JP4517376B2 - Sealing method of vacuum container for electronic parts - Google Patents

Sealing method of vacuum container for electronic parts Download PDF

Info

Publication number
JP4517376B2
JP4517376B2 JP2000266202A JP2000266202A JP4517376B2 JP 4517376 B2 JP4517376 B2 JP 4517376B2 JP 2000266202 A JP2000266202 A JP 2000266202A JP 2000266202 A JP2000266202 A JP 2000266202A JP 4517376 B2 JP4517376 B2 JP 4517376B2
Authority
JP
Japan
Prior art keywords
small hole
container
sealing
vacuum
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000266202A
Other languages
Japanese (ja)
Other versions
JP2002050711A (en
Inventor
恵也 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microstone Corp
Original Assignee
Microstone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microstone Corp filed Critical Microstone Corp
Priority to JP2000266202A priority Critical patent/JP4517376B2/en
Publication of JP2002050711A publication Critical patent/JP2002050711A/en
Application granted granted Critical
Publication of JP4517376B2 publication Critical patent/JP4517376B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は気密な容器の内部に電子部品を納め、その電子部品を真空の環境内で動作させるために、容器の内部を真空に保って封止を行う技術に関する。
【0002】
【従来の技術】
真空中で動作させるべき電子部品の種類は多い。例えば半導体を用いた素子は劣化を避けるために真空中または不活性ガス中で動作させる。また周波数基準となる水晶振動子や振動ジャイロセンサ用の振動子で高精度を要求されるものは、振動に対する気体の抵抗力を除くために、例えば1Pa以内の真空度である環境中で励振されることが望ましい。そこでそれらの電子素子を真空中に置くためには、まず大気中で気密な容器(パッケージ)内部に組立て、かつ容器に設けたハーメチック端子に対して必要な接続を行い、その後容器内の空気を排気した上で密閉することが行われる。
【0003】
容器は多くの場合箱型をなす。容器は通常ハーメチック端子群を備えた基台と蓋との2部材から成る。電子部品を内部に実装し組み立てを終わった容器を気密に構成するには次の方法がある。(1)ハンダ付け法は基台と蓋との周縁部を溶融ハンダで接合する。(2)抵抗溶接法は例えば蓋の周縁部に枠状のプロジェクションを設けておき、それを基台の周縁部に加圧接触させて通電し、一挙に接合する。(3)コールドウェルド法は重ね合わせた基台と蓋の周縁部を金型で強く圧接する。(4)シーム溶接法は抵抗溶接法の一種であるが、ローラー状をなした電極を重ね合わせた基台と蓋の周縁部に沿って動かしつつパルス状の溶接電流を短い間隔で反復して流し接合する。
【0004】
上記(4)のシーム溶接技術は本願発明の実施の形態の一例にも用いるので詳しく説明しておく。図4はシーム溶接装置の要部(電極および被溶接物)を示す部分断面図である。図4において、1は箱型をなす容器であり、ガラス部材をリード線が貫通している気密端子1b付きのコバール等より成る金属の基台1aと、平板である金属の蓋1cとより成る。基台1aと蓋1cとには無電解NiメッキまたはAuメッキ(例えば厚さ数μm以内)が施されている。容器1の内部の箱型の空間には電子部品2が収容され、気密端子1bのリード線と接続されかつ固定されている。電子部品2は真空中で動作させることが好ましい部品で、例えば振動ジャイロセンサや加速度センサの主体となる振動体であり、あるいは半導体より成る電子部品である。
【0005】
基台1aは絶縁材であるセラミクス台13上にセットされる。例えばセラミクス等の台13は図示しない案内装置によって直線または回転移動ができるジグテーブル14上に固定されていて共に移動する。12a、12bはテーパー形状を与えられ、回転するローラ電極であり、それらは溶接電源11の2つの出力端子に接続されており、また基台1a上に載置された蓋1bの縁に圧接しながら転動する。溶接電源11からは短い間隔で連続したパルス状の溶接電流が発生している。溶接電流は主にローラ電極12a、蓋1b、基台1a、基台1aの他側、蓋1bの他側、ローラ電極12bの経路を通って流れる。(蓋1bは薄いので蓋内部を通って短絡する電流は少ない。)
【0006】
その結果、蓋1bと基台1aとはその周縁に沿って連続的に十分密接した間隔で、従って気密に多点溶接される。なおシーム溶接によっては、溶接条件にもよるが、蓋1bまたは基台1aの母材はあまり融けず、主にメッキが融けて創設が行われるともいわれる。容器1の平面形状が方形である場合には、相対向する平行縁辺の溶接後、ジグテーブル14を90°回転し、残りの対向する縁辺の溶接を行へば、蓋1bと基台1aとの完全な気密接合が完成する。シーム溶接法は容器のサイズ変更に対しても容易に対応でき、比較的大型の容器(例えば数10mm角)のシールも効率よく行える長所がある。
【0007】
さて従来例一般の説明に戻る。最終的に容器の内部を真空にするには2通りの方法がある。第1の方法は基台と蓋との周縁部を真空中で溶着する方法であり、1工程で真空封止が完成する。例えばハンダ付け法では基台と蓋とにハンダメッキしておき、真空中で接触加熱して接続する。またコールドウェルド法では重ね合わせた基台と蓋の周縁部を真空中にて金型で強く冷間圧接する。あるいは真空中で他に孔のない容器のシーム溶接を行う。また第2の方法は基台と蓋とのいずれか一方に容器内部に通じる小孔を設けておき、小孔を残して気密接合を大気中で行い、次いで真空中に移してから小孔を塞ぐ方法である。塞ぐ方法としては溶融ハンダで封止する方法やインジウムのような軟質金属を小孔に押しつける方法等がある。また小孔ではないが、銅などの小パイプを予め容器に貫通させてロウ付けしておき、真空中でパイプを潰す方法もある。
【0008】
【発明が解決しようとする課題】
上記の従来技術については次のような問題点がある。まず第1の方法(真空中での全周封着)において、ハンダ付け法では溶融ハンダの一部が気化して容器内に飛散残留し、内部の電子部品を汚染する可能性が高い。コールドウェルド法では、特に多数の製品を同時に封じるためには、金型の上型と下型とを平行移動させしかも大きな圧接力を発生させるよう大型の頑丈な金型を高精度で真空槽内で動かさねばならない。シーム溶接機も圧接、転動、平行移動、回転等多種の可動部が多く、従って大型となる。これらの装置を収容するため、極めて容積の大きな真空槽を必要とし、その可動機構や加圧機構は外部から遠隔操作する必要性も加えて甚だ複雑とならざるを得ない。また大面積で複雑な可動部からは吸蔵ガスが発生するので、槽内を能率よく排気するためには高能率かつ到達真空度の高い排気ポンプを必要とする。即ち真空装置が大型で高価となる。
【0009】
また第2の方法(残した小孔等の真空中封口)においては、第1の方法ほどの大規模な真空設備を必要としない長所はあるが、溶融ハンダ使用の場合はやはりガス発生のおそれがあり、軟質金属使用の場合は取扱いがやや面倒であり、信頼性が十分であるとは言えない。パイプ潰し法はパイプ溶接の予備工程が必要な上、封止後の容器にかなり大きな突起が生じるので好ましくない。
【0010】
本発明の目的は、複雑な操作機構を備えた大型の真空槽や高度な能力の真空ポンプを必要とせず、工程中のガス発生が少なく、結果的に簡素で廉価な装置を用いて容易かつ簡便に低コストで実施できる、電子部品の真空封止方法を提供することである。
【0011】
【課題を解決するための手段】
上記目的を達成するため本発明の電子部品の真空容器の封止方法は次の特徴を備える。
(1)箱型の容器の部品である、気密絶縁端子付きの金属の基台と蓋とを準備し、それらの一方に前記容器の内外に貫通する円形の小孔を設ける工程と、前記基台上に真空中で動作させるべき電子部品を取り付けかつ前記気密絶縁端子と接続する工程と、大気中またはガス中で前記基台の周縁部と前記蓋の周縁部とを気密に接合することによって前記電子部品の内装された前記箱型の容器を完成する工程と、真空槽の中で前記小孔より内部の気体を排気する工程と、同じ真空槽の中で前記小孔の外端開口部に前記小孔を塞ぐ封口部材として前記小孔の内径よりも大きな直径を持つ金属球を加圧当接させ前記小孔の外側開口部と抵抗溶接し、前記金属球が主に溶融変形しつつ溶接の相手である前記基台あるいは蓋の表面に押し込まれる結果、該基台あるいは蓋の表面よりの最終突出高さが、前記金属球の元の半径以下となるようにする工程とを含むこと。
【0012】
本発明の電子部品の真空容器の封止方法は更に次の特徴の少なくとも一つを備えることがある。
(2)前記金属球の素材の直径は、前記小孔の内径の1.3倍から2倍であること。
【0013】
(3)前記抵抗溶接の際に溶接電極に設けた前記金属球に接する小孔の端部と、前記容器に設けた前記小孔の外端開口部とに面取りを施したこと。
【0014】
(4)前記小孔の外端開口部に浚い部を設け、前記金属球の一部または全部を前記浚い部に沈めたこと。
【0015】
(5)前記金属球の材質はステンレス鋼であること。
【0016】
(6)前記容器の排気を行っている期間、前記金属球を、前記小孔の軸上の離れた位置において、溶接電極の円筒状の先端に磁力によって保持すること。
【0017】
(7)前記大気中またはガス中で前記基台の周縁部と前記蓋の周縁部とを気密に接合することによって前記電子部品の内装された前記箱型の容器を完成する工程にはシーム溶接技術を用いたこと。
【0022】
【発明の実施の形態】
図1は本発明の実施の形態の一例において使用する小型封口装置の要部の断面図である。1は真空封止すべき容器で、記述の図4の従来技術において説明したものと基本的に同じである。容器1は電子部品2を内蔵し、基台1aと蓋1cとより成り、両者は以前の工程において大気圧の空気中または不活性ガス中でシーム溶接されている。容器はセラミックス等の絶縁性の台7上に載置される。台7の一方には容器1に残された小孔1dに面して溶接電極4が固定される。溶接電極4は溶着を避けるためクロム銅等の材質とし、小孔4aを有し内部には磁石6を埋めてある。封口部材であるステンレス製の金属球3aは磁力により吸引されて小孔5の外端に保持されている。
【0023】
台7の他方の側には容器1の側面を押すためのプランジャー7aであって、台7に設けた直動ベアリング7d内を軸方向に摺動する。押圧力(溶接時の加圧力)は予め圧縮されたコイルバネ7bとバネ受板7cとにより与えられる。またプランジャー7aの左端にはカム板7fが固着されており、カム板7fの右面は台7に植えたストッパーピン7eに当たっているが、カム板7fが回されてそのスリット7gにストッパーピン7eが落ち込むとプランジャー7aはバネ力により矢印9方向に移動し、容器1を滑らせ、小孔1dの開口部を金属球3aに当接させかつ加圧する。
【0024】
上記の装置は、真空槽内では封口部材を小孔に圧接するという実質的に1自由度(1方向)の動作が行えればよく、その遠隔操作手段も含めて構造が単純で、しかも圧接力も大きくないので、全体を比較的小型の真空槽(図示せず)内に納めることができる。なお真空槽の外部に単発の電流パルスを発生させる溶接電源10があり、その電流出力線は真空槽の絶縁端子を経由して、溶接電極4と他方の溶接電極を兼ねるプランジャー7aとに結線されている。本装置の可動部は極めて簡単な構造なので吸蔵ガスの発生も少なく、大能力の排気ポンプを用いずとも、電子部品2が振動体を封止する場合に好適な例えば5/100Pa程度の真空度が容易に得られる。
【0025】
真空封止工程は以下のようである。プランジャー7aを左に引いてコイルバネ7bをチャージし、カム板7fをストッパーピン7eに当接させておく。金属球3aを溶接電極4に吸引保持させ、台7上に周縁部の封止を終わった容器1を正しい位置に乗せる。小孔1dと金属球3aとは容器1内の排気を容易にするため少し離しておく。この状態で真空槽を閉じ、排気する。所定の真空度に達したら、真空槽を貫通した回転軸を有する操作部材8を外部のハンドルによって回転させ、カム板7fを引っかけて回し、ストッパーピン7eをスリット7g内に落とし、プランジャー7aで容器1を押し、小孔1dと金属球3aを当接させる。次に溶接電源10のスイッチ(図示せず)を投入し、プランジャー7a−容器1−小孔1d外端部−金属球3a−溶接電極4の経路で流れる電流によって金属球3aを容器1に抵抗溶接し、真空封止を完了する。
【0026】
溶接条件は例えば以下のようであった。容器1の材質はコバール(Fe−Ni−Co合金)、小孔1dの直径は1mm(0.3Cの面取り付き)、金属球3aの材質はSUS304またはSUS440C、直径は1.5mm、溶接電極4の小孔4aの直径は1mm(金属球3aに接する側に0.3Cの面取り付き)、加圧力は150N、溶接電流は1500A、通電時間は50ms。なお金属球3aの直径を変えて試したところ、1mmでは溶接されず、1.2mmでは気体のリークが認められ、1.5mmで完全な封口ができた。直径の上限は更に大きく、2mm程度(あるいは小孔1dの直径の約2倍程度)までは許容できるであろうと思われる。
【0027】
金属球はボールベアリング等に使用されているため入手が容易でありかつ安価である。また上記のようにステンレス材を用いた理由は、他の材質に比してステンレス材は体積固有抵抗が高くて通電による発生熱量が多く、抵抗溶接に適しているからである。また耐蝕性に優れ製品の信頼性の点でも好ましい。また金属球は上記上限よりも更に大きくても抵抗溶接は可能であるが、本例の構造において封口溶接後の容器表面からの突出高さを過大にしないために、ある限度内の球径であることが望ましい。なお更に大きな直径の金属球を用い得る他の実施の形態については図5を用いて後述する。
【0028】
図2(a)、(b)に溶接前後の状態を拡大して断面図で示す。(a)は溶接直前の電極4、金属球3a、小孔1dの相互位置関係、(b)は溶接後の状況である。溶接電流は小孔4aの面取り部と小孔1dの面取り部による小面積のリング状の接触面から金属球3aに出入りし、その付近の金属球が溶融して加圧力によってフランジ状に広がって潰れ、同時に容器の小孔1dの外端部と金属球の一部とが、材質成分(Fe)が共通で親和性があるため溶着していると考えられる状態が示されている。このように金属球はかなり強く潰されるので、封止完了後の容器の外部への突出量も例えば元の金属球の半径程度以下で済む。
【0029】
図3(a)、(b)、(c)はそれぞれ本発明の他の実施の形態の要部を示す関係部品の配置の部分断面図である。各実施の形態においては、用いる封口部材3の形状が球状ではなく異なっている。各封口部材3は塑性変形加工した板材から打ち抜かれたもので、いずれも容器1の小孔1d側に向けた凸面を有し、他の面はほぼ平面をなす。他の面に当接する溶接電極4の面には従って小孔を設ける必要がないので平面としている。(a)の封口部材3は板材に半球状の突起(プロジェクション)を、(b)は円錐状の突起を、(c)は小孔1dの周囲に当接するリング状の突起を有する。
【0030】
(a)、(b)は小孔1dの外端部の縁部と封口部材3の突起との接触部に溶接電流が集中して両材が互いに融け合い、(c)ではリング状の突起の頂点と容器1の表面とのリング状の接触部が溶着する。これらの封口部材は溶接後の突出高さが低い利点がある。また各封口部材の位置決めはその外形(円板や角板)を利用してもよいし、帯材を母材として打抜き、母材に戻して帯材上に保持させてもよく、また球状の場合のように磁力で溶接電極4の面に吸着させて保持してもよい。
【0031】
図5(a)、(b)はそれぞれ本発明の更に他の実施の形態における封口部分の溶接直前(封口部材が小孔に圧着されたが未溶接)の状態を示した要部断面図である。本実施の形態においては、容器1の小孔1dの外端開口部に浚い部1eを設け、封口部材3(金属球3aを含む)の一部あるいは全部を容器内に沈めた構造とした。このことにより、例えば大形の封口部材を用いても溶接後の容器からの突出高さを減らしあるいは無くし、また完成品が他物に当って封口部材が脱落する危険を減らすことができる。
【0032】
以上複数の本発明の実施の形態について述べたが、本発明の技術的範囲はこれらの実施の形態に限定されるものではない。例えば容器1の予備的封止はシーム溶接に限らず、他の手段、例えばハンダその他のロウ材を用いてもよいし、小孔を蓋側に設けたり、その内径、面取り、形状、表面仕上げあるいは表面処理等を変更あるいは追加したり、封口装置の構造、作動手段、封口部や封口部材の形状や保持方法等に更に異なる形態や材質を与えてもよい。また溶接条件も例示のものに限られないことは当然である。また同一の真空槽内で並列にセットした複数の容器の封口操作を同時にあるいは順次に行うことも容易に実施できる。
【0033】
【発明の効果】
(1)本発明は請求項1に示すように、小孔を残した気密容器を大気圧中で完成し、真空中で排気すると共に小孔をその内径よりも大きな金属球を用いて、単純な動作でかつ比較的小さな圧接力を与えて抵抗溶接により封じる方法であるから、大型で複雑な内外操作機構を備えた真空ポンプを必要とせず、工程中のガス発生が少なく、結果的に廉価な装置を用いて容易かつ簡便に低コストで実施することができる。また金属球を大きく変形させて容器側に押し込み、容器表面よりの最終突出高さを金属球の元の半径以下となるようにしたので、封口部の溶着を確実化し、真空維持の信頼性を向上する効果がある。
【0034】
また請求項2以下の構成を加えたときに得られる更なる個別の効果を、各請求項に対応させた番号を付して列記する。
(2)金属球の直径を容器側の小孔の内径の1・3倍から2倍とすることにより、確実性のある封口が行える効果がある。
【0035】
(3)溶接電極の小孔と容器側の小孔に面取りを施すことによって、良好な溶接結果を得ることができる。
(4)金属球を封口部にもうけた浚い部に沈めたことにより、封口後の突出部を少なくし、あるいは無くすことができる。
【0036】
(5)金属球の材質をステンレス鋼とすることにより、容器側材質との溶着性に優れ、また磁力による保持もできる。
(6)溶接前の金属球を磁力によって保持するようにしたので、排気前の封止装置のセッティングが容易になり、能率的な真空封止方法を提供することができた。
【0037】
(7)容器の気密接合にシーム溶接技術を用いたことにより、大型の容器でも簡便かつ確実に封止することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の一例に用いる装置の要部断面図である。
【図2】本発明の実施の形態において封口部材として金属球を用いた封止工程を示す要部断面図で、(a)は封止前、(b)は封止後の状態である。
【図3】(a)、(b)、(c)は本発明の他の実施の形態においてそれぞれ異なる形状の封口部材と、容器および溶接電極との関係を示した要部断面図である。
【図4】本発明にも適用しうる従来技術であるシーム溶接に用いる装置の要部断面図である。
【図5】(a)、(b)はそれぞれ本発明の更に他の実施の形態における封口部分の溶接直前の状態を示した要部断面図である。
【符号の説明】
1 容器
1a 基台
1b 気密端子
1c 蓋
1d 小孔
1e 浚い部
2 電子部品
3 封口部材
3a 金属球
4 溶接電極
4a 小孔
6 磁石
7 台
7a プランジャー
7b コイルバネ
7c バネ受板
7d 直動ベアリング
7e ストッパーピン
7f カム板
7g スリット
8 操作部材
9 圧接方向
10 溶接電源
11 溶接電源
12a ローラ電極A
12b ローラ電極B
13 セラミックス台
14 治具テーブル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for enclosing an electronic component in an airtight container and sealing the container while keeping the interior of the container in a vacuum in order to operate the electronic component in a vacuum environment.
[0002]
[Prior art]
There are many types of electronic components that should be operated in a vacuum. For example, an element using a semiconductor is operated in a vacuum or an inert gas in order to avoid deterioration. In addition, quartz crystal vibrators and vibratory gyro sensor vibrators that require high precision are excited in an environment where the degree of vacuum is within 1 Pa, for example, in order to eliminate the resistance of gas to vibration. It is desirable. Therefore, to place these electronic devices in a vacuum, first assemble them inside an airtight container (package) in the atmosphere and make the necessary connections to the hermetic terminals provided on the container, and then remove the air in the container. After exhausting, sealing is performed.
[0003]
Containers are often box-shaped. The container is usually composed of two members, a base having a hermetic terminal group and a lid. There are the following methods for airtightly constructing the container after the electronic components are mounted inside and assembled. (1) The soldering method joins the peripheral part of a base and a lid with molten solder. (2) In the resistance welding method, for example, a frame-shaped projection is provided on the peripheral edge of the lid, and the projection is brought into pressure contact with the peripheral edge of the base to energize and join at once. (3) In the cold weld method, the overlapped base and the peripheral edge of the lid are pressed strongly with a mold. (4) The seam welding method is a kind of resistance welding method, and the pulsed welding current is repeated at a short interval while moving along the base of the electrode in the form of a roller and the peripheral edge of the lid. Sink and join.
[0004]
The seam welding technique (4) is used in an example of the embodiment of the present invention and will be described in detail. FIG. 4 is a partial cross-sectional view showing the main parts (electrodes and workpieces) of the seam welding apparatus. In FIG. 4, reference numeral 1 denotes a box-shaped container comprising a metal base 1a made of Kovar or the like with an airtight terminal 1b through which a lead wire penetrates a glass member, and a metal lid 1c which is a flat plate. . The base 1a and the lid 1c are subjected to electroless Ni plating or Au plating (for example, within a thickness of several μm). An electronic component 2 is accommodated in a box-shaped space inside the container 1, and is connected to and fixed to the lead wire of the hermetic terminal 1b. The electronic component 2 is preferably a component that is operated in a vacuum. For example, the electronic component 2 is a vibration body that is a main component of a vibration gyro sensor or an acceleration sensor, or an electronic component made of a semiconductor.
[0005]
The base 1a is set on a ceramics base 13 which is an insulating material. For example, a table 13 such as ceramics is fixed on a jig table 14 that can be linearly or rotationally moved by a guide device (not shown) and moves together. Reference numerals 12a and 12b denote tapered roller electrodes which are rotated, and are connected to two output terminals of the welding power source 11, and are pressed against the edge of the lid 1b placed on the base 1a. Roll while. The welding power supply 11 generates a continuous pulsed welding current at short intervals. The welding current mainly flows through the path of the roller electrode 12a, the lid 1b, the base 1a, the other side of the base 1a, the other side of the lid 1b, and the roller electrode 12b. (Since the lid 1b is thin, there is little current short-circuited through the inside of the lid.)
[0006]
As a result, the lid 1b and the base 1a are continuously welded at a sufficiently close distance along the peripheral edge thereof, and thus are airtightly multi-point welded. Depending on the seam welding, depending on the welding conditions, the base material of the lid 1b or the base 1a does not melt so much, and it is said that the foundation is mainly formed by melting the plating. When the planar shape of the container 1 is square, after welding the parallel edges facing each other, the jig table 14 is rotated by 90 °, and welding of the remaining facing edges is performed, the lid 1b and the base 1a Complete hermetic joining. The seam welding method has an advantage that it can easily cope with a change in the size of the container and can efficiently seal a relatively large container (for example, several tens of mm square).
[0007]
Now, let us return to the general description of the conventional example. There are two ways to finally evacuate the interior of the container. The first method is a method of welding the peripheral portions of the base and the lid in a vacuum, and the vacuum sealing is completed in one step. For example, in the soldering method, the base and the lid are solder-plated, and contacted and heated in a vacuum for connection. In the cold weld method, the overlapped base and the peripheral edge of the lid are strongly cold-welded with a mold in a vacuum. Alternatively, seam welding is performed in a vacuum-free container. In the second method, a small hole communicating with the inside of the container is provided in either the base or the lid, and the small hole is left in the atmosphere to perform airtight joining, and then moved to a vacuum before the small hole is formed. How to close. As a closing method, there are a method of sealing with molten solder, a method of pressing a soft metal such as indium against a small hole, and the like. Although not a small hole, there is also a method in which a small pipe such as copper is passed through a container in advance and brazed, and the pipe is crushed in a vacuum.
[0008]
[Problems to be solved by the invention]
The above prior art has the following problems. First, in the first method (sealing in a vacuum), in the soldering method, a part of the molten solder is vaporized and remains scattered in the container, and there is a high possibility of contaminating the internal electronic components. In the cold weld method, especially in order to seal a large number of products at the same time, a large and sturdy mold is placed in the vacuum chamber with high accuracy so that the upper mold and lower mold of the mold are translated and a large pressure contact force is generated. It must be moved with. Seam welders also have many different types of moving parts such as pressure welding, rolling, parallel movement, and rotation, and are therefore large. In order to accommodate these devices, a vacuum chamber having a very large volume is required, and the movable mechanism and pressurizing mechanism have to be extremely complicated with the need for remote operation from the outside. Further, occluded gas is generated from a complicated movable part with a large area, and thus an exhaust pump with high efficiency and high ultimate vacuum is required to efficiently exhaust the inside of the tank. That is, the vacuum apparatus is large and expensive.
[0009]
In addition, the second method (sealing the remaining small holes in a vacuum) has the advantage of not requiring a large-scale vacuum facility as in the first method, but there is also a risk of gas generation when using molten solder. In the case of using a soft metal, the handling is somewhat troublesome and it cannot be said that the reliability is sufficient. The pipe crushing method is not preferable because it requires a preliminary step of pipe welding and a considerably large protrusion is formed in the sealed container.
[0010]
The object of the present invention is that it does not require a large vacuum tank with a complicated operation mechanism or a high-performance vacuum pump, generates less gas during the process, and as a result easily and easily uses a simple and inexpensive apparatus. It is an object of the present invention to provide a vacuum sealing method for electronic components that can be carried out simply and at low cost.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the method for sealing an electronic component vacuum container of the present invention has the following features.
(1) A step of preparing a metal base with a hermetically insulated terminal and a lid, which are parts of a box-shaped container, and providing one of them with a circular small hole penetrating into and out of the container; A step of attaching an electronic component to be operated in a vacuum on a table and connecting it to the hermetic insulation terminal, and a hermetic joining of the peripheral edge of the base and the peripheral edge of the lid in the air or in gas A step of completing the box-shaped container in which the electronic component is embedded; a step of exhausting an internal gas from the small hole in the vacuum chamber; and an outer end opening of the small hole in the same vacuum chamber the small holes said to outer opening and resistance welding of the small holes of the metal balls is pressurized abutment with a diameter greater than the inner diameter of the small hole as a sealing member for closing the said metal ball is mainly melted deformed As a result of being pushed into the surface of the base or lid that is the welding partner, The final projected height of the surface of the base or lid, to a step of such a following original radius of the metal sphere.
[0012]
The electronic component vacuum container sealing method of the present invention may further include at least one of the following features.
(2) The diameter of the material of the metal sphere is 1.3 to 2 times the inner diameter of the small hole.
[0013]
(3) Chamfering was performed on the end portion of the small hole in contact with the metal ball provided on the welding electrode and the outer end opening portion of the small hole provided on the container in the resistance welding.
[0014]
(4) A scooping portion is provided in the outer end opening of the small hole, and a part or all of the metal ball is submerged in the scooping portion.
[0015]
(5) The metal ball is made of stainless steel.
[0016]
(6) The metal ball is held at the cylindrical tip of the welding electrode by a magnetic force at a position distant from the small hole on the axis while the container is being evacuated.
[0017]
(7) Seam welding is used to complete the box-shaped container in which the electronic component is housed by airtightly joining the peripheral edge of the base and the peripheral edge of the lid in the atmosphere or gas. Using technology.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a cross-sectional view of a main part of a small sealing device used in an example of an embodiment of the present invention. Reference numeral 1 denotes a container to be vacuum-sealed, which is basically the same as that described in the prior art of FIG. The container 1 contains an electronic component 2 and is composed of a base 1a and a lid 1c, both of which are seam welded in air or an inert gas at atmospheric pressure in the previous step. The container is placed on an insulating base 7 such as ceramics. A welding electrode 4 is fixed to one side of the base 7 so as to face the small hole 1 d left in the container 1. The welding electrode 4 is made of a material such as chrome copper in order to avoid welding, has a small hole 4a, and has a magnet 6 embedded therein. The metal ball 3 a made of stainless steel as a sealing member is attracted by a magnetic force and is held at the outer end of the small hole 5.
[0023]
The other side of the base 7 is a plunger 7a for pushing the side surface of the container 1, and slides in a linear motion bearing 7d provided on the base 7 in the axial direction. The pressing force (pressure applied at the time of welding) is given by a coil spring 7b and a spring receiving plate 7c that are compressed in advance. A cam plate 7f is fixed to the left end of the plunger 7a, and the right surface of the cam plate 7f is in contact with a stopper pin 7e planted on the base 7. The cam plate 7f is turned and the stopper pin 7e is inserted into the slit 7g. When it falls, the plunger 7a moves in the direction of arrow 9 by the spring force, slides the container 1, brings the opening of the small hole 1d into contact with the metal ball 3a and pressurizes it.
[0024]
The above-mentioned apparatus is only required to be able to perform substantially one degree of freedom (one direction) operation in which the sealing member is pressed against the small hole in the vacuum chamber, and the structure including the remote control means is simple, and the pressure welding is performed. Since the force is not large, the whole can be stored in a relatively small vacuum chamber (not shown). There is a welding power source 10 for generating a single current pulse outside the vacuum chamber, and its current output line is connected to the welding electrode 4 and the plunger 7a which also serves as the other welding electrode via an insulating terminal of the vacuum chamber. Has been. Since the movable part of this device has a very simple structure, the generation of occluded gas is small, and the degree of vacuum is, for example, about 5/100 Pa, which is suitable when the electronic component 2 seals the vibrator without using a large capacity exhaust pump. Is easily obtained.
[0025]
The vacuum sealing process is as follows. The plunger 7a is pulled to the left to charge the coil spring 7b, and the cam plate 7f is brought into contact with the stopper pin 7e. The metal ball 3a is sucked and held by the welding electrode 4, and the container 1 whose peripheral portion has been sealed is placed on the table 7 at the correct position. The small hole 1d and the metal ball 3a are slightly separated from each other in order to facilitate the exhaust in the container 1. In this state, the vacuum chamber is closed and evacuated. When the predetermined degree of vacuum is reached, the operating member 8 having a rotating shaft that penetrates the vacuum chamber is rotated by an external handle, the cam plate 7f is hooked and turned, the stopper pin 7e is dropped into the slit 7g, and the plunger 7a is used. The container 1 is pushed and the small hole 1d is brought into contact with the metal ball 3a. Next, a switch (not shown) of the welding power source 10 is turned on, and the metal ball 3a is put into the container 1 by the current flowing through the path of the plunger 7a-container 1-small hole 1d outer end-metal ball 3a-welding electrode 4. Resistance welding to complete vacuum sealing.
[0026]
The welding conditions were as follows, for example. The material of the container 1 is Kovar (Fe—Ni—Co alloy), the diameter of the small hole 1d is 1 mm (with chamfering of 0.3C), the material of the metal ball 3a is SUS304 or SUS440C, the diameter is 1.5 mm, the welding electrode 4 The diameter of the small hole 4a is 1 mm (0.3 C chamfered on the side in contact with the metal ball 3a), the applied pressure is 150 N, the welding current is 1500 A, and the energization time is 50 ms. When the diameter of the metal sphere 3a was changed, it was not welded at 1 mm, a gas leak was observed at 1.2 mm, and a complete sealing was achieved at 1.5 mm. The upper limit of the diameter is even larger, and it seems that it is acceptable up to about 2 mm (or about twice the diameter of the small hole 1d).
[0027]
Since metal balls are used for ball bearings and the like, they are easily available and inexpensive. The reason why the stainless steel is used as described above is that the stainless steel has a higher volume specific resistance and a larger amount of heat generated by energization than other materials, and is suitable for resistance welding. Moreover, it is excellent also in the point of the reliability of a product excellent in corrosion resistance. In addition, although resistance welding is possible even if the metal sphere is larger than the above upper limit, in the structure of this example, in order not to make the protruding height from the container surface after seal welding excessive, the sphere diameter within a certain limit is used. It is desirable to be. Another embodiment in which a metal ball having a larger diameter can be used will be described later with reference to FIG.
[0028]
2A and 2B are enlarged sectional views showing the states before and after welding. (A) is the mutual positional relationship of the electrode 4, the metal ball 3a, and the small hole 1d just before welding, and (b) is the situation after welding. The welding current enters and exits the metal ball 3a from a small area ring-shaped contact surface formed by the chamfered portion of the small hole 4a and the chamfered portion of the small hole 1d, and the metal ball in the vicinity melts and spreads in a flange shape by the applied pressure. The state is considered that the outer end of the small hole 1d of the container and a part of the metal sphere are considered to be welded due to the common material component (Fe) and affinity. Since the metal sphere is crushed quite strongly in this way, the amount of protrusion to the outside of the container after completion of sealing can be, for example, less than or equal to the radius of the original metal sphere.
[0029]
FIGS. 3A, 3B, and 3C are partial cross-sectional views of the arrangement of related parts, showing the main parts of another embodiment of the present invention. In each embodiment, the shape of the sealing member 3 to be used is not spherical but different. Each sealing member 3 is punched from a plastically deformed plate, and each has a convex surface toward the small hole 1d side of the container 1, and the other surfaces are substantially flat. Therefore, it is not necessary to provide a small hole on the surface of the welding electrode 4 in contact with the other surface, so that the surface is flat. The sealing member 3 in (a) has a hemispherical projection (projection) on the plate material, (b) has a conical projection, and (c) has a ring-shaped projection abutting around the small hole 1d.
[0030]
(A) and (b) are welding currents concentrated on the contact portion between the edge of the outer end of the small hole 1d and the projection of the sealing member 3 so that the two materials melt together. A ring-shaped contact portion between the top of the container and the surface of the container 1 is welded. These sealing members have the advantage that the protruding height after welding is low. The positioning of each sealing member may use its outer shape (a disk or square plate), or may be punched as a base material, returned to the base material, and held on the strip. You may hold | maintain by attracting | sucking to the surface of the welding electrode 4 with magnetic force like a case.
[0031]
FIGS. 5 (a) and 5 (b) are cross-sectional views of relevant parts showing the state immediately before welding of the sealing part (the sealing member is crimped to the small hole but not welded) in still another embodiment of the present invention. is there. In the present embodiment, a scooping portion 1e is provided at the outer end opening of the small hole 1d of the container 1, and a part or all of the sealing member 3 (including the metal ball 3a) is submerged in the container. Thus, for example, even when a large sealing member is used, the protruding height from the container after welding can be reduced or eliminated, and the risk of the sealing member falling off when the finished product hits another object can be reduced.
[0032]
Although a plurality of embodiments of the present invention have been described above, the technical scope of the present invention is not limited to these embodiments. For example, the preliminary sealing of the container 1 is not limited to seam welding, but other means such as solder or other brazing material may be used, a small hole is provided on the lid side, its inner diameter, chamfering, shape, surface finishing Alternatively, the surface treatment or the like may be changed or added, or a different form or material may be given to the structure of the sealing device, the operating means, the shape of the sealing portion or the sealing member, the holding method, or the like. Of course, the welding conditions are not limited to those illustrated. It is also possible to easily carry out the sealing operation of a plurality of containers set in parallel in the same vacuum chamber simultaneously or sequentially.
[0033]
【The invention's effect】
(1) According to the present invention, as shown in claim 1, a hermetic container having a small hole is completed in an atmospheric pressure, evacuated in a vacuum, and a small hole is simply used by using a metal ball larger than its inner diameter. It is a simple operation and is sealed by resistance welding with a relatively small pressure contact force, so there is no need for a vacuum pump with a large and complicated internal / external operation mechanism, and there is little gas generation in the process, resulting in a low price. Ru can be carried out easily and simply at low cost by using a Do unit. In addition, the metal sphere is greatly deformed and pushed into the container side so that the final projecting height from the container surface is less than or equal to the original radius of the metal sphere, thus ensuring the welding of the sealing part and ensuring the reliability of vacuum maintenance. There is an effect to improve .
[0034]
Further, further individual effects obtained when the configuration of claim 2 or less is added are listed with numbers corresponding to the claims.
(2) By making the diameter of the metal sphere 1.3 to 2 times the inner diameter of the small hole on the container side, there is an effect that a reliable sealing can be performed.
[0035]
(3) A good welding result can be obtained by chamfering the small hole of the welding electrode and the small hole on the container side .
(4) Since the metal ball is submerged in the scooping portion provided in the sealing portion, the protruding portion after sealing can be reduced or eliminated.
[0036]
(5) By using stainless steel as the material of the metal sphere, it is excellent in weldability with the container-side material and can be held by magnetic force.
(6) Since the metal sphere before welding is held by magnetic force, the setting of the sealing device before evacuation becomes easy, and an efficient vacuum sealing method can be provided.
[0037]
(7) By using the seam welding technique for hermetic joining of containers, even a large container can be easily and reliably sealed.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a main part of an apparatus used in an example of an embodiment of the present invention.
FIGS. 2A and 2B are main part cross-sectional views showing a sealing process using a metal ball as a sealing member in the embodiment of the present invention, where FIG. 2A is a state before sealing, and FIG. 2B is a state after sealing;
FIGS. 3A, 3B, and 3C are cross-sectional views of main parts showing the relationship between sealing members having different shapes, containers, and welding electrodes in other embodiments of the present invention. FIGS.
FIG. 4 is a cross-sectional view of an essential part of an apparatus used for seam welding, which is a conventional technique applicable to the present invention.
FIGS. 5A and 5B are main part cross-sectional views showing a state immediately before welding of a sealing portion in still another embodiment of the present invention, respectively.
[Explanation of symbols]
1 container 1a base 1b airtight terminal 1c lid 1d small hole 1e scooping part 2 electronic component 3 sealing member 3a metal ball 4 welding electrode 4a small hole 6 magnet 7 base 7a plunger 7b coil spring 7c spring receiving plate 7d linear motion bearing 7e stopper Pin 7f Cam plate 7g Slit 8 Operation member 9 Pressure contact direction 10 Welding power source 11 Welding power source 12a Roller electrode A
12b Roller electrode B
13 Ceramic table 14 Jig table

Claims (7)

箱型の容器の部品である、気密絶縁端子付きの金属の基台と蓋とを準備し、それらの一方に前記容器の内外に貫通する円形の小孔を設ける工程と、
前記基台上に真空中で動作させるべき電子部品を取り付けかつ前記気密絶縁端子と接続する工程と、
大気中またはガス中で前記基台の周縁部と前記蓋の周縁部とを気密に接合することによって前記電子部品の内装された前記箱型の容器を完成する工程と、
真空槽の中で前記小孔より内部の気体を排気する工程と、
同じ真空槽の中で前記小孔の外端開口部に前記小孔を塞ぐ封口部材として前記小孔の内径よりも大きな直径を持つ金属球を加圧当接させ前記小孔の外側開口部と抵抗溶接し、前記金属球が主に溶融変形しつつ溶接の相手である前記基台あるいは蓋の表面に押し込まれる結果、該基台あるいは蓋の表面よりの最終突出高さが、前記金属球の元の半径以下となるようにする工程と
を含むことを特徴とする電子部品の真空容器の封止方法。
Preparing a metal base with a hermetically insulated terminal and a lid, which are parts of a box-shaped container, and providing a circular small hole penetrating into and out of the container on one of them;
Attaching an electronic component to be operated in vacuum on the base and connecting to the hermetic insulated terminal;
Completing the box-shaped container in which the electronic component is housed by airtightly joining the peripheral edge of the base and the peripheral edge of the lid in the atmosphere or in gas;
Exhausting the internal gas from the small hole in a vacuum chamber;
In the same vacuum chamber, a metal ball having a diameter larger than the inner diameter of the small hole is press-contacted as a sealing member for closing the small hole at the outer end opening of the small hole, and the outer opening of the small hole As a result of resistance welding, the metal ball is pushed into the surface of the base or lid that is the welding partner while being mainly melted and deformed, so that the final protruding height from the surface of the base or lid is A method of sealing a vacuum container for an electronic component, comprising: a step of making the radius less than or equal to an original radius.
前記金属球の素材の直径は、前記小孔の内径の1.3倍から2倍であることを特徴とする請求項1に記載の電子部品の真空容器の封止方法。  The method of sealing a vacuum container for an electronic component according to claim 1, wherein the diameter of the metal sphere material is 1.3 to 2 times the inner diameter of the small hole. 前記抵抗溶接の際に溶接電極に設けた前記金属球に接する小孔の端部と、前記容器に設けた前記小孔の外端開口部とに面取りを施したことを特徴とする請求項1または2に記載の電子部品の真空容器の封止方法。  2. The chamfering is performed on the end portion of the small hole that contacts the metal ball provided on the welding electrode and the outer end opening of the small hole provided on the container in the resistance welding. Or the sealing method of the vacuum vessel of the electronic component of 2. 前記小孔の外端開口部に浚い部を設け、前記金属球の一部または全部を前記浚い部に沈めたことを特徴とする請求項1から3のいずれかに記載の電子部品の真空容器の封止方法。  The vacuum container for electronic parts according to any one of claims 1 to 3, wherein a scooping portion is provided in an outer end opening of the small hole, and a part or all of the metal ball is submerged in the scooping portion. Sealing method. 前記金属球の材質はステンレス鋼であることを特徴とする請求項1から4のいずれかに記載の電子部品の真空容器の封止方法。  The method for sealing a vacuum container for an electronic component according to any one of claims 1 to 4, wherein the metal sphere is made of stainless steel. 前記容器の排気を行っている期間、前記金属球を、前記小孔の軸上の離れた位置において、溶接電極の円筒状の先端に磁力によって保持することを特徴とする請求項1から5のいずれかに記載の電子部品の真空容器の封止方法。  6. The metal ball is held at a cylindrical tip of a welding electrode by a magnetic force at a position distant from the small hole axis while the container is being evacuated. The sealing method of the vacuum vessel of the electronic component in any one. 前記大気中またはガス中で前記基台の周縁部と前記蓋の周縁部とを気密に接合することによって前記電子部品の内装された前記箱型の容器を完成する工程にはシーム溶接技術を用いたことを特徴とする請求項1から6のいずれかに記載の電子部品の真空容器の封止方法。  Seam welding technology is used in the step of completing the box-shaped container with the electronic components inside by airtightly joining the peripheral edge of the base and the peripheral edge of the lid in the atmosphere or gas. The method of sealing a vacuum container for an electronic component according to any one of claims 1 to 6, wherein
JP2000266202A 2000-08-01 2000-08-01 Sealing method of vacuum container for electronic parts Expired - Fee Related JP4517376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000266202A JP4517376B2 (en) 2000-08-01 2000-08-01 Sealing method of vacuum container for electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000266202A JP4517376B2 (en) 2000-08-01 2000-08-01 Sealing method of vacuum container for electronic parts

Publications (2)

Publication Number Publication Date
JP2002050711A JP2002050711A (en) 2002-02-15
JP4517376B2 true JP4517376B2 (en) 2010-08-04

Family

ID=18753334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000266202A Expired - Fee Related JP4517376B2 (en) 2000-08-01 2000-08-01 Sealing method of vacuum container for electronic parts

Country Status (1)

Country Link
JP (1) JP4517376B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6976295B2 (en) 1997-07-29 2005-12-20 Seiko Epson Corporation Method of manufacturing a piezoelectric device
US6960870B2 (en) 1997-07-29 2005-11-01 Seiko Epson Corporation Piezo-electric resonator and manufacturing method thereof
JP5634370B2 (en) * 2011-09-29 2014-12-03 三菱電機株式会社 Compressor and method for manufacturing the compressor
JP6223506B1 (en) * 2016-06-13 2017-11-01 日新製鋼株式会社 Vacuum insulation panel manufacturing equipment
EP3460310B1 (en) * 2016-06-13 2020-12-23 Nippon Steel Corporation Vacuum insulation panel manufacturing methods, and vacuum insulation panels
JP6223611B1 (en) * 2017-02-10 2017-11-01 日新製鋼株式会社 Vacuum insulating panel manufacturing method and vacuum insulating panel
JP6223507B1 (en) * 2016-06-13 2017-11-01 日新製鋼株式会社 Vacuum insulating panel manufacturing method and vacuum insulating panel
KR102200124B1 (en) * 2019-11-15 2021-01-08 주식회사 서연이화 Position fixing apparatus capable of locking of both direction

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964221A (en) * 1995-08-29 1997-03-07 Murata Mfg Co Ltd Method for sealing package airtightly

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964221A (en) * 1995-08-29 1997-03-07 Murata Mfg Co Ltd Method for sealing package airtightly

Also Published As

Publication number Publication date
JP2002050711A (en) 2002-02-15

Similar Documents

Publication Publication Date Title
JP5711044B2 (en) Magnetic contactor, gas sealing method of magnetic contactor, and method of manufacturing magnetic contactor
JP4517376B2 (en) Sealing method of vacuum container for electronic parts
CN103904041A (en) Vacuum sealed package
JP5076108B2 (en) Welding ring tacking device and welding ring tacking method
US10804174B2 (en) Non-magnetic package and method of manufacture
WO2003092053A1 (en) Mounting method and mounting device
WO2014141829A1 (en) Structure for bonding metal parts to each other and bonding method therefor
JP4634165B2 (en) Airtight terminal manufacturing method
CN109570756A (en) A kind of thin type solder sheet and metalwork pre-fix method
JP2007012728A (en) Piezoelectric vibrator package, manufacturing method thereof, and physical quantity sensor
JP2009000731A (en) Lid tacking device
JP6048096B2 (en) Gas sealing method for magnetic contactor
US6809259B2 (en) Through terminal and X-ray tube
JP2001267867A (en) Method for manufacturing piezoelectric oscillator
JPH0964221A (en) Method for sealing package airtightly
JP4838622B2 (en) Method for manufacturing piezoelectric vibrator
JPH0719402Y2 (en) Metal thermos
JPH1147005A (en) Method for sealing vacuum double structural body
JP2001129663A (en) Soldering iron
JPS60133988A (en) Method and device for adhering silver contact point dispersed with metallic oxide to bed metal
Doe Microjoining research and development at CSIRO
JPH0389438A (en) Vacuum container for flat plate type display device
JPH0927725A (en) Piezoelectric vibrator and piezoelectric oscillator, and method and device for manufacturing piezoelectric vibrator
JPH11307667A (en) Manufacture of sealing cap
JP2006049353A (en) Manufacturing method of package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees