JP4521334B2 - Port injection engine fuel injection valve and port injection engine - Google Patents

Port injection engine fuel injection valve and port injection engine Download PDF

Info

Publication number
JP4521334B2
JP4521334B2 JP2005263167A JP2005263167A JP4521334B2 JP 4521334 B2 JP4521334 B2 JP 4521334B2 JP 2005263167 A JP2005263167 A JP 2005263167A JP 2005263167 A JP2005263167 A JP 2005263167A JP 4521334 B2 JP4521334 B2 JP 4521334B2
Authority
JP
Japan
Prior art keywords
intake
valve
fuel
fuel injection
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005263167A
Other languages
Japanese (ja)
Other versions
JP2007077809A (en
Inventor
義寛 助川
純一 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2005263167A priority Critical patent/JP4521334B2/en
Priority to US11/518,499 priority patent/US7565894B2/en
Priority to CN 200610153818 priority patent/CN1940275B/en
Priority to DE102006042678A priority patent/DE102006042678A1/en
Publication of JP2007077809A publication Critical patent/JP2007077809A/en
Application granted granted Critical
Publication of JP4521334B2 publication Critical patent/JP4521334B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02T10/146

Landscapes

  • Fuel-Injection Apparatus (AREA)

Description

本発明は、未燃炭化水素(HC)を低減可能なポート噴射式エンジンとその燃料噴射弁に関する。   The present invention relates to a port injection engine capable of reducing unburned hydrocarbons (HC) and a fuel injection valve thereof.

吸気管内に燃料噴射弁を備えたポート噴射エンジンでは、ポート内に噴射された燃料は吸気弁表面や吸気管壁面に付着し液膜を形成する。エンジンの冷機始動時においては、バルブやポート壁面の温度が低いため、壁面に形成された燃料液膜の気化が遅く、燃焼室内に液相の状態で供給される割合が多くなる。このように液相で燃焼室内に入った燃料の多くは酸化剤である空気との混合が悪いため、燃焼することなく排気管から排出される。これがエンジン始動時における未燃HCの排出の一要因である。始動時の未燃HCを低減するために、燃料噴霧の形態を最適化する技術が知られており、例えば、吸気2バルブエンジンにおいて、2つの吸気弁の内側に燃料の流量を偏らせる技術が「特開2004−
225598号公報」に記載されている。この技術では、吸気弁の内側に向けて燃料を多く噴射することで、燃焼室壁面への燃料付着を防止し、未燃HCを低減するものである。
In a port injection engine provided with a fuel injection valve in the intake pipe, the fuel injected into the port adheres to the intake valve surface and the intake pipe wall surface to form a liquid film. When the engine is cold-started, the temperature of the valve and the wall surface of the port is low, so that the fuel liquid film formed on the wall surface is slowly vaporized, and the ratio of the liquid phase supplied into the combustion chamber increases. In this way, most of the fuel that has entered the combustion chamber in the liquid phase is discharged from the exhaust pipe without burning because it is poorly mixed with the oxidant air. This is a factor in the emission of unburned HC when the engine is started. In order to reduce unburned HC at the time of starting, a technique for optimizing the form of fuel spray is known. For example, in an intake two-valve engine, a technique for biasing the flow rate of fuel inside two intake valves is known. “JP 2004-2004
No. 225598 ”. In this technique, a large amount of fuel is injected toward the inside of the intake valve, thereby preventing fuel from adhering to the wall surface of the combustion chamber and reducing unburned HC.

一方、エンジンの燃焼を安定させる目的で、燃焼室内に強い渦流を形成する技術が、例えば「特開2005−120994号公報」に記載されている。この技術は、吸気管の断面を上下に分割する板(タンブル生成板)を設け、タンブル生成板の上流端で、上下に分割された通路の下側への空気の流入を制御するバタフライバルブを設ける。バタフライバルブを閉じることで、吸気管の上側のみ空気が流れる結果、燃焼室内に強いタンブル流
(縦渦)が形成される。このタンブルによって、空気と燃料の混合が促進され、またガス流れの乱れ増加によって、燃焼速度が早くなり、燃焼が安定化する。
On the other hand, a technique for forming a strong vortex flow in the combustion chamber for the purpose of stabilizing the combustion of the engine is described in, for example, “JP-A-2005-120994”. In this technology, a plate (tumble generating plate) that divides the cross section of the intake pipe vertically is provided, and a butterfly valve that controls the inflow of air to the lower side of the vertically divided passage at the upstream end of the tumble generating plate is provided. Provide. By closing the butterfly valve, air flows only above the intake pipe, and as a result, a strong tumble flow (longitudinal vortex) is formed in the combustion chamber. This tumble promotes the mixing of air and fuel, and increases in gas flow turbulence increases the combustion speed and stabilizes combustion.

特開2004−225598号公報JP 2004-225598 A 特開2005−120994号公報JP 2005-120994 A

ところで、このようなタンブル生成板を設けた場合においては、吸気管内のガス流れが変化するために、最適な噴霧の形態が変化することが考えられる。しかし従来技術においてはタンブル生成板を設置した場合の噴霧形態については勘案されていない。本発明は、
タンブル生成板を設置した吸気ポートに燃料を噴射する燃料噴射弁を改良して吸気弁の空気流速が速い部分に多くの燃料を供給することを目的とする。
By the way, in the case where such a tumble generating plate is provided, it is conceivable that the optimum spray form changes because the gas flow in the intake pipe changes. However, in the prior art, the spray form when the tumble generating plate is installed is not taken into consideration. The present invention
An object of the present invention is to improve a fuel injection valve that injects fuel into an intake port provided with a tumble generating plate and supply a large amount of fuel to a portion where the air flow rate of the intake valve is high.

上記課題を解決するために、本発明では、2つの吸気ポートに分岐する吸気管と、前記2つの吸気ポートが前記燃焼室に開口する2つの開口部を開閉する2つの吸気弁と、前記吸気管の断面通路を分割し、前記2つの吸気弁の中心を結ぶ直線に対して板面が平行になるように形成された空気流動生成板を備え、前記吸気ポート内の空気流速の速度分布が、空気の流れ方向に垂直な断面上で前記2つの吸気弁の中心を結ぶ直線に対して垂直となる方向に、2つのピークを有するポート噴射式エンジンの燃料噴射弁において、燃料噴射弁から噴射された噴霧の、吸気弁位置近傍での流量フラックス分布が、前記空気流動生成板の厚み方向となる、空気の流れ方向に垂直な断面上で前記2つの吸気弁の中心を結ぶ直線に対して垂直となる方向においては、噴孔と前記吸気弁中心を結ぶ直線をはさんで両側に極大値を持ち、かつ前記2つの吸気弁の中心を結ぶ直線方向においては、極大値を1つ持つようにし、前記吸気弁の中心部に噴射される流量と、前記2つの吸気弁の中心を結ぶ直線方向において各吸気弁の中心に対して他方の吸気弁から離れる側の部分に噴射される流量とが、それぞれ、空気の流れ方向に垂直な断面上で前記2つの吸気弁の中心を結ぶ直線に対して垂直となる方向において前記噴孔と前記吸気弁の中心とを結ぶ直線をはさんで両側に生じる極大値部分に噴射される流量よりも少ないことを特徴としている。
上記燃料噴射弁において、先端部に複数の孔が空けられた多孔板を有し、前記多孔板の複数の孔は、当該多孔板の中心部を通る互いに交差する2つの仮想平面で4つの区域に分割した場合、多孔板の複数のから噴射された複数のグループの燃料噴霧が多孔板から噴射された後、互いに離れる方向に指向されるよう傾斜角を持って穿孔されており、また各区域における複数の孔は噴射方向前方においてそれぞれ1本の噴霧に纏るよう傾斜角を持って穿孔された少なくとも2個の孔を備えているとよい。また、前記複数の孔は前記多孔板の中心に対して同心円状に配置されているとよい
In order to solve the above problems, in the present invention, an intake pipe that branches into two intake ports, two intake valves that open and close two openings where the two intake ports open into the combustion chamber, and the intake air An air flow generation plate formed by dividing a cross-sectional passage of the pipe and having a plate surface parallel to a straight line connecting the centers of the two intake valves, and a velocity distribution of an air flow velocity in the intake port In a fuel injection valve of a port injection engine having two peaks in a direction perpendicular to a straight line connecting the centers of the two intake valves on a cross section perpendicular to the air flow direction, A straight line connecting the centers of the two intake valves on a cross section perpendicular to the air flow direction, in which each flow rate flux distribution in the vicinity of each intake valve position of the injected spray is in the thickness direction of the air flow generation plate. Direction perpendicular to In, Chi lifting the maximum value at both sides of the straight line connecting the center of the injection hole the intake valve, and in the direction of the straight line connecting the centers of the two intake valves, the maximum value is to have one The flow rate injected into the central portion of the intake valve and the flow rate injected into the portion on the side away from the other intake valve with respect to the center of each intake valve in the linear direction connecting the centers of the two intake valves. And on both sides of a straight line connecting the nozzle hole and the center of the intake valve in a direction perpendicular to a straight line connecting the centers of the two intake valves on a cross section perpendicular to the air flow direction. It is characterized by being smaller than the flow rate injected into the generated maximum value portion .
In the fuel injection valve, having a perforated plate spaced plurality of injection holes at the tip, a plurality of injection holes of the perforated plate, in two virtual planes that intersect each other through the center portion of the perforated plate 4 If divided into One area, after the fuel spray of the plurality of groups that are injected from the plurality of injection holes of the porous plate is injected from the porous plate, which is perforated with an inclination angle to be directed away from each other , also may the plurality of holes comprises at least two injection holes drilled with Matoiru gradient angle spray of each one in the direction of injection forward in each zone. The plurality of holes may be arranged concentrically with respect to the center of the perforated plate .

また、2つの吸気弁の中心を結ぶ直線方向における各吸気弁位置での各流量フラックス分布の極大位置が、各吸気弁中心に対し他方の吸気弁側にあるとよい。また、各吸気弁位置での燃料流量において、各吸気弁中心から他方の吸気弁側に噴射される燃料流量の総量が、各吸気弁中心から他方の吸気弁側とは反対側に噴射される燃料流量の総量より多いとよい。The maximum position of each flow rate flux distribution at each intake valve position in the linear direction connecting the centers of the two intake valves may be on the other intake valve side with respect to each intake valve center. Further, at the fuel flow rate at each intake valve position, the total amount of fuel flow injected from the center of each intake valve to the other intake valve side is injected from the center of each intake valve to the side opposite to the other intake valve side. It should be larger than the total amount of fuel flow.

また、本発明では、2つの吸気ポートに分岐する吸気管と、前記2つの吸気ポートが前記燃焼室に開口する2つの開口部を開閉する2つの吸気弁と、前記吸気管の断面通路を上下に分割し、前記2つの吸気ポートの中心を結ぶ直線に対して板面が平行になるように設けられた空気流動生成板と、機関の運転状態に応じて上下に分割された吸気通路の下方吸気通路を閉塞する空気流動制御板とを備え、前記吸気ポート内の空気流速の速度分布が前記2つの吸気ポートの中心を結ぶ直線に対し垂直方向に2つのピークを有するポート噴射式エンジンにおいて、上記の燃料噴射弁を用い、前記燃料噴射弁からの複数の燃料噴霧が、前記空気流動生成板によって吸気管内に発生する空気流れの流速が速くなる、前記各吸気弁の中心から外れた周縁位置を指向して噴射されることを特徴とする。In the present invention, the intake pipe that branches into two intake ports, the two intake valves that open and close the two openings where the two intake ports open to the combustion chamber, and the cross-sectional passage of the intake pipe are moved up and down. And an air flow generation plate provided so that the plate surface is parallel to a straight line connecting the centers of the two intake ports, and a lower portion of the intake passage vertically divided according to the operating state of the engine An air flow control plate that closes the intake passage, and a port injection engine in which the velocity distribution of the air flow velocity in the intake port has two peaks in a direction perpendicular to a straight line connecting the centers of the two intake ports. Using the above fuel injection valve, a plurality of fuel sprays from the fuel injection valve increase the flow velocity of the air flow generated in the intake pipe by the air flow generation plate, and the peripheral position off the center of each intake valve Oriented to, characterized in that it is injected.

本発明によれば、空気流動生成板が設けられた吸気ポートに燃料を噴射する燃料噴射弁であって、吸気弁上の空気流速が速い部分に、より多くの燃料を供給することのできる燃料噴射弁を提供できる。
According to the present invention, a fuel injection valve that injects fuel into an intake port provided with an air flow generation plate , which can supply more fuel to a portion where the air flow rate on the intake valve is high. An injection valve can be provided.

より好適な構成によれば、燃料が気化し難い吸気弁の中央部への燃料付着が少なく、また壁面流が少ない燃料噴射弁が得られる。   According to a more preferred configuration, it is possible to obtain a fuel injection valve with less fuel adhering to the central portion of the intake valve, where the fuel is less likely to vaporize, and with less wall flow.

以下、図面に基づき本発明の燃料噴射弁の二つの実施形態について詳細に説明する。   Hereinafter, two embodiments of the fuel injection valve of the present invention will be described in detail with reference to the drawings.

図1及び図2は、本発明の二つの実施形態に共通している内燃機関であり、二つの実施形態の燃料噴射弁20を内燃機関1に装着した状態を示したものである。図1は、内燃機関の縦断面を示したものであり、図2は、内燃機関の上部横断面を模式的に示したものである。   1 and 2 show an internal combustion engine common to two embodiments of the present invention, and shows a state in which the fuel injection valve 20 of the two embodiments is mounted on the internal combustion engine 1. FIG. 1 shows a longitudinal section of an internal combustion engine, and FIG. 2 schematically shows an upper transverse section of the internal combustion engine.

前記内燃機関1は、シリンダブロック2と、シリンダヘッド9と、前記シリンダブロック2に挿入されたピストン3とを備え、前記シリンダブロック2内には燃焼室4が形成されている。燃焼室4には、シリンダヘッド9に形成された吸気管5と排気管6とが開口しており、該開口部を開閉する二本の吸気弁7A,7Bと排気弁8A,8Bとがシリンダヘッド9に配置されている。吸気管5の上流には、燃焼室4に吸入する空気の量を調節する図示しない絞り弁11と本実施形態の燃料噴射弁20とが配置され、該燃料噴射弁20は、吸気弁7A,7Bに向けて燃料の噴射が可能な位置に配置されていると共に、燃焼室4の中心上部には、点火プラグ10が設けられている。   The internal combustion engine 1 includes a cylinder block 2, a cylinder head 9, and a piston 3 inserted into the cylinder block 2, and a combustion chamber 4 is formed in the cylinder block 2. An intake pipe 5 and an exhaust pipe 6 formed in the cylinder head 9 are opened in the combustion chamber 4, and two intake valves 7A and 7B and exhaust valves 8A and 8B that open and close the opening are cylinders. It is arranged on the head 9. A throttle valve 11 (not shown) for adjusting the amount of air sucked into the combustion chamber 4 and the fuel injection valve 20 of the present embodiment are arranged upstream of the intake pipe 5. A spark plug 10 is provided at the center upper portion of the combustion chamber 4 while being disposed at a position where fuel can be injected toward 7B.

吸気管5のほぼ中央断面にはタンブル生成板30が設けられ、タンブル生成板30の上流側には、タンブル制御弁31が設けられている。タンブル生成板30は吸気管5の通路を上下に分割するもので、その先端位置は、燃料噴射弁20から噴射される噴霧燃料が当たらない範囲で、できるだけ吸気弁に近い位置に設定される。タンブル制御弁31は、タンブル生成板30の下側の通路への空気流入量を制御するバルブであり、図示しないモータによってその開度が調整可能である。   A tumble generating plate 30 is provided in a substantially central section of the intake pipe 5, and a tumble control valve 31 is provided on the upstream side of the tumble generating plate 30. The tumble generating plate 30 divides the passage of the intake pipe 5 up and down, and the tip position thereof is set as close to the intake valve as possible within the range where the sprayed fuel injected from the fuel injection valve 20 does not hit. The tumble control valve 31 is a valve that controls the amount of air flowing into the lower passage of the tumble generating plate 30, and its opening degree can be adjusted by a motor (not shown).

燃料噴射弁20から噴射される噴霧燃料Fは、2方向に分割して伸び、その噴霧燃料Fの噴射方向は、一方の噴霧燃料FAは吸気弁7A方向に、他方の噴霧燃料FBは、吸気弁7B方向にそれぞれ指向されている。噴霧燃料FA,FBが吸気管5の内壁になるべく当たり難いように噴霧角α2,α3が夫々決定される。   The sprayed fuel F injected from the fuel injection valve 20 extends in two directions, and the sprayed fuel F is injected in the direction of one sprayed fuel FA in the direction of the intake valve 7A and the other sprayed fuel FB in the intake air. Each is directed in the direction of the valve 7B. The spray angles α2 and α3 are determined so that the sprayed fuels FA and FB do not easily hit the inner wall of the intake pipe 5 as much as possible.

図3,図4は、本発明の第一の実施形態の燃料噴射弁20のノズル部21の構成を示したものであり、図3は、燃料噴射弁20のノズル部21の縦断面図(図4のA−A断面)を示し、図4は、燃料噴射弁20のノズル部21の先端側から見た図である。   3 and 4 show the configuration of the nozzle portion 21 of the fuel injection valve 20 according to the first embodiment of the present invention, and FIG. 3 is a longitudinal sectional view of the nozzle portion 21 of the fuel injection valve 20 ( 4 is a view of the fuel injection valve 20 as viewed from the front end side of the nozzle portion 21. FIG.

本実施形態の燃料噴射弁20の先端のノズル部21には、多孔プレート13が、ガイド14によって弁体15に固定される。多孔プレート13には、複数の噴孔16が穿設されている。ボール弁17が上下に移動するように設けられ、ボール弁17が上昇することによってガイド14とボール弁17の隙間を燃料が流れて噴孔16へ流入する。   A porous plate 13 is fixed to the valve body 15 by a guide 14 in the nozzle portion 21 at the tip of the fuel injection valve 20 of the present embodiment. A plurality of nozzle holes 16 are formed in the perforated plate 13. The ball valve 17 is provided so as to move up and down. As the ball valve 17 moves up, fuel flows through the gap between the guide 14 and the ball valve 17 and flows into the nozzle hole 16.

ここでX,Y,Z軸と第1象限から第4象限を図3及び図4に示すように定義する。また噴孔16と燃料噴射弁20の中心軸のX軸方向への傾き角をθx、Y軸方向への傾き角をθyと定義する。   Here, the X, Y, and Z axes and the first to fourth quadrants are defined as shown in FIGS. The inclination angle of the central axis of the injection hole 16 and the fuel injection valve 20 in the X-axis direction is defined as θx, and the inclination angle in the Y-axis direction is defined as θy.

噴孔16は各象限に3つずつ穿設されており、これら3つの噴孔16の傾き角θx,
θyはそれぞれ異なった角度となっている。第1象限について説明すると、噴孔16a,16b,16cの3つの噴孔が穿設されており、噴孔16cは他の2つの噴孔に比べてX軸方向の傾きθxが大きく、Y軸方向への傾きθyは小さい。一方、噴孔16aは他の2つの噴孔に比べてX軸方向の傾きθxが小さく、Y軸方向への傾きθyが大きい。噴孔
16bのX軸方向の傾きθxと、Y軸方向の傾きθyは、噴孔16aと噴孔16cの中間である。他の象限の噴孔16については、第1象限の噴孔を燃料噴射弁20の中心軸周りに90毎に回転した、軸対象の形態となっている。
Three injection holes 16 are formed in each quadrant, and the inclination angles θx,
θy has different angles. Explaining the first quadrant, three nozzle holes 16a, 16b, and 16c are formed, and the nozzle hole 16c has a larger inclination θx in the X-axis direction than the other two nozzle holes, and the Y axis The inclination θy in the direction is small. On the other hand, the nozzle hole 16a has a smaller inclination θx in the X-axis direction and a larger inclination θy in the Y-axis direction than the other two nozzle holes. The inclination θx in the X-axis direction and the inclination θy in the Y-axis direction of the nozzle hole 16b are intermediate between the nozzle hole 16a and the nozzle hole 16c. The nozzle holes 16 in the other quadrants are in the form of axial objects in which the nozzle holes in the first quadrant are rotated about 90 around the central axis of the fuel injection valve 20.

多孔プレート13は、X軸がピストンピンと平行になるように燃料噴射弁20の先端に設けられる。   The perforated plate 13 is provided at the tip of the fuel injection valve 20 so that the X axis is parallel to the piston pin.

本実施形態の燃料噴射弁20は、内燃機関の排気行程において、該燃料噴射弁20から燃料が噴射されると、噴孔16がX軸に対して+方向と−方向に夫々向かうように噴孔が穿設されているため、2方向に向かう噴霧燃料FA,FBが生成される。また、噴孔16のY軸方向への傾きが、第1,2象限では+方向、第3,4象限では−方向に夫々向かうように噴孔が穿設されているため、吸気弁の傘部の中心付近では燃料流量が少なく、その上下で流量にピーク位置が存在する。そのため、噴射された燃料が吸気弁7の傘部に付着すると、吸気弁7の傘部の中心付近に形成される燃料液膜は、傘部の上下に形成される燃料液膜に比べ薄くなっている。   In the fuel injection valve 20 of the present embodiment, when fuel is injected from the fuel injection valve 20 in the exhaust stroke of the internal combustion engine, the injection hole 16 is injected so as to be directed in the + direction and the − direction with respect to the X axis. Since the holes are formed, the spray fuels FA and FB traveling in two directions are generated. In addition, since the injection hole is formed so that the inclination of the injection hole 16 in the Y-axis direction is directed in the + direction in the first and second quadrants and in the − direction in the third and fourth quadrants, the umbrella of the intake valve The fuel flow rate is small near the center of the section, and there are peak positions above and below the fuel flow rate. Therefore, when the injected fuel adheres to the umbrella portion of the intake valve 7, the fuel liquid film formed near the center of the umbrella portion of the intake valve 7 is thinner than the fuel liquid film formed above and below the umbrella portion. ing.

図5は、本実施形態の燃料噴射弁20を用いて燃料を噴射した場合の噴霧燃料の一つの噴霧状態を示したものである。   FIG. 5 shows one spray state of sprayed fuel when fuel is injected using the fuel injection valve 20 of the present embodiment.

該噴霧状態において、図5の噴霧燃料F(FA,FB)の流量分布は、噴射された燃料が図5(a)のノズル下100mmのA−A断面を通過した時の流量割合の等値線と、B−B断面におけるY軸方向の流量フラックス(単位面積当たり流量)を示している。図5
(b)に示されているように、噴霧燃料FA,FBの流量分布は、Y軸に対してほぼ対称になっている。また、噴霧燃料FA,FBの各々の中心(B−B)断面における流量は、中心部が低くその両側にピークがある凹型の分布となっている。両側のピーク流量をそれぞれP1,P3、中心部の流量をP2とすると、例えばP1,P3はP2の1.5 倍である。
In the spray state, the flow rate distribution of the sprayed fuel F (FA, FB) in FIG. 5 is equal to the flow rate ratio when the injected fuel passes through the AA cross section 100 mm below the nozzle in FIG. The line and the flow rate flux (flow rate per unit area) in the Y-axis direction in the BB cross section are shown. FIG.
As shown in (b), the flow distributions of the spray fuels FA and FB are substantially symmetrical with respect to the Y axis. In addition, the flow rate in the center (BB) cross section of each of the spray fuels FA and FB has a concave distribution with a low central portion and peaks on both sides thereof. If the peak flow rates on both sides are P1 and P3, and the flow rate in the center is P2, for example, P1 and P3 are 1.5 times P2.

次に、本実施形態の燃料噴射弁20を用いた内燃エンジンの動作時の状態について説明する。運転条件は、始動直後のエンジン回転数が1200r/min の低負荷運転である。そのため燃料噴射量は少なく、空燃比をガソリンの理論混合比である約15に合わせるため吸入空気量が少なくなる様に絞り弁の開度は少なくしている。   Next, the state at the time of operation | movement of the internal combustion engine using the fuel injection valve 20 of this embodiment is demonstrated. The operating condition is a low load operation with an engine speed of 1200 r / min immediately after starting. Therefore, the fuel injection amount is small, and the throttle valve opening is reduced so as to reduce the intake air amount in order to adjust the air-fuel ratio to about 15 which is the theoretical mixing ratio of gasoline.

またタンブル制御弁は開、すなわちタンブル生成板30の上下通路両方に空気が流れるように設定している。   The tumble control valve is opened, that is, set so that air flows through both the upper and lower passages of the tumble generating plate 30.

燃料は、排気行程中に噴射され、少なくとも吸気弁7が開く前に燃料を噴き終わる時期に燃料噴射が開始される。このタイミングで燃料が噴射されると吸気管5内には、殆ど空気流動は無いために噴霧燃料Fは、乱されることはなく、殆ど吸気弁7の傘部に付着し液膜を形成する。図6は燃料を噴き終わった直後の吸気弁7の液膜FLの形成状況を示した図である。噴射弁から噴射される燃料の流量分布は、前記のように、吸気弁の中心部分が少なく、吸気弁の吸気側、排気側(吸気弁中心に対して+Y方向と−Y方向)の流量が多くなっているため、吸気弁7の中心部の液膜量は少なく、吸気弁7の中心部から+Y方向と−Y方向の液膜量は中心部に比べ多くなっている。   The fuel is injected during the exhaust stroke, and the fuel injection is started at least when the fuel has been injected before the intake valve 7 is opened. When fuel is injected at this timing, since there is almost no air flow in the intake pipe 5, the sprayed fuel F is hardly disturbed and almost adheres to the umbrella portion of the intake valve 7 to form a liquid film. . FIG. 6 is a view showing the formation state of the liquid film FL of the intake valve 7 immediately after the fuel injection is finished. As described above, the flow rate distribution of the fuel injected from the injection valve is small in the central portion of the intake valve, and the flow rates on the intake side and exhaust side (+ Y direction and -Y direction with respect to the intake valve center) of the intake valve are Therefore, the amount of liquid film in the central portion of the intake valve 7 is small, and the amount of liquid film in the + Y direction and −Y direction from the central portion of the intake valve 7 is larger than that in the central portion.

吸気行程に入り吸気弁7が開き始めると、ピストン3が下降することにより吸気管5より燃焼室4の圧力が下がり、空気が吸入される。吸気管5には、その中央断面付近にタンブル生成板30があるため、空気はタンブル生成板30の上側と下側に分かれて流れる。このときタンブル生成板30の表面にせん断応力が働くため、タンブル生成板30の表面近傍ではガスの速度が低下する。また、吸気管5の壁面でも同様にせん断力が働くため、タンブル生成板30の上下通路のガス流はそれぞれ凸型の速度分布となる。   When the intake valve 7 starts to open during the intake stroke, the piston 3 descends to lower the pressure in the combustion chamber 4 from the intake pipe 5, and air is sucked. Since the intake pipe 5 has a tumble generating plate 30 in the vicinity of its central cross section, air flows separately on the upper side and the lower side of the tumble generating plate 30. At this time, since shear stress acts on the surface of the tumble generating plate 30, the gas velocity decreases near the surface of the tumble generating plate 30. Further, since a shearing force similarly acts on the wall surface of the intake pipe 5, the gas flow in the upper and lower passages of the tumble generating plate 30 has a convex velocity distribution.

図12は、吸気行程中の吸気管5の速度分布を示している。タンブル生成板30の設置部分を空気が通過した後も、直ぐには運動量の拡散が進まないため、タンブル生成板30の下流においても上下方向に2つのピークを持つ速度分布が維持される。図7は吸気弁7に向かって流入するガスの速度ベクトルを表している。ベクトルの長さはガスの速度を表している。図7に示すように吸気弁7の中心部の液膜表面を流れる空気流速は遅く、吸気弁7の中心から±Y方向に生成された液膜表面を流れる空気流速は速くなる。   FIG. 12 shows the velocity distribution of the intake pipe 5 during the intake stroke. Even after the air passes through the installation portion of the tumble generating plate 30, the momentum does not diffuse immediately, so that a velocity distribution having two peaks in the vertical direction is maintained also downstream of the tumble generating plate 30. FIG. 7 shows the velocity vector of the gas flowing toward the intake valve 7. The length of the vector represents the gas velocity. As shown in FIG. 7, the air flow velocity flowing on the liquid film surface at the center of the intake valve 7 is slow, and the air flow velocity flowing on the liquid film surface generated in the ± Y direction from the center of the intake valve 7 is high.

吸気弁7上の液膜FLは空気の流れによって、蒸発が気化される。液膜の気化速度は
(1)式で表される。
The liquid film FL on the intake valve 7 is vaporized by the air flow. The vaporization rate of the liquid film is expressed by equation (1).

(数1)
v =K・S・(ρs−ρ) (1)
ここに、mv :気化速度(kg/s),K:物質伝達率(m/s),S:液膜の表面積,
ρs :液膜表面の飽和蒸気密度(kg/m3),ρ:空気中の蒸気密度(kg/m3
(Equation 1)
m v = K · S · (ρ s −ρ ) (1)
Where m v : vaporization rate (kg / s), K: mass transfer rate (m / s), S: surface area of the liquid film,
ρ s : saturated vapor density on the liquid film surface (kg / m 3 ), ρ : vapor density in air (kg / m 3 )

(1)式の物質伝達率Kは流速の関数であり、例えば(2)式によって表される。   The mass transfer rate K in the equation (1) is a function of the flow velocity, and is represented by, for example, the equation (2).

Figure 0004521334
ここに、d:吸気管の直径(m),D:拡散係数(m2/s),Vg:空気の速度(m/s),Vf:液膜の速度(m/s),ν:空気の動粘性係数(m2/s),Sc:シュミット数
Figure 0004521334
Where d: diameter of intake pipe (m), D: diffusion coefficient (m 2 / s), V g : velocity of air (m / s), V f : velocity of liquid film (m / s), ν : Kinematic viscosity coefficient of air (m 2 / s), Sc: Schmidt number

(1)式,(2)式より、空気の速度が速いほど液膜の蒸発速度は大きくなることが示されている。従って、流速の遅い吸気弁中心付近の液膜の気化速度は遅く、吸気弁中心から±Y方向に生成された液膜の気化速度は速くなる。即ち本実施形態の燃料噴射弁を使用した場合は、気化効率の高い、吸気弁7の中心から±Y方向に離れた位置に多くの液膜を形成し、気化効率の悪い吸気弁中心部の液膜量を少なくすることで、液膜全体の気化速度を向上することができる。これによって、従来に比べ液膜の状態で燃焼室内に流入する燃料を減らすことができ、未燃HCの低減が図れる。   From equations (1) and (2), it is shown that the higher the air velocity, the greater the evaporation rate of the liquid film. Therefore, the vaporization rate of the liquid film near the center of the intake valve having a low flow rate is slow, and the vaporization rate of the liquid film generated in the ± Y direction from the center of the intake valve is high. That is, when the fuel injection valve of the present embodiment is used, a lot of liquid film is formed at a position away from the center of the intake valve 7 in the ± Y direction with high vaporization efficiency, and the central portion of the intake valve with poor vaporization efficiency is formed. By reducing the amount of the liquid film, the vaporization rate of the entire liquid film can be improved. As a result, the amount of fuel flowing into the combustion chamber in a liquid film state can be reduced as compared with the conventional case, and unburned HC can be reduced.

次に、本発明の第二の実施形態の燃料噴射弁について説明する。本実施形態の燃料噴射弁が用いられる内燃エンジンの構成は、第一の実施形態と同じである。図8,図9は、本発明の第二の実施形態の燃料噴射弁20のノズル部21の構造を示したものであり、図8は、燃料噴射弁20の中心を通るノズル部21の縦断面図を示し、図9は、燃料噴射弁
20のノズル部21の先端側から見た図である。
Next, the fuel injection valve of 2nd embodiment of this invention is demonstrated. The configuration of the internal combustion engine in which the fuel injection valve of this embodiment is used is the same as that of the first embodiment. 8 and 9 show the structure of the nozzle portion 21 of the fuel injection valve 20 according to the second embodiment of the present invention. FIG. 8 shows a longitudinal section of the nozzle portion 21 passing through the center of the fuel injection valve 20. FIG. 9 is a view as seen from the front end side of the nozzle portion 21 of the fuel injection valve 20.

燃料噴射弁20のノズル部21の先端には、多孔プレート13が、ガイド14によって弁体15に固定される。多孔プレート13には、複数の噴孔16が穿設されている。ボール弁17が上下に移動するように設けられ、ボール弁17が上昇することによってガイド14とボール弁17の隙間を燃料が流れて噴孔16へ流入する。   A porous plate 13 is fixed to the valve body 15 by a guide 14 at the tip of the nozzle portion 21 of the fuel injection valve 20. A plurality of nozzle holes 16 are formed in the perforated plate 13. The ball valve 17 is provided so as to move up and down. As the ball valve 17 moves up, fuel flows through the gap between the guide 14 and the ball valve 17 and flows into the nozzle hole 16.

噴孔16は、燃料噴射弁20の中心軸に対して傾斜した軸方向に向けて穿設されており、図8,図9において、それぞれX軸,Y軸,Z軸,第1象限から第4象限を定義する。   The injection hole 16 is bored in the axial direction inclined with respect to the central axis of the fuel injection valve 20, and in FIGS. 8 and 9, the X axis, the Y axis, the Z axis, and the first quadrant, respectively. Define four quadrants.

噴孔16aのY軸方向への傾き角θyは0であり、X軸方向へ傾きを持っている。一方、噴孔16b,16cはX軸,Y軸両方への傾きがある。噴孔16cのY方向への傾き角θyは噴孔16bのθyに比べて小さく、一方、噴孔16cのX方向への傾き角θxは噴孔16bのθxに比べて大きくなっている。また、第2象限の噴孔16d,16e,16fは第1象限の噴孔16c,16b,16aに対して、Y−Z平面に対称となっている。第3象限,第4象限の噴孔は第1象限,第2象限の噴孔に対し、X−Z平面に対称となっている。   The inclination angle θy of the nozzle hole 16a in the Y-axis direction is 0 and has an inclination in the X-axis direction. On the other hand, the nozzle holes 16b and 16c are inclined to both the X axis and the Y axis. The inclination angle θy of the nozzle hole 16c in the Y direction is smaller than θy of the nozzle hole 16b, while the inclination angle θx of the nozzle hole 16c in the X direction is larger than θx of the nozzle hole 16b. The second quadrant nozzle holes 16d, 16e, and 16f are symmetrical with respect to the YZ plane with respect to the first quadrant nozzle holes 16c, 16b, and 16a. The nozzle holes in the third quadrant and the fourth quadrant are symmetrical with respect to the XZ plane with respect to the nozzle holes in the first quadrant and the second quadrant.

多孔プレート13は、X軸がピストンピンと平行になるように燃料噴射弁20の先端に設けられる。   The perforated plate 13 is provided at the tip of the fuel injection valve 20 so that the X axis is parallel to the piston pin.

図10は、本実施形態の燃料噴射弁20を用いて燃料を噴射した場合の噴霧燃料の噴霧状態を示したものである。   FIG. 10 shows the sprayed state of sprayed fuel when fuel is injected using the fuel injection valve 20 of the present embodiment.

該噴霧状態において、図10の噴霧燃料Fの流量分布は、噴射された燃料が図10(a)のノズル下100mmのA−A断面を通過した時の流量割合を示している。図10(b)に示されているように、噴霧燃料FA,FBの流量分布は、ほぼ対称になっており、各々の噴霧はC型の形状となる。   In the spray state, the flow rate distribution of the sprayed fuel F in FIG. 10 shows the flow rate ratio when the injected fuel passes through the AA cross section 100 mm below the nozzle in FIG. As shown in FIG. 10B, the flow distributions of the spray fuels FA and FB are substantially symmetrical, and each spray has a C shape.

B−B断面の流量フラックスは、中心部が小さく、その両側にピーク値を持つ分布となっており、本発明の第1の実施例と同様の分布である。   The flow rate flux in the BB cross section has a distribution with a small central portion and peak values on both sides thereof, which is the same distribution as in the first embodiment of the present invention.

一方、C−C断面の流量フラックスは、中心部が殆どゼロで、その両側にP4,P5の二つのピークを持つ分布であり、P4,P5はバルブ中心より内側になっている。   On the other hand, the flow rate flux of the CC cross section has a distribution in which the central portion is almost zero and has two peaks of P4 and P5 on both sides thereof, and P4 and P5 are inside the valve center.

または、図11に示すように、噴霧FAと噴霧FBの中心位置a,吸気バルブ中心位置b,噴霧最外側位置cとしたとき、a−b間の噴霧流量積算が、b−c間の噴霧流量積算より大きい。   Or, as shown in FIG. 11, when the center position a of the spray FA and the spray FB, the intake valve center position b, and the spray outermost position c, the spray flow rate integration between a and b is the spray between bc. Greater than flow integration.

次に、本実施形態の燃料噴射弁20を用いた内燃エンジンの動作時の状態について、図1,図2を用いて説明する。運転条件は、始動直後のエンジン回転数が1200r/min の低負荷運転である。そのため燃料噴射量は少なく、空燃比をガソリンの理論混合比である約15に合わせるため吸入空気量が少なくなる様に絞り弁の開度は少なくしている。   Next, the state at the time of operation | movement of the internal combustion engine using the fuel injection valve 20 of this embodiment is demonstrated using FIG. 1, FIG. The operating condition is a low load operation with an engine speed of 1200 r / min immediately after starting. Therefore, the fuel injection amount is small, and the throttle valve opening is reduced so as to reduce the intake air amount in order to adjust the air-fuel ratio to about 15 which is the theoretical mixing ratio of gasoline.

またタンブル制御弁31は開、すなわちタンブル生成板30の上下通路に空気が流れるように設定している。   Further, the tumble control valve 31 is set to open, that is, so that air flows through the upper and lower passages of the tumble generating plate 30.

燃料は、排気行程中に噴射され、少なくとも吸気弁7が開く前に燃料を噴き終わる時期に燃料噴射が開始される。このタイミングで燃料が噴射されると吸気管5内には、殆ど空気流動は無いために噴霧燃料Fは、乱されることはなく、殆ど吸気弁7の傘部に付着し液膜を形成する。流量分布は、前記のように、吸気弁7の中心部分が少なく、吸気弁7の吸気側,排気側(吸気弁中心に対して+Y方向と−Y方向)の流量が多くなっている。また、2つの吸気弁7A,7Bの内側の流量が多く、外側が少なくなっている。このため、吸気弁7の中心部から外側(燃焼室中心から見て外方向)の液膜量は少なく、吸気弁7の中心部から+Y方向と−Y方向の液膜量と、2つの吸気弁7A,7Bの内側方向(燃焼室中心方向)の液膜量は多くなっている。   The fuel is injected during the exhaust stroke, and the fuel injection is started at least when the fuel has been injected before the intake valve 7 is opened. When fuel is injected at this timing, since there is almost no air flow in the intake pipe 5, the sprayed fuel F is hardly disturbed and almost adheres to the umbrella portion of the intake valve 7 to form a liquid film. . As described above, the flow rate distribution is small in the central portion of the intake valve 7, and the flow rates on the intake side and the exhaust side of the intake valve 7 (+ Y direction and -Y direction with respect to the intake valve center) are large. Further, the flow rate inside the two intake valves 7A and 7B is large and the outside is small. For this reason, the amount of liquid film outside the center of the intake valve 7 (outward as viewed from the center of the combustion chamber) is small, the amount of liquid film in the + Y direction and the −Y direction from the center of the intake valve 7, and two intakes The amount of liquid film in the inner direction of the valves 7A and 7B (in the center of the combustion chamber) is increased.

吸気行程に入り吸気弁7が開き始めると、ピストン3が下降することにより吸気管5より燃焼室4の圧力が下がり、空気が吸入される。吸気管5には、その中央断面付近にタンブル生成板30があるため、空気はタンブル生成板30の上側と下側に分かれて流れる。このときタンブル生成板30の表面にせん断応力が働くため、タンブル生成板30の表面近傍ではガスの速度が低下する。また、吸気管5の壁面でも同様にせん断力が働くため、タンブル生成板30の上下通路を流れるガス流はそれぞれ凸型の速度分布となる。   When the intake valve 7 starts to open during the intake stroke, the piston 3 descends to lower the pressure in the combustion chamber 4 from the intake pipe 5, and air is sucked. Since the intake pipe 5 has a tumble generating plate 30 in the vicinity of its central cross section, air flows separately on the upper side and the lower side of the tumble generating plate 30. At this time, since shear stress acts on the surface of the tumble generating plate 30, the gas velocity decreases near the surface of the tumble generating plate 30. Further, since a shearing force similarly acts on the wall surface of the intake pipe 5, the gas flow flowing through the upper and lower passages of the tumble generating plate 30 has a convex velocity distribution.

図12は吸気行程中の吸気管5内の空気の速度分布を示している。   FIG. 12 shows the velocity distribution of air in the intake pipe 5 during the intake stroke.

タンブル生成板30の設置部分を空気が通過した後も、直ぐには運動量の拡散が進まないため、タンブル生成板30の下流においても上下方向に2つのピークを持つ速度分布が維持される。即ち、吸気弁7の中心部の液膜表面を流れる空気流速は遅く、吸気弁7の中心から±Y方向に生成された液膜表面を流れる空気流速は速くなる。これにより吸気弁7の中心から±Y方向に生成された液膜の気化が促進される。   Even after the air passes through the installation portion of the tumble generating plate 30, the momentum does not diffuse immediately, so that a velocity distribution having two peaks in the vertical direction is maintained also downstream of the tumble generating plate 30. That is, the air flow velocity flowing on the liquid film surface at the center of the intake valve 7 is slow, and the air flow velocity flowing on the liquid film surface generated in the ± Y direction from the center of the intake valve 7 is high. Thereby, vaporization of the liquid film generated in the ± Y direction from the center of the intake valve 7 is promoted.

一方、吸気弁7の内側(燃焼室中心側)に生成された液膜の挙動について図13を用いて説明する。図13は、吸気行程中のエンジンを排気側から見た図である。前述のように、本実施例においては吸気弁7の内側の液膜量が吸気弁7の外側に比べて多くなっている。吸気行程では、吸気管5からの空気は吸気弁7の全周から燃焼室内に入る。本実施例の吸気2弁のエンジンでは1つの吸気弁、例えば7Aの内側から入った空気は、相対するもう1つの吸気弁、例えば7Bから入った空気と衝突し、両方からの空気流が合わさって、強い空気流れGFとなって燃焼室内を下降する。吸気弁7の内側に生成された液膜FLの一部は、吸気弁7の内側を流れるガス流によって燃焼室内に液相状態で流入するが、この強い空気流れGFによって、微粒化,気化が促進され、燃焼室内でガス化する。また、吸気弁7の内側から入った液膜は、燃焼室の壁面からの距離が遠く、また流れGFの方向が燃焼室の軸方向であるため、燃焼室の壁面には付着しにくい。これに対して、吸気弁7の外側から入った液膜は、燃焼室壁面との距離が近く、また、その流れ方向が燃焼室壁面に向いているため、燃焼室壁面に衝突しやすい。燃焼室の壁面に衝突した液相の燃料は、壁流を形成するため気化が悪く、燃焼することなく排気され未燃HCとなりやすい。   On the other hand, the behavior of the liquid film generated inside the intake valve 7 (combustion chamber center side) will be described with reference to FIG. FIG. 13 is a view of the engine during the intake stroke as viewed from the exhaust side. As described above, in this embodiment, the amount of liquid film inside the intake valve 7 is larger than that outside the intake valve 7. In the intake stroke, air from the intake pipe 5 enters the combustion chamber from the entire circumference of the intake valve 7. In the intake two-valve engine of this embodiment, air entering from one intake valve, for example, 7A, collides with air from another opposed intake valve, for example, 7B, and the air flow from both is combined. Thus, a strong air flow GF descends in the combustion chamber. A part of the liquid film FL generated inside the intake valve 7 flows into the combustion chamber in a liquid phase state by a gas flow flowing inside the intake valve 7, and the strong air flow GF causes atomization and vaporization. It is accelerated and gasifies in the combustion chamber. Further, the liquid film entering from the inside of the intake valve 7 is not easily attached to the wall surface of the combustion chamber because the distance from the wall surface of the combustion chamber is long and the direction of the flow GF is the axial direction of the combustion chamber. On the other hand, the liquid film entering from the outside of the intake valve 7 is close to the combustion chamber wall surface, and its flow direction is directed to the combustion chamber wall surface, so that it easily collides with the combustion chamber wall surface. The liquid-phase fuel that collides with the wall surface of the combustion chamber forms a wall flow and is poorly vaporized, and is easily exhausted without being burned to become unburned HC.

即ち本発明の第2の実施例では、吸気弁7上の液膜を吸気弁中心から±Y方向に多く生成することで、第1の実施例と同様の効果を得つつ、吸気弁7の内側の液膜を多く生成することで、燃焼室の壁流生成を抑制すると共に、吸気弁7の内側を通って燃焼室内に入る高速のガス流を利用して吸気弁内側の液膜の気化を促進できる。これによって未燃HCの排出が抑制できる。   In other words, in the second embodiment of the present invention, a large amount of liquid film on the intake valve 7 is generated in the ± Y direction from the center of the intake valve 7, thereby obtaining the same effect as that of the first embodiment and the intake valve 7. By generating a large amount of the inner liquid film, the generation of wall flow in the combustion chamber is suppressed, and the liquid film inside the intake valve is vaporized by using a high-speed gas flow that enters the combustion chamber through the inner side of the intake valve 7. Can be promoted. Thereby, discharge of unburned HC can be suppressed.

以上、本発明の二つの実施形態について説明したが、本発明は、前記実施形態に限定されるものではなく、特許請求の範囲に記載された発明の精神を逸脱することなく、設計において種々の変更ができるものである。   The two embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various designs can be used without departing from the spirit of the invention described in the claims. It can be changed.

また、本発明の燃料噴射弁のノズル部は、前記図3と図4、及び、図8と図9に示した具体的なノズル部構成に限定されるものではなく、特許請求の範囲に記載された発明に記載された発明の精神を逸脱しない範囲で、変更できるものである。   Further, the nozzle portion of the fuel injection valve of the present invention is not limited to the specific nozzle portion configuration shown in FIGS. 3 and 4 and FIGS. 8 and 9, but is described in the claims. Modifications can be made without departing from the spirit of the invention described in the invention.

以上の説明から理解できるように、以上の実施例によればタンブル生成板が吸気管に設けられた場合において、本実施例の燃料噴射弁は、吸気行程において吸気弁上の空気流速が速い部分に、より多くの燃料を供給することで、空気流動による気化を効率的に行うことが可能であり、未燃HCの低減を図ることができる。   As can be understood from the above description, according to the above embodiment, when the tumble generating plate is provided in the intake pipe, the fuel injection valve of the present embodiment is a portion where the air flow velocity on the intake valve is high in the intake stroke. In addition, by supplying more fuel, it is possible to efficiently perform vaporization by air flow, and to reduce unburned HC.

本発明の第一の実施形態の燃料噴射弁を配置した内燃機関の縦断面図。1 is a longitudinal sectional view of an internal combustion engine in which a fuel injection valve according to a first embodiment of the present invention is arranged. 図1の実施形態の内燃機関の上部横断面を模式的に示した図。The figure which showed typically the upper cross section of the internal combustion engine of embodiment of FIG. 図1の実施形態の燃料噴射弁のノズル部の縦断面図。The longitudinal cross-sectional view of the nozzle part of the fuel injection valve of embodiment of FIG. 図3の燃料噴射弁のノズル部の多孔プレートを示す図。The figure which shows the perforated plate of the nozzle part of the fuel injection valve of FIG. 図1の実施形態の燃料噴射弁であって、燃料を噴射した場合の噴霧燃料の噴霧状態を示したものであり、(a)は、噴霧燃料Fの流量分布状態を示し、(b)は、(a)の断面A−Aの噴霧燃料Fの流量分布状態を示した図。FIG. 1 is a fuel injection valve according to the embodiment of FIG. 1, showing a spray state of spray fuel when fuel is injected, (a) showing a flow distribution state of spray fuel F, and (b). The figure which showed the flow distribution state of the spray fuel F of the cross section AA of (a). 本発明の第一の実施形態における吸気弁の液膜状態を表す図。The figure showing the liquid film state of the intake valve in 1st embodiment of this invention. 本発明の第一の実施形態における吸気弁の空気速度ベクトルを表す図。The figure showing the air velocity vector of the intake valve in 1st embodiment of this invention. 本発明の第二の実施形態の燃料噴射弁のノズル部の縦断面図。The longitudinal cross-sectional view of the nozzle part of the fuel injection valve of 2nd embodiment of this invention. 図8の燃料噴射弁のノズル部の多孔プレートを示す図。The figure which shows the perforated plate of the nozzle part of the fuel injection valve of FIG. 図8の第二の実施形態の燃料噴射弁であって、燃料を噴射した場合の噴霧燃料の噴霧状態を示したものであり、(a)は、噴霧燃料Fの流量分布状態を示し、(b)は、(a)の断面A−Aの噴霧燃料Fの流量分布状態を示した図。FIG. 8 is a fuel injection valve of the second embodiment of FIG. 8, showing the spray state of the spray fuel when fuel is injected, (a) showing the flow distribution state of the spray fuel F, ( (b) is the figure which showed the flow volume distribution state of the spray fuel F of the cross section AA of (a). 図8(a)の断面A−Aの流量積算量を示した図。The figure which showed the integrated flow amount of the cross section AA of Fig.8 (a). 本発明を適用する内燃機関の吸気行程における吸気管内の速度分布を示す図。The figure which shows the speed distribution in an intake pipe in the intake stroke of the internal combustion engine to which this invention is applied. 図12を排気側から見た模式図。The schematic diagram which looked at FIG. 12 from the exhaust side.

符号の説明Explanation of symbols

1…内燃機関、2…シリンダブロック、3…ピストン、4…燃焼室、5…吸気管、7…吸気弁、8…排気弁、9…シリンダヘッド、13…多孔プレート、14…ガイド、15…弁体、16…噴孔、17…ボール弁、20…燃料噴射弁、21…ノズル部、30…タンブル生成板。


DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine, 2 ... Cylinder block, 3 ... Piston, 4 ... Combustion chamber, 5 ... Intake pipe, 7 ... Intake valve, 8 ... Exhaust valve, 9 ... Cylinder head, 13 ... Perforated plate, 14 ... Guide, 15 ... Valve body, 16 ... injection hole, 17 ... ball valve, 20 ... fuel injection valve, 21 ... nozzle part, 30 ... tumble generating plate.


Claims (6)

2つの吸気ポートに分岐する吸気管と、前記2つの吸気ポートが前記燃焼室に開口する2つの開口部を開閉する2つの吸気弁と、前記吸気管の断面通路を分割し、前記2つの吸気弁の中心を結ぶ直線に対して板面が平行になるように設けられた空気流動生成板を備え、前記吸気ポート内の空気流速の速度分布が、空気の流れ方向に垂直な断面上で前記2つの吸気弁の中心を結ぶ直線に対して垂直となる方向に、2つのピークを有するポート噴射式エンジンの燃料噴射弁において、
燃料噴射弁から噴射された噴霧の、吸気弁位置近傍での流量フラックス分布が、前記空気流動生成板の厚み方向となる、空気の流れ方向に垂直な断面上で前記2つの吸気弁の中心を結ぶ直線に対して垂直となる方向においては、噴孔と前記吸気弁中心を結ぶ直線をはさんで両側に極大値を持ち、かつ前記2つの吸気弁の中心を結ぶ直線方向においては、極大値を1つ持つようにし、
前記吸気弁の中心部に噴射される流量と、前記2つの吸気弁の中心を結ぶ直線方向において各吸気弁の中心に対して他方の吸気弁から離れる側の部分に噴射される流量とが、それぞれ、空気の流れ方向に垂直な断面上で前記2つの吸気弁の中心を結ぶ直線に対して垂直となる方向において前記噴孔と前記吸気弁の中心とを結ぶ直線をはさんで両側に生じる極大値部分に噴射される流量よりも少ないことを特徴とするポート噴射式エンジンの燃料噴射弁。
An intake pipe that branches into two intake ports, and two intake valves, wherein the two intake ports to open and close the two openings which open into the combustion chamber, the cross-sectional passage of the intake pipe is divided, the two intake An air flow generation plate provided so that the plate surface is parallel to a straight line connecting the centers of the valves, and the velocity distribution of the air flow velocity in the intake port is on a cross section perpendicular to the air flow direction. In a fuel injection valve of a port injection engine having two peaks in a direction perpendicular to a straight line connecting the centers of the two intake valves ,
Each flow rate flux distribution in the vicinity of each intake valve position of the spray injected from the fuel injection valve is the thickness direction of the air flow generation plate, and the two intake valves have a cross section perpendicular to the air flow direction. in the direction perpendicular to the straight line connecting the centers, linear direction Chi lifting the maximum value at both sides of the straight line connecting the center of the injection hole the intake valves, and connecting the centers of the two intake valves Have one local maximum,
The flow rate injected into the central portion of the intake valve and the flow rate injected into the portion on the side away from the other intake valve with respect to the center of each intake valve in the linear direction connecting the centers of the two intake valves, Each occurs on both sides of a straight line connecting the nozzle hole and the center of the intake valve in a direction perpendicular to the straight line connecting the centers of the two intake valves on a cross section perpendicular to the air flow direction. A fuel injection valve for a port injection type engine characterized by being less than a flow rate injected into a maximum value portion .
請求項1に記載のポート噴射式エンジンの燃料噴射弁において、
先端部に複数の孔が空けられた多孔板を有し、
前記多孔板の複数の孔は、当該多孔板の中心部を通る互いに交差する2つの仮想平面で4つの区域に分割した場合、多孔板の複数のから噴射された複数のグループの燃料噴霧が多孔板から噴射された後、互いに離れる方向に指向されるよう傾斜角を持って穿孔されており、
また各区域における複数の孔は噴射方向前方においてそれぞれ1本の噴霧に纏るよう傾斜角を持って穿孔された少なくとも2個の孔を備えていることを特徴とするポート噴射式エンジンの燃料噴射弁。
The fuel injection valve for a port injection engine according to claim 1,
Having a perforated plate spaced plurality of injection holes in the tip portion,
Wherein the plurality of injection holes of the perforated plate, the fuel of the case of dividing into four sections in the porous plate two virtual planes that intersect each other through the center portion of the plurality of groups that are injected from the plurality of injection holes of the porous plate After the spray is sprayed from the perforated plate, it is perforated with an inclination angle so as to be directed away from each other,
The port injection engine plurality of injection holes in each zone, characterized in that it comprises at least two injection holes drilled with Matoiru gradient angle spray of each one in the direction of injection forward Fuel injection valve.
請求項2に記載のポート噴射式エンジンの燃料噴射弁において、
前記複数の孔は前記多孔板の中心に対して同心円状に配置されていることを特徴とするポート噴射式エンジンの燃料噴射弁。
The fuel injection valve for a port injection engine according to claim 2,
Wherein the plurality of injection holes are fuel injection valves of the port injection engine, characterized in that it is arranged concentrically with respect to the center of the perforated plate.
請求項1に記載のポート噴射式エンジンの燃料噴射弁において、
2つの吸気弁の中心を結ぶ直線方向における吸気弁位置での流量フラックス分布の極大位置が、吸気弁中心に対し他方の吸気弁側にあることを特徴とするポート噴射式エンジンの燃料噴射弁。
The fuel injection valve for a port injection engine according to claim 1,
A fuel for a port injection engine, wherein the maximum position of each flow rate flux distribution at each intake valve position in the linear direction connecting the centers of the two intake valves is on the other intake valve side with respect to each intake valve center Injection valve.
請求項1に記載のポート噴射式エンジンの燃料噴射弁において、
吸気弁位置での燃料流量において、吸気弁中心から他方の吸気弁側に噴射される燃料流量の総量が、吸気弁中心から他方の吸気弁側とは反対側に噴射される燃料流量の総量より多いことを特徴とするポート噴射式エンジンの燃料噴射弁。
The fuel injection valve for a port injection engine according to claim 1,
The fuel flow at the intake valves located, fuel flow amount of fuel flow from the intake valves center is injected into the other intake valve side, which is injected on the opposite side of the other intake valve side from the intake valve center A fuel injection valve of a port injection type engine characterized by being larger than the total amount.
2つの吸気ポートに分岐する吸気管と、前記2つの吸気ポートが前記燃焼室に開口する2つの開口部を開閉する2つの吸気弁と、前記吸気管の断面通路を上下に分割し、前記2つの吸気ポートの中心を結ぶ直線に対して板面が平行になるように設けられた空気流動生成板と、機関の運転状態に応じて上下に分割された吸気通路の下方吸気通路を閉塞する空気流動制御板を備え、前記吸気ポート内の空気流速の速度分布が前記2つの吸気ポートの中心を結ぶ直線に対し垂直方向に2つのピークを有するポート噴射式エンジンにおいて、
請求項1に記載の燃料噴射弁を用い、前記燃料噴射弁からの複数の燃料噴霧が、前記空気流動生成板によって吸気管内に発生する空気流れの流速が速くなる、前記各吸気弁の中心から外れた周縁位置を指向して噴射されることを特徴とするポート噴射式エンジン。
An intake pipe that branches into two intake ports, and divided the two intake valves, wherein the two intake ports to open and close the two openings which open into the combustion chamber, the cross-sectional passage of the intake pipe up and down, the two Air flow generating plate provided so that the plate surface is parallel to a straight line connecting the centers of the two intake ports, and air closing the lower intake passage of the intake passage divided vertically according to the operating state of the engine and a flow control plate, the port injection type engine having two peaks in the vertical velocity distribution of the air flow rate to a straight line connecting the centers of the two intake ports in said intake port,
The fuel injection valve according to claim 1, wherein a plurality of fuel sprays from the fuel injection valve increase the flow velocity of the air flow generated in the intake pipe by the air flow generation plate from the center of each intake valve. A port-injection engine characterized by being injected toward a deviated peripheral position.
JP2005263167A 2005-09-12 2005-09-12 Port injection engine fuel injection valve and port injection engine Expired - Fee Related JP4521334B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005263167A JP4521334B2 (en) 2005-09-12 2005-09-12 Port injection engine fuel injection valve and port injection engine
US11/518,499 US7565894B2 (en) 2005-09-12 2006-09-11 Fuel injection apparatus for and method of internal combustion engine, and fuel injection valve
CN 200610153818 CN1940275B (en) 2005-09-12 2006-09-12 Fuel injection apparatus for and method of internal combustion engine, and fuel injection valve
DE102006042678A DE102006042678A1 (en) 2005-09-12 2006-09-12 Fuel injection device for internal combustion engines, associated method, and fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005263167A JP4521334B2 (en) 2005-09-12 2005-09-12 Port injection engine fuel injection valve and port injection engine

Publications (2)

Publication Number Publication Date
JP2007077809A JP2007077809A (en) 2007-03-29
JP4521334B2 true JP4521334B2 (en) 2010-08-11

Family

ID=37938402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005263167A Expired - Fee Related JP4521334B2 (en) 2005-09-12 2005-09-12 Port injection engine fuel injection valve and port injection engine

Country Status (2)

Country Link
JP (1) JP4521334B2 (en)
CN (1) CN1940275B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5054721B2 (en) * 2009-03-23 2012-10-24 日立オートモティブシステムズ株式会社 Fuel injection control device for internal combustion engine
JP2012167564A (en) * 2011-02-10 2012-09-06 Bosch Corp Fuel injection valve
JP5295316B2 (en) 2011-06-22 2013-09-18 三菱電機株式会社 Spray generation method using fluid injection valve, fluid injection valve, and spray generation device
JP5295337B2 (en) 2011-10-19 2013-09-18 三菱電機株式会社 Spray generation method using fluid injection valve, fluid injection valve, and spray generation device
JP5552105B2 (en) * 2011-11-04 2014-07-16 富士重工業株式会社 Engine intake system
CN103758664B (en) * 2014-01-03 2016-03-09 龙口中宇机械有限公司 A kind of front emission reduction system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62101066U (en) * 1985-12-17 1987-06-27
JPH1172067A (en) * 1997-06-24 1999-03-16 Toyota Motor Corp Fuel injection valve of internal combustion engine
JP2002202031A (en) * 2000-10-26 2002-07-19 Hitachi Ltd Fuel injection valve and fuel injector
JP2003028024A (en) * 2001-07-13 2003-01-29 Hitachi Unisia Automotive Ltd Fuel injection valve
JP2003148299A (en) * 2001-11-15 2003-05-21 Hitachi Ltd Fuel injection valve and internal combustion engine loaded with the same
JP2004036409A (en) * 2002-06-28 2004-02-05 Hitachi Unisia Automotive Ltd Fuel injector of engine
JP2004052751A (en) * 2002-05-30 2004-02-19 Hitachi Unisia Automotive Ltd Fuel injection valve
JP2004225598A (en) * 2003-01-22 2004-08-12 Hitachi Ltd Fuel injection valve
JP2005188361A (en) * 2003-12-25 2005-07-14 Nissan Motor Co Ltd Inlet port structure of internal combustion engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3498334B2 (en) * 1993-11-08 2004-02-16 株式会社日立製作所 Intake device for internal combustion engine
JP3107489B2 (en) * 1993-11-08 2000-11-06 株式会社日立製作所 Air-fuel mixture forming device for internal combustion engine
US6886516B2 (en) * 2002-12-20 2005-05-03 Nissan Motor Co., Ltd. Cylinder head of internal combustion engine and method of producing same
JP4071694B2 (en) * 2003-09-12 2008-04-02 株式会社日立製作所 Fuel injection device for internal combustion engine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62101066U (en) * 1985-12-17 1987-06-27
JPH1172067A (en) * 1997-06-24 1999-03-16 Toyota Motor Corp Fuel injection valve of internal combustion engine
JP2002202031A (en) * 2000-10-26 2002-07-19 Hitachi Ltd Fuel injection valve and fuel injector
JP2003028024A (en) * 2001-07-13 2003-01-29 Hitachi Unisia Automotive Ltd Fuel injection valve
JP2003148299A (en) * 2001-11-15 2003-05-21 Hitachi Ltd Fuel injection valve and internal combustion engine loaded with the same
JP2004052751A (en) * 2002-05-30 2004-02-19 Hitachi Unisia Automotive Ltd Fuel injection valve
JP2004036409A (en) * 2002-06-28 2004-02-05 Hitachi Unisia Automotive Ltd Fuel injector of engine
JP2004225598A (en) * 2003-01-22 2004-08-12 Hitachi Ltd Fuel injection valve
JP2005188361A (en) * 2003-12-25 2005-07-14 Nissan Motor Co Ltd Inlet port structure of internal combustion engine

Also Published As

Publication number Publication date
CN1940275A (en) 2007-04-04
CN1940275B (en) 2012-04-04
JP2007077809A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
US10151235B2 (en) Ducted combustion system for an internal combustion engine
US9803538B2 (en) Ducted combustion systems utilizing duct structures
JP4521334B2 (en) Port injection engine fuel injection valve and port injection engine
JP4221898B2 (en) Fuel injection nozzle
US20120325922A1 (en) Method of generating spray by fluid injection valve, fluid injection valve, and spray generation apparatus
JPS61118556A (en) Intermittent system scroll injection valve
WO2012001802A1 (en) Fuel injection valve and internal combustion engine
JP2015529783A (en) Swirl spray pattern fuel injection in opposed piston engine
US20170016384A1 (en) Ducted Combustion Systems Utilizing Venturi Ducts
JP2007315276A (en) Multi-hole type injector
JP3829818B2 (en) Intake device for internal combustion engine
JP3295975B2 (en) gasoline engine
US20040164187A1 (en) Fuel injection valve
JP2011516787A (en) Fuel injection device
EP1607601A1 (en) Engine with primary and secondary intake passages
JPH0378562A (en) Fuel injection valve
JP4285235B2 (en) Intake port structure of internal combustion engine
JP2013249826A (en) Fuel injection valve and fuel injection device for internal combustion engine
JP3732323B2 (en) Combustion method for in-cylinder injection engine
US7565894B2 (en) Fuel injection apparatus for and method of internal combustion engine, and fuel injection valve
JP6609196B2 (en) Fuel injection nozzle
JP2011007046A (en) Fuel injection device for direct injection gasoline engine
EP3892847B1 (en) Fuel injector
JPWO2006025114A1 (en) Fuel injection valve
JP2014001660A (en) Fuel injection valve of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100301

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4521334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees