JP4516283B2 - Manufacturing method of damping device made of Zn-Al alloy - Google Patents

Manufacturing method of damping device made of Zn-Al alloy Download PDF

Info

Publication number
JP4516283B2
JP4516283B2 JP2003132184A JP2003132184A JP4516283B2 JP 4516283 B2 JP4516283 B2 JP 4516283B2 JP 2003132184 A JP2003132184 A JP 2003132184A JP 2003132184 A JP2003132184 A JP 2003132184A JP 4516283 B2 JP4516283 B2 JP 4516283B2
Authority
JP
Japan
Prior art keywords
forging
alloy
speed
superplastic
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003132184A
Other languages
Japanese (ja)
Other versions
JP2004332079A (en
Inventor
立夫 江
健司 東
正秀 高津
淳道 櫛部
和雄 青木
浩一 槙井
誠矢 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Kobe Steel Ltd
Japan Science and Technology Agency
Osaka Prefecture University
National Institute of Japan Science and Technology Agency
Original Assignee
Takenaka Corp
Kobe Steel Ltd
Japan Science and Technology Agency
Osaka Prefecture University
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp, Kobe Steel Ltd, Japan Science and Technology Agency, Osaka Prefecture University, National Institute of Japan Science and Technology Agency filed Critical Takenaka Corp
Priority to JP2003132184A priority Critical patent/JP4516283B2/en
Publication of JP2004332079A publication Critical patent/JP2004332079A/en
Application granted granted Critical
Publication of JP4516283B2 publication Critical patent/JP4516283B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、室温で超塑性を示すZn−Al合金を用いた温間鍛造方法に関するものである。本発明の方法によれば、成形金型に悪影響を及ぼすこと無しに、該合金の超塑性はそのまま高く維持された鍛造品(鍛造後の伸びは10-2/sの歪速度で100%以上)を30秒以内に鍛造できる為、耐震性デバイスの如き大型制振部材を極めて生産性よく製造する方法として非常に有用である。
【0002】
【従来の技術】
風荷重や地震荷重の歪みを吸収し、或いは歪みや揺れに追随できる所謂免震・制震デバイスとしては、Pb製ダンパー、防振ゴム、オイルダンパー、LYP(極低降伏点鋼)等の制振鋼板を用いたもの等が挙げられるが、近年、毒性のない軽量のデバイスを提供できる制震用金属への要請が高まっており、PbやLYP鋼に代替できる制震用金属として、超塑性を示すZn−Al合金が注目されている。
【0003】
本発明者らの一人も、かねてよりこうした超塑性を示すZn−Al合金について研究を進めており、例えば特許文献1及び特許文献2の超塑性Zn−Al合金製制震デバイスを開示している。この超塑性Zn−Al合金製制震デバイスは、超塑性Zn−Al合金が有する大変形特性を活かし、該特性を建築構造物のダンピング(歪吸収特性)に利用するものであるが、機械加工によって製造している為、部品の数及び工数が多く、製造時間も長くなる等、量産性の点で問題がある。即ち、上記公報では、超塑性Zn−Al合金を如何にして大型の耐震性デバイス等に加工するか、という成形加工条件からのアプローチはしていない。
【0004】
一方、従来の超塑性成形は、成形加工時の特性向上を目的とする研究が殆どであり、成形加工後の物性、例えば、延性やダンピング性などをも踏まえて加工条件を制御するといった観点からの研究もあまりなされていないのが現状である。例えば非特許文献1に記載の如く超塑性合金を高速鍛造する方法は従来でも行なわれているが、当該方法は、鍛造過程において、超塑性合金の特性(優れた延性)を利用して成形性を高めようとするものであって、鍛造後の特性は全く考慮していない為、得られる鍛造品の超塑性特性は、鍛造前に比べて低下しており、制震デバイスに適用するには不充分である。
【0005】
【特許文献1】
特開2000-352219号公報(特許請求の範囲)
【特許文献2】
特開2001-234974号公報(特許請求の範囲)
【非特許文献1】
財団法人素形材センター,革新的素形材加工技術調査「超塑性技術利用可能性調査報告書」,素形材センター研究調査報告,2002年3月,No.570,p.73
【0006】
【発明が解決しようとする課題】
本発明は上記事情に着目してなされたものであって、その目的は、室温で超塑性を示すZn−Al合金を用いて温間鍛造する方法であって、成形金型に悪影響を及ぼすこと無く、当該Zn−Al合金の超塑性特性はそのまま高く維持された鍛造品を生産性よく製造する方法;及び当該方法により非常に優れた超塑性を備えた鍛造品を提供することにある。
【0007】
【課題を達成するための手段】
上記課題を解決することのできた本発明の温間鍛造方法とは、室温で超塑性を発現するZn−Al合金を使用して温間鍛造するに当たり、
鍛造温度を50〜200℃とし、
100mm/分以上の高速鍛造を、累積変形率70〜99.0%まで、少なくとも1回行い、
その後、100mm/分未満の低速鍛造で少なくとも1回鍛造するところに要旨を有するものである。
【0008】
上記方法によって得られる鍛造品は、鍛造後の伸びが10-2/sの歪速度で100%以上と、延性に極めて優れたものであり、この様な鍛造品も本発明の範囲内に包含される。
【0009】
【発明の実施の形態】
本発明者らは、室温で超塑性を示すZn−Al合金を用いて耐震性デバイスの如き大型制振部材に効率よく成形し得る鍛造技術を提供するに当たり、
▲1▼生産性に極めて優れており(鍛造完了時間30秒以内)、しかも
▲2▼鍛造後においても、超塑性Zn−Al合金が有する大変形特性を具備することのできる(鍛造後の伸びは10-2/sの歪速度で100%以上)
鍛造品を提供するという観点に基づき、特に温間鍛造に着目して鋭意検討した。その結果、累積変形率(公称歪)との関係で鍛造速度を変化させ、
(イ)累積変形率70〜99.0%までは、100mm/分以上の高速鍛造で鍛造し、
(ロ)その後(累積変形率100%まで)、100mm/分未満の鍛造速度で鍛造する、
という多段鍛造法を採用すれば、成形金型の割れ等金型寿命を低下させること無しに、上記▲1▼及び▲2▼の両特性を兼ね備えた鍛造品が得られることを見出し、本発明を完成した。
【0010】
尚、本発明者らは先に、鍛造方法とは限定していないが温間変形を活用し、超塑性Zn−Al合金を成形することのできる加工方法を提案し、出願している(特願2001-323175;以下、先願発明と呼ぶ)。先願発明は、超塑性Zn−Al合金の大変形特性を成形加工に活かし、加工製品としての要求特性を維持しつつ、超塑性加工によりニアネット成形を行うことで生産性の向上とコスト低減を可能にする目的で提案されたものであり、▲1▼室温超塑性Zn−Al合金において超塑性特性を支配しているナノ結晶構造は昇温によって粗大化し易いこと;▲2▼その反面、超塑性は温度によって活性化されるという側面も有しており、超塑性を利用して加工する際には適度に加温することも有効であること;▲3▼ところが加工時の温度を高め過ぎると、成形加工時にナノ結晶構造の粗大化が進行し、成形体としての超塑性特性が維持できなくなること、といった知見をベースにし、超塑性の発現に必須となるナノ結晶構造を破壊することがない適切な温間成形温度であって、加工発熱を最小限に抑えつつ適切な成形速度と加工歪のバランスを追求して完成されたものである。
【0011】
上記先願発明では、温間鍛造条件ではなく温間引張条件を開示しているが、当該条件に基づいて温間鍛造を行なってみたところ、部品及び工数は削減でき、鍛造時間は約110秒(約2分間)から最大で約2400秒(40分間)と、従来法に比べれば短縮できたものの、更なる鍛造時間の要請(30秒以内、好ましくは15秒以内、より好ましくは10秒以内に鍛造完了)には未だ不充分であることが判明した。また、鍛造後の延性も目標レベル(10-2/sの歪速度で100%以上)を確保できていないことが分かった(後記する実施例を参照)。
【0012】
そこで本発明者らは、先願発明の方法を更に改善し、該合金の超塑性はそのまま高く維持された鍛造品(鍛造後の伸びは10-2/sの歪速度で100%以上)を30秒以内に鍛造できる新規な鍛造方法を提供すべく、先願発明で採用した温間加工法の考え方(温間加工条件)は基本的に踏襲しつつ、特に上記(イ)及び(ロ)に示す多段鍛造法を採用することにより所期の目的を達成し得ることを見出し、本発明を完成した。
【0013】
以下、本発明を特徴付ける温間鍛造条件について説明する。
【0014】
鍛造温度:50〜200℃
本発明では、まず、室温で超塑性を発現するZn−Al合金を50〜200℃に加熱する。この温間鍛造温度は、加工時のナノ結晶構造の粗大化を防止しつつ、超塑性加工時の変形抵抗を低減して生産性を高めると共に、金型の劣化を抑えて寿命延長を図る上で重要な要件であり、好ましくは50℃以上、150℃以下とする。温間鍛造温度が50℃未満の低温では、被加工素材、即ち超塑性Zn−Al合金が延性不足になると共に鍛造時の変形荷重も過大となり、成形金型の割れが懸念される等、金型寿命の低下を招く。一方、温間鍛造温度が200℃を超えると、超塑性を発現するナノ結晶粒が粗大化し、成形品としての耐震用デバイス等に有効な超塑性特性が劣化する。
【0015】
次に、本発明を最も特徴付ける多段鍛造法について説明する。
【0016】
温間鍛造条件:下記(イ)及び(ロ)に示す通り、鍛造速度の異なる多段鍛造を採用する:
(イ)100mm/分以上の高速鍛造を、累積変形率70〜99.0%まで、少なくとも1回行う工程(以下、「最初の鍛造工程」と呼ぶ場合がある);
(ロ)その後(累積変形率100%まで)、100mm/分未満の低速鍛造で鍛造する工程(以下、「最後の鍛造工程」と呼ぶ場合がある)。
【0017】
本発明法の基本的な考え方は、
▲1▼最初の鍛造工程を高速で行なって生産性を確保する(30秒以内で鍛造を完了する)と共に、
▲2▼最後の鍛造工程は最初の鍛造工程に比べて低速で行い、超塑性合金の特性を確保する(鍛造後の伸びは10-2/sの歪速度で100%以上)
というものであり、累積変形率に応じて鍛造速度を変えるという多段鍛造を実施することにより、生産性と鍛造後の特性(超塑性)を兼ね備えた鍛造品を得るものである。本発明で規定する鍛造条件は、累積変形率と鍛造速度を種々変化させながら、鍛造時間、鍛造後の伸び、成形金型に対する影響等を中心に緻密な基礎実験を行なった結果、決定したものであり、この様な多段鍛造を行なわずに一律に鍛造速度を高くして鍛造すると鍛造時の最大荷重が大きくなり、このことにより、応力集中が大きくなって成形金型の寿命が低下することが推定される。
【0018】
(イ)100mm/分以上の高速鍛造を、累積変形率70〜99.0%まで、少なくとも1回行う工程(「最初の鍛造工程」)
上記「最初の鍛造工程」では、累積変形率70〜99.0%までを100mm/分以上と高速で鍛造する。ここで、「100mm/分以上の高速鍛造を、累積変形率70〜99.0%まで、少なくとも1回行う」とは、100mm/分以上の高速で鍛造する高速鍛造期間の終期を、少なくとも、累積変形率が70〜99.0%の間に制御して行なうという意味であり、高速鍛造期間の終期が70〜99.0%の間にあるものは全て、本発明の範囲内に包含される。例えば後記する実施例5及び7は、「最初の鍛造工程」を、累積変形率が62.5%までを600mm/分で鍛造し、98.8%までを1800mm/分で鍛造するとする2回高速鍛造を行なった例であるが、これらはいずれも、上述した「100mm/分以上の高速鍛造を、累積変形率70〜99.0%まで、少なくとも1回行う」という要件を満たす為、本発明の範囲内に包含される。これに対し、後記する実施例8は、「最初の鍛造工程」を、累積変形率が62.5%までを600mm/分で鍛造した例であり、高速鍛造期間の終期が上記要件を満たさない為、本発明の範囲を満足しない例である。
【0019】
上記工程は、特に所望の生産性(30秒以内で鍛造完了)を確保するのに極めて重要であり、鍛造速度が100mm/分未満と遅くなると生産性が低下し、工業的規模での実用化が困難になる。生産性の観点からすれば鍛造速度の上限は特に制限されず、速ければ速いほど生産性は高められる(好ましくは500mm/分以上、より好ましくは600mm/分以上)が、使用する鍛造機の大きさや成形金型への負荷等を考慮すると、その上限を通常は2000mm/分(好ましくは1800mm/分、より好ましくは1000mm/分)とすることが推奨される。
【0020】
(ロ)その後(累積変形率100%まで)、100mm/分未満の鍛造速度で鍛造する工程(「最後の鍛造工程」)
上記「最後の鍛造工程」では、累積変形率100%までを100mm/分未満と、「最初の鍛造工程」に比べて低速で鍛造する。この工程は、鍛造後の伸び特性(10-2/sの歪速度で100%以上)を確保するのに極めて重要である。また、鍛造速度を遅くすると成形金型に沿って超塑性合金が流動して軟化していく為、所望の形状に制御することが可能であり、寸法精度という点からも有用である。更に鍛造時の最大荷重が過大となるのを防止し得る為、成形金型の寿命延長にも寄与する。これら超塑性特性、寸法精度、及び金型寿命の観点のみからすれば、上記工程の鍛造速度は遅ければ遅い程良い(好ましくは70mm/分以下、より好ましくは60mm/分以下)が、一方、鍛造速度を遅くし過ぎると生産性が低下し、所望の鍛造時間(30秒以内)を確保できなくなる。超塑性特性と生産性の両方を実現するという本発明の課題を考慮すれば、下限を5mm/分(より好ましくは20mm/分)とすることが推奨される。
【0021】
この様に本発明の最重要ポイントは、最初の鍛造工程を高速で行い、最後の鍛造工程を低速で行なって処理するという多段鍛造を採用した点にある。従って上記(イ)及び(ロ)の要件を満足する限り、「最初の鍛造工程」及び「最後の鍛造工程」の詳細な鍛造条件は特に限定されず、例えば各工程の鍛造回数は少なくとも1回であればよく、1回で鍛造しても良い(1ステップ)し、複数回(2ステップ以上)で鍛造しても良いが、特に生産性等を考慮すると、「最初の鍛造工程」を2〜3ステップ、「最後の鍛造工程」を1〜3ステップに分けて実施することが好ましい。また、「最初の鍛造工程」と「最後の鍛造工程」の鍛造速度の比(「最初の鍛造工程」の鍛造速度/「最後の鍛造工程」の鍛造速度)は、10以上、100以下とすることが好ましい。上記比が10未満では、多段化による鍛造時間の短縮効果が小さく、一方、上記比が100を超えると「最初の鍛造工程」の鍛造速度を極めて速くすることが必要となって、使用する鍛造機の種類が限られてしまう。
【0022】
実際には、使用する鍛造機の規模等に応じ、生産性と鍛造後の材質特性のバランスを考慮しつつ、適切な条件を具体的に設定することができる。
【0023】
代表的な鍛造方法としては、例えば後記する実験例5に示す通り、最初の鍛造工程を2回(累積変形率が62.5%までを600mm/分で鍛造し、98.8%までを1800mm/分で鍛造する)とし、最後の鍛造工程を1回(累積変形率100%までを60mm/分で鍛造する)とする合計3回の多段鍛造を行なう方法;或いは、後記する実験例7に示す通り、最初の鍛造工程を実験例5と同様に2回とし、最後の鍛造工程を3回(累積変形率が99.3%までを60mm/分、99.6%までを60mm/分、100%までを60mm/分で鍛造する)とする合計5回の多段鍛造を行なう方法が挙げられる。勿論、「最初の鍛造工程」及び「最後の鍛造工程」を夫々、1回ずつ鍛造し、合計2回の多段鍛造を行なってもよい。
【0024】
以上、本発明を最も特徴付ける鍛造条件について説明した。
【0025】
次に、鍛造に付される超塑性Zn−Al合金について説明する。
【0026】
本発明は、鍛造条件を特定したところにポイントがあり、使用する超塑性合金は、要するに常温で超塑性を有するものであれば、化学成分や金属組織、結晶粒径、結晶構造などが若干異なるものであっても適用することができる。従って、上記超塑性合金の種類は特に制限されないが、好ましいものとしては、例えば本出願人らの1人が特開平11-222643号公報に開示した超塑性Zn−Al合金が挙げられる。具体的には、
Zn含量が30質量%以上、80質量%以下、より好ましくは50質量%以上、80質量%以下で、残部が実質的にAlからなるZn−Al合金であって、平均結晶粒径が5μm以下のα相又はα'相中に、平均結晶粒径が0.05μm以下のβ相が微細分散した組織を有する超塑性Zn−Al合金、や
Zn含量が75質量%以上、99質量%以下、より好ましくは75質量%以上、81質量%以下で、残部が実質的にAlからなるZn−Al合金であって、平均結晶粒径が5μm以下のα相又はα'相、及びβ相を主要組織とし、前記α相又はα'相中に平均結晶粒径が0.05μm以下のβ相が微細分散した組織を有している超塑性Zn−Al合金であり、
この様な合金は、例えば前掲の公開公報にも記載されている如く、上記成分組成を満たすZn−Al合金を250℃以上の温度で均熱した後急冷し、次いで275℃以下の温度で温間加工してから急冷する方法、或いは、上記成分塑性を満たすZn−Al合金を250℃以上の温度で均熱した後急冷し、次いで冷間加工することによって得ることができる。
【0027】
尚、鍛造の際には、成形金型の形状に応じて上記合金の形状を適切に加工することが推奨される。一般に成形金型を用いて鍛造する際に、金型の割れや鍛造品角部の形状不良、鍛造機の荷重オーバー抑制等を防止して金型の寿命延長を図り、鍛造品の寸法精度を高めることは、当然に考慮されるべき前提事項であり、その為に、成形金型と鍛造素材の早期接触を避けて応力集中を小さくする目的で、成形金型の形状に応じて鍛造素材の形状を適切に加工することも、通常実施されている事項である。本発明においても同様であり、特に本発明では、「最初の鍛造工程」で所望の生産性を確保すると共に、「最後の製造工程」にて所望の寸法制御を得る(特に鍛造品各部の形状不良をなくす)為には、成形金型との接触(特に側面部との早期接触)が避けられる様な形状に加工して、コーナー部への応力集中を少なくすることが好ましいことを基礎実験により確認している。
【0028】
具体的には、合金形状と、鍛造後の鍛造品コーナー部の応力集中との関係を調査すべく、図1(a)に示す十字架型の金型セットを用いて図1(b)に示す剪断型デバイスに鍛造する場合における応力集中の程度を、FEMシミュレーション(MSC社製鍛造シミュレーションソフト「スーパーフォージ」)を用いて評価した(FEMシミュレーションでの相当塑性歪が2.5未満の場合、「応力集中無し」と評価した)。図中、1は下支持台、2は下金型、3はノックピン、4は芯出ロッド、5は上金型、6は上支持台、7は鍛造素材である。その結果、角型合金を使用するとコーナー部に大きな応力が集中し(FEMシミュレーションでの相当塑性歪2.5以上)、鍛造機の最大荷重が過大となって成形金型への負荷が大きくなり、金型の割れや角部の形状不良等を招くのに対し、合金形状を丸型とすれば、コーナー部への応力集中は小さくなった(FEMシミュレーションでの相当塑性歪2.5未満)。
【0029】
この様に特に鍛造工程の初期における応力集中を小さくする為には、成形金型の角部(コーナー部)に鍛造素材(合金)が衝突しない様に合金形状を適切に加工することが有用であるが、この様な合金形状は、使用する成形金型の形状に応じて概ね一義的に定めることができる。特に生産コスト等を考慮して簡易な形状に加工するという観点からすれば、例えば丸型金型を使用する場合には丸型に加工し;角型金型を使用する場合には角型に加工し;十字型金型を使用する場合には丸型若しくは菱形に加工すればよい。勿論、本発明では多角型形状への加工を排除するものではなく、生産コストが高くとも他の特性発現がより重要視される場合には、成形金型の形状によって合金形状を多角形状に加工することもできる。
【0030】
【実施例】
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に包含される。
【0031】
実施例
150kgの22%Al−78%Zn合金を溶製し、55mm角×30mmtの角材及び36mmφ×90mm(高さ)の棒材に加工した。上記合金の機械的性質は、降伏強度80MPa、伸び170%(歪速度10-3/s)である。
【0032】
この角材若しくは棒材を用い、400t級油圧プレス機にて鍛造を行なった。具体的には前記図1(a)の金型を用い、大気加熱炉にて、表1に示す条件で最終板厚が10.0〜11.5mmになるまで鍛造し、図1(b)の成形品を得た。表中「鍛造温度」とは、合金材料がこの温度に達した時点で直ちに鍛造を開始した温度である。また、成形金型の温度は合金温度と同じにした。
【0033】
この様にして得られた成形品のコーナー部における応力集中の有無について、前述したFEMシミュレーションで評価した(FEMシミュレーションでの相当塑性歪が2.5未満の場合、「応力集中無し」と評価した)。また、鍛造後の伸びは、図2に示す通り、鍛造品の中央部から同図に示す試験片を切出し、インストロン型引張試験機を用いて、室温にて変形速度10-2/sでの伸び値を求めた。
【0034】
これらの結果を表1に併記する。尚、最大荷重の上限は、本実施例で使用したプレス機の重量(400t)との関係で250tとした(即ち、250tを超えるものは応力集中が大きくなり、生産性や成形金型等に対して悪影響を及ぼすことから「×」とした)。
【0035】
【表1】

Figure 0004516283
【0036】
まず、実験例5及び7は、いずれも本発明で規定する多段鍛造を行なった本発明例(詳細には実験例5は、最初の鍛造工程が2回、最後の鍛造工程が1回の合計3回の多段鍛造を行なった例;実験例7は、最初の鍛造工程が実験例5と同様に2回、最後の鍛造工程が3回の合計5回の多段鍛造を行なった例である)であり、鍛造後の伸びは100%超で非常に高く、鍛造時間も30秒以内に抑えられており、しかもコーナー部の応力集中も見られなかった。従って本発明法によれば、金型寿命を低下させることなく、鍛造後も優れた超塑性を有する鍛造品を、極めて生産性良く製造できることが分かる。
【0037】
これに対し、実験例1〜4は、先願発明の方法を模擬して鍛造した例であり、多段鍛造しなかったものである。
【0038】
このうち実験例1及び2は、角型形状の合金を使用している為、コーナー部への応力集中が大きくなると共に、多段鍛造を行なっていない為、鍛造時間が110〜230秒と長くなっている。また、鍛造後の伸びも60〜70%と、所望の特性を確保できなかった。
【0039】
また、実験例3〜4は、丸型形状の合金を使用している為、コーナー部への応力集中は少ないが、多段鍛造を行なっていない為、鍛造時間が非常に長くなっている。また、鍛造後の伸びも100%未満と、所望の特性を確保できなかった。
【0040】
次に、実験例6、8〜9はいずれも多段鍛造を行なった例であるが、本発明で規定する要件のいずれかを満足しない為、以下の不具合を抱えている。
【0041】
まず、実験例6は、「最後の鍛造工程」での鍛造速度が速い為、最大荷重が250tを超えてしまい、金型への悪影響が生じ易い。
【0042】
実験例8は、「最初の鍛造工程」の要件を満足していない為、鍛造時間が30秒を超えている。
【0043】
実験例9は、室温で鍛造した例であり、最大荷重が400tと非常に大きくなり、鍛造品を採取することはできなかった(従って鍛造後の伸びも計測不能)。
【0044】
【発明の効果】
本発明は以上の様に構成されているので、成形金型に悪影響を及ぼすこと無く、該合金の超塑性はそのまま高く維持された鍛造品(鍛造後の伸びは10-2/sの歪速度で100%以上)を30秒以内(好ましくは15秒以内、より好ましくは10秒以内)に鍛造できる結果、耐震性デバイスの如き大型制振部材を極めて生産性よく製造する方法として非常に有用である。
【図面の簡単な説明】
【図1】図1中(a)は実施例で用いた成形金型、(b)は当該成形金型を鍛造して得られる鍛造品の断面図である。
【図2】実施例で用いた鍛造後引張試験の概要を示す概略図である。
【符号の説明】
1 下支持台
2 下金型
5 上金型
6 上支持台
7 鍛造素材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a warm forging method using a Zn-Al alloy that exhibits superplasticity at room temperature. According to the method of the present invention, a forged product in which the superplasticity of the alloy is kept high as it is without adversely affecting the molding die (the elongation after forging is 100% or more at a strain rate of 10 −2 / s). ) Can be forged within 30 seconds, it is very useful as a method for producing a large damping member such as an earthquake-resistant device with extremely high productivity.
[0002]
[Prior art]
The so-called seismic isolation and vibration control devices that can absorb or follow the distortion of wind and earthquake loads include Pb dampers, anti-vibration rubbers, oil dampers, LYP (extremely low yield point steel), etc. In recent years, there has been an increasing demand for seismic control metals that can provide non-toxic light-weight devices, and superplasticity can be substituted for Pb and LYP steel. A Zn—Al alloy exhibiting
[0003]
One of the inventors of the present invention has also been researching a Zn-Al alloy exhibiting such superplasticity for a long time, and for example, disclosed a superplastic Zn-Al alloy damping device of Patent Document 1 and Patent Document 2. . This superplastic Zn-Al alloy damping device makes use of the large deformation characteristics of the superplastic Zn-Al alloy and utilizes the characteristics for damping (strain absorption characteristics) of building structures. Therefore, there are problems in terms of mass productivity, such as a large number of parts and man-hours, and a long manufacturing time. That is, in the above publication, no approach is taken from the molding process condition of how to process a superplastic Zn—Al alloy into a large-scale earthquake-resistant device.
[0004]
On the other hand, most of the conventional superplastic forming studies are aimed at improving the properties at the time of forming. From the viewpoint of controlling the processing conditions in consideration of physical properties after forming processing, such as ductility and damping properties. There is not much research on the current situation. For example, as described in Non-Patent Document 1, a method of forging a superplastic alloy at high speed has been conventionally performed. However, in the forging process, the method uses formability (superior ductility) of the superplastic alloy. Since the characteristics after forging are not taken into consideration at all, the superplastic characteristics of the forged products obtained are lower than those before forging. Insufficient.
[0005]
[Patent Document 1]
JP 2000-352219 A (Claims)
[Patent Document 2]
JP 2001-234974 A (Claims)
[Non-Patent Document 1]
Foundation Material Center, Innovative Material Processing Technology Survey “Superplastic Technology Availability Survey Report”, Material Center Research Report, March 2002, No.570, p.73
[0006]
[Problems to be solved by the invention]
The present invention has been made paying attention to the above circumstances, and its purpose is a method of warm forging using a Zn-Al alloy exhibiting superplasticity at room temperature, which has an adverse effect on a molding die. In addition, the present invention is to provide a method for producing a forged product having high superplasticity, which is maintained with high superplastic characteristics as it is;
[0007]
[Means for achieving the object]
With the warm forging method of the present invention that was able to solve the above problems, in warm forging using a Zn-Al alloy that expresses superplasticity at room temperature,
The forging temperature is 50 to 200 ° C.
High-speed forging at 100 mm / min or more is performed at least once to a cumulative deformation rate of 70 to 99.0%,
Then, it has a gist in that it is forged at least once by low-speed forging of less than 100 mm / min.
[0008]
The forged product obtained by the above method has a ductility of 100% or more at a strain rate of 10 −2 / s after forging and is extremely excellent in ductility. Such a forged product is also included in the scope of the present invention. Is done.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In providing a forging technique that can be efficiently formed into a large damping member such as an earthquake-resistant device using a Zn-Al alloy that exhibits superplasticity at room temperature,
(1) Extremely excellent in productivity (forging completion time within 30 seconds) and (2) Even after forging, the superplastic Zn-Al alloy can have the large deformation characteristics (elongation after forging) Is more than 100% at a strain rate of 10 -2 / s)
Based on the viewpoint of providing forged products, we focused on warm forging. As a result, the forging speed is changed in relation to the cumulative deformation rate (nominal strain)
(B) Forging up to a cumulative deformation rate of 70 to 99.0% is performed by high-speed forging at 100 mm / min or more,
(B) After that (for a cumulative deformation rate of up to 100%), forging at a forging speed of less than 100 mm / min,
If the multi-stage forging method is adopted, it is found that a forged product having both the above characteristics (1) and (2) can be obtained without reducing the mold life such as cracking of the mold. Was completed.
[0010]
Incidentally, the present inventors have previously proposed and filed a processing method capable of forming a superplastic Zn—Al alloy by utilizing warm deformation, although it is not limited to a forging method. Application 2001-323175; hereinafter referred to as the prior application invention). The invention of the prior application makes use of the large deformation characteristics of the superplastic Zn-Al alloy in the molding process, maintains the required characteristics as a processed product, and performs near-net molding by superplastic processing to improve productivity and reduce costs. (1) The nanocrystal structure governing superplastic properties in room temperature superplastic Zn-Al alloys is likely to be coarsened by temperature rise; (2) On the other hand, Superplasticity also has an aspect that it is activated by temperature, and it is also effective to warm appropriately when processing using superplasticity; (3) However, the temperature during processing is increased. If it is too high, the nanocrystal structure will become coarse during the molding process, and the superplastic properties of the molded body will not be maintained. There is no A sadness warm forming temperature, has been completed to pursue balance suitable molding speed and work strain while suppressing work-induced heat to a minimum.
[0011]
In the above-mentioned prior invention, warm forging conditions are disclosed instead of warm forging conditions, but when performing warm forging based on these conditions, parts and man-hours can be reduced, and the forging time is about 110 seconds. (Approximately 2 minutes) to a maximum of approximately 2400 seconds (40 minutes) compared to the conventional method, although it was shortened, a request for further forging time (within 30 seconds, preferably within 15 seconds, more preferably within 10 seconds) It was found that the forging was still insufficient. Moreover, it turned out that the ductility after forging has not ensured the target level (100% or more with a strain rate of 10 <-2 > / s) (refer the Example mentioned later).
[0012]
Therefore, the present inventors further improved the method of the prior invention, and developed a forged product in which the superplasticity of the alloy was kept high as it was (elongation after forging was 100% or more at a strain rate of 10 −2 / s). In order to provide a new forging method that can be forged within 30 seconds, the concept of the warm working method (warm working conditions) adopted in the invention of the prior application is basically followed, and in particular, (b) and (b) above. The inventors have found that the intended purpose can be achieved by adopting the multistage forging method shown in FIG.
[0013]
Hereinafter, the warm forging conditions characterizing the present invention will be described.
[0014]
Forging temperature: 50-200 ° C
In the present invention, first, a Zn—Al alloy that exhibits superplasticity at room temperature is heated to 50 to 200 ° C. This warm forging temperature prevents the coarsening of the nanocrystal structure during processing, reduces deformation resistance during superplastic processing, increases productivity, and suppresses mold deterioration to extend the life. And is an important requirement, preferably 50 ° C. or higher and 150 ° C. or lower. When the warm forging temperature is lower than 50 ° C., the work material, that is, the superplastic Zn—Al alloy becomes insufficient in ductility and the deformation load during forging becomes excessive, and there is a concern about cracking of the molding die. The mold life is reduced. On the other hand, when the warm forging temperature exceeds 200 ° C., nanocrystal grains that express superplasticity become coarse, and superplastic properties effective for an earthquake-resistant device as a molded product deteriorate.
[0015]
Next, the multistage forging method that characterizes the present invention will be described.
[0016]
Warm forging conditions: As shown in (a) and (b) below, multi-stage forging with different forging speeds is adopted:
(B) A step of performing high-speed forging at 100 mm / min or more at least once to a cumulative deformation rate of 70 to 99.0% (hereinafter, sometimes referred to as “first forging step”);
(B) Thereafter (up to a cumulative deformation rate of 100%), a step of forging by low-speed forging at a rate of less than 100 mm / min (hereinafter sometimes referred to as “the final forging step”).
[0017]
The basic idea of the present invention method is:
(1) The first forging process is performed at high speed to ensure productivity (forging is completed within 30 seconds).
(2) The last forging process is performed at a lower speed than the first forging process to ensure the characteristics of the superplastic alloy (the elongation after forging is 100% or more at a strain rate of 10 −2 / s).
By performing multi-stage forging in which the forging speed is changed according to the cumulative deformation rate, a forged product having both productivity and characteristics after forging (superplasticity) is obtained. The forging conditions specified in the present invention were determined as a result of a detailed basic experiment focusing on the forging time, the elongation after forging, the influence on the molding die, etc. while varying the cumulative deformation rate and forging speed. However, if the forging speed is increased uniformly without performing such multi-stage forging, the maximum load during forging increases, which increases stress concentration and shortens the life of the mold. Is estimated.
[0018]
(A) A step of performing high-speed forging at 100 mm / min or more at least once to a cumulative deformation rate of 70 to 99.0% (“first forging step”)
In the “first forging step”, the forging is performed at a high speed of 100 mm / min or more up to a cumulative deformation rate of 70 to 99.0%. Here, “perform high-speed forging at 100 mm / min or more at least once to a cumulative deformation rate of 70 to 99.0%” means at least the end of the high-speed forging period for forging at a high speed of 100 mm / min or more, This means that the cumulative deformation rate is controlled within a range of 70 to 99.0%, and anything in which the end of the high-speed forging period is between 70 and 99.0% is included within the scope of the present invention. The For example, in Examples 5 and 7 to be described later, the “first forging process” is performed twice when the cumulative deformation rate is forged up to 62.5% at 600 mm / min and up to 98.8% at 1800 mm / min. This is an example of performing high-speed forging, both of which satisfy the above-mentioned requirement that “high-speed forging of 100 mm / min or more is performed at least once to a cumulative deformation rate of 70 to 99.0%”. Included within the scope of the invention. On the other hand, Example 8 described later is an example in which the “first forging process” is forged at a cumulative deformation rate of 62.5% at 600 mm / min, and the end of the high-speed forging period does not satisfy the above requirements. Therefore, this is an example that does not satisfy the scope of the present invention.
[0019]
The above process is particularly important for ensuring the desired productivity (forging is completed within 30 seconds). When the forging speed is slowed down to less than 100 mm / min, the productivity is lowered and put into practical use on an industrial scale. Becomes difficult. From the viewpoint of productivity, the upper limit of the forging speed is not particularly limited, and the higher the speed, the higher the productivity (preferably 500 mm / min or more, more preferably 600 mm / min or more). In consideration of the load on the mold and the like, it is recommended that the upper limit is usually 2000 mm / min (preferably 1800 mm / min, more preferably 1000 mm / min).
[0020]
(B) Thereafter (up to a cumulative deformation rate of 100%), then forging at a forging speed of less than 100 mm / min (“last forging process”)
In the “last forging process”, forging is performed at a speed lower than 100 mm / min up to a cumulative deformation rate of 100%, compared to the “first forging process”. This step is extremely important to ensure the elongation characteristics after forging (100% or more at a strain rate of 10 −2 / s). Further, when the forging speed is slowed, the superplastic alloy flows and softens along the molding die, so that it can be controlled to a desired shape and is also useful in terms of dimensional accuracy. Furthermore, since it is possible to prevent the maximum load during forging from becoming excessive, it contributes to extending the life of the molding die. From the viewpoint of these superplastic properties, dimensional accuracy, and mold life alone, the slower the forging speed of the above process, the better (preferably 70 mm / min or less, more preferably 60 mm / min or less). If the forging speed is too slow, the productivity is lowered, and a desired forging time (within 30 seconds) cannot be secured. Considering the problem of the present invention that realizes both superplastic characteristics and productivity, it is recommended that the lower limit be 5 mm / min (more preferably 20 mm / min).
[0021]
As described above, the most important point of the present invention is that multi-stage forging is adopted in which the first forging process is performed at a high speed and the final forging process is performed at a low speed. Accordingly, the detailed forging conditions of the “first forging step” and the “last forging step” are not particularly limited as long as the above requirements (a) and (b) are satisfied. For example, the number of forgings in each step is at least once. The forging may be performed once (1 step), and may be forged multiple times (2 steps or more), but considering the productivity and the like, the “first forging process” is 2 It is preferable to divide and implement the “last forging process” in 1 to 3 steps. Further, the ratio of the forging speed between the “first forging process” and the “last forging process” (the forging speed of the “first forging process” / the forging speed of the “last forging process”) is 10 or more and 100 or less. It is preferable. If the ratio is less than 10, the effect of shortening the forging time due to multi-stages is small. On the other hand, if the ratio exceeds 100, the forging speed of the “first forging process” needs to be extremely fast, and the forging used. The type of machine will be limited.
[0022]
In practice, appropriate conditions can be specifically set in consideration of the balance between productivity and material properties after forging according to the scale of the forging machine to be used.
[0023]
As a typical forging method, for example, as shown in Experimental Example 5 to be described later, the first forging process is performed twice (forging the cumulative deformation rate up to 62.5% at 600 mm / min, and up to 98.8% up to 1800 mm. Forging at a rate of 3 min / min) and the last forging process once (forging up to a cumulative deformation rate of 100% at 60 mm / min) for a total of 3 multistage forgings; As shown, the first forging process was performed twice as in Experimental Example 5, and the final forging process was performed three times (cumulative deformation rate up to 99.3% was 60 mm / min, up to 99.6% was 60 mm / min, For example, a method of performing multi-stage forging a total of 5 times, forging up to 100% at 60 mm / min). Of course, the “first forging step” and the “last forging step” may be forged once each, and the multi-stage forging may be performed twice in total.
[0024]
The forging conditions that characterize the present invention have been described above.
[0025]
Next, a superplastic Zn—Al alloy that is subjected to forging will be described.
[0026]
The present invention has a point in specifying the forging conditions, and the superplastic alloy to be used is slightly different in chemical composition, metal structure, crystal grain size, crystal structure, etc. as long as it has superplasticity at room temperature. Even if it is a thing, it is applicable. Accordingly, the type of the superplastic alloy is not particularly limited, but a preferable example is a superplastic Zn—Al alloy disclosed in Japanese Patent Laid-Open No. 11-222643 by one of the applicants. In particular,
A Zn-Al alloy having a Zn content of 30% by mass or more and 80% by mass or less, more preferably 50% by mass or more and 80% by mass or less, with the balance being substantially Al, and an average crystal grain size of 5 μm or less In the α phase or α ′ phase, a superplastic Zn—Al alloy having a structure in which a β phase having an average crystal grain size of 0.05 μm or less is finely dispersed, or a Zn content of 75 mass% or more and 99 mass% or less, More preferably, it is a Zn-Al alloy having a balance of 75% by mass or more and 81% by mass or less, with the balance being substantially Al, and mainly comprising an α phase or an α ′ phase having an average crystal grain size of 5 μm or less, and a β phase. A superplastic Zn-Al alloy having a structure in which a β phase having an average crystal grain size of 0.05 μm or less is finely dispersed in the α phase or α ′ phase,
For example, as described in the above-mentioned publication, such an alloy is soaked in a Zn-Al alloy satisfying the above composition at a temperature of 250 ° C. or higher and then rapidly cooled, and then heated at a temperature of 275 ° C. or lower. It can be obtained by a method of quenching after cold working, or by soaking a Zn-Al alloy satisfying the above component plasticity at a temperature of 250 ° C. or higher, then quenching and then cold working.
[0027]
In the forging, it is recommended that the shape of the alloy be appropriately processed according to the shape of the molding die. In general, when forging using a molding die, it prevents the cracking of the die, the shape of the corner of the forged product, the overload suppression of the forging machine, etc. Increasing is a prerequisite that should be taken into account, and for this purpose, for the purpose of avoiding early contact between the molding die and the forging material and reducing stress concentration, the forging material should be adjusted according to the shape of the molding die. Appropriate processing of the shape is also a common practice. The same applies to the present invention. In particular, in the present invention, desired productivity is ensured in the “first forging process” and desired dimension control is obtained in the “last manufacturing process” (particularly the shape of each part of the forged product). In order to eliminate defects, it is preferable to process the shape so that contact with the mold (especially early contact with the side surface) is avoided to reduce stress concentration on the corner. It is confirmed by.
[0028]
Specifically, in order to investigate the relationship between the alloy shape and the stress concentration at the corner of the forged product after forging, the cross-shaped mold set shown in FIG. The degree of stress concentration when forging into a shear type device was evaluated using FEM simulation (MSC forging simulation software “Super Forge”) (if the equivalent plastic strain in FEM simulation is less than 2.5, “Stress concentration” "None"). In the figure, 1 is a lower support base, 2 is a lower mold, 3 is a knock pin, 4 is a centering rod, 5 is an upper mold, 6 is an upper support base, and 7 is a forging material. As a result, when a square alloy is used, a large stress is concentrated at the corner (equivalent plastic strain of 2.5 or more in the FEM simulation), the maximum load of the forging machine becomes excessive, and the load on the molding die increases. In contrast to mold cracking and corner shape defects, the stress concentration at the corners was reduced when the alloy shape was round (less than 2.5 equivalent plastic strain in FEM simulation).
[0029]
Thus, in order to reduce the stress concentration especially in the initial stage of the forging process, it is useful to appropriately process the alloy shape so that the forging material (alloy) does not collide with the corner (corner) of the molding die. However, such an alloy shape can be determined almost uniquely according to the shape of the molding die to be used. From the viewpoint of processing into a simple shape especially considering production costs, for example, when using a round die, it is processed into a round shape; when using a square die, it is converted into a square shape. Processing; if a cross-shaped mold is used, it may be processed into a round shape or a diamond shape. Of course, in the present invention, processing into a polygonal shape is not excluded, and even if the production cost is high, when other characteristics are more important, the alloy shape is processed into a polygonal shape depending on the shape of the molding die. You can also
[0030]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be implemented with appropriate modifications within a range that can meet the gist of the preceding and following descriptions. Any of these may be included in the technical scope of the present invention.
[0031]
Example 150 kg of 22% Al-78% Zn alloy was melted and processed into a 55 mm square × 30 mm t square bar and a 36 mmφ × 90 mm (height) bar. The mechanical properties of the alloy are a yield strength of 80 MPa and an elongation of 170% (strain rate of 10 −3 / s).
[0032]
Using this square or bar, forging was performed with a 400 t class hydraulic press. Specifically, using the mold of FIG. 1 (a), forging in an atmospheric heating furnace under the conditions shown in Table 1 until the final plate thickness is 10.0 to 11.5 mm, FIG. 1 (b). The molded product was obtained. In the table, “forging temperature” is a temperature at which forging starts immediately when the alloy material reaches this temperature. The molding die temperature was the same as the alloy temperature.
[0033]
The presence or absence of stress concentration at the corner of the molded product thus obtained was evaluated by the FEM simulation described above (when the equivalent plastic strain in the FEM simulation was less than 2.5, it was evaluated as “no stress concentration”). Further, as shown in FIG. 2, the elongation after forging was obtained by cutting a test piece shown in the figure from the center of the forged product and using an Instron type tensile tester at a deformation rate of 10 −2 / s at room temperature. The elongation value of was determined.
[0034]
These results are also shown in Table 1. The upper limit of the maximum load is 250 t in relation to the weight (400 t) of the press used in the present example (that is, those exceeding 250 t have a high stress concentration, which can increase productivity, molding dies, etc. "X" because it has an adverse effect on it).
[0035]
[Table 1]
Figure 0004516283
[0036]
First, each of Experimental Examples 5 and 7 is an example of the present invention in which multistage forging specified in the present invention was performed (specifically, Experimental Example 5 is a total of two initial forging processes and one final forging process). Example in which multi-stage forging was performed three times; Experimental Example 7 is an example in which the first forging process was performed twice in the same manner as Experimental Example 5 and the final forging process was performed three times in total for five times. The elongation after forging was very high at over 100%, the forging time was suppressed within 30 seconds, and no stress concentration was observed at the corners. Therefore, according to the method of the present invention, it can be seen that a forged product having excellent superplasticity after forging can be produced with extremely high productivity without reducing the mold life.
[0037]
On the other hand, Experimental Examples 1-4 are examples forged by simulating the method of the invention of the prior application, and were not subjected to multistage forging.
[0038]
Among these, since Experimental Examples 1 and 2 use a square-shaped alloy, the stress concentration at the corner increases, and because multi-stage forging is not performed, the forging time becomes as long as 110 to 230 seconds. ing. Further, the elongation after forging was 60 to 70%, and the desired characteristics could not be secured.
[0039]
In Experimental Examples 3 to 4, since a round-shaped alloy is used, the stress concentration on the corner portion is small, but because multistage forging is not performed, the forging time is very long. Moreover, the elongation after forging was less than 100%, and the desired characteristics could not be secured.
[0040]
Next, Experimental Examples 6 and 8 to 9 are examples in which multi-stage forging is performed, but have any of the following problems because they do not satisfy any of the requirements defined in the present invention.
[0041]
First, in Experimental Example 6, because the forging speed in the “last forging process” is high, the maximum load exceeds 250 t, and the mold is likely to be adversely affected.
[0042]
Since Experimental Example 8 does not satisfy the requirements of the “first forging process”, the forging time exceeds 30 seconds.
[0043]
Experimental Example 9 was an example of forging at room temperature, the maximum load was as large as 400 t, and a forged product could not be collected (thus, the elongation after forging could not be measured).
[0044]
【The invention's effect】
Since the present invention is configured as described above, it is a forged product in which the superplasticity of the alloy is kept high without adversely affecting the mold (the elongation after forging is a strain rate of 10 −2 / s). 100% or more) can be forged within 30 seconds (preferably within 15 seconds, more preferably within 10 seconds). As a result, it is very useful as a method for manufacturing large damping members such as earthquake-resistant devices with extremely high productivity. is there.
[Brief description of the drawings]
FIG. 1A is a cross-sectional view of a forging product obtained by forging the molding die used in the example, and FIG.
FIG. 2 is a schematic view showing an outline of a tensile test after forging used in Examples.
[Explanation of symbols]
1 Lower support base 2 Lower mold 5 Upper mold 6 Upper support base 7 Forging material

Claims (1)

室温で超塑性を発現するZn−Al合金を温間鍛造し、前記Zn−Al合金の超塑性が維持されたZn−Al合金製制振デバイスを製造する方法であって、
鍛造温度を50〜200℃とし、
100mm/分以上2000mm/分以下の高速鍛造を、累積変形率70〜99.0%まで、少なくとも1回行い、
その後、5mm/分以上100mm/分未満の低速鍛造で少なくとも1回鍛造することを特徴とするZn−Al合金製制振デバイスの製造方法。
A method of warm-forging a Zn-Al alloy that exhibits superplasticity at room temperature, and manufacturing a damping device made of Zn-Al alloy in which the superplasticity of the Zn-Al alloy is maintained,
The forging temperature is 50 to 200 ° C.,
High-speed forging at 100 mm / min to 2000 mm / min is performed at least once from a cumulative deformation rate of 70 to 99.0%,
Then, Zn-Al alloy damping device manufacturing method, which comprises forging at least once at a low speed forging of less than 5 mm / min to 100 mm / min.
JP2003132184A 2003-05-09 2003-05-09 Manufacturing method of damping device made of Zn-Al alloy Expired - Fee Related JP4516283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003132184A JP4516283B2 (en) 2003-05-09 2003-05-09 Manufacturing method of damping device made of Zn-Al alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003132184A JP4516283B2 (en) 2003-05-09 2003-05-09 Manufacturing method of damping device made of Zn-Al alloy

Publications (2)

Publication Number Publication Date
JP2004332079A JP2004332079A (en) 2004-11-25
JP4516283B2 true JP4516283B2 (en) 2010-08-04

Family

ID=33507143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003132184A Expired - Fee Related JP4516283B2 (en) 2003-05-09 2003-05-09 Manufacturing method of damping device made of Zn-Al alloy

Country Status (1)

Country Link
JP (1) JP4516283B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5247552A (en) * 1975-10-09 1977-04-15 St Joe Minerals Corp Highly precise forging method
JPH11222643A (en) * 1998-02-06 1999-08-17 Kobe Steel Ltd Zinc-aluminum alloy for earthquake damping and its production
JP2003129204A (en) * 2001-10-22 2003-05-08 Kenji Azuma MOLDING METHOD FOR SUPERPLASTIC Zn-Al ALLOY

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5247552A (en) * 1975-10-09 1977-04-15 St Joe Minerals Corp Highly precise forging method
JPH11222643A (en) * 1998-02-06 1999-08-17 Kobe Steel Ltd Zinc-aluminum alloy for earthquake damping and its production
JP2003129204A (en) * 2001-10-22 2003-05-08 Kenji Azuma MOLDING METHOD FOR SUPERPLASTIC Zn-Al ALLOY

Also Published As

Publication number Publication date
JP2004332079A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
CN110144496B (en) Titanium alloy with improved properties
US10196724B2 (en) Method for manufacturing Ni-based super-heat-resistant alloy
CN104498793B (en) High-strength tenacity magnesium lithium alloy and plain carbon steel by accumulative roll-bonding prepare the method for high-strength tenacity magnesium lithium alloy
JP5082483B2 (en) Method for producing aluminum alloy material
JP5873874B2 (en) Manufacturing method of forged products of near β-type titanium alloy
JP5498069B2 (en) Method for producing aluminum alloy sheet blank for cold press forming, and cold press forming method and molded product thereby
JP2009007672A (en) Method of controlling and refining final grain size in supersolvus heat treated nickel-base superalloy
JP2011111657A (en) Method for producing aluminum alloy sheet blank for cold press forming having coating/baking hardenability, cold press forming method using the blank, and formed part
JP2009215631A (en) Titanium-aluminum-based alloy and production method therefor, and moving blade using the same
JP6489576B2 (en) Method for producing a magnesium-based alloy extension material
JP5379471B2 (en) Method for producing aluminum alloy plate for cold press forming and cold press forming method
JPH0681089A (en) Method for hot-working magnesium alloy
JP2016017183A (en) Magnesium-based alloy malleable material and manufacturing method therefor
KR20190078281A (en) Magnesium alloy sheet and method for manufacturing the same
JP3674897B2 (en) Zn-Al alloy for vibration control and manufacturing method thereof
JP4516283B2 (en) Manufacturing method of damping device made of Zn-Al alloy
JP5605273B2 (en) High strength α + β type titanium alloy having excellent hot and cold workability, production method thereof, and titanium alloy product
JP2008062255A (en) SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET
JP6005539B2 (en) Method for producing high strength 7000 series aluminum alloy member
Umezawa et al. Microstructural refinement of an As-Cast Al-12.6 Wt Pct Si alloy by repeated thermomechanical treatment to produce a heavily deformable material
JP4185549B1 (en) Manufacturing method of extrusion billet and manufacturing method of magnesium alloy material
RU2371512C1 (en) Method of product receiving from heatproof nickel alloy
KR101610360B1 (en) Magnesium alloy sheet, method for manufacturing the same
KR20150052895A (en) Method for improving mechanical strength of wrought magnesium alloys
JP3253244B2 (en) Extruded Al-Mg-Si aluminum alloy material for shock absorbing members with excellent axial crushing performance.

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100210

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100514

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4516283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees