JP4517384B2 - Water-based paint composition, antibacterial member and coating film forming method - Google Patents

Water-based paint composition, antibacterial member and coating film forming method Download PDF

Info

Publication number
JP4517384B2
JP4517384B2 JP2003145022A JP2003145022A JP4517384B2 JP 4517384 B2 JP4517384 B2 JP 4517384B2 JP 2003145022 A JP2003145022 A JP 2003145022A JP 2003145022 A JP2003145022 A JP 2003145022A JP 4517384 B2 JP4517384 B2 JP 4517384B2
Authority
JP
Japan
Prior art keywords
component
antibacterial
weight
coating film
coating composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003145022A
Other languages
Japanese (ja)
Other versions
JP2004346202A (en
Inventor
寛之 藤井
広長 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2003145022A priority Critical patent/JP4517384B2/en
Publication of JP2004346202A publication Critical patent/JP2004346202A/en
Application granted granted Critical
Publication of JP4517384B2 publication Critical patent/JP4517384B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、水性塗料組成物に関わるものであり、詳しくは優れた抗菌作用が長期に渡り効果的に発現し、さらに湿度や光に対する優れた耐変退色性と耐候性を併せ持つ水性塗料組成物、該組成物により形成した塗膜で一部または全体が覆われた被覆物、および、該被覆物の形成方法に関するものである。
【0002】
【従来の技術】
近年、構造物や建造物の表面を被覆する塗膜には、基材を外気から遮断し保護する目的や着色等により基材が本来持つものとは異なる意匠を付与する目的以外に、さまざまな機能を付与することが提案され、実用化されている。戸建・集合住宅の屋内環境では、省エネルギー対応の観点から内空間の気密性が大きく向上し、その結果、熱・湿気の逃げ場が無く、細菌などの微生物が繁殖しやすい環境になりやすく、アレルギー性疾患や感染症の遠因となっている。病院ではメチシリン耐性ブドウ球菌やバンコマイシン耐性腸球菌などの耐性菌が猛威を振るい院内感染が問題視されるようになってきた。学校や老健施設の給食施設、食品工場などでも、黄色ブドウ球菌や大腸菌などに起因した食中毒が毎年発生しており、一向に減少する傾向にない。構造物や建造物の内装空間における微生物に対する安全性は年々重要になっている。
【0003】
抗菌性を発現する水性塗料組成物に関する従来技術としては、以下のものが挙げられる。
▲1▼ 微生物繁殖に効果がある有機薬剤類を配合した塗料
▲2▼ 銀イオン担持ゼオライトを配合した塗料
▲3▼ 銀イオン担持無機系抗菌剤と変色防止剤を配合した塗料
▲4▼ 銀イオン担持光触媒と結晶性層状リン酸化合物を配合した塗料
▲5▼ 樹脂成分と水性コロイダルシリカと抗菌剤を配合した塗料
【0004】
従来技術▲1▼に関しては、有機薬剤としてフェノール系薬剤、ブロム系薬剤、ヨウド系薬剤などを含有した塗料があるが、塗膜形成後、これら有機薬剤が溶出しつつ抗菌性が発揮されるため、その持続性に課題がある。
【0005】
従来技術▲2▼に関しては、銀イオン担持ゼオライトを配合した塗料が開示されている(例えば、特許文献1参照)。特許文献1では1μm程度のゼオライトを用いており、ゼオライトは塗膜中に均一に分散していると考えられる。また、ゼオライトの添加量も塗料中に1〜5%とやや多めであり、塗膜が変色する可能性が考えられる。また、銀イオン担持ゼオライトを外気と接する状態に露出させるために、ポーラスな塗膜構造となり、そこに汚れが充填され取れなくなったり、清掃時に抗菌性を発揮する成分が溶出する可能性が考えられる。
【0006】
従来技術▲3▼に関しては、銀イオン担持無機系抗菌剤と変色防止剤を配合した塗料が開示されている(例えば、特許文献2参照)。この場合も、変色は抑制されているものの、無機系抗菌剤の添加量は比較的多く、また有機系の変色防止剤の添加は室内用塗料としては好ましくない。
【0007】
従来技術▲4▼に関しては、従来技術▲2▼と同様の理由で、抗菌性能が劣化する。また、塗膜中での抗菌剤である銀担持酸化チタンの分散、分布状態に別段工夫がなされていないため、酸化チタンの光触媒反応によって、徐々に有機樹脂が分解されることによる塗膜自体の劣化も危惧される。
【0008】
従来技術▲5▼に関しては、エチレン性不飽和モノマーとメルカプト基および親水性極性基含有ウレタンプレポリマーとをラジカル重合によって結合した自己乳化性共重合体を含有する樹脂成分及び水性コロイダルシリカからなる水性無機塗料に抗菌剤を添加した塗料が開示されている(例えば、特許文献3参照)。特許文献3に記載されている塗料はアクリル−ウレタンの共重合体であり、コロイダルシリカを多く含有するものである。このような塗料では、塗膜の組成は傾斜しておらず均一である。従って抗菌性を得るために、多量の抗菌剤を添加する必要があり、塗膜の変色などの課題がある。
【0009】
【特許文献1】
特開昭60−202162号公報
【特許文献2】
特開平6−14979号公報
【特許文献3】
特開2001−40272号公報
【0010】
【発明が解決しようとする課題】
本発明は従来技術における課題を解決するためになされたもので、その課題は、所望の抗菌活性をより少ない抗菌剤添加量で長期に渡って発現し、耐変色性および耐候性に優れる塗膜を一回の塗布にて形成でき、さらに着色顔料などにより基材が本来持つ意匠とは異なる意匠を付与できる水性塗料組成物、および抗菌部材を提供することである。
【0011】
【課題を解決するための手段】
本発明では、上記課題を解決すべく、(a)アクリル系樹脂エマルジョンと、(b)シリカ微粒子と、(c)抗菌剤粒子と、(d)水と、(e)顔料と、を少なくとも含んだ水性塗料組成物であって、前記(a)成分中に分散してエマルジョン粒子はC2からC7のアルキルアクリレート、C2からC7のアルキルメタクリレートから選択される少なくとも1種類以上のモノマーを重合させたものであり、(b)成分の平均粒子径が50nm以下であり、(c)成分の平均粒子径が50nm以下であり、さらに(b)成分が全固形分の10〜70重量%であることを特徴とする水性塗料組成物を提供する。
【0012】
(b)成分の平均粒子径は、30nm以下であれば更に好ましい。
【0013】
(c)成分の平均粒子径は、40nm以下であれば更に好ましい。
【0014】
また、前記水性塗料組成物を基材上に塗布し、乾燥して形成した塗膜で被覆された部材であって、(b)成分および(c)成分が外気に接する塗膜表面近傍に多く分布するように濃度勾配を有する塗膜で被覆された抗菌性部材を提供する。
【0015】
本発明に係る水性塗料組成物を基材に塗布して得られた塗膜構造を図1に模式的に示す。本発明では、(a)成分のモノマー組成と、(b)、(c)各成分の粒子径を最適化することで、前記水性塗料組成物を塗布した後の乾燥過程で(b)成分、および(c)成分が塗膜の表面側で多くなるような濃度勾配が達成される。
【0016】
(c)成分が外気に接する塗膜表面近傍に多く分布するように濃度勾配を有するため、塗料構成材料が均一に分布した塗膜に比べて、所望の抗菌性能をより少ない抗菌剤配合量で得ることができる。その結果、銀などの抗菌金属に起因した変色も抑制できる。
【0017】
逆に、基材と密着する下層部分には(a)成分が多く分布するように濃度勾配を有するため、密着性に優れた塗膜を形成できる。
【0018】
このような傾斜組成を達成するのに、2液を用いることなく1液で施工できるため、塗装工程は簡便である。
【0019】
また、(c)成分とともに(b)成分も同様に分布するため、(c)成分が抗菌金属担持光触媒の場合でも、樹脂との直接的な接触を防ぎ、樹脂が光触媒によって酸化分解されること無く、優れた耐候性を有する抗菌性塗膜を得ることができる。さらに、(b)成分や(c)成分のような無機微粒子材料が塗膜表面近傍に多く分布するように濃度勾配を有するため、親水撥油性が発揮され、水中でのオレイン酸の接触角は60°を大きく上回り、組成によっては100°を上回る。このような親水撥油表面は油汚れが落としやすい易洗浄性表面になる。また、基材の種類に依らず、帯電半減期は50秒以下に短くすることができ、その結果、抗菌性を効果的に発現するだけでなく、ホコリが付着しにくく、油汚れが落としやすい表面を持つ部材を提供することが可能となる。
【0020】
本発明の塗料から得られる塗膜は、(c)成分が塗膜表層に多く分布するように濃度勾配を有するため、(c)成分の添加量が少なくても、充分な抗菌性を発揮する。具体的には、大腸菌を用いたJIS Z 2801記載の試験で接触時間3時間後に生菌数が0となる。また、銀による着色も小さい。具体的には、相対湿度100%、紫外線強度1mW/cm2 の環境下に1ヶ月放置しても変色色差は2に達することはない。
【0021】
本発明において、(b)成分の固形分量が全固形分の10〜70重量%である。このような水性塗料組成物を塗布して形成した塗膜では、外気に接する塗膜表層が、親水性を示す(b)成分でほぼ覆われ、簡単な拭き掃除で抗菌性発現を妨害する汚れの蓄積を防ぐことができる。
【0022】
本発明の好ましい態様においては、(a)成分の固形分量が全固形分の10重量%以上である。(a)成分の固形分量が全固形分の10重量%以上であれば、水性エマルジョン中の樹脂の硬化により、基材もしくは下塗り材との密着性が得られ、耐久性に優れた塗膜を得ることができる。より好ましい(a)成分の固形分量は全固形分の20重量%以上である。
【0023】
本発明の好ましい態様においては、(c)成分が抗菌金属担持光触媒である。光の当たる場所では、担持した抗菌金属の作用と、担体の光触媒作用が相乗的に作用して、優れた抗菌性を持続的に発揮することが可能となる。
【0024】
本発明の好ましい態様においては、(c)成分が抗菌金属担持光触媒であって、その固形分が(b)成分に対して、1〜50重量%であるようにする。この範囲であれば、塗膜を形成したときに(b)成分、(c)成分が塗膜表面近傍に多くなるような濃度勾配を持たせることができ、(c)成分による抗菌性が充分得られ、かつ(c)成分と(a)成分の直接の接触を防ぐため、光触媒機能を有するにもかかわらず、十分な耐候性が得られるのである。
【0025】
本発明の好ましい態様においては、(c)成分の抗菌金属担持光触媒に用いる抗菌金属が、銀、銅のいずれかを1種類以上含む。これらの金属類は優れた抗菌性を発揮すると共に、光触媒に担持することで抗菌性能の持続性、光触媒機能の向上に寄与する。
【0026】
本発明の好ましい態様においては、(c)成分が抗菌金属担持光触媒であって、抗菌金属の光触媒に対する担持率が0.1〜10重量%であるようにする。塗膜表面近傍に抗菌剤成分が多くなるように濃度勾配を持たせることで、塗膜の変色を抑制しつつ所望の抗菌性を発揮できる。
【0027】
本発明の好ましい態様においては、(e)成分の平均粒径が100nm以上になるようにする。その結果、(e)成分は塗膜と基材との界面側に多く分布するように濃度勾配を有するため、密着性の向上に貢献する。
【0028】
本発明の好ましい態様においては、(b)成分と(c)成分の固形分の合計の(e)成分の固形分に対する比率が0.4以上であるようにする。さらに好ましくは0.6以上であるようにする。そうすることで、表面への(e)成分の露出を抑制でき、(b)成分と(c)成分を効率よく塗膜表面に多く存在するようにさせることができる。
【0029】
本発明の好ましい態様においては、水性塗料組成物の固形分濃度が20重量%以上であるようにする。さらに好ましくは35重量%以上になるようにする。そうすることで、通常の建築物の塗装工程である、下塗り1回、上塗り2回の作業で、膜厚1μm〜200μmで十分な隠蔽性を有する塗膜を得ることができる。
【0030】
【発明の実施の形態】
以下に本発明に基づき、実施の形態を説明する。
まず、以下に本発明で用いる語について説明する。
【0031】
本発明において、(a)成分の「アクリル系樹脂エマルジョン」は、ビニル系単量体としてアルキル(メタ)アクリレート類を主成分とするビニル共重合体であり、さらに、ビニル系単量体としてクロトン酸アルキル類、不飽和二塩基酸ジアルキル類、モノカルボン酸ビニルエステル類もしくは芳香族ビニル系単量体類のような、各種の非官能性の単量体類、3級アミノ基、酸基、中和された酸基、アミド基、シアノ基、水酸基、エポキシ基、加水分解性シリル基の如き官能基を有する各種のビニル系単量体、さらに1分子あたり2個以上の重合性二重結合を有する多官能のビニル系単量体類を使用することができる。エマルジョンの平均粒子径は140nm以上が好ましく、145nm以上がさらに好ましい.
【0032】
更に、上記アクリル系樹脂エマルジョンに架橋剤を加えた、架橋性タイプのもの、自己架橋タイプのものや、非架橋性タイプのもの等の各種乾燥(硬化)タイプのもの、一つのエマルジョン粒子中にシェル部と芯部からなるコアシェルタイプのもの、多段乳化重合法によりエマルジョン芯部より殻部へ段階的にモノマー組成を変えたタイプを利用することができる。
【0033】
本発明において(b)成分の「シリカ微粒子」には、粒子径が50nm以下であれば、ガラス状シリカ、石英、無定型シリカ、シリカゲル、シリカ粉末、シリカゾルや、シリカ表面をアルミ等で被覆した各種被覆シリカ微粒子、及び樹脂粒子や金属酸化物ゾル等の表面をシリカで被覆したシリカ被覆微粒子、球状シリカ微粒子、棒状シリカ微粒子、球状シリカが連結したネックレス状シリカ微粒子、等が利用できる。また、粒子径が前記範囲よりも大きい場合は、粉砕等の工程によって微細化した後に利用することもできる。これらの材料は、日産化学工業(株)製のスノーテックスのような市販品を用いても良いし、ゾルゲル法に代表される各種合成方法に従って調製した物を用いることもできる。
【0034】
本発明において(c)成分の「抗菌剤粒子」には、抗菌金属担持ゼオライト、抗菌金属担持アパタイトなど平均粒子径が50nm以下であり、前記アクリル系樹脂エマルジョンやシリカ微粒子と混合して、分散性が悪化しない抗菌剤であれば、任意に利用できる。各種合成法に従い調製した材料以外に市販品を利用することもできる。例えば、アルミナシリカに銀を担持した触媒化成工業(株)製のアトミーボールUAなどがこれに該当する。なお、抗菌金属とは、銀、銅のように、イオンや酸化物の状態で抗菌性を発揮し得る金属種のことを示す。
【0035】
本発明において(c)成分として抗菌金属担持光触媒粒子を利用することができる。抗菌金属は単独あるいは2種類以上を組み合わせて利用することができる。
【0036】
抗菌金属担持光触媒は触媒化成工業(株)製のアトミーボールLのような、平均粒子径50nm以下の市販商品を用いることができるし、ゾルゲル法に代表される各種合成方法に従って調製したものを用いることもできる。
【0037】
前記光触媒には、アナターゼ型酸化チタン、ルチル型酸化チタン、ブルッカイト型酸化チタン、チタン酸ストロンチウム、酸化タンタル、酸化ニオブ、酸化スズ、酸化亜鉛から選ばれる少なくとも一種を利用することができる。特に光触媒活性が高いアナターゼ型酸化チタンが好ましい。酸化チタンは石原産業(株)、昭和電工(株)、多木化学(株)の製品などの市販品を用いることができるし、調製した物を用いることもできる。近年、可視光に応答する酸化チタン光触媒が、住友化学(株)、豊田中央研究所(株)、エコデバイス(株)、昭和電工(株)、石原産業(株)などより発表されているが、これらの材料も平均粒子径を50nm以下に微細化できれば、利用可能である。このような光触媒材料への抗菌金属の担持には光触媒活性を利用した光還元電着法、含浸法などを利用することができる。
【0038】
本発明の水性塗料組成物においては、シリカ微粒子と併用することのできる(e)成分「顔料」として、水性エマルジョン塗料に一般的に用いられている無機着色顔料、有機着色顔料、無機体質顔料が利用できる。無機着色顔料としては、酸化チタン白、チタンイエロー、スピネルグリーン、亜鉛華、ベンガラ、酸化クロム、コバルトブルー、鉄黒などの金属酸化物系、アルミナホワイト、黄色酸化鉄などの金属水酸化物系、紺青などのフェロシアン化合物系、黄鉛、ジンクロメート、モリブデンレッドなどのクロム酸鉛系、硫化亜鉛、朱、カドミウムイエロー、カドミウムレッドなどの硫化物、セレン化合物系、バライト、沈降性硫酸バリウムなどの硫酸塩系、重質炭酸カルシウム、沈降性炭酸カルシウムなどの炭酸塩系、含水珪酸塩、クレー、群青などの珪酸塩系、カーボンブラックなどの炭素系、アルミニウム粉、ブロンズ粉、亜鉛粉末などの金属粉系、雲母・酸化チタン系などのパール顔料系などが挙げられる。また、有機顔料としてはアントラキノン系、キナクドリン系、ペリレン系、イソインドリン系等のキノン系顔料、アゾ顔料、フタロシアニン顔料などが挙げられる。また、無機体質顔料としては、酸化チタンウィスカー、炭酸カルシウムウィスカー、チタン酸カリウムウィスカー、ホウ酸アルミニウムウィスカー、マイカ、タルク、硫酸バリウム、炭酸カリウム、珪砂、珪藻土、カオリン、クレー、セピオライト、陶土、炭酸バリウム等が好適である。これらの顔料はそれぞれ単独で使用しても、或いは2種以上を併用してもよく、例えば各種着色顔料及び/又は各種体質顔料とを併用することも可能である。
【0039】
水性塗料組成物中でのこれらの顔料の配合量については、(b)成分「シリカ粒子」、(c)成分「抗菌剤粒子」、(e)成分「顔料」を合わせたPWCが30〜90、好ましくは40〜80となるように配合することが好ましい。
【0040】
ここで、PWCとはPigment Weight Concentration (顔料重量濃度)のことであり、下記の式により算出される。
PWC=[(含有顔料重量%)/(全塗料固形分重量%)]×100
PWCが30未満である場合には、抗菌性が十分に発揮されず、汚れの清掃性も悪化する。逆に90を越えると成膜性が低下し、塗膜に割れ、剥離等が発生する傾向があるので好ましくない。
【0041】
本発明の水性塗料組成物において、(b)成分「シリカ微粒子」と(c)成分「抗菌剤粒子」の合計配合量はその他の顔料との合計配合量の10〜85重量%を占めることが好ましい。配合量が合計配合量の10重量%未満である場合には耐候性や抗菌性が十分には発揮されない。逆に配合量が合計配合量の85重量%を越える場合には成膜性が低下し、塗膜に割れ、剥離等が発生する傾向があるので好ましくない。
【0042】
本発明の水性塗料組成物には一般に防かび剤などに用いられる有機薬剤、たとえばジンクピリチオンやイミダゾール系薬剤、チアゾールやイソチアゾール系薬剤を添加しても良い。
【0043】
本発明の水性塗料組成物は、以上に説明したアクリル系樹脂エマルジョン、シリカ微粒子、抗菌剤粒子、水、及び顔料を必須成分として含有し、その上に、必要に応じて、メタノール、エタノール、メチルセロソルブ、エチレングリコール等の各種親水性有機溶剤、中和剤、増粘剤、分散剤、消泡剤、造膜助剤、防腐剤、凍結防止剤、造膜助剤、紫外線吸収剤等の各種添加剤を含有することもできる。しかし、塗料に関しては、近年、作業環境、周辺への影響、臭いなどの観点から、溶剤系塗料よりも水系塗料(水性塗料)を用いる傾向が高まりつつある。つまり、造膜助剤などの溶剤、特に揮発性有機溶剤を含有しないことが好ましい。
【0044】
本発明の水性塗料組成物の混合、分散処理には、サンドミル、ホモジナイザー、ボールミル、ロールミル、ペイントシェーカー、超音波分散機、羽根式攪拌機、マグネチックスターラー、高速分散機、乳化機、自転公転プロペラレス混和機などを用いることができる。
【0045】
本発明の塗料組成物で被覆可能な基材としては、金属、プラスチック、ガラス、タイル、ホーロー、陶磁器、木材、セメント、目地、コンクリート、窯業系無機質板、石膏ボード、または、それらの複合体、それらの積層体、それらの塗装体、それらの表面に有機または無機の皮膜やフィルムを有するもの等である。窯業系無機質板とは、繊維強化セメント板、珪酸カルシウム板、スレート板、パーライトセメント板、軽量起泡コンクリート(ALC)、ガラス繊維強化コンクリート(GRC)、窯業系サイディング等の基材であり、特に限定されない。プラスチック基材とは、繊維強化プラスチック、アクリル樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリプロピレン(PP)、アクリルブタジレンスチレン共重合体樹脂(ABS)樹脂、塩化ビニル樹脂、エポキシ樹脂、フェノール樹脂等の成形体およびフィルム状にしたものが挙げられ、特に限定されない。塗装体に関しては、有機被膜としては、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ユリア樹脂、フッ素樹脂、シリコーン樹脂、アクリルシリコーン樹脂、メタクリレート樹脂、ポリウレタン樹脂、メラミン樹脂等の被膜が挙げられ、無機被膜としては、アルカリシリケート系、りん酸系、ほう酸系等の被膜が挙げられるが、特に限定されない。
【0046】
本発明の塗料組成物を塗布する前に、適宜、各種基材に適した下塗り材を塗装することも可能である。塗膜に接して下塗り材によって形成されるアンダーコート層としては、ウレタン樹脂、アクリル樹脂、アクリルウレタン樹脂、アクリルシリコン樹脂、エポキシ樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、フタル酸樹脂、アルキド樹脂、シリコンアルキド樹脂などの有機樹脂系塗膜に加えて無機系塗膜なども用いることができる。
【0047】
本発明の塗料組成物は抗菌性が期待される物品に適用される。このような物品としては、建築物や構造物や車輌の外装や内装などが挙げられ、より具体的には、屋根材、瓦、カラートタン、カラー鉄板、窯業系建材、サイディング材、セメント壁、アルミサイディング、カーテンウォール、塗装鋼板、石材、ALC、タイル、ガラスブロック、サッシ、ビルサッシ、網戸、雨戸、門扉、窓枠、ベランダ、ベランダ手すり、屋根樋、エアコン室外機、店舗看板、サイン、広告塔、冷蔵・冷凍ショーケース、シャッター、屋外ベンチ、自動販売機、プラント外壁、プラント内壁、石油貯蔵タンク、テント、キッチン設備部材、浴室設備部材、陶磁器、浴槽、洗面台、台所用品、食器乾燥器、流し、キッチンフード、換気扇、などが挙げられる。
【0048】
本発明による抗菌性部材は、基材の表面に本発明の塗料組成物が塗布され、その後乾燥または硬化されて塗膜を形成されたものである。>
【0049】
ここで塗料組成物を塗布する手段はとくに限定されず、刷毛塗り、スポンジ塗り、ロールコーティング、フローコーティング、スピンコーティング、ディップコーティングなどの方法が挙げられる。
【0050】
ここで塗膜の乾燥または硬化は、1〜80℃までの常温乾燥、強制乾燥、加熱、紫外線照射等によって実施することができる。
【0051】
また、本発明の塗料組成物が適用される基材表面は清浄であることが好ましい。特に建築物の内壁や外壁等、既設の基材に塗布する場合には、予め洗浄剤の使用など、公知の方法にて洗浄することが望ましい。
【0052】
各種エマルジョンを構成するモノマーの組成は、熱分解GC/MSを用いて分析評価できる。
【0053】
平均粒子径とは、MALVERN社のZETASIZER 3000HS を用いて光子相関分光法(PCS)により測定した体積平均粒子径である。
【0054】
塗膜の基材密着部分から外気に接する表層部分までの構造・組成解析は、走査型電子顕微鏡、透過型電子顕微鏡による直接観察、塗膜断面のエネルギー拡散X線(EDX)分析あるいはX線マイクロアナリシス(EPMA)分析、または表面からの深さ方向の組成分析として、オージェ電子分光法(AES)、X線光電子分光法(XPS)、二次イオン質量分析法(SIMS)などの方法を利用することができる。また塗膜表面から機械的、多段階的に削り取った成分の組成分析、観察を行なっても良い。
【0055】
本発明に係る水性塗料組成物は、50nm以下の(b)成分「シリカ微粒子」、(c)成分「抗菌剤粒子」の小粒子径成分と、100nmよりも大きく、モノマーがC2からC7の(a)成分「アクリル系樹脂エマルジョン」、(e)成分「顔料」の大粒子径成分と(d)成分「水」で構成される。水分量はTG−DTA等の熱分析にて評価ができる。小粒径成分と大粒形成分は、孔径50nmから100nmのフィルターを用いて分離でき各種評価法を用いて定性、定量が可能である。例えば光子相関分光法などにより粒子径の情報が得られる。分離後の再分散が困難な場合は走査型電子顕微鏡や透過型電子顕微鏡のような直接観察によって用いた材料の粒子径評価を実施することもできる。蛍光X線分析などによれば組成の解析ができる。
【0056】
本発明に係る抗菌金属担持光触媒の抗菌金属担持率は、担体である光触媒の量に対する抗菌金属の担持量の割合を示すものであって、分離した小粒径成分を乾燥させ、蛍光X線分析や酸やアルカリに溶解して原子吸光分析やICP発光分析にて定量、評価できる。
【0057】
塗膜の厚さは走査型電子顕微鏡による断面観察で測定できる。
【0058】
帯電半減期は、気温25℃、相対湿度20%に調整された環境下で、シシド静電気(株)製STATIC HONESTMETERを用いて測定した。印加電圧10kVとし、塗膜表面が飽和帯電電位に達した後に、帯電電位がその1/2まで減衰するのに必要とした時間である。
【0059】
紫外線強度はMINOLTA(株)製紫外線強度計UM-10(受光部UM-360)で計測した。
【0060】
高湿度、紫外線照射環境下に放置した後の塗膜の変色色差は下記の式に従って算出する。
色差△E*={(L* 1L* 02+(a* 1a* 02+(b* 1b* 021/2
ここで、(L* 0,a* 0,b* 0): JIS Z 8729記載のL*a*b*表色系に基づく放置前のサンプル表面の色値、(L* 1,a* 1,b* 1):放置後のサンプル表面の色値である。尚、色値測定はMINOLTA(株)製分光測色計CM-3700dにて測定した。
【0061】
塗膜の抗菌性評価は、基本的にJIS Z 2801に記載の方法に従って実施した。ただし、菌の塗装面への接触時間は、任意に変化させた。
【0062】
<銀担持酸化チタンの作製>
表1に記載の条件に従って、酸化チタン分散液に硝酸銀を溶解し、紫外線照射を行なって酸化チタン表面に銀を光電着した。
【0063】
【表1】

Figure 0004517384
【0064】
表2に用いた市販抗菌剤を記載する。
【0065】
【表2】
Figure 0004517384
【0066】
表1および表2に記載の平均粒子径は、MALVERN社のZETASIZER3000HS を用いて光子相関分光法(PCS)により測定した体積平均粒子径である。
【0067】
<塗料組成物>
実施例1
コロイダルシリカ(日産化学株式会社製、商品名スノーテックスZL、平均粒子径124.7nm)9重量部、コロイダルシリカ(日産化学株式会社製、商品名スノーテックス50、平均粒子径14.9nm)29.98重量部、表1記載の抗菌剤A(銀担持酸化チタン:平均粒子径35nm)0.2重量部、アクリル系エマルジョン(モノマー:アクリル酸ブチル、メタクリル酸ブチル 平均粒子径150nm)29重量部、着色顔料(大日精化工業株式会社製、商品名MFカラーMF5765)20重量部、体質顔料(日本タルク株式会社、商品名 P−3)8重量部、体質顔料(大塚化学株式会社製、商品名 MTW−500)4重量部(以上固形分で表示)、の塗料組成物を調整した。このときの水分量は固形分の合計100重量部に対して127重量部であった。本塗料組成物中のAg2O量は11.25ppmであった。
【0068】
実施例2
コロイダルシリカ(日産化学株式会社製、商品名スノーテックスZL、平均粒子径124.7nm)10重量部、コロイダルシリカ(日産化学株式会社製、商品名スノーテックスS、平均粒子径5.4nm)29.95重量部、表2記載の抗菌剤C(A社銀担持酸化チタン:平均粒子径3.5nm)0.05重量部、アクリル系エマルジョン(モノマー:アクリル酸ブチル、メタクリル酸ブチル 平均粒子径150nm)24重量部、着色顔料(大日精化工業株式会社製、商品名MFカラーMF5765)20重量部、体質顔料(日本タルク株式会社、商品名 P−3)10重量部、体質顔料(大塚化学株式会社製、商品名 MTW−500)6重量部(以上固形分で表示)、の塗料組成物を調整した。このときの水分量は固形分の合計100重量部に対して127重量部であった。本塗料組成物中のAg2O量は11.25ppmであった。
【0069】
実施例3
コロイダルシリカ(日産化学株式会社製、商品名スノーテックスZL、平均粒子径124.7nm)8重量部、コロイダルシリカ(日産化学株式会社製、商品名スノーテックス50、平均粒子径14.9nm)29.64重量部、表2記載の抗菌剤D(A社銀担持酸化チタン:平均粒子径13.8nm)0.06重量部、アクリル系エマルジョン(モノマー:アクリル酸ブチル、メタクリル酸ブチル 平均粒子径150nm)29重量部、着色顔料(大日精化工業株式会社製、商品名MFカラーMF5765)19.6重量部、体質顔料(日本タルク株式会社、商品名 P−3)9.6重量部、体質顔料(大塚化学株式会社製、商品名 MTW−500)4.1重量部(以上固形分で表示)、の塗料組成物を調整した。このときの水分量は固形分の合計100重量部に対して127重量部であった。本塗料組成物中のAg2O量は11.25ppmであった。
【0070】
実施例4
コロイダルシリカ(日産化学株式会社製、商品名スノーテックスZL、平均粒子径124.7nm)10重量部、コロイダルシリカ(日産化学株式会社製、商品名スノーテックス50、平均粒子径14.9nm)29.965重量部、表2記載の抗菌剤E(A社銀担持酸化チタン:平均粒子径15.8nm)0.035重量部、アクリル系エマルジョン(モノマー:アクリル酸ブチル、メタクリル酸ブチル 平均粒子径150nm)23重量部、着色顔料(大日精化工業株式会社製、商品名MFカラーMF5765)24重量部、体質顔料(日本タルク株式会社、商品名 P−3)9重量部、体質顔料(大塚化学株式会社製、商品名 MTW−500)4重量部(以上固形分で表示)、の塗料組成物を調整した。このときの水分量は固形分の合計100重量部に対して127重量部であった。本塗料組成物中のAg2O量は11.25ppmであった。
【0071】
実施例5
コロイダルシリカ(日産化学株式会社製、商品名スノーテックスZL、平均粒子径124.7nm)8.2重量部、コロイダルシリカ(日産化学株式会社製、商品名スノーテックス50、平均粒子径14.9nm)10重量部、コロイダル(日産化学株式会社製、商品名スノーテックスS、平均粒子径5.4nm)20重量部、表2記載の抗菌剤G(C社銀担持酸化チタン:平均粒子径32.1nm)0.2重量部、アクリル系エマルジョン(モノマー:アクリル酸ブチル、メタクリル酸ブチル 平均粒子径150nm)28重量部、着色顔料(大日精化工業株式会社製、商品名MFカラーMF5765)20.1重量部、体質顔料(日本タルク株式会社、商品名 P−3)9.6重量部、体質顔料(大塚化学株式会社製、商品名 MTW−500)4.1重量部(以上固形分で表示)、の塗料組成物を調整した。このときの水分量は固形分の合計100重量部に対して127重量部であった。本塗料組成物中のAg2O量は11.25ppmであった。
【0072】
実施例6
コロイダルシリカ(日産化学株式会社製、商品名スノーテックスXL、平均粒子径52.1nm)8重量部、コロイダルシリカ(日産化学株式会社製、商品名スノーテックス50、平均粒子径14.9nm)10重量部、コロイダルシリカ(日産化学株式会社製、商品名スノーテックスS、平均粒子径5.4nm)20重量部、表2記載の抗菌剤H(C社銅担持酸化チタン:平均粒子径30.8nm)0.2重量部、アクリル系エマルジョン(モノマー:アクリル酸ブチル、メタクリル酸ブチル 平均粒子径150nm)28重量部、着色顔料(大日精化工業株式会社製、商品名MFカラーMF5765)21.6重量部、体質顔料(日本タルク株式会社、商品名 P−3)9.6重量部、体質顔料(大塚化学株式会社製、商品名 MTW−500)4.1重量部(以上固形分で表示)、の塗料組成物を調整した。このときの水分量は固形分の合計100重量部に対して127重量部であった。本塗料組成物中のCuO量は11.25ppmであった。
【0073】
比較例1
コロイダルシリカ(日産化学株式会社製、商品名スノーテックスZL、平均粒子径124.7nm)9重量部、コロイダルシリカ(日産化学株式会社製、商品名スノーテックス50、平均粒子径14.9nm)29.98重量部、表1記載の抗菌剤B(銀担持酸化チタン:平均粒子径153.6nm)0.2重量部、アクリル系エマルジョン(モノマー:アクリル酸ブチル、メタクリル酸ブチル 平均粒子径150nm)29重量部、着色顔料(大日精化工業株式会社製、商品名MFカラーMF5765)20重量部、体質顔料(日本タルク株式会社、商品名 P−3)8重量部、体質顔料(大塚化学株式会社製、商品名 MTW−500)4重量部(以上固形分で表示)、の塗料組成物を調整した。このときの水分量は固形分の合計100重量部に対して127重量部であった。本塗料組成物中のAg2O量は11.25ppmであった。
【0074】
比較例2
コロイダルシリカ(日産化学株式会社製、商品名スノーテックスZL、平均粒子径124.7nm)10重量部、コロイダルシリカ(日産化学株式会社製、商品名スノーテックス50、平均粒子径14.9nm)10重量部、コロイダルシリカ(日産化学株式会社製、商品名スノーテックスS、平均粒子径5.4nm)20重量部、表2記載の抗菌剤F(銀担持ゼオライト:平均粒子径458.3nm)0.2重量部、アクリル系エマルジョン(モノマー:アクリル酸ブチル、メタクリル酸ブチル 平均粒子径150nm)26重量部、着色顔料(大日精化工業株式会社製、商品名MFカラーMF5765)20.3重量部、体質顔料(日本タルク株式会社、商品名 P−3)9.6重量部、体質顔料(大塚化学株式会社製、商品名 MTW−500)4.1重量部(以上固形分で表示)、の塗料組成物を調整した。このときの水分量は固形分の合計100重量部に対して127重量部であった。本塗料組成物中のAg2O量は11.25ppmであった。
【0075】
比較例3
コロイダルシリカ(日産化学株式会社製、商品名スノーテックスZL、平均粒子径124.7nm)9重量部、コロイダルシリカ(日産化学株式会社製、商品名スノーテックス50、平均粒子径14.9nm)29.98重量部、表1記載の抗菌剤A(銀担持酸化チタン:平均粒子径35nm)0.2重量部、アクリル系エマルジョン(モノマー:アクリル酸2エチルヘキシル、メタクリル酸オクチル平均粒子径130nm)29重量部、着色顔料(大日精化工業株式会社製、商品名MFカラーMF5765)20重量部、体質顔料(日本タルク株式会社、商品名 P−3)8重量部、体質顔料(大塚化学株式会社製、商品名 MTW−500)4重量部(以上固形分で表示)、の塗料組成物を調整した。このときの水分量は固形分の合計100重量部に対して127重量部であった。本塗料組成物中のAg2O量は11.25ppmであった。
【0076】
比較例4
市販の抗菌塗料を比較例4とした。
【0077】
参考例1
コロイダルシリカ(日産化学株式会社製、商品名スノーテックスZL、平均粒子径124.7nm)9.6重量部、コロイダルシリカ(日産化学株式会社製、商品名スノーテックスS、平均粒子径5.4nm)32.9重量部、アクリル系エマルジョン(モノマー:アクリル酸ブチル、メタクリル酸ブチル 平均粒子径150nm)23.2重量部、着色顔料(大日精化工業株式会社製、商品名MFカラーMF5765)19.6重量部、体質顔料(日本タルク株式会社、商品名 P−3)10.6重量部、体質顔料(大塚化学株式会社製、商品名 MTW−500)4.1重量部(以上固形分で表示)、の塗料組成物を調整した。このときの水分量は固形分の合計100重量部に対して127重量部であった。
【0078】
<基材への塗布方法>
50mm×50mmに裁断したポリカーボネイト板(JIS K 6735に準拠したもの)に微弾性下塗り剤(ジャパンハイドロテクトコーティングス、商品名RP11)をローラー塗布し、室温で24時間乾燥させた。
続いて、前記で調製した実施例1の塗料組成物をローラー塗りした。
実施例2〜6および、比較例1〜3、参考例1の塗料組成物についても、本塗布方法にしたがい塗布を行った。
最後に、上記被塗装物を室温で7日間乾燥させて試験片1から9を得た。
また市販の抗菌塗料(比較例4)についても同様に塗布し、試験片10を得た。
【0079】
試験片1: 実施例1に記載の塗料組成物を塗布
試験片2: 実施例2に記載の塗料組成物を塗布
試験片3: 実施例3に記載の塗料組成物を塗布
試験片4: 実施例4に記載の塗料組成物を塗布
試験片5: 実施例5に記載の塗料組成物を塗布
試験片6: 実施例6に記載の塗料組成物を塗布
試験片7: 比較例1に記載の塗料組成物を塗布
試験片8: 比較例2に記載の塗料組成物を塗布
試験片9: 比較例3に記載の塗料組成物を塗布
試験片10: 比較例4に記載の市販の抗菌塗料を塗布
試験片11: 参考例1に記載の塗料組成物を塗布
【0080】
<評価▲1▼ 抗菌性能>
JIS Z 2801記載の抗菌性試験方法に従い、菌種に大腸菌を用いて各試験片の抗菌性能の評価を行なった。表3に抗菌試験結果をまとめる。なお、表3に記載の「判定」は抗菌活性Rに依る。R<2を判定×、R≧2を判定○とした。
【0081】
抗菌活性値Rは24時間接触後の非抗菌試験片に対する各試験片の生菌数の減少桁数で表す。(JIS Z 2801記載)
R=Log10(B24/C24)
B24: 非抗菌試験片の24時間後の生菌数
C24: 各試験片の24時間後の生菌数
【0082】
表3、4、及び5において抗菌速度kは、2時間接触後の生菌数から求めた1時間当たりの菌の減少桁数とする。
k=(Log10(C0/C2))/2
なお、C0: 初期の接種菌数、C2: 2時間接触後の生菌数である。
【0083】
表3に記載のように、実施例1から実施例6で平均粒子径が50nm以下の抗菌剤を使用した場合、優れた抗菌性が得られるのに対して、比較例1と比較例2で平均粒子径が50nm以上の抗菌剤を使用した場合、全く抗菌性が得られなかった。本試験結果は粒径に依存して、塗膜中の抗菌剤分布が異なっていることを支持している。比較例3は、抗菌剤の平均粒径は50nm以下であるが、用いたアクリル系樹脂エマルジョンがC7よりも大きいモノマーを含み構成されるため、塗布後の乾燥過程で抗菌剤成分やシリカ微粒子の塗膜表面近傍への濃度勾配が阻害された。その結果、抗菌活性値R<2となり、抗菌性判定は「×」となった。
【0084】
【表3】
Figure 0004517384
【0085】
<評価▲2▼ SEM観察>
日立走査型電子顕微鏡S−800にて試験片1(実施例1)および試験片7(比較例1)、試験片9(比較例3)の表面構造の観察を行なった。観察結果を図2に示す。
【0086】
図2に示すように、試験片1および試験片7は、50nm以下の微小粒子が塗膜表面に充填された表面構造をとる。一方、試験片9は塗料組成物を構成する各材料がランダムに露出した均一構造を示す。
【0087】
試験片1と試験片7を比較したとき、両者は同様の表面構造をとるにもかかわらず、抗菌性には大きく差が現れた。試験片7に用いた抗菌剤の平均粒子径は153.6nmであるが、観察結果からは、その露出を確認できなかった。
【0088】
試験片1で優れた抗菌活性が得られたのは、微小な抗菌剤Aが、同様に微小なコロイダルシリカとともに塗膜表層で多くなるような濃度勾配を持つためと考えられる。試験片7で抗菌性が得られなかったのは、抗菌剤Bの粒子径が比較的大きいため、塗膜表面で多くなるような濃度勾配を持たず、微小なコロイダルシリカが緻密に充填した表層で覆われてしまった結果と考えられる。
【0089】
試験片1と同量の抗菌剤を含有するにもかかわらず、試験片9の抗菌活性は大きく劣っていた。図2のSEM像が示すように、試験片9は各材料が均一に分布した塗膜構造をもつ。エマルジョンがC7よりも大きなモノマーを含み構成される(表3)ため、乾燥過程で微小なシリカ成分と抗菌剤成分の塗膜表面近傍に多くなるような濃度勾配を持たなかったためと考えられる。試験片1と試験片9の結果は、塗膜の深さ方向で抗菌剤が濃度勾配を持つ傾斜構造をとることによって、所望の抗菌活性をより少量の抗菌剤で実現できることを示唆している。
【0090】
<抗菌性能の持続性>
社団法人日本住宅設備システム協会規定の「住宅設備機器における抗菌性能試験方法・表示及び判定基準」に記載の
処理▲1▼水浸漬試験: 塗装面を50℃の温水に16時間浸漬する。
処理▲2▼耐洗剤試験: 塗装面に一般清掃用洗剤16時間接触する。
塗装面が汚れていく過程を想定して、
処理▲3▼汚染-洗浄サイクル試験: 汚れを模したカーボンブラックを分散したオレイン酸を塗装面に塗布し、水拭きを20回繰り返す。
を実施した。
【0091】
上記の方法によって、試験片6(実施例6)、試験片9(比較例3)、試験片10(比較例4)に処理▲1▼〜▲3▼を施して、抗菌性能の実用的な持続性を評価した。抗菌試験は前述した方法に従って行なった。
【0092】
表4に処理▲1▼から処理▲3▼を施した試験片と無処理の試験片での評価結果をまとめる。
【0093】
【表4】
Figure 0004517384
【0094】
表4に示すように、試験片6のみが高い抗菌速度を▲1▼〜▲3▼の各処理後にも維持した。試験片6は塗装面の帯電半減期が50未満。一方、試験片9と試験片10では50秒以上であった。また、オレイン酸の水中接触角は試験片6は70°以上を示したのに対して、試験片9と試験片10では30°を下回った。試験片6は易洗浄性を有するため抗菌性が長期に渡って効果的に発揮されるのに対して、試験片9および試験片10では汚れを除去しにくいため、抗菌性が大きく劣化したと考えられる。
【0095】
<評価3 耐候性>
サンシャインウェザーメーターを用いて、試験片1(実施例1)と試験片9(比較例3)の耐候性を評価した。耐候性試験方法はJIS K 5600 7−7に記載の方法に従った。
【0096】
図3に示す写真のように、試験片1は上記耐候性試験で塗膜表面にクラックや白化を生じないのに対して、試験片9はクラックや白化が生じた。
【0097】
試験片1では、抗菌剤Aが微小シリカ粒子とともに塗膜表層部に多く分布するように濃度勾配を有するため、抗菌剤中の酸化チタン光触媒によるエマルジョンの分解を抑制できたと考えられる。一方、試験片9では、抗菌剤が均一に塗膜中に分散するため、前記光触媒によってエマルジョンが侵され、その結果クラックや白化が発生したと考えられる。
【0098】
<評価4 耐変退色性>
一般に銀系抗菌剤を使った抗菌塗料は、抗菌スペクトルが広く多くの菌種に対して効果を発揮するが、一方で、多量添加すると湿度や光による銀の価数変化のために、塗料自体が褐色を帯びてくる。
【0099】
試験片1(実施例1)と試験片10(比較例4)について、耐変退色性の評価を行なった。各試験片を相対湿度100%、気温25℃、紫外線強度1mW/cm2の条件下に1ヶ月放置し、銀の価数変化に伴う塗膜の変色度を評価した。変色度は、高湿度下・紫外線照射前後の色差ΔE*で評価した。表5に各サンプルの抗菌試験結果とともに、色差ΔE*をまとめた。
【0100】
【表5】
Figure 0004517384
【0101】
表5に示したように、実施例は比較例に比べて、抗菌速度が3倍優れているにもかかわらず、変色度が小さく耐変退色性に優れている。
【0102】
<評価5 塗膜断面のシリカ分布>
実施例および比較例に記載した組成物中抗菌金属担持酸化チタンの固形分量は非常に少ないため、代用としてシリカの塗膜断面での分布を評価した。塗膜断面分析用試料、試験片11の塗膜表面及び試験片11を破断してサンプリングした破断面に白金を約50Åの厚さでコーティングして塗膜断面の分析用試料を作製した。
【0103】
塗膜断面の観察、分析塗膜断面をSEM(日立製作所社製、S800)、EDX(堀場製作所社製、EMAX−2770)により分析した。分析視野の光触媒性塗膜の膜厚は40μmであった。次いで、分析視野中央部、塗膜最表面から基材側界面まで線上にEDX分析を行った。シリコン(Si)について検出した塗膜最表面から基材側界面までのX線強度の変化を図4に示す。
【0104】
図4に示すように、SiOに由来するSi成分が塗膜表層側に多く分布するようにな濃度勾配を有していることが分かる。また図2に示した試験片1の塗膜表面写真では平均粒子径10nm程度の微小な粒子が確認できた。これらの結果は、平均粒子径が小さなシリカ微粒子が塗膜表面近傍に多く分布するように濃度勾配を有することを示唆している。
【0105】
抗菌金属担持光触媒の添加量は微量であるため、EDXによる濃度勾配の判定は難しいが、同程度の粒子径のシリカ粒子が塗膜表面に傾斜充填していること、粒子径が小さい場合に限り抗菌性が発現することなどの結果から、抗菌金属担持光触媒も塗膜面近傍に多く分布するように濃度勾配を有すると考えられる。
【0106】
また、シリカ微粒子や抗菌剤粒子が塗膜表層近傍に多く分布するように濃度勾配を有するため、必然的にアクリル系樹脂は基材あるいは下塗り材と接する界面付近に多く分布するように濃度勾配を有すると考えられる。
【0107】
【発明の効果】
本発明では、塗料に添加するシリカ微粒子と抗菌剤粒子の大きさとエマルジョンのモノマーの種類を規定することにより、塗装後の塗膜構造を制御して、シリカ微粒子と抗菌剤粒子が塗膜表面近傍に多くなるように濃度勾配を持たせる。その結果、均一に充填した時に比べて、所望の抗菌性能をより少ない抗菌剤添加量で得ることができる。その結果、コスト的に安価な塗料を作製できる上、塗料の安定性、塗膜の耐変退色性も大きく改善できる。また、抗菌剤に抗菌金属担持光触媒を用いた場合でも、抗菌金属担持光触媒はシリカ微粒子とともに塗膜表面近傍で多くなるように濃度勾配ができるため、フッ素系樹脂やシリコン系樹脂に比べて耐候性が劣るアクリル系樹脂でも、光触媒によるエマルジョンの酸化分解を抑制できる。
本発明に依れば、耐候性・耐変退色性を損なうことなく、優れた抗菌性を示し、長期に渡って持続させることが可能な水性塗料組成物、抗菌性部材が得られる。
【図面の簡単な説明】
【図1】本発明に係る水性塗料組成物を各種基材に塗布して形成する塗膜の形態の模式図。
【図2】実施例1、比較例1、比較例3の水性塗料組成物を塗装して得られる試験片の走査型電子顕微鏡(SEM)写真。
【図3】実施例1及び比較例3に記載の水性塗料組成物を塗装して得られる試験片はサンシャインウェザーメーターで処理した後の塗装表面写真。
【図4】参考例1に記載の水性塗料組成物を塗装して得られる塗膜の断面のSEM−EDX分析によって、得られたSiの深さ方向の分布。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aqueous coating composition, and in particular, an excellent antibacterial action is effectively expressed over a long period of time, and further has excellent anti-fading and weather resistance against humidity and light. Further, the present invention relates to a coating partially or entirely covered with a coating film formed from the composition, and a method for forming the coating.
[0002]
[Prior art]
In recent years, coatings covering the surface of structures and buildings have various purposes other than the purpose of shielding and protecting the substrate from the outside air, and the purpose of imparting a design different from that originally possessed by coloring, etc. Providing functions has been proposed and put into practical use. In the indoor environment of detached houses and apartment buildings, the airtightness of the interior space is greatly improved from the standpoint of energy conservation, and as a result, there is no escape place for heat and moisture, and it is easy for bacteria and other microorganisms to grow, and allergies It is a distant cause of sexually transmitted diseases and infections. In hospitals, nosocomial infections have been seen as a problem because of resistance to methicillin-resistant staphylococci and vancomycin-resistant enterococci. Food poisoning caused by Staphylococcus aureus and Escherichia coli is occurring every year in schools, feeding facilities of health facilities, food factories, etc., and it does not tend to decrease at all. The safety of microorganisms in the interior space of structures and buildings has become important year after year.
[0003]
The following are mentioned as a prior art regarding the water-based coating composition which expresses antibacterial property.
(1) Paint containing organic chemicals effective for microbial growth
(2) Paint containing silver ion supported zeolite
(3) Paint containing silver ion-supporting inorganic antibacterial agent and anti-discoloration agent
(4) Paint containing silver ion-supported photocatalyst and crystalline layered phosphate compound
(5) Paint containing resin component, aqueous colloidal silica and antibacterial agent
[0004]
Regarding the prior art (1), there are paints containing phenolic drugs, bromo chemicals, iodine chemicals, etc. as organic chemicals, but since these organic chemicals are eluted after the coating film is formed, antibacterial properties are exhibited. There is a problem with its sustainability.
[0005]
Regarding the prior art (2), a paint containing silver ion-supported zeolite is disclosed (for example, see Patent Document 1). In Patent Document 1, zeolite of about 1 μm is used, and it is considered that the zeolite is uniformly dispersed in the coating film. Further, the amount of zeolite added is also slightly higher, 1 to 5% in the paint, and the coating film may be discolored. In addition, since the silver ion-supported zeolite is exposed to a state in contact with the outside air, it has a porous coating structure, which may not be filled with dirt, or a component that exhibits antibacterial properties may be eluted during cleaning. .
[0006]
With respect to the prior art (3), a paint containing a silver ion-carrying inorganic antibacterial agent and a discoloration preventing agent is disclosed (for example, see Patent Document 2). In this case as well, although discoloration is suppressed, the amount of the inorganic antibacterial agent added is relatively large, and the addition of the organic discoloration inhibitor is not preferable for the indoor paint.
[0007]
Regarding the prior art (4), the antibacterial performance deteriorates for the same reason as in the prior art (2). In addition, since the antibacterial agent, silver-supported titanium oxide in the coating film is not dispersed or distributed, the organic resin is gradually decomposed by the photocatalytic reaction of titanium oxide. Deterioration is also a concern.
[0008]
With respect to the prior art (5), an aqueous composition comprising a resin component containing a self-emulsifying copolymer in which an ethylenically unsaturated monomer and a urethane prepolymer containing a mercapto group and a hydrophilic polar group are bonded by radical polymerization and an aqueous colloidal silica A paint in which an antibacterial agent is added to an inorganic paint is disclosed (for example, see Patent Document 3). The paint described in Patent Document 3 is an acrylic-urethane copolymer and contains a large amount of colloidal silica. In such a paint, the composition of the coating film is not inclined and is uniform. Therefore, in order to obtain antibacterial properties, it is necessary to add a large amount of antibacterial agents, and there are problems such as discoloration of the coating film.
[0009]
[Patent Document 1]
JP 60-202162 A
[Patent Document 2]
Japanese Patent Laid-Open No. 6-14979
[Patent Document 3]
JP 2001-40272 A
[0010]
[Problems to be solved by the invention]
The present invention has been made in order to solve the problems in the prior art, and the problem is that the desired antibacterial activity is expressed over a long period of time with a smaller amount of antibacterial agent added, and the coating film has excellent discoloration resistance and weather resistance. It is possible to provide a water-based coating composition and an antibacterial member that can be formed by a single application, and that can be imparted with a design different from the design originally possessed by the base material with a coloring pigment or the like.
[0011]
[Means for Solving the Problems]
In the present invention, in order to solve the above-mentioned problems, (a) an acrylic resin emulsion, (b) silica fine particles, (c) antibacterial agent particles, (d) water, and (e) a pigment are included. A water-based coating composition in which emulsion particles are polymerized with at least one monomer selected from C2 to C7 alkyl acrylate and C2 to C7 alkyl methacrylate dispersed in component (a). The average particle size of the component (b) is 50 nm or less, the average particle size of the component (c) is 50 nm or less, and the component (b) is 10 to 70% by weight of the total solid content. A water-based coating composition is provided.
[0012]
The average particle size of component (b) is more preferably 30 nm or less.
[0013]
The average particle size of the component (c) is more preferably 40 nm or less.
[0014]
In addition, a member coated with a coating film formed by applying the aqueous coating composition onto a substrate and drying, the component (b) and the component (c) are mostly in the vicinity of the coating film surface in contact with the outside air An antibacterial member coated with a coating film having a concentration gradient to be distributed is provided.
[0015]
FIG. 1 schematically shows a coating film structure obtained by applying the aqueous coating composition according to the present invention to a substrate. In the present invention, by optimizing the monomer composition of component (a) and the particle size of each component (b) and (c), component (b) in the drying process after applying the aqueous coating composition, And the density gradient which increases (c) component on the surface side of a coating film is achieved.
[0016]
(C) Since the component has a concentration gradient so that it is distributed in the vicinity of the surface of the coating film in contact with the outside air, the desired antibacterial performance can be achieved with a smaller amount of antibacterial agent compared to a coating film in which the coating material is uniformly distributed. Obtainable. As a result, discoloration caused by antibacterial metals such as silver can be suppressed.
[0017]
On the other hand, the lower layer portion that is in close contact with the base material has a concentration gradient such that a large amount of the component (a) is distributed, so that a coating film having excellent adhesion can be formed.
[0018]
In order to achieve such a gradient composition, it is possible to construct with one liquid without using two liquids, so the coating process is simple.
[0019]
In addition, since the component (b) is similarly distributed with the component (c), even when the component (c) is an antibacterial metal-supported photocatalyst, direct contact with the resin is prevented, and the resin is oxidatively decomposed by the photocatalyst. And an antibacterial coating film having excellent weather resistance can be obtained. Further, since the inorganic fine particle material such as component (b) or component (c) has a concentration gradient so that it is distributed in the vicinity of the coating film surface, hydrophilic oil repellency is exhibited, and the contact angle of oleic acid in water is Greatly above 60 ° and over 100 ° depending on the composition. Such a hydrophilic oil-repellent surface becomes an easily-cleanable surface that easily removes oil stains. Regardless of the type of base material, the charging half-life can be shortened to 50 seconds or less. As a result, not only effectively antibacterial properties are exhibited, but also dust hardly adheres and oil stains are easily removed. It becomes possible to provide a member having a surface.
[0020]
Since the coating film obtained from the coating material of the present invention has a concentration gradient so that the component (c) is distributed over the surface of the coating film, it exhibits sufficient antibacterial properties even if the amount of the component (c) is small. . Specifically, in the test described in JIS Z 2801 using E. coli, the viable cell count becomes 0 after 3 hours of contact time. Moreover, the coloring by silver is also small. Specifically, relative humidity 100%, UV intensity 1 mW / cm2 The discoloration color difference does not reach 2 even if left for 1 month in this environment.
[0021]
In the present invention, the solid content of the component (b) is 10 to 70% by weight of the total solid content. In the coating film formed by applying such a water-based coating composition, the surface layer of the coating film that comes into contact with the outside air is almost covered with the component (b) showing hydrophilicity, and dirt that interferes with the development of antibacterial properties by simple wiping. Accumulation can be prevented.
[0022]
In the preferable aspect of this invention, the amount of solid content of (a) component is 10 weight% or more of a total solid. If the solid content of the component (a) is 10% by weight or more of the total solid content, the resin in the aqueous emulsion is cured to provide adhesion to the base material or the undercoat material, and a coating film having excellent durability. Obtainable. The solid content of the component (a) is more preferably 20% by weight or more based on the total solid content.
[0023]
In a preferred embodiment of the present invention, the component (c) is an antibacterial metal-supported photocatalyst. In a place exposed to light, the action of the supported antibacterial metal and the photocatalytic action of the carrier act synergistically, and it is possible to continuously exhibit excellent antibacterial properties.
[0024]
In a preferred embodiment of the present invention, the component (c) is an antibacterial metal-supported photocatalyst, and its solid content is 1 to 50% by weight with respect to the component (b). If it is this range, when a coating film is formed, it is possible to have a concentration gradient such that the component (b) and the component (c) increase in the vicinity of the coating film surface, and the antibacterial property due to the component (c) is sufficient. In order to prevent the direct contact between the component (c) and the component (a), sufficient weather resistance can be obtained despite having a photocatalytic function.
[0025]
In the preferable aspect of this invention, the antibacterial metal used for the antibacterial metal carrying | support photocatalyst of (c) component contains 1 or more types of either silver and copper. These metals exhibit excellent antibacterial properties and contribute to the improvement of the antibacterial performance and the photocatalytic function by being supported on the photocatalyst.
[0026]
In a preferred embodiment of the present invention, the component (c) is an antibacterial metal-supported photocatalyst, and the support ratio of the antibacterial metal to the photocatalyst is 0.1 to 10% by weight. By providing a concentration gradient so that the antibacterial component increases in the vicinity of the coating film surface, desired antibacterial properties can be exhibited while suppressing discoloration of the coating film.
[0027]
In a preferred embodiment of the present invention, the average particle size of the component (e) is set to 100 nm or more. As a result, the component (e) has a concentration gradient so as to be distributed more on the interface side between the coating film and the substrate, which contributes to improvement in adhesion.
[0028]
In a preferred embodiment of the present invention, the ratio of the total solids of component (b) and component (c) to the solid content of component (e) is 0.4 or more. More preferably, it should be 0.6 or more. By doing so, the exposure of the component (e) to the surface can be suppressed, and the component (b) and the component (c) can be efficiently present on the surface of the coating film.
[0029]
In a preferred embodiment of the present invention, the solid content concentration of the aqueous coating composition is set to 20% by weight or more. More preferably, it is 35% by weight or more. By doing so, it is possible to obtain a coating film having a sufficient concealing property with a film thickness of 1 μm to 200 μm by the work of one coat of the undercoat and two coats of the top coat, which is a normal building painting process.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments will be described below based on the present invention.
First, terms used in the present invention will be described below.
[0031]
In the present invention, the “acrylic resin emulsion” as the component (a) is a vinyl copolymer mainly composed of alkyl (meth) acrylates as a vinyl monomer, and further, croton as a vinyl monomer. Various non-functional monomers such as alkyl alkyls, unsaturated dibasic acid dialkyls, monocarboxylic acid vinyl esters or aromatic vinyl monomers, tertiary amino groups, acid groups, Various vinyl monomers having functional groups such as neutralized acid groups, amide groups, cyano groups, hydroxyl groups, epoxy groups, hydrolyzable silyl groups, and two or more polymerizable double bonds per molecule Polyfunctional vinyl monomers having the following can be used. The average particle size of the emulsion is preferably 140 nm or more, and more preferably 145 nm or more.
[0032]
Further, a crosslinking agent is added to the acrylic resin emulsion, and various dry (cured) types such as a crosslinkable type, a self-crosslinkable type, and a non-crosslinkable type, in one emulsion particle. A core-shell type consisting of a shell part and a core part, or a type in which the monomer composition is changed stepwise from the emulsion core part to the shell part by a multistage emulsion polymerization method can be used.
[0033]
In the present invention, the “silica fine particles” as the component (b) have a particle diameter of 50 nm or less, and glassy silica, quartz, amorphous silica, silica gel, silica powder, silica sol, or silica surface is coated with aluminum or the like. Various coated silica fine particles, silica coated fine particles whose surfaces such as resin particles and metal oxide sol are coated with silica, spherical silica fine particles, rod-like silica fine particles, necklace-like silica fine particles linked with spherical silica, and the like can be used. Moreover, when a particle diameter is larger than the said range, it can also utilize, after refine | miniaturizing by processes, such as a grinding | pulverization. As these materials, commercially available products such as Snowtex manufactured by Nissan Chemical Industries, Ltd. may be used, or materials prepared according to various synthesis methods represented by the sol-gel method may be used.
[0034]
In the present invention, the “antibacterial agent particle” of component (c) has an average particle diameter of 50 nm or less, such as antibacterial metal-carrying zeolite and antibacterial metal-carrying apatite. Any antibacterial agent that does not deteriorate can be used arbitrarily. In addition to materials prepared according to various synthesis methods, commercially available products can also be used. For example, an atomy ball UA manufactured by Catalyst Kasei Kogyo Co., Ltd. in which silver is supported on alumina silica corresponds to this. In addition, an antibacterial metal shows the metal seed | species which can exhibit antibacterial property in the state of an ion or an oxide like silver and copper.
[0035]
In the present invention, antibacterial metal-supported photocatalyst particles can be used as the component (c). Antibacterial metals can be used alone or in combination of two or more.
[0036]
As the antibacterial metal-supported photocatalyst, commercially available products having an average particle size of 50 nm or less, such as Atomy Ball L manufactured by Catalyst Kasei Kogyo Co., Ltd., can be used, and those prepared according to various synthesis methods represented by the sol-gel method. It can also be used.
[0037]
As the photocatalyst, at least one selected from anatase type titanium oxide, rutile type titanium oxide, brookite type titanium oxide, strontium titanate, tantalum oxide, niobium oxide, tin oxide and zinc oxide can be used. In particular, anatase-type titanium oxide having a high photocatalytic activity is preferable. As titanium oxide, commercially available products such as products of Ishihara Sangyo Co., Ltd., Showa Denko Co., Ltd., and Taki Chemical Co., Ltd. can be used, and prepared products can also be used. In recent years, titanium oxide photocatalysts that respond to visible light have been announced by Sumitomo Chemical Co., Ltd., Toyota Central R & D Co., Ltd., Eco Device Co., Ltd., Showa Denko Co., Ltd., and Ishihara Sangyo Co., Ltd. These materials can also be used if the average particle diameter can be reduced to 50 nm or less. For the support of the antibacterial metal on such a photocatalytic material, a photoreduction electrodeposition method or an impregnation method utilizing photocatalytic activity can be used.
[0038]
In the aqueous coating composition of the present invention, as the component (e) “pigment” that can be used in combination with the silica fine particles, inorganic coloring pigments, organic coloring pigments, and inorganic extender pigments that are generally used in aqueous emulsion coatings are used. Available. Examples of inorganic coloring pigments include titanium oxide white, titanium yellow, spinel green, zinc white, bengara, chromium oxide, cobalt blue, iron black and other metal oxide systems, alumina white, yellow iron oxide and other metal hydroxide systems, Ferrocyan compounds such as bitumen, lead chromates such as yellow lead, zinc chromate, molybdenum red, sulfides such as zinc sulfide, vermilion, cadmium yellow, cadmium red, selenium compounds, barite, precipitated barium sulfate, etc. Metals such as sulfates, carbonates such as heavy calcium carbonate, precipitated calcium carbonate, silicates such as hydrous silicates, clays and ultramarine, carbons such as carbon black, metals such as aluminum powder, bronze powder, and zinc powder Examples thereof include pearl pigments such as powder and mica / titanium oxide. Examples of the organic pigment include anthraquinone, quinacdrine, perylene, and isoindoline quinone pigments, azo pigments, and phthalocyanine pigments. Examples of inorganic extender pigments include titanium oxide whisker, calcium carbonate whisker, potassium titanate whisker, aluminum borate whisker, mica, talc, barium sulfate, potassium carbonate, silica sand, diatomaceous earth, kaolin, clay, sepiolite, porcelain clay, barium carbonate. Etc. are suitable. These pigments may be used alone or in combination of two or more. For example, various colored pigments and / or various extender pigments may be used in combination.
[0039]
About the compounding quantity of these pigments in an aqueous coating composition, PWC which combined (b) component "silica particle", (c) component "antibacterial agent particle", and (e) component "pigment" is 30-90. , Preferably 40-80.
[0040]
Here, PWC is Pigment Weight Concentration and is calculated by the following equation.
PWC = [(Contained pigment weight%) / (Total paint solid content weight%)] × 100
When PWC is less than 30, the antibacterial property is not sufficiently exhibited, and the dirt cleaning property is also deteriorated. On the other hand, if it exceeds 90, the film formability is lowered, and the coating film tends to crack, peel off, etc., which is not preferable.
[0041]
In the aqueous coating composition of the present invention, the total amount of component (b) “silica fine particles” and component (c) “antibacterial agent particles” may occupy 10 to 85% by weight of the total amount with other pigments. preferable. When the blending amount is less than 10% by weight of the total blending amount, weather resistance and antibacterial properties are not sufficiently exhibited. On the other hand, when the blending amount exceeds 85% by weight of the total blending amount, the film formability is lowered, and there is a tendency that the coating film is cracked or peeled off.
[0042]
In the aqueous coating composition of the present invention, an organic agent generally used as a fungicide, for example, zinc pyrithione, imidazole agent, thiazole or isothiazole agent may be added.
[0043]
The aqueous coating composition of the present invention contains the acrylic resin emulsion, silica fine particles, antibacterial agent particles, water, and pigment described above as essential components, and, on top of that, methanol, ethanol, methyl as necessary. Various hydrophilic organic solvents such as cellosolve, ethylene glycol, neutralizers, thickeners, dispersants, antifoaming agents, film-forming aids, preservatives, antifreezing agents, film-forming aids, UV absorbers, etc. Additives can also be included. However, regarding paints, in recent years, there is an increasing tendency to use water-based paints (water-based paints) rather than solvent-based paints from the viewpoints of work environment, influence on surroundings, odor, and the like. That is, it is preferable not to contain a solvent such as a film forming aid, particularly a volatile organic solvent.
[0044]
For mixing and dispersing treatment of the aqueous coating composition of the present invention, a sand mill, a homogenizer, a ball mill, a roll mill, a paint shaker, an ultrasonic disperser, a blade-type stirrer, a magnetic stirrer, a high-speed disperser, an emulsifier, a revolving propellerless A blender or the like can be used.
[0045]
Examples of the substrate that can be coated with the coating composition of the present invention include metals, plastics, glass, tiles, enamels, ceramics, wood, cement, joints, concrete, ceramic mineral boards, gypsum boards, or composites thereof. Those laminates, those coated bodies, those having an organic or inorganic film or film on their surface, and the like. Ceramic-based inorganic boards are base materials such as fiber-reinforced cement boards, calcium silicate boards, slate boards, pearlite cement boards, lightweight foam concrete (ALC), glass fiber reinforced concrete (GRC), ceramic-type siding, etc. It is not limited. Plastic base materials include fiber reinforced plastic, acrylic resin, polycarbonate resin, polyethylene terephthalate (PET) resin, polybutylene terephthalate (PBT) resin, polypropylene (PP), acrylic butadiene styrene copolymer resin (ABS) resin, chloride There are no particular limitations, and examples include molded products such as vinyl resins, epoxy resins, phenol resins, and films. For coated bodies, organic coatings include coatings such as epoxy resins, phenolic resins, unsaturated polyester resins, urea resins, fluororesins, silicone resins, acrylic silicone resins, methacrylate resins, polyurethane resins, melamine resins, etc. Examples of the coating include alkali silicate, phosphoric acid and boric acid coatings, but are not particularly limited.
[0046]
Before applying the coating composition of the present invention, an undercoat material suitable for various substrates can be appropriately applied. For the undercoat layer formed by the undercoat material in contact with the coating film, urethane resin, acrylic resin, acrylic urethane resin, acrylic silicon resin, epoxy resin, vinyl chloride resin, vinyl acetate resin, phthalic acid resin, alkyd resin, silicon In addition to organic resin coating films such as alkyd resins, inorganic coating films can also be used.
[0047]
The coating composition of the present invention is applied to articles expected to have antibacterial properties. Examples of such articles include exteriors and interiors of buildings, structures, and vehicles. More specifically, roofing materials, tiles, colored irons, colored iron plates, ceramic building materials, siding materials, cement walls, Aluminum siding, curtain wall, painted steel plate, stone, ALC, tile, glass block, sash, building sash, screen door, shutter, gate door, window frame, veranda, veranda railing, roofing roof, air conditioner outdoor unit, store sign, sign, advertising tower , Refrigerated / frozen showcase, shutter, outdoor bench, vending machine, plant outer wall, plant inner wall, oil storage tank, tent, kitchen equipment member, bathroom equipment member, ceramics, bathtub, wash basin, kitchen utensils, tableware dryer, Examples include sinks, kitchen hoods, and ventilation fans.
[0048]
The antibacterial member according to the present invention is one in which the coating composition of the present invention is applied to the surface of a substrate and then dried or cured to form a coating film. >
[0049]
The means for applying the coating composition is not particularly limited, and examples thereof include brush coating, sponge coating, roll coating, flow coating, spin coating, and dip coating.
[0050]
Here, the coating film can be dried or cured by room temperature drying up to 1 to 80 ° C., forced drying, heating, ultraviolet irradiation, or the like.
[0051]
Moreover, it is preferable that the base-material surface where the coating composition of this invention is applied is clean. In particular, when it is applied to an existing base material such as an inner wall or an outer wall of a building, it is desirable to wash it by a known method such as using a cleaning agent in advance.
[0052]
The composition of monomers constituting various emulsions can be analyzed and evaluated using pyrolysis GC / MS.
[0053]
The average particle diameter is a volume average particle diameter measured by photon correlation spectroscopy (PCS) using ZETERSIZER 3000HS manufactured by MALVERN.
[0054]
Structure / composition analysis from the substrate adhesion part of the coating film to the surface layer part in contact with the outside air can be directly observed with a scanning electron microscope or a transmission electron microscope, energy diffusion X-ray (EDX) analysis of the coating cross section or X-ray micro Use methods such as Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and secondary ion mass spectrometry (SIMS) for analysis (EPMA) analysis or composition analysis in the depth direction from the surface be able to. In addition, compositional analysis and observation of components scraped mechanically and multi-steply from the coating surface may be performed.
[0055]
The water-based coating composition according to the present invention comprises a component (b) “silica fine particles” of 50 nm or less, a small particle size component of (c) component “antibacterial agent particles”, a particle size of greater than 100 nm and a monomer of C2 to C7 ( a) component “acrylic resin emulsion”, (e) component “pigment” large particle size component and (d) component “water”. The amount of water can be evaluated by thermal analysis such as TG-DTA. The small particle size component and the large particle formation can be separated using a filter having a pore size of 50 nm to 100 nm and can be qualitatively and quantitatively determined using various evaluation methods. For example, particle diameter information can be obtained by photon correlation spectroscopy. When redispersion after separation is difficult, the particle diameter of the material used can be evaluated by direct observation such as a scanning electron microscope or a transmission electron microscope. The composition can be analyzed by fluorescent X-ray analysis or the like.
[0056]
The antibacterial metal carrying rate of the antibacterial metal carrying photocatalyst according to the present invention indicates the ratio of the carried amount of the antibacterial metal to the amount of the photocatalyst that is the carrier. It can be dissolved and dissolved in acid or alkali and quantitatively evaluated by atomic absorption analysis or ICP emission analysis.
[0057]
The thickness of the coating film can be measured by cross-sectional observation with a scanning electron microscope.
[0058]
The charging half-life was measured using a STATIC HONESTETER manufactured by Sicid Electrostatic Co., Ltd. in an environment adjusted to an air temperature of 25 ° C. and a relative humidity of 20%. This is the time required for the applied potential to decay to half that after the applied voltage was 10 kV and the coating surface reached the saturated charged potential.
[0059]
The UV intensity was measured with a UV intensity meter UM-10 (light receiving unit UM-360) manufactured by MINOLTA.
[0060]
The discoloration color difference of the coating film after being left under high humidity and ultraviolet irradiation environment is calculated according to the following formula.
Color difference △ E*= {(L* 1L* 0)2+ (A* 1a* 0)2+ (B* 1b* 0)2}1/2
Where (L* 0, a* 0, b* 0): Color value of sample surface before standing based on L * a * b * color system described in JIS Z 8729, (L* 1, a* 1, b* 1): Color value of the sample surface after standing. The color value was measured with a spectrocolorimeter CM-3700d manufactured by MINOLTA.
[0061]
The antibacterial evaluation of the coating film was basically performed according to the method described in JIS Z 2801. However, the contact time of the bacteria on the painted surface was arbitrarily changed.
[0062]
<Preparation of silver-supported titanium oxide>
In accordance with the conditions described in Table 1, silver nitrate was dissolved in the titanium oxide dispersion, and ultraviolet irradiation was performed to photoelectrically deposit silver on the titanium oxide surface.
[0063]
[Table 1]
Figure 0004517384
[0064]
Table 2 lists the commercially available antibacterial agents used.
[0065]
[Table 2]
Figure 0004517384
[0066]
The average particle diameter described in Table 1 and Table 2 is a volume average particle diameter measured by photon correlation spectroscopy (PCS) using ZETASIZER 3000HS manufactured by MALVERN.
[0067]
<Coating composition>
Example 1
9 parts by weight of colloidal silica (Nissan Chemical Co., Ltd., trade name Snowtex ZL, average particle diameter 124.7 nm), colloidal silica (Nissan Chemical Co., Ltd., trade name Snowtex 50, average particle diameter 14.9 nm) 29. 98 parts by weight, antibacterial agent A (silver supported titanium oxide: average particle diameter 35 nm) 0.2 parts by weight, acrylic emulsion (monomer: butyl acrylate, butyl methacrylate average particle diameter 150 nm) 29 parts by weight, 20 parts by weight of colored pigment (Daiichi Seika Kogyo Co., Ltd., trade name MF Color MF5765), 8 parts by weight of extender pigment (Nihon Talc Co., Ltd., trade name P-3), extender pigment (trade name, manufactured by Otsuka Chemical Co., Ltd.) MTW-500) 4 parts by weight (shown as solid content above) was prepared. The water content at this time was 127 parts by weight with respect to a total of 100 parts by weight of the solid content. Ag in the coating composition2The amount of O was 11.25 ppm.
[0068]
Example 2
Colloidal silica (Nissan Chemical Co., Ltd., trade name Snowtex ZL, average particle size 124.7 nm) 10 parts by weight, colloidal silica (Nissan Chemical Co., Ltd., trade name Snowtex S, average particle size 5.4 nm) 29. 95 parts by weight, antibacterial agent C shown in Table 2 (A company-supported titanium oxide: average particle diameter 3.5 nm) 0.05 part by weight, acrylic emulsion (monomer: butyl acrylate, butyl methacrylate average particle diameter 150 nm) 24 parts by weight, coloring pigment (manufactured by Dainichi Seika Kogyo Co., Ltd., trade name MF color MF5765) 20 parts by weight, extender pigment (Nippon Talc Co., Ltd., trade name P-3) 10 parts by weight, extender pigment (Otsuka Chemical Co., Ltd.) A coating composition of 6 parts by weight (manufactured under the trade name MTW-500) (shown as solid content above) was prepared. The water content at this time was 127 parts by weight with respect to a total of 100 parts by weight of the solid content. Ag in the coating composition2The amount of O was 11.25 ppm.
[0069]
Example 3
Colloidal silica (Nissan Chemical Co., Ltd., trade name Snowtex ZL, average particle diameter 124.7 nm) 8 parts by weight, colloidal silica (Nissan Chemical Co., Ltd., trade name Snowtex 50, average particle diameter 14.9 nm) 29. 64 parts by weight, antibacterial agent D described in Table 2 (A company-supported titanium oxide: average particle diameter 13.8 nm) 0.06 part by weight, acrylic emulsion (monomer: butyl acrylate, butyl methacrylate average particle diameter 150 nm) 29 parts by weight, coloring pigment (Daiichi Seika Kogyo Co., Ltd., trade name MF color MF5765) 19.6 parts by weight, extender pigment (Nippon Talc Co., Ltd., trade name P-3) 9.6 parts by weight, extender pigment ( A coating composition of 4.1 parts by weight (shown as solid content above) manufactured by Otsuka Chemical Co., Ltd., trade name MTW-500) was prepared. The water content at this time was 127 parts by weight with respect to a total of 100 parts by weight of the solid content. Ag in the coating composition2The amount of O was 11.25 ppm.
[0070]
Example 4
Colloidal silica (Nissan Chemical Co., Ltd., trade name Snowtex ZL, average particle size 124.7 nm) 10 parts by weight, colloidal silica (Nissan Chemical Co., Ltd., trade name Snowtex 50, average particle size 14.9 nm) 29. 965 parts by weight, antibacterial agent E described in Table 2 (A company-supported titanium oxide: average particle size 15.8 nm) 0.035 parts by weight, acrylic emulsion (monomer: butyl acrylate, butyl methacrylate average particle size 150 nm) 23 parts by weight, coloring pigment (manufactured by Dainichi Seika Kogyo Co., Ltd., trade name MF color MF5765) 24 parts by weight, extender pigment (Nihon Talc Co., Ltd., trade name P-3) 9 parts by weight, extender pigment (Otsuka Chemical Co., Ltd.) A coating composition of 4 parts by weight (manufactured under the trade name MTW-500) (shown as solid content above) was prepared. The water content at this time was 127 parts by weight with respect to a total of 100 parts by weight of the solid content. Ag in the coating composition2The amount of O was 11.25 ppm.
[0071]
Example 5
Colloidal silica (Nissan Chemical Co., Ltd., trade name Snowtex ZL, average particle diameter 124.7 nm) 8.2 parts by weight, colloidal silica (Nissan Chemical Co., Ltd., trade name Snowtex 50, average particle diameter 14.9 nm) 10 parts by weight, colloidal (manufactured by Nissan Chemical Co., Ltd., trade name Snowtex S, average particle size 5.4 nm), 20 parts by weight, antibacterial agent G (C company silver supported titanium oxide: average particle size 32.1 nm) ) 0.2 parts by weight, acrylic emulsion (monomer: butyl acrylate, butyl methacrylate average particle diameter 150 nm) 28 parts by weight, color pigment (manufactured by Dainichi Seika Kogyo Co., Ltd., trade name MF color MF5765) 20.1 parts by weight Parts, extender pigment (Nihon Talc Co., Ltd., trade name P-3) 9.6 parts by weight, extender pigment (Otsuka Chemical Co., Ltd. trade name MTW-500) 4 1 part by weight (more displayed on solids) was adjusted to a coating composition. The water content at this time was 127 parts by weight with respect to a total of 100 parts by weight of the solid content. Ag in the coating composition2The amount of O was 11.25 ppm.
[0072]
Example 6
8 parts by weight of colloidal silica (Nissan Chemical Co., Ltd., trade name Snowtex XL, average particle diameter 52.1 nm), 10 parts of colloidal silica (Nissan Chemical Co., Ltd., trade name Snowtex 50, average particle diameter 14.9 nm) Parts, colloidal silica (manufactured by Nissan Chemical Co., Ltd., trade name Snowtex S, average particle diameter 5.4 nm), 20 parts by weight, antibacterial agent H described in Table 2 (C company-supported titanium oxide: average particle diameter 30.8 nm) 0.2 part by weight, acrylic emulsion (monomer: butyl acrylate, butyl methacrylate average particle size 150 nm) 28 parts by weight, coloring pigment (trade name MF color MF5765, manufactured by Dainichi Seika Kogyo Co., Ltd.) 21.6 parts by weight , Extender (Nihon Talc Co., Ltd., trade name P-3) 9.6 parts by weight, extender (Otsuka Chemical Co., Ltd., trade name MTW-500) 4.1 parts by weight (more displayed on solids) was adjusted to a coating composition. The water content at this time was 127 parts by weight with respect to a total of 100 parts by weight of the solid content. The amount of CuO in this coating composition was 11.25 ppm.
[0073]
Comparative Example 1
9 parts by weight of colloidal silica (Nissan Chemical Co., Ltd., trade name Snowtex ZL, average particle diameter 124.7 nm), colloidal silica (Nissan Chemical Co., Ltd., trade name Snowtex 50, average particle diameter 14.9 nm) 29. 98 parts by weight, antibacterial agent B (silver-supported titanium oxide: average particle diameter 153.6 nm) 0.2 parts by weight, acrylic emulsion (monomer: butyl acrylate, butyl methacrylate average particle diameter 150 nm) 29 parts by weight Parts, coloring pigment (Daiichi Seika Kogyo Co., Ltd., trade name MF color MF5765) 20 parts by weight, extender pigment (Nippon Talc Co., Ltd., trade name P-3) 8 parts by weight, extender pigment (Otsuka Chemical Co., Ltd., A coating composition having a trade name of MTW-500 of 4 parts by weight (shown as solid content above) was prepared. The water content at this time was 127 parts by weight with respect to a total of 100 parts by weight of the solid content. Ag in the coating composition2The amount of O was 11.25 ppm.
[0074]
Comparative Example 2
10 parts by weight of colloidal silica (Nissan Chemical Co., Ltd., trade name Snowtex ZL, average particle size 124.7 nm), 10 parts of colloidal silica (Nissan Chemical Co., Ltd., trade name Snowtex 50, average particle size 14.9 nm) Parts, colloidal silica (manufactured by Nissan Chemical Co., Ltd., trade name Snowtex S, average particle size 5.4 nm), 20 parts by weight, antibacterial agent F (silver supported zeolite: average particle size 458.3 nm) 0.2 listed in Table 2 Parts by weight, acrylic emulsion (monomer: butyl acrylate, butyl methacrylate average particle size 150 nm) 26 parts by weight, colored pigment (manufactured by Dainichi Seika Kogyo Co., Ltd., trade name MF color MF5765), 20.3 parts by weight, extender (Nippon Talc Co., Ltd., trade name P-3) 9.6 parts by weight, extender pigment (manufactured by Otsuka Chemical Co., Ltd., trade name MTW-500) .1 part by weight (more displayed on solids) was adjusted to a coating composition. The water content at this time was 127 parts by weight with respect to a total of 100 parts by weight of the solid content. Ag in the coating composition2The amount of O was 11.25 ppm.
[0075]
Comparative Example 3
9 parts by weight of colloidal silica (Nissan Chemical Co., Ltd., trade name Snowtex ZL, average particle diameter 124.7 nm), colloidal silica (Nissan Chemical Co., Ltd., trade name Snowtex 50, average particle diameter 14.9 nm) 29. 98 parts by weight, 0.2 part by weight of antibacterial agent A (silver supported titanium oxide: average particle size 35 nm) listed in Table 1, acrylic emulsion (monomer: 2-ethylhexyl acrylate, octyl methacrylate average particle size 130 nm) 29 parts by weight , 20 parts by weight of colored pigment (Daiichi Seika Kogyo Co., Ltd., trade name MF Color MF5765), 8 parts by weight of extender pigment (Nippon Talc Co., Ltd., trade name P-3), extender pigment (manufactured by Otsuka Chemical Co., Ltd., product) A coating composition of 4 parts by weight (named as solid content above) of name MTW-500 was prepared. The water content at this time was 127 parts by weight with respect to a total of 100 parts by weight of the solid content. Ag in the coating composition2The amount of O was 11.25 ppm.
[0076]
Comparative Example 4
A commercially available antibacterial paint was used as Comparative Example 4.
[0077]
Reference example 1
9.6 parts by weight of colloidal silica (Nissan Chemical Co., Ltd., trade name Snowtex ZL, average particle size 124.7 nm), colloidal silica (Nissan Chemical Co., Ltd., trade name Snowtex S, average particle size 5.4 nm) 32.9 parts by weight, acrylic emulsion (monomer: butyl acrylate, butyl methacrylate average particle size 150 nm) 23.2 parts by weight, color pigment (trade name MF color MF5765, manufactured by Dainichi Seika Kogyo Co., Ltd.) 19.6 Parts by weight, extender pigment (Nippon Talc Co., Ltd., trade name P-3) 10.6 parts by weight, extender pigment (trade name MTW-500, manufactured by Otsuka Chemical Co., Ltd.) 4.1 parts by weight (shown as solid content above) The coating composition was adjusted. The water content at this time was 127 parts by weight with respect to a total of 100 parts by weight of the solid content.
[0078]
<Applying method to substrate>
A slightly elastic primer (Japan Hydrotec Coatings, trade name RP11) was applied onto a polycarbonate plate (based on JIS K 6735) cut to 50 mm × 50 mm by roller and dried at room temperature for 24 hours.
Subsequently, the coating composition of Example 1 prepared above was roller-coated.
The coating compositions of Examples 2 to 6, Comparative Examples 1 to 3, and Reference Example 1 were also applied according to this coating method.
Finally, the object to be coated was dried at room temperature for 7 days to obtain test pieces 1 to 9.
Further, a commercially available antibacterial paint (Comparative Example 4) was similarly applied to obtain a test piece 10.
[0079]
Test piece 1: Application of the coating composition described in Example 1
Test piece 2: Application of the coating composition described in Example 2
Test piece 3: The coating composition described in Example 3 was applied.
Test piece 4: Application of the coating composition described in Example 4
Test piece 5: Application of the coating composition described in Example 5
Test piece 6: The coating composition described in Example 6 was applied.
Test piece 7: The coating composition described in Comparative Example 1 was applied.
Test piece 8: The coating composition described in Comparative Example 2 was applied
Test piece 9: Application of the coating composition described in Comparative Example 3
Test piece 10: The commercially available antibacterial paint described in Comparative Example 4 was applied.
Test piece 11: Apply the coating composition described in Reference Example 1
[0080]
<Evaluation (1) Antibacterial performance>
According to the antibacterial test method described in JIS Z 2801, the antibacterial performance of each test piece was evaluated using Escherichia coli as the bacterial species. Table 3 summarizes the antibacterial test results. The “determination” described in Table 3 depends on the antibacterial activity R. R <2 was judged x, and R ≧ 2 was judged o.
[0081]
The antibacterial activity value R is represented by the number of digits of decrease in the number of viable bacteria of each test piece relative to the non-antibacterial test piece after 24 hours contact. (Described in JIS Z 2801)
R = Log10(B24 / C24)
B24: Viable count after 24 hours of non-antibacterial test piece
C24: Number of viable bacteria after 24 hours of each test piece
[0082]
In Tables 3, 4, and 5, the antibacterial rate k is defined as the number of reduced bacteria per hour obtained from the number of viable bacteria after contact for 2 hours.
k = (LogTen(C0 / C2)) / 2
C0: initial inoculum count, C2: viable count after 2 hours contact.
[0083]
As shown in Table 3, when an antibacterial agent having an average particle size of 50 nm or less was used in Examples 1 to 6, excellent antibacterial properties were obtained, whereas Comparative Example 1 and Comparative Example 2 When an antibacterial agent having an average particle size of 50 nm or more was used, no antibacterial property was obtained. This test result supports that the antibacterial agent distribution in the coating is different depending on the particle size. In Comparative Example 3, the average particle diameter of the antibacterial agent is 50 nm or less, but since the acrylic resin emulsion used contains a monomer larger than C7, the antibacterial agent component and the silica fine particles are not dried in the drying process after coating. The concentration gradient near the coating surface was inhibited. As a result, the antibacterial activity value R <2 and the antibacterial property determination was “x”.
[0084]
[Table 3]
Figure 0004517384
[0085]
<Evaluation (2) SEM observation>
The surface structures of the test piece 1 (Example 1), the test piece 7 (Comparative Example 1), and the test piece 9 (Comparative Example 3) were observed with a Hitachi scanning electron microscope S-800. The observation results are shown in FIG.
[0086]
As shown in FIG. 2, the test piece 1 and the test piece 7 have a surface structure in which fine particles of 50 nm or less are filled on the coating film surface. On the other hand, the test piece 9 shows a uniform structure in which each material constituting the coating composition is randomly exposed.
[0087]
When the test piece 1 and the test piece 7 were compared with each other, a great difference was observed in antibacterial properties even though both had the same surface structure. Although the average particle diameter of the antibacterial agent used for the test piece 7 is 153.6 nm, the exposure could not be confirmed from the observation result.
[0088]
The reason why the antibacterial activity excellent in the test piece 1 is considered is that the minute antibacterial agent A has a concentration gradient that increases in the coating surface layer together with the minute colloidal silica. The antibacterial property was not obtained with the test piece 7 because the particle size of the antibacterial agent B was relatively large, and thus the surface layer did not have a concentration gradient that increased on the surface of the coating film and was closely packed with fine colloidal silica. This is thought to be the result of being covered with.
[0089]
Despite containing the same amount of antibacterial agent as test piece 1, the antibacterial activity of test piece 9 was greatly inferior. As shown in the SEM image of FIG. 2, the test piece 9 has a coating film structure in which each material is uniformly distributed. This is probably because the emulsion contained a monomer larger than C7 (Table 3), and thus did not have a concentration gradient that increased in the vicinity of the coating surface of the fine silica component and antibacterial agent component during the drying process. The result of the test piece 1 and the test piece 9 suggests that the desired antibacterial activity can be achieved with a smaller amount of antibacterial agent by adopting a gradient structure in which the antibacterial agent has a concentration gradient in the depth direction of the coating film. .
[0090]
<Persistence of antibacterial performance>
As described in the “Japan Antibacterial Performance Test Methods / Indications and Judgment Criteria” of the Japan Housing Equipment System Association
Treatment (1) Water immersion test: The coated surface is immersed in hot water at 50 ° C. for 16 hours.
Treatment (2) Detergent resistance test: A general cleaning detergent is brought into contact with the painted surface for 16 hours.
Assuming the process where the painted surface gets dirty,
Treatment (3) Contamination-Washing cycle test: Oleic acid in which carbon black imitating dirt is dispersed is applied to the painted surface, and water wiping is repeated 20 times.
Carried out.
[0091]
According to the above method, the test pieces 6 (Example 6), the test piece 9 (Comparative Example 3), and the test piece 10 (Comparative Example 4) are subjected to the treatments (1) to (3) to obtain a practical antibacterial performance. Sustainability was assessed. The antibacterial test was performed according to the method described above.
[0092]
Table 4 summarizes the evaluation results of the test pieces subjected to treatments (1) to (3) and untreated test pieces.
[0093]
[Table 4]
Figure 0004517384
[0094]
As shown in Table 4, only the test piece 6 maintained a high antibacterial rate even after each treatment (1) to (3). Test piece 6 has a charged half-life of less than 50 on the painted surface. On the other hand, the test piece 9 and the test piece 10 took 50 seconds or more. The contact angle of oleic acid in water was 70 ° or more for the test piece 6, whereas it was less than 30 ° for the test piece 9 and the test piece 10. Since the test piece 6 has easy cleaning properties and antibacterial properties are effectively exhibited over a long period of time, the test piece 9 and the test piece 10 are difficult to remove dirt, and thus the antibacterial properties are greatly deteriorated. Conceivable.
[0095]
<Evaluation 3 Weather resistance>
The weather resistance of the test piece 1 (Example 1) and the test piece 9 (Comparative Example 3) was evaluated using a sunshine weather meter. The weather resistance test method followed the method described in JIS K 5600 7-7.
[0096]
As shown in the photograph in FIG. 3, the test piece 1 did not cause cracks or whitening on the coating film surface in the weather resistance test, whereas the test piece 9 showed cracks or whitening.
[0097]
Since the test piece 1 has a concentration gradient so that the antibacterial agent A is distributed in the coating layer part together with the fine silica particles, it is considered that the decomposition of the emulsion by the titanium oxide photocatalyst in the antibacterial agent could be suppressed. On the other hand, in the test piece 9, since the antibacterial agent is uniformly dispersed in the coating film, it is considered that the emulsion was attacked by the photocatalyst, and as a result, cracks and whitening occurred.
[0098]
<Evaluation 4 Anti-fading resistance>
In general, antibacterial paints using silver antibacterial agents have a broad antibacterial spectrum and are effective against many bacterial species. Comes brown.
[0099]
The test piece 1 (Example 1) and the test piece 10 (Comparative Example 4) were evaluated for resistance to discoloration. Each specimen is 100% relative humidity, air temperature 25 ° C., UV intensity 1 mW / cm2The film was left for 1 month under the above conditions, and the degree of discoloration of the coating film accompanying the change in the valence of silver was evaluated. The degree of color change was evaluated by the color difference ΔE * under high humidity and before and after UV irradiation. Table 5 summarizes the color difference ΔE * together with the antibacterial test results of each sample.
[0100]
[Table 5]
Figure 0004517384
[0101]
As shown in Table 5, although the antibacterial rate is three times better than the comparative example, the examples have small discoloration and excellent resistance to discoloration.
[0102]
<Evaluation 5: Silica distribution in cross section of coating film>
Since the solid content of the antibacterial metal-supported titanium oxide in the compositions described in the examples and comparative examples is very small, the distribution of the silica coating on the cross section was evaluated as a substitute. The sample for coating film cross-section analysis, the coating film surface of the test piece 11 and the fractured surface sampled by breaking the test piece 11 were coated with platinum at a thickness of about 50 mm to prepare a sample for analyzing the cross-section of the coating film.
[0103]
Observation of coating film cross section and analysis The coating film cross section was analyzed by SEM (manufactured by Hitachi, Ltd., S800) and EDX (manufactured by Horiba, Ltd., EMAX-2770). The film thickness of the photocatalytic coating film in the analytical field of view was 40 μm. Next, EDX analysis was performed on the line from the center of the visual field of analysis, from the outermost surface of the coating film to the interface on the substrate side. FIG. 4 shows changes in the X-ray intensity from the coating film outermost surface to the substrate side interface detected for silicon (Si).
[0104]
As shown in FIG.2It can be seen that there is a concentration gradient such that a large amount of the Si component derived from is distributed on the surface layer side of the coating film. Moreover, in the coating film surface photograph of the test piece 1 shown in FIG. 2, the fine particle | grains with an average particle diameter of about 10 nm have been confirmed. These results suggest that there is a concentration gradient so that silica fine particles having a small average particle diameter are distributed in the vicinity of the coating film surface.
[0105]
Since the addition amount of the antibacterial metal-supported photocatalyst is very small, it is difficult to determine the concentration gradient by EDX, but only when the silica particle with the same particle size is inclinedly packed on the coating surface and the particle size is small From the result of the development of antibacterial properties, it is considered that the antibacterial metal-supported photocatalyst also has a concentration gradient so as to be distributed in the vicinity of the coating surface.
[0106]
Also, since there is a concentration gradient so that silica fine particles and antibacterial agent particles are distributed in the vicinity of the coating surface layer, the acrylic resin inevitably has a concentration gradient so that it is distributed in the vicinity of the interface in contact with the substrate or undercoat. It is thought to have.
[0107]
【The invention's effect】
In the present invention, by defining the size of silica fine particles and antibacterial agent particles added to the paint and the type of emulsion monomer, the coating film structure after coating is controlled so that the silica fine particles and antibacterial agent particles are in the vicinity of the coating surface. A concentration gradient is given so as to increase. As a result, the desired antibacterial performance can be obtained with a smaller addition amount of the antibacterial agent than when it is uniformly filled. As a result, it is possible to produce an inexpensive coating material, and to greatly improve the stability of the coating material and the color fading resistance of the coating film. Even when an antibacterial metal-supported photocatalyst is used as the antibacterial agent, the antibacterial metal-supported photocatalyst can have a concentration gradient that increases in the vicinity of the coating film surface together with the silica fine particles. Even an acrylic resin with inferiority can suppress oxidative degradation of the emulsion by the photocatalyst.
According to the present invention, an aqueous coating composition and an antibacterial member that exhibit excellent antibacterial properties and can be sustained for a long period of time without impairing the weather resistance and discoloration resistance are obtained.
[Brief description of the drawings]
FIG. 1 is a schematic view of the form of a coating film formed by applying an aqueous coating composition according to the present invention to various substrates.
FIG. 2 is a scanning electron microscope (SEM) photograph of a test piece obtained by applying the aqueous coating composition of Example 1, Comparative Example 1, and Comparative Example 3.
FIG. 3 is a photograph of a coated surface after a test piece obtained by applying the aqueous coating composition described in Example 1 and Comparative Example 3 is treated with a sunshine weather meter.
FIG. 4 is a distribution in the depth direction of Si obtained by SEM-EDX analysis of a cross section of a coating film obtained by applying the aqueous coating composition described in Reference Example 1.

Claims (14)

(a)アクリル系樹脂エマルジョンと、
(b)シリカ微粒子と、
(c)抗菌剤粒子と、
(d)水と、
(e)顔料と、
を少なくとも含んだ水性塗料組成物であって、
前記(a)成分はC2からC7のアルキルアクリレート、C2からC7のアルキルメタクリレートから選択される少なくとも1種以上のモノマーを重合させたものであり、前記(b)成分の平均粒子径が50nm以下であり、前記(c)成分の平均粒子径が50nm以下であり、さらに前記(b)成分が全固形分の10〜70重量%であり、前記(c)成分が抗菌金属担持光触媒粒子であり、該抗菌金属担持光触媒粒子の固形分が前記(b)成分に対して0.12〜50重量%であることを特徴とする水性塗料組成物。
(A) an acrylic resin emulsion;
(B) silica fine particles;
(C) antimicrobial agent particles;
(D) water,
(E) a pigment;
A water-based coating composition containing at least
The component (a) is obtained by polymerizing at least one monomer selected from C2 to C7 alkyl acrylate and C2 to C7 alkyl methacrylate, and the average particle size of the component (b) is 50 nm or less. The average particle size of the component (c) is 50 nm or less, the component (b) is 10 to 70% by weight of the total solid content, and the component (c) is antibacterial metal-supported photocatalyst particles; An aqueous coating composition, wherein the solid content of the antibacterial metal-supported photocatalyst particles is 0.12 to 50% by weight based on the component (b).
前記(a)成分の固形分が全固形分の10重量%以上であることを特徴とする請求項1に記載の水性塗料組成物。  The aqueous coating composition according to claim 1, wherein the solid content of the component (a) is 10% by weight or more of the total solid content. 前記抗菌金属の担持率が光触媒担体に対して0.1〜10重量%であることを特徴とする請求項1または2に記載の水性塗料組成物。The aqueous coating composition according to claim 1 or 2 , wherein the antimicrobial metal loading is 0.1 to 10% by weight based on the photocatalyst carrier. 前記(e)成分が平均粒子径100nm以上であることを特徴とする請求項1からいずれか一項に記載の水性塗料組成物。The water-based coating composition according to any one of claims 1 to 3, wherein the component (e) has an average particle size of 100 nm or more. 前記(e)成分の固形分に対する前記(b)成分と前記(c)成分の合計固形分の比率が0.4以上であることを特徴とする請求項1からいずれか一項に記載の水性塗料組成物。Wherein (e) said to the solid component content (b) component and the (c) from claim 1, the ratio of the total solids of the component is characterized in that at least 0.4 4 according to any one Water-based paint composition. 固形分濃度が20重量%以上であることを特徴とする請求項1からいずれか一項に記載の水性塗料組成物。The aqueous coating composition according to any one of claims 1 to 5, wherein the solid content concentration is 20% by weight or more. 前記水性塗料組成物を基材に塗布、乾燥して得られる塗膜中の(b)成分および(c)成分が、外気と接する塗膜最表面近傍に多く分布するように濃度勾配を有することを特徴とする請求項1からいずれか一項に記載の水性塗料組成物。(B) component and (c) component in the coating film obtained by applying and drying the aqueous coating composition on a substrate have a concentration gradient so that it is distributed in the vicinity of the outermost surface of the coating film in contact with the outside air. The water-based paint composition according to any one of claims 1 to 6, wherein: 請求項1からいずれか一項に記載の水性塗料組成物を基材上に塗布し、乾燥して形成した塗膜で被覆された部材であって、(b)成分および(c)成分が、外気と接する塗膜最表面近傍に多く分布するように濃度勾配を有することを特徴とする抗菌性部材。A member coated with a coating film formed by applying the aqueous coating composition according to any one of claims 1 to 7 onto a substrate and drying the composition, wherein the component (b) and the component (c) are: An antibacterial member having a concentration gradient so as to be distributed in the vicinity of the outermost surface of the coating film in contact with the outside air. アクリル系樹脂が、前記最表面近傍に比べて、塗膜が基材と接する界面に多く分布するように濃度勾配を有することを特徴とする請求項に記載の抗菌性部材。The antibacterial member according to claim 8 , wherein the acrylic resin has a concentration gradient so that the coating film is distributed more at the interface contacting the substrate than in the vicinity of the outermost surface. 前記塗膜の厚さが1μm〜200μmであることを特徴とする請求項またはに記載の抗菌性部材。The antibacterial member according to claim 8 or 9 , wherein the thickness of the coating film is 1 µm to 200 µm. 前記塗膜と前記基材の間に下塗り材として有機樹脂塗膜が設けられていることを特徴とする請求項から10いずれか一項に記載の抗菌性部材。The antibacterial member according to any one of claims 8 to 10 , wherein an organic resin coating film is provided as an undercoat material between the coating film and the substrate. 前記基材が、金属、プラスチック、ガラス、タイル、ホーロー、陶磁器、木材、セメント、目地、コンクリート、窯業系無機質板、石膏ボードのいずれかであることを特徴とする請求項から11いずれか一項に記載の抗菌性部材。Said substrate, metal, plastic, glass, tile, porcelain enamel, ceramics, wood, cement, joint, concrete, ceramic-based inorganic board one any of claims 8, wherein 11 to be either plasterboard The antibacterial member according to item. 請求項1からいずれか一項に記載の水性塗料組成物を刷毛、ローラー、アプリケーターのいずれかによって、機械的工程、あるいは手作業で、請求項から12いずれか一項に記載の抗菌性部材を形成することを特徴とする塗装方法。The antibacterial property according to any one of claims 8 to 12 , wherein the water-based coating composition according to any one of claims 1 to 7 is mechanically or manually performed by any one of a brush, a roller, and an applicator. A coating method characterized by forming a member. 1〜80℃で乾燥させることを特徴とする請求項13に記載の塗装方法。It dries at 1-80 degreeC, The coating method of Claim 13 characterized by the above-mentioned.
JP2003145022A 2003-05-22 2003-05-22 Water-based paint composition, antibacterial member and coating film forming method Expired - Fee Related JP4517384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003145022A JP4517384B2 (en) 2003-05-22 2003-05-22 Water-based paint composition, antibacterial member and coating film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003145022A JP4517384B2 (en) 2003-05-22 2003-05-22 Water-based paint composition, antibacterial member and coating film forming method

Publications (2)

Publication Number Publication Date
JP2004346202A JP2004346202A (en) 2004-12-09
JP4517384B2 true JP4517384B2 (en) 2010-08-04

Family

ID=33532323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003145022A Expired - Fee Related JP4517384B2 (en) 2003-05-22 2003-05-22 Water-based paint composition, antibacterial member and coating film forming method

Country Status (1)

Country Link
JP (1) JP4517384B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101053202B1 (en) * 2011-03-07 2011-08-03 주식회사무영아멕스건축사사무소 A helthy paint composition for antibacterial function and deodorization

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1888698A4 (en) * 2005-05-25 2010-02-24 Posco Co Ltd Ag-containing solution, antibacterial resin composition comprising the solution and antibacterial resin coated steel plate
GB0512194D0 (en) * 2005-06-16 2005-07-20 Ici Plc Anti-microbial coating compositions
JP2007262150A (en) * 2006-03-27 2007-10-11 Ohbayashi Corp Photocatalyst coating agent and photocatalyst carrier
JP4922721B2 (en) * 2006-10-10 2012-04-25 古河スカイ株式会社 Aluminum coated plate and pre-coated aluminum fin material using the same
JP2008223003A (en) * 2006-12-28 2008-09-25 Toto Ltd Self-cleaning member and coating composition
JP5324048B2 (en) * 2007-03-20 2013-10-23 ニチハ株式会社 Building board
JP5135167B2 (en) * 2008-10-31 2013-01-30 古河スカイ株式会社 Aluminum painted plate
US8512855B2 (en) 2009-06-01 2013-08-20 Toto Ltd. Self-cleaning member and coating composition
JP2012166195A (en) * 2012-03-27 2012-09-06 Asahi Kasei Chemicals Corp Method for forming stain-proof layer
CN103756489A (en) * 2013-12-13 2014-04-30 张家港市双林制墨涂装有限公司 Antibacterial interior wall emulsion paint, and preparation method thereof
CN104830185A (en) * 2015-05-21 2015-08-12 田福东 Environment-friendly aqueous interior wall coating for removing formaldehyde
CN106583168A (en) * 2016-11-10 2017-04-26 刘志徽 Production device of double-color camouflage type colorful stone coated steel tile and application thereof
CN108191378A (en) * 2017-04-27 2018-06-22 钟建军 A kind of inorganic compounding diatom ooze coating
JP7074556B2 (en) * 2018-05-09 2022-05-24 旭化成株式会社 Coating film and water-based composition
CN110684413A (en) * 2018-07-05 2020-01-14 河北瀚宇建材有限公司 Paint for preventing sand return of wall surface
TWI761833B (en) * 2020-05-13 2022-04-21 新福光塗裝工程股份有限公司 Antibacterial coating material, method for manufacturing antibacterial coating material, and antibacterial coating layer
WO2022210560A1 (en) * 2021-03-29 2022-10-06 富士フイルム株式会社 Antibacterial film, touch panel, and copier
CN113622792B (en) * 2021-10-11 2021-12-03 南通海鹰木业股份有限公司 Intelligent aluminum-wood door and window with heat preservation and purification functions
CN114717876B (en) * 2022-04-06 2023-05-12 金东纸业(江苏)股份有限公司 Preparation method of antibacterial paper and antibacterial paper
CN115074031A (en) * 2022-06-29 2022-09-20 吉力水性新材料科技(珠海)有限公司 Water-based antibacterial and antistatic coating and preparation method thereof
CN115466535A (en) * 2022-08-10 2022-12-13 雅士利涂料(苏州)有限公司 Novel composite antibacterial coating and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925437A (en) * 1995-07-12 1997-01-28 Matsushita Electric Works Ltd Antimicrobial inorganic coating material
JPH0987615A (en) * 1995-09-21 1997-03-31 Mitsubishi Chem Mkv Co Antifogging agent composition
JPH11116885A (en) * 1997-10-21 1999-04-27 Nippon Paint Co Ltd Low-fouling water-based coating material composition
JP2000095976A (en) * 1998-09-22 2000-04-04 Toto Ltd Antibacterial photocatalytic aqueous coating material and antibacterial photocatalytic member
JP2000095979A (en) * 1998-09-21 2000-04-04 Kansai Paint Co Ltd Room pollution remedy water paint
JP2001064583A (en) * 1999-08-31 2001-03-13 Toto Ltd Photocatalyst coating composition, photocatalytic coating film, article covered therewith, and method for forming the coating film
JP2002249712A (en) * 2001-02-26 2002-09-06 Nisshin Steel Co Ltd Photocatalytic coating composition
JP2003041181A (en) * 2001-07-25 2003-02-13 Toto Ltd Hydrophilic coating composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925437A (en) * 1995-07-12 1997-01-28 Matsushita Electric Works Ltd Antimicrobial inorganic coating material
JPH0987615A (en) * 1995-09-21 1997-03-31 Mitsubishi Chem Mkv Co Antifogging agent composition
JPH11116885A (en) * 1997-10-21 1999-04-27 Nippon Paint Co Ltd Low-fouling water-based coating material composition
JP2000095979A (en) * 1998-09-21 2000-04-04 Kansai Paint Co Ltd Room pollution remedy water paint
JP2000095976A (en) * 1998-09-22 2000-04-04 Toto Ltd Antibacterial photocatalytic aqueous coating material and antibacterial photocatalytic member
JP2001064583A (en) * 1999-08-31 2001-03-13 Toto Ltd Photocatalyst coating composition, photocatalytic coating film, article covered therewith, and method for forming the coating film
JP2002249712A (en) * 2001-02-26 2002-09-06 Nisshin Steel Co Ltd Photocatalytic coating composition
JP2003041181A (en) * 2001-07-25 2003-02-13 Toto Ltd Hydrophilic coating composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101053202B1 (en) * 2011-03-07 2011-08-03 주식회사무영아멕스건축사사무소 A helthy paint composition for antibacterial function and deodorization

Also Published As

Publication number Publication date
JP2004346202A (en) 2004-12-09

Similar Documents

Publication Publication Date Title
JP4517384B2 (en) Water-based paint composition, antibacterial member and coating film forming method
JP4395886B2 (en) Water-based paint composition, antibacterial member and coating film forming method
JP4092434B1 (en) Photocatalyst-coated body and photocatalyst coating liquid therefor
WO2003102091A1 (en) Photocatalytic coating material, photocatalytic composite material and process for producing the same, self-cleaning water-based coating compositions, and self-cleaning member
TWI440505B (en) Photocatalyst coating
JP7092475B2 (en) Veneer
CN1658754A (en) Antimicrobial polymeric coating composition
JP4812902B1 (en) Antifouling paint composition and method for forming antifouling coating film
CN101517010A (en) Photocatalytically active coating
RU2492056C2 (en) Film with catalytically active surface
JP6046436B2 (en) Method for forming antifouling coating film and antifouling paint
JP2001064583A (en) Photocatalyst coating composition, photocatalytic coating film, article covered therewith, and method for forming the coating film
JP2010042414A (en) Photocatalyst-coated body and photocatalyst coating liquid therefor
JP2004143452A (en) Self-cleaning aqueous coating composition and self- cleaning member
JP2015226858A (en) Photocatalytic coating composition
JP5974323B2 (en) Matte antifouling treatment material on plaster coated surface and antifouling finishing method using the same
KR101801857B1 (en) Building panels with excellent heat insulation and antifouling properties
JP2001064582A (en) Photocatalytic hydrophilic coating composition and preparation of photocatalytic hydrophilic composite by using the same
JP2006233072A (en) Photocatalytic coating, and indoor interior article and wallpaper each coated with the same
JP3192606B2 (en) Wall coating method
JP2004300345A (en) Water-based coating composition, stainproof member and method for forming coating film
JP2000290534A (en) Film-forming process of coating agent used for photocatalysis-related coated film
JP2003206416A (en) Stain-resisting coating liquid
JP2001232215A (en) Photocatalyst carrying structure having antibacterial and antifungal effect
JP2001031907A (en) Water-base coating composition and coating film thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4517384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees