivity was 1.1 W / m · K.
[0025]
[Example 5]
On a Teflon-coated release sheet, a silicone compound in which aluminum oxide powder (spherical alumina A-20 made by Showa Denko KK) is blended as a heat conductive filler 6 in a liquid addition type silicone gel (GE Toshiba Silicone Co., Ltd.) It is applied by screen printing to a thickness of 60 μm as the flocked layer 2, and a carbon long fiber (k6371T manufactured by Mitsubishi Chemical Corporation) having a thermal conductivity of 140 W / m · K in the fiber length direction is cut to a length of 0.5 mm. The thermally conductive fiber 1 was oriented upright on the surface of the to-be-grafted layer 2 by electrostatic flocking using the up method, and then the silicone compound was cured.
[0026]
Furthermore, liquid addition silicone rubber (manufactured by GE Toshiba Silicone Co., Ltd.) is impregnated in the gaps between the heat conductive fibers so that the tips of the heat conductive fibers 1 are not completely hidden, and the surface is flattened. Was cured by heating. An anisotropic heat transfer sheet 5 having a thickness of 500 μm was obtained. FIG. 2 shows a cross-sectional view of the anisotropic heat transfer sheet according to the second embodiment. The thermally conductive fiber end 4 is exposed on one side, and the one side is an electrically insulating anisotropic heat transfer sheet 5. The volume ratio of the short carbon fibers to the silicone compound was 3.2% by volume, and the thermal conductivity was 3.8 W / m · K.
[0027]
[Example 6]
UV-curable ink (manufactured by Teikoku Ink Manufacturing Co., Ltd.) was coated on a PET sheet as a flocking layer by screen printing to a thickness of 60μm, and 1mm long copper was manufactured by chatter vibration cutting by up electrostatic flocking. After orienting the heat conductive fibers 1 made of short fibers (diameter 9 μm) on the surface of the to-be-grafted layer, they were cured by irradiation with ultraviolet rays.
[0028]
Furthermore, the gap between the heat conductive fibers is impregnated with a liquid polymer made of an uncured epoxy resin (manufactured by Hitachi Chemical Co., Ltd.) so that the tip of the heat conductive fiber 1 is not completely hidden, and the surface is flattened. The epoxy resin was heat cured. The to-be-grafted layer was peeled off to obtain an anisotropic heat transfer sheet 5 having a thickness of 1 mm.
FIG. 1 shows a cross-sectional view of an anisotropic heat transfer sheet according to the first embodiment. It is the anisotropic heat-transfer sheet | seat 5 which the heat conductive fiber edge part 4 has exposed on the front and back. The volume ratio of the high-strength polyethylene to the epoxy resin was 6.0% by volume, and the thermal conductivity was 8.1 W / m · K.
[0029]
[Comparative Example 1]
Liquid addition type silicone gel (GE Toshiba Silicone Co., Ltd.), aluminum oxide powder (Spherical Alumina A-20, Showa Denko Co., Ltd.) Silicone Compound 50% by volume and short fiber graphite (Petka Co., Ltd.) as heat conductive filler 6 A silicone compound was prepared by blending 50% by volume of heat conductive fiber 1 having a diameter of 9 μm and an average length of 100 μm, and a sheet having a thickness of 1 mm was obtained by press molding.
FIG. 3 shows a cross-sectional view of Comparative Example 1. The thermal conductivity was 1.8 W / m · K.
[0030]
Since the heat conductive fibers can be oriented by electrostatic flocking, the thickness of the heat transfer sheet can be adjusted by the fiber length, which makes it very easy to form a thin sheet. Furthermore, the heat conductive fibers are anisotropic heat transfer sheets. By passing through, high thermal conductivity was obtained while keeping thermal resistance low. The anisotropic heat transfer sheets shown in Examples 1 to 6 had a thermal conductivity equal to or higher than that of Comparative Example 1 although the fiber concentration contained in the sheet was very low compared to Comparative Example 1. .
[0031]
【The invention's effect】
According to the present invention, an anisotropic heat transfer sheet in which the heat conductive fibers are oriented in the thickness direction of the heat transfer sheet can be obtained very simply as compared with the prior art.
In the present invention, by using the method of electrostatic flocking for fiber orientation, an anisotropic heat transfer sheet in which thermally conductive fibers are easily oriented can be obtained, and further by selecting the fiber length used for electrostatic flocking. The sheet can be designed to an arbitrary thickness.
[Brief description of the drawings]
1 is a longitudinal sectional view of an anisotropic heat transfer sheet according to Example 1, FIG. 2 is a longitudinal sectional view of an anisotropic heat transfer sheet according to Example 2, and FIG. 3 is a longitudinal sectional view of Comparative Example 1. 4 is a longitudinal cross-sectional view of the process of the present invention. FIG. 5 is a vertical cross-sectional view of the process of the present invention. FIG. 6 is a vertical cross-sectional view of the process of the present invention. Longitudinal section of the process 【Explanation of symbols】
DESCRIPTION OF SYMBOLS 1 Thermal conductive fiber 2 Flocked layer 3 Liquid polymer 4 Thermal conductive fiber edge part 5 Anisotropic heat transfer sheet 6 Thermal conductive filler

Claims (10)

熱伝導性繊維が高分子シート中の厚み方向に配向された異方性伝熱シートの製造方法であって、
熱伝導性充填剤を分散配合した未固化の被植毛層の表面に、静電植毛により熱伝導性繊維を、その先端を前記被植毛層に没入させ且つ前記被植毛層を貫通させないように配向させた後に、前記被植毛層を固化して電気絶縁性の層とし、
さらに液状高分子を、前記配向した熱伝導性繊維の間に含浸させた後固化させること
を特徴とする異方性伝熱シートの製造方法。
A method for producing an anisotropic heat transfer sheet in which heat conductive fibers are oriented in a thickness direction in a polymer sheet,
Orient the surface of the non-solidified hair transplantation layer in which the heat conductive filler is dispersed and blended by electrostatic flocking so that the tip is immersed in the planted hair layer and does not penetrate through the hair transplantation layer. After being allowed to solidify the flocked layer to make an electrically insulating layer,
A method for producing an anisotropic heat transfer sheet, further comprising impregnating a liquid polymer between the oriented heat conductive fibers and then solidifying the polymer.
熱伝導性繊維の間に含浸させる液状高分子にも熱伝導性充填剤を分散配合した請求項1に記載の異方性伝熱シートの製造方法。  The method for producing an anisotropic heat transfer sheet according to claim 1, wherein a heat conductive filler is dispersed and blended in a liquid polymer impregnated between heat conductive fibers. 前記熱伝導性充填剤が、酸化アルミニウム、酸化マグネシウム、窒化アルミニウム、窒化ホウ素、水酸化アルミニウム、炭化ケイ素の何れかである請求項1または請求項2に記載の異方性伝熱シートの製造方法。  The method for producing an anisotropic heat transfer sheet according to claim 1 or 2, wherein the thermally conductive filler is any one of aluminum oxide, magnesium oxide, aluminum nitride, boron nitride, aluminum hydroxide, and silicon carbide. . 静電植毛により高分子シート中の厚み方向に配向された熱伝導性繊維と、
前記熱伝導性繊維の間に充填した液状高分子の硬化体である高分子シートと、
前記高分子シートの一方の面に積層し、熱伝導性充填剤が分散配合された電気絶縁性の被植毛層と、
を備えることを特徴とする異方性伝熱シート。
Thermally conductive fibers oriented in the thickness direction in the polymer sheet by electrostatic flocking;
A polymer sheet that is a cured body of a liquid polymer filled between the thermally conductive fibers;
Laminated on one side of the polymer sheet, an electrically insulating hair-implanted layer in which a thermally conductive filler is dispersed and blended;
An anisotropic heat transfer sheet comprising:
前記高分子シートに熱伝導性充填剤を分散配合した請求項4に記載の異方性伝熱シート。  The anisotropic heat transfer sheet according to claim 4, wherein a heat conductive filler is dispersed and blended in the polymer sheet. 前記熱伝導性充填剤が、酸化アルミニウム、酸化マグネシウム、窒化アルミニウム、窒化ホウ素、水酸化アルミニウム、炭化ケイ素の何れかである請求項4または請求項5に記載の異方性伝熱シート。  The anisotropic heat transfer sheet according to claim 4 or 5, wherein the thermally conductive filler is any one of aluminum oxide, magnesium oxide, aluminum nitride, boron nitride, aluminum hydroxide, and silicon carbide. 前記熱伝導性繊維が、被植毛層に没入している請求項4〜6の何れか1項に記載の異方性伝熱シート。  The anisotropic heat-transfer sheet | seat of any one of Claims 4-6 in which the said heat conductive fiber is immersed in the to-be-grafted layer. 前記熱伝導性繊維が、ピッチ系炭素繊維である請求項4〜7の何れか1項に記載の異方性伝熱シート。  The anisotropic heat transfer sheet according to any one of claims 4 to 7, wherein the heat conductive fibers are pitch-based carbon fibers. 前記熱伝導性繊維を、異方性伝熱シート面に対して斜めに配向した請求項4〜8の何れか1項に記載の異方性伝熱シート。  The anisotropic heat transfer sheet according to any one of claims 4 to 8, wherein the thermally conductive fibers are oriented obliquely with respect to the anisotropic heat transfer sheet surface. 前記被植毛層が、液状付加型シリコーンゴムの硬化体である請求項4〜9の何れか1項に記載の異方性伝熱シート。  The anisotropic heat transfer sheet according to any one of claims 4 to 9, wherein the flocked layer is a cured product of liquid addition type silicone rubber.
JP2000180259A 2000-06-15 2000-06-15 Anisotropic heat transfer sheet manufacturing method and anisotropic heat transfer sheet Expired - Fee Related JP4521937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000180259A JP4521937B2 (en) 2000-06-15 2000-06-15 Anisotropic heat transfer sheet manufacturing method and anisotropic heat transfer sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000180259A JP4521937B2 (en) 2000-06-15 2000-06-15 Anisotropic heat transfer sheet manufacturing method and anisotropic heat transfer sheet

Publications (2)

Publication Number Publication Date
JP2001353736A JP2001353736A (en) 2001-12-25
JP4521937B2 true JP4521937B2 (en) 2010-08-11

Family

ID=18681393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000180259A Expired - Fee Related JP4521937B2 (en) 2000-06-15 2000-06-15 Anisotropic heat transfer sheet manufacturing method and anisotropic heat transfer sheet

Country Status (1)

Country Link
JP (1) JP4521937B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013100123A1 (en) * 2011-12-28 2013-07-04 東洋紡株式会社 Insulating and thermally conductive sheet
WO2014203955A1 (en) * 2013-06-19 2014-12-24 東洋紡株式会社 Insulating and heat-conductive sheet

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003301048A (en) * 2002-04-10 2003-10-21 Polymatech Co Ltd Thermally conductive molded product
CN1296994C (en) * 2002-11-14 2007-01-24 清华大学 A thermal interfacial material and method for manufacturing same
CN1841713A (en) * 2005-03-31 2006-10-04 清华大学 Thermal interface material and its making method
FR2924378B1 (en) * 2007-03-29 2010-01-01 Carbone Forge PROCESS FOR THE MANUFACTURE BY MOLDING A THERMOPLASTIC COMPOSITE PIECE
JP6397229B2 (en) * 2014-06-12 2018-09-26 国立研究開発法人産業技術総合研究所 Thermally conductive member and laminate having high thermal conductivity in thickness direction
CN112837842B (en) * 2021-01-05 2022-12-13 商都中建金马冶金化工有限公司 Electrode paste and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136482A (en) * 1979-04-11 1980-10-24 Alps Electric Co Ltd Method of manufacturing electric connecting member
JPH04121905A (en) * 1990-09-13 1992-04-22 Fuji Xerox Co Ltd Anisotropic conductive material and its manufacture

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2912914B1 (en) * 1998-06-08 1999-06-28 岐阜県 FIBER REINFORCED BASE AND PROCESS FOR PRODUCING THE SAME, FIBER REINFORCED MATERIAL AND PROCESS FOR PRODUCING THE SAME
JP2000141505A (en) * 1998-11-09 2000-05-23 Polymatech Co Ltd Method for molding polymer composite material and magnetic field-orientated press molding device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136482A (en) * 1979-04-11 1980-10-24 Alps Electric Co Ltd Method of manufacturing electric connecting member
JPH04121905A (en) * 1990-09-13 1992-04-22 Fuji Xerox Co Ltd Anisotropic conductive material and its manufacture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013100123A1 (en) * 2011-12-28 2013-07-04 東洋紡株式会社 Insulating and thermally conductive sheet
CN104025290A (en) * 2011-12-28 2014-09-03 东洋纺株式会社 Insulating and thermally conductive sheet
JPWO2013100123A1 (en) * 2011-12-28 2015-05-11 東洋紡株式会社 Insulating heat conductive sheet
WO2014203955A1 (en) * 2013-06-19 2014-12-24 東洋紡株式会社 Insulating and heat-conductive sheet
KR20160021227A (en) 2013-06-19 2016-02-24 도요보 가부시키가이샤 Insulating and heat-conductive sheet

Also Published As

Publication number Publication date
JP2001353736A (en) 2001-12-25

Similar Documents

Publication Publication Date Title
JP4791146B2 (en) Thermally conductive member and manufacturing method thereof
CN101189686B (en) Electric insulation material, an electric device and a method for producing an electric insulation material
JP2002088171A (en) Heat-conductive sheet and method for producing the same and heat radiation device
CN1893803A (en) Heat radiation member and production method for the same
JP2003174127A (en) Anisotropic heating sheet and manufacturing method thereof
EP1865553A2 (en) Thermally conductive body and method of manufacturing the same
JP5185582B2 (en) Thermally conductive sheet
GB2131814A (en) Anisotropically electroconductive film adhesive
JP4521937B2 (en) Anisotropic heat transfer sheet manufacturing method and anisotropic heat transfer sheet
JP2002088250A (en) Thermoconductive polymer composition and thermoconductive molded body
EP4039471A1 (en) Thermally conductive sheet and manufacturing method thereof
TW200307000A (en) Thermally conductive formed article and method of manufacturing the same
JP6064898B2 (en) Insulating heat conductive sheet manufacturing method
WO2014203955A1 (en) Insulating and heat-conductive sheet
JP2017135137A (en) Insulating high thermal conductive sheet, manufacturing method of the same, and laminate
CN106543728A (en) A kind of Graphene organic silicon rubber composite and preparation method thereof
JP2002097372A (en) Heat-conductive polymer composition and heat-conductive molding
JP2017092345A (en) Heat conduction sheet and method of manufacturing the same, and semiconductor device
JP4443746B2 (en) Method for producing anisotropic heat transfer sheet
JP2005508767A5 (en)
JP2002030223A (en) Thermally conductive resin composition
KR20210011899A (en) heat dissipation composite material and method of fabricating of the same
JP6978148B1 (en) Thermally conductive sheet and its manufacturing method
JP4900396B2 (en) Conductive sheet material and electrical connection structure
JP2002003717A (en) Heat conductive sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100506

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100525

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees