JP4515362B2 - Fuel cell vehicle and fuel cell control method - Google Patents

Fuel cell vehicle and fuel cell control method Download PDF

Info

Publication number
JP4515362B2
JP4515362B2 JP2005258929A JP2005258929A JP4515362B2 JP 4515362 B2 JP4515362 B2 JP 4515362B2 JP 2005258929 A JP2005258929 A JP 2005258929A JP 2005258929 A JP2005258929 A JP 2005258929A JP 4515362 B2 JP4515362 B2 JP 4515362B2
Authority
JP
Japan
Prior art keywords
fuel cell
scavenging
temperature
reaction gas
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005258929A
Other languages
Japanese (ja)
Other versions
JP2007073328A (en
Inventor
滋 稲井
亮 神馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005258929A priority Critical patent/JP4515362B2/en
Publication of JP2007073328A publication Critical patent/JP2007073328A/en
Application granted granted Critical
Publication of JP4515362B2 publication Critical patent/JP4515362B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

この発明は、反応ガスの反応によって発電を行う燃料電池を搭載した燃料電池自動車と燃料電池の制御方法に関するものである。   The present invention relates to a fuel cell vehicle equipped with a fuel cell that generates power by reaction of a reaction gas, and a fuel cell control method.

近年、車両の駆動源として燃料電池を備えた燃料電池自動車が提案されている。ここで用いられている燃料電池としては、アノードとカソードとの間に固体高分子電解室膜を介装した単位セルを所定数積層した構造をとるものが知られている。この燃料電池の場合、アノードに水素(燃料ガス)を、カソードに空気(酸化剤ガス)を夫々導入し、水素と酸素の電気化学反応によって発電するようになっている。   In recent years, a fuel cell vehicle equipped with a fuel cell as a driving source of the vehicle has been proposed. As a fuel cell used here, one having a structure in which a predetermined number of unit cells each having a polymer electrolyte chamber membrane interposed between an anode and a cathode is laminated is known. In the case of this fuel cell, hydrogen (fuel gas) is introduced into the anode and air (oxidant gas) is introduced into the cathode, and power is generated by an electrochemical reaction between hydrogen and oxygen.

燃料電池は発電の際に水を生成するため、発電停止時には燃料電池内に水分が残留し易い。そして、燃料電池内に水分が残留した状態で発電が停止すると、例えば、低温環境下で車両を始動する場合に、燃料電池内の残留水が凍結して反応ガス流路が閉塞されてしまい、始動時間が長くなってしまう。このような事態を防止する観点から、燃料電池の停止時に電池内部の残留水を除去する技術が提案されている。   Since fuel cells generate water during power generation, moisture tends to remain in the fuel cells when power generation is stopped. And when power generation stops with moisture remaining in the fuel cell, for example, when starting the vehicle in a low temperature environment, the remaining water in the fuel cell freezes and the reaction gas flow path is blocked, Start-up time will be longer. From the viewpoint of preventing such a situation, a technique for removing residual water inside the battery when the fuel cell is stopped has been proposed.

この技術は、例えば、燃料電池の停止時に電池の内部(反応ガス流路内)に、乾燥した反応ガスを一定流量で流し、その反応ガスによって電池内の水分を掃気するようにしたものがある(例えば、特許文献1参照)。
特開2004−265684号公報
In this technique, for example, when the fuel cell is stopped, a dry reaction gas is allowed to flow at a constant flow rate in the cell (in the reaction gas flow path), and moisture in the cell is scavenged by the reaction gas. (For example, refer to Patent Document 1).
JP 2004-265684 A

しかし、この燃料電池のシステムは、発電の停止時に反応ガスを電池内に一定流量で流し続けるものであるため、反応ガス流路内の残留水を確実に排出し得るように反応ガスの流量を増大させると、掃気のためのエネルギー消費が大きくなり、さらに電解質膜内の残存水分や反応ガス流路の表面上の水分までも完全に除去しようとすると、掃気運転時間が長くなり、一層エネルギー消費が大きくなってしまう。   However, since this fuel cell system keeps the reaction gas flowing in the battery at a constant flow rate when power generation is stopped, the flow rate of the reaction gas is set so that the residual water in the reaction gas channel can be discharged reliably. If it is increased, the energy consumption for scavenging will increase, and if the remaining moisture in the electrolyte membrane and the moisture on the surface of the reaction gas channel are completely removed, the scavenging operation time will be longer and the energy consumption will be further increased. Will become bigger.

また、このような燃料電池システムを搭載した燃料電池自動車においては、運転スイッチをオフにして燃料電池による発電を停止した後にしばらくの間掃気運転が続けられるため、車両から降りようとする運転者に違和感を与えることが懸念される。   In addition, in a fuel cell vehicle equipped with such a fuel cell system, the scavenging operation can be continued for a while after the operation switch is turned off and power generation by the fuel cell is stopped. There is concern about giving a sense of incongruity.

そこで、この発明は、燃料電池の始動性の向上と省エネルギ化の両立が可能であり、しかも、発電停止後に車両から離れる運転者に掃気運転の継続による違和感を与えることのない燃料電池自動車及び燃料電池の制御方法を提供しようとするものである。   Therefore, the present invention is capable of improving both startability and energy saving of the fuel cell, and does not give the driver who leaves the vehicle after stopping power generation the uncomfortable feeling caused by continuing the scavenging operation. It is an object of the present invention to provide a method for controlling a fuel cell.

上記の課題を解決するための手段として、請求項1に記載の発明は、供給される反応ガスの化学反応により発電を行う燃料電池(例えば、後述の実施形態における燃料電池1)を搭載した自動車において、前記反応ガスが流通する反応ガス流路(例えば、後述の実施形態における水素供給流路3、エア供給流路6)と、この反応ガス通路内を掃気ガスにより掃気する掃気手段(例えば、後述の実施形態におけるエアコンプレッサ5)と、前記燃料電池の発電停止時に、前記反応ガス流路内の液化した水分を除去するための大流量の掃気を行わせる第1の掃気処理と、この第1の掃気処理の後に所定時間掃気を停止する待機処理と、この待機処理の後に前記反応ガス流路内の掃気を行う第2の掃気処理を行わせる制御手段(例えば、後述の実施形態におけるコントロールユニット12)と、を備え、前記所定時間を、運転者がイグニッションスイッチをオフにし、車両を降りて車両から充分に離れるまでの平均的な時間よりも充分に長い時間に設定し、前記掃気手段を、エアコンプレッサで構成し、前記制御手段は、前記待機処理中に前記エアコンプレッサを停止させる構成とした。 As means for solving the above-mentioned problems, the invention according to claim 1 is an automobile equipped with a fuel cell (for example, a fuel cell 1 in an embodiment described later) that generates electric power by a chemical reaction of a supplied reaction gas. In the above, a reaction gas flow path (for example, a hydrogen supply flow path 3 and an air supply flow path 6 in an embodiment described later) through which the reaction gas flows, and a scavenging means for scavenging the reaction gas passage with a scavenging gas (for example, An air compressor 5) in an embodiment to be described later, a first scavenging process for performing scavenging at a large flow rate to remove liquefied water in the reaction gas channel when power generation of the fuel cell is stopped; Control means for performing a standby process for stopping scavenging for a predetermined time after the first scavenging process and a second scavenging process for scavenging the reaction gas flow path after the standby process (for example, implementation described later) Comprising a, a control unit 12) in the state, the predetermined time, the driver turns off the ignition switch, sets the average sufficiently longer than the time until separated sufficiently from the vehicle off the vehicle, The scavenging means is composed of an air compressor, and the control means is configured to stop the air compressor during the standby process .

この発明の場合、運転者によって燃料電池の発電が停止操作されると、最初に、第1の掃気処理により反応ガス流路内に大流量の反応ガスを流すことによって、電池の内部に液滴の形で残存している残留水を排出した後に、所定時間掃気を停止する停止処理が行われる。運転者はこのタイミングで車両から降り、燃料電池において運転者がいなくなった後に第2の掃気処理が行われる。電解質膜内の残存水分や反応ガス流路の表面上の水分はこの第2の掃気処理によって蒸発し除去される。   In the case of the present invention, when the power generation of the fuel cell is stopped by the driver, first, a large amount of reaction gas is caused to flow in the reaction gas flow path by the first scavenging process, whereby droplets are formed inside the cell. After the residual water remaining in the form is discharged, a stop process for stopping scavenging for a predetermined time is performed. The driver gets out of the vehicle at this timing, and the second scavenging process is performed after the driver disappears in the fuel cell. Residual moisture in the electrolyte membrane and moisture on the surface of the reaction gas flow path are evaporated and removed by this second scavenging process.

請求項2に記載の発明は、請求項1に記載の発明において、前記第2の掃気処理を、燃料電池内の除湿性能の低下する設定下限温度を超える温度で行うようにした。   According to a second aspect of the present invention, in the first aspect of the invention, the second scavenging process is performed at a temperature exceeding a set lower limit temperature at which the dehumidifying performance in the fuel cell decreases.

請求項3に記載の発明は、請求項2に記載の発明において、前記燃料電池を加熱する加熱手段を備え、前記制御手段は、前記燃料電池の温度が前記設定下限温度以下になる場合に、前記第1の掃気処理を行わせた後に、前記加熱手段による加熱処理を行わせ、その後に前記燃料電池の温度が前記設定下限温度を超えた後に、前記掃気手段による第2の掃気処理を行わせるようにした。
この場合、燃料電池の発電停止時に、燃料電池の温度が設定下限温度以下になるときには、第1の掃気処理によって電池内部の残留水を排出した後に、燃料電池の温度が設定下限温度を超えるまで加熱手段による加熱が行われ、その後に第2の掃気処理が行われる。したがって、第2の掃気処理は常に設定下限温度を超える温度で行われることとなる。
Invention of Claim 3 is provided with the heating means which heats the said fuel cell in the invention of Claim 2, and the said control means is when the temperature of the said fuel cell becomes below the said setting minimum temperature, After the first scavenging process is performed, the heating process by the heating unit is performed, and then the second scavenging process by the scavenging unit is performed after the temperature of the fuel cell exceeds the set lower limit temperature. I tried to make it.
In this case, when the temperature of the fuel cell becomes equal to or lower than the set lower limit temperature when the power generation of the fuel cell is stopped, after the residual water inside the battery is discharged by the first scavenging process, the temperature of the fuel cell exceeds the set lower limit temperature. Heating by the heating means is performed, and then the second scavenging process is performed. Therefore, the second scavenging process is always performed at a temperature exceeding the set lower limit temperature.

また、請求項4に記載の発明は、請求項1〜3のいずれかに記載の発明において、前記第2の掃気処理は、前記第1の掃気処理の際の流量よりも少ない流量で行うようにした。   According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the second scavenging process is performed at a flow rate smaller than a flow rate at the time of the first scavenging process. I made it.

また、請求項5に記載の発明は、車両に搭載され、供給される反応ガスの化学反応により発電を行う燃料電池の制御方法において、前記燃料電池の発電停止時には、反応ガス流路内の液化した水分を除去するための大流量の掃気をエアコンプレッサで行い、その後に前記エアコンプレッサを停止して所定時間掃気を停止した後に、前記反応ガス流路内を再度掃気し、前記所定時間を、運転者がイグニッションスイッチをオフにし、車両を降りて車両から充分に離れるまでの平均的な時間よりも充分に長い時間に設定した。

According to a fifth aspect of the present invention, there is provided a control method for a fuel cell that is mounted on a vehicle and generates power by a chemical reaction of a supplied reaction gas. Scavenging at a large flow rate to remove the moisture , and then stopping the air compressor to stop scavenging for a predetermined time, and then scavenging the reaction gas flow path again , The driver turned off the ignition switch, and set it to a time sufficiently longer than the average time from getting off the vehicle and sufficiently leaving the vehicle.

この発明によれば、発電停止時に、最初に大流量の第1の掃気処理によって電池内の残留水を外部に排出し、その後に停止処理によって所定時間掃気を停止してから小流量の第2の掃気処理を行うため、掃気運転時間の長期化を招くことなく、電池内の残留水や残存水分を確実に除去することが可能になるとともに、停止処理のタイミングで運転者が車両から降り離れることで、掃気運転の継続による違和感を運転者に与えることが無くなる。
したがって、この発明によれば、冷寒時における燃料電池の始動性の向上と、省エネルギ化を図ることができるとともに、運転者が車両から降りる際の違和感を無くして商品性を高めることができる。
According to the present invention, when the power generation is stopped, the residual water in the battery is first discharged to the outside by the first scavenging process with a large flow rate, and then the scavenging is stopped for a predetermined time by the stop process, and then the second flow with the small flow rate is stopped. Since the scavenging process is performed, it is possible to reliably remove residual water and residual moisture in the battery without prolonging the scavenging operation time, and the driver gets off the vehicle at the timing of the stop process. Thus, the driver does not feel uncomfortable due to the continued scavenging operation.
Therefore, according to the present invention, it is possible to improve the startability of the fuel cell in cold weather and to save energy, and to improve the merchantability by eliminating the uncomfortable feeling when the driver gets out of the vehicle. .

特に、請求項2記載の発明によれば、第2の掃気処理を、燃料電池内の除湿性能の低下する設定下限温度を超える温度で行うため、第2の掃気処理の際に燃料電池内の温度が設定下限温度以下の温度になって燃料電池内の水分の蒸発が阻害されるのを防止することができる。   In particular, according to the second aspect of the present invention, the second scavenging process is performed at a temperature exceeding the set lower limit temperature at which the dehumidifying performance in the fuel cell is reduced. It can be prevented that the temperature becomes lower than the set lower limit temperature and the evaporation of moisture in the fuel cell is inhibited.

また、請求項3に記載の発明によれば、燃料電池の温度が設定下限温度以下のときに加熱手段によって積極的に燃料電池の温度を高めるため、第2の掃気処理の際に燃料電池内の残存水分の充分な除去を確実に行うことができる。   According to the third aspect of the present invention, the temperature of the fuel cell is positively increased by the heating means when the temperature of the fuel cell is equal to or lower than the set lower limit temperature. The remaining water can be removed sufficiently.

さらに、請求項4に記載の発明によれば、最初の掃気処理を大流量で行うことによって電池内の残留水を効率良く外部に排出することができるとともに、後の掃気処理を小流量で行うことによって掃気ガス内に水蒸気をより効率良く取り込み、かつ、エネルギー消費をも少なく抑えることが可能になる。   Furthermore, according to the invention described in claim 4, by performing the initial scavenging process at a large flow rate, the residual water in the battery can be efficiently discharged to the outside, and the subsequent scavenging process is performed at a small flow rate. As a result, water vapor can be taken into the scavenging gas more efficiently and energy consumption can be reduced.

以下、この発明にかかる燃料電池自動車と燃料電池の制御方法の実施形態を、図面を参照して説明する。
最初に、図1〜図4に示す第1の実施形態について説明する。
Embodiments of a fuel cell vehicle and a fuel cell control method according to the present invention will be described below with reference to the drawings.
First, the first embodiment shown in FIGS. 1 to 4 will be described.

図1は、この実施形態の燃料電池自動車で用いる燃料電池システムの機能ブロック図である。
燃料電池1は、例えば固体ポリマーイオン交換膜などからなる固体高分子電解質膜1aをアノード1bとカソード1cで両側から挟み込んで形成されたセルを複数積層して構成されたものである。なお、図1には単セルを模式的に記載している。
FIG. 1 is a functional block diagram of a fuel cell system used in the fuel cell vehicle of this embodiment.
The fuel cell 1 is configured by stacking a plurality of cells formed by sandwiching a solid polymer electrolyte membrane 1a made of, for example, a solid polymer ion exchange membrane from both sides with an anode 1b and a cathode 1c. FIG. 1 schematically shows a single cell.

このように構成された燃料電池1のアノード1bには燃料として水素が供給され、カソード1cには酸化剤として酸素を含む空気が供給される。これにより、アノード1bで触媒反応により発生した水素イオンが、電解質膜1aを通過してカソード1cまで移動してカソード1cで酸素と電気化学反応を起こして発電し、その際に水が生成される。このとき、カソード1c側で生じた生成水の一部は電解質膜1aを介してアノード1b側に逆拡散するため、アノード1b側にも生成水が存在する。   Hydrogen as a fuel is supplied to the anode 1b of the fuel cell 1 configured as described above, and air containing oxygen as an oxidant is supplied to the cathode 1c. As a result, hydrogen ions generated by the catalytic reaction at the anode 1b move through the electrolyte membrane 1a to the cathode 1c and cause an electrochemical reaction with oxygen at the cathode 1c to generate electric power. At this time, water is generated. . At this time, part of the generated water generated on the cathode 1c side is back-diffused to the anode 1b side through the electrolyte membrane 1a, so that the generated water is also present on the anode 1b side.

水素タンク2から供給される水素は、遮断弁4と水素供給流路3を通って燃料電池1のアノード1bに供給される。
一方、空気は、蓄電器20を電源として作動するエアコンプレッサ5からエア供給流路6に圧送され、燃料電池1のカソード1cへと供給される。
Hydrogen supplied from the hydrogen tank 2 is supplied to the anode 1 b of the fuel cell 1 through the shutoff valve 4 and the hydrogen supply flow path 3.
On the other hand, air is pumped from the air compressor 5 that operates using the battery 20 as a power source to the air supply passage 6 and supplied to the cathode 1 c of the fuel cell 1.

また、水素供給流路3とエア供給流路6は合流流路9を介して接続されている。合流流路9には掃気弁10が設けられ、この掃気弁10を解放することにより、エアコンプレッサ5の供給エアを掃気ガスとして水素供給路3内に流入させるようになっている。   Further, the hydrogen supply flow path 3 and the air supply flow path 6 are connected via a merging flow path 9. The merging flow path 9 is provided with a scavenging valve 10. By releasing the scavenging valve 10, the supply air of the air compressor 5 flows into the hydrogen supply path 3 as a scavenging gas.

そして、水素供給路3を通ってアノード1bに供給され、燃料電池1で消費されなかった未反応の水素は、アノード1b側の生成水等の残留水とともにアノード1bから循環流路13に排出され、エゼクタ14を介して水素供給流路3に合流するようになっている。つまり、燃料電池1から排出された水素は、水素タンク2から供給される新鮮な水素と合流して、再び燃料電池1のアノード1bに供給される。   Unreacted hydrogen that is supplied to the anode 1b through the hydrogen supply path 3 and not consumed by the fuel cell 1 is discharged from the anode 1b to the circulation passage 13 together with residual water such as produced water on the anode 1b side. The hydrogen supply channel 3 is joined via the ejector 14. That is, the hydrogen discharged from the fuel cell 1 merges with fresh hydrogen supplied from the hydrogen tank 2 and is supplied again to the anode 1 b of the fuel cell 1.

また、循環流路13から分岐した水素排出流路7にはアノード圧力調整弁17が設けられ、このアノード圧力調整弁17を開弁することにより利用済みの水素オフガスを水素排出流路7から排出する。なお、水素排出流路7から排出された水素ガスは、図示しない希釈ボックスにより所定濃度以下に希釈される。   The hydrogen discharge flow path 7 branched from the circulation flow path 13 is provided with an anode pressure adjustment valve 17. The used hydrogen off-gas is discharged from the hydrogen discharge flow path 7 by opening the anode pressure adjustment valve 17. To do. The hydrogen gas discharged from the hydrogen discharge channel 7 is diluted to a predetermined concentration or less by a dilution box (not shown).

一方、エア排出流路8には、カソード圧力調整弁18が設けられている。カソード圧力調整弁18を開くことにより、反応済みのエアオフガスをエア排出流路8から排出する。また、カソード圧力調整弁18の開度を調整することにより、燃料電池1のカソード1cに供給されるエア圧力(カソード圧力)を調整することができる。また、水素供給流路3やエア供給流路6には、アノード圧力やカソード圧力を測定するための図示しない圧力センサが夫々設けられ、これらの圧力センサの信号が制御手段であるコントロールユニット12に入力されるようになっている。   On the other hand, a cathode pressure adjusting valve 18 is provided in the air discharge channel 8. By opening the cathode pressure regulating valve 18, the reacted air-off gas is discharged from the air discharge channel 8. Further, the air pressure (cathode pressure) supplied to the cathode 1c of the fuel cell 1 can be adjusted by adjusting the opening of the cathode pressure adjusting valve 18. The hydrogen supply flow path 3 and the air supply flow path 6 are provided with pressure sensors (not shown) for measuring the anode pressure and the cathode pressure, respectively, and signals from these pressure sensors are sent to the control unit 12 which is a control means. It is designed to be entered.

コントロールユニット12は、イグニッションスイッチ15が接続されるとともに、電圧やガス圧、温度等を検出するための燃料電池1上の各種のセンサ21,22の信号と、燃料電池1の冷却や加熱のための温度調整回路23のサーモスタット24の水温信号、さらに蓄電池20の残容量信号が入力され、これらの信号に基づいて遮断弁4や掃気弁10、圧力調整弁17,18とともにエアコンプレッサ5を制御するようになっている。   The control unit 12 is connected to an ignition switch 15, and signals for various sensors 21 and 22 on the fuel cell 1 for detecting voltage, gas pressure, temperature, etc., and for cooling and heating the fuel cell 1. The water temperature signal of the thermostat 24 of the temperature adjusting circuit 23 and the remaining capacity signal of the storage battery 20 are input, and the air compressor 5 is controlled together with the shutoff valve 4, the scavenging valve 10 and the pressure adjusting valves 17 and 18 based on these signals. It is like that.

なお、温度調整回路23は、燃料電池1に導入される冷却水が循環する2経路の流路を有し、ラジエータ25を通過する正規流路26と、ラジエータ25を通過しないバイパス流路27がサーモスタット24によって切り換えられるようになっている。サーモスタット24は、常温時には燃料電池1を正規流路26に接続しており、冷却水の温度が設定下限温度以下になる温度になると流路の接続をバイパス流路27側に切り換える。また、冷却水を循環供給するための温度調整回路23内の冷媒ポンプ28は後述する掃気処理の間、運転を続ける。   The temperature adjustment circuit 23 has two passages through which the coolant introduced into the fuel cell 1 circulates, and includes a regular passage 26 that passes through the radiator 25 and a bypass passage 27 that does not pass through the radiator 25. It can be switched by a thermostat 24. The thermostat 24 connects the fuel cell 1 to the regular flow path 26 at room temperature, and switches the flow path connection to the bypass flow path 27 side when the temperature of the cooling water reaches a temperature lower than the set lower limit temperature. Further, the refrigerant pump 28 in the temperature adjustment circuit 23 for circulatingly supplying the cooling water continues to operate during the scavenging process described later.

以上の構成の燃料電池システムの作用について、図2のフローチャートに沿って説明する。
まず、ステップS10で、イグニッションスイッチ15がONからOFFに切り換わって、コントロールユニット12に運転停止信号が入力されると、ステップS12で、水素供給流路3の遮断弁4を閉じ、アノード1bへの水素の供給を停止することによって燃料電池1の発電を停止する。
The operation of the fuel cell system having the above configuration will be described with reference to the flowchart of FIG.
First, in step S10, when the ignition switch 15 is switched from ON to OFF and an operation stop signal is input to the control unit 12, in step S12, the shutoff valve 4 of the hydrogen supply flow path 3 is closed to the anode 1b. The power generation of the fuel cell 1 is stopped by stopping the supply of hydrogen.

次に、ステップS14で、コンプレッサ5の回転数を通常の発電時よりも上昇させて、第1の掃気処理である大流量掃気を開始する。このときには、アノード圧力調整弁17とカソード圧力調整弁18を全開状態にし、アノード1bとカソード1cに供給されるエア圧力を低下させる。また、このときの大流量のエアの供給により、燃料電池1のアノード1bやカソード1cにおける残留水蓄積部位と、排出通路7,8の差圧を増大させ、燃料電池1内に液滴で残留している残留水(凝結水)の排出を促進することができる。なお、この大流量掃気は、例えば、流路の出入口の差圧が設定値以下になったときにコントロールユニット12による指令によって停止する。   Next, in step S14, the rotational speed of the compressor 5 is increased from that during normal power generation, and large flow scavenging, which is the first scavenging process, is started. At this time, the anode pressure adjusting valve 17 and the cathode pressure adjusting valve 18 are fully opened, and the air pressure supplied to the anode 1b and the cathode 1c is lowered. Also, by supplying a large amount of air at this time, the differential pressure between the residual water accumulation sites in the anode 1b and the cathode 1c of the fuel cell 1 and the discharge passages 7 and 8 is increased, and the droplets remain in the fuel cell 1 as droplets. It is possible to promote the discharge of residual water (condensed water). Note that this large flow scavenging is stopped by a command from the control unit 12 when, for example, the differential pressure at the inlet / outlet of the flow path becomes a set value or less.

この後、ステップS16において、サーモスタット部分からの水温信号に基づいて燃料電池内の温度を検出し、つづく、ステップS18において、燃料電池1内の温度が設定下限温度よりも高いかどうかを判断し、設定下限温度よりも高と判断した場合には、ステップS20で所定時間の経過を待った後にステップS22に進み、燃料電池1内の温度が設定下限温度以下であると判断した場合には、所定時間の経過を待たずにステップS22に進む。   Thereafter, in step S16, the temperature in the fuel cell is detected based on the water temperature signal from the thermostat portion, and in step S18, it is determined whether the temperature in the fuel cell 1 is higher than the set lower limit temperature, If it is determined that the temperature is higher than the set lower limit temperature, the process proceeds to step S22 after waiting for the elapse of a predetermined time in step S20. If it is determined that the temperature in the fuel cell 1 is equal to or lower than the set lower limit temperature, the predetermined time is The process proceeds to step S22 without waiting for elapse of time.

ここで、設定下限温度とは、その温度以下の環境で次の第2の掃気処理を行った場合に、燃料電池1内の除湿性能が低下して、再起動時における電池出力が低下する温度のことを言う。掃気開始時の温度と再起動時の電池出力は、図4に示すような関係にあり、同図に示すように掃気開始時の温度がある温度以下になると、再起動時の電池出力が急激に低下する。この電池出力が急激に低下し始める温度を設定下限温度としている。
また、ステップS20の所定時間は、運転者がイグニッションスイッチ15をOFFにし、車両から降りて車両から充分に離れるまでの平均的な時間よりも充分に長い時間であり、例えば20分から30分程度に設定される。
Here, the set lower limit temperature is a temperature at which the dehumidification performance in the fuel cell 1 is lowered and the battery output at the time of restarting is lowered when the next second scavenging process is performed in an environment below that temperature. Say that. The temperature at the start of scavenging and the battery output at the time of restart have a relationship as shown in FIG. 4, and when the temperature at the start of the scavenging is below a certain temperature as shown in FIG. To drop. The temperature at which the battery output starts to drop rapidly is taken as the set lower limit temperature.
The predetermined time in step S20 is sufficiently longer than the average time from when the driver turns off the ignition switch 15 until the driver gets off the vehicle and sufficiently leaves the vehicle, for example, about 20 to 30 minutes. Is set.

ステップS22では、つづく小流量掃気の継続可能な時間を決定する。この継続可能な時間は、蓄電器20の残容量を求め、以下の小流量掃気で最適量のエアを供給するのに必要なコンプレッサ5の消費エネルギーで蓄電器20の残量を割ることによって求められる。   In step S22, the time during which the subsequent small flow scavenging can be continued is determined. This continuable time is obtained by calculating the remaining capacity of the battery 20 and dividing the remaining capacity of the battery 20 by the energy consumption of the compressor 5 necessary for supplying the optimum amount of air with the following small flow rate scavenging.

つづく、ステップS24では、コンプレッサ5の回転を下降させることにより、第2の掃気処理である小流量掃気を行う。このとき、コンプレッサ5の回転数は、通常の発電時の回転数よりも低くなっている。ここで、このように小流量掃気を行うことにより、残留水分を水蒸気として掃気ガスに取り込ませる(飽和させる)効率を高めることができる。   Subsequently, in step S24, the small flow rate scavenging that is the second scavenging process is performed by lowering the rotation of the compressor 5. At this time, the rotation speed of the compressor 5 is lower than the rotation speed during normal power generation. Here, by performing the small flow scavenging in this way, it is possible to increase the efficiency of taking in (saturating) the residual moisture into the scavenging gas as water vapor.

次の、ステップS26では、小流量掃気の開始後にステップS22で決定した掃気可能時間が経過したかどうかを判断し、掃気可能時間が経過したと判断されたところでステップ27に進み、システムを停止する。   In the next step S26, it is determined whether or not the scavenging time determined in step S22 has elapsed after the start of the small flow scavenging. When it is determined that the scavenging time has elapsed, the process proceeds to step 27 and the system is stopped. .

なお、ステップS18において、燃料電池1内の温度が設定下限温度以下であると判断した場合に、所定時間の経過を待たずにステップS22以下の処理に進むのは、外気温の低下等によって待ち時間の経過によって燃料電池1内の温度がさらに低下するのを防止するためである。つまり、燃料電池1内の温度は、設定下限温度よりも低くなればなるほど掃気ガス中に水分が蒸発しにくくなり、第2の掃気処理の際の電池内の水分の除去効率が低下してしまうため、この不具合を無くすために待機処理(所定時間の待ち)を行わないようにしている。   If it is determined in step S18 that the temperature in the fuel cell 1 is equal to or lower than the set lower limit temperature, the process proceeds to step S22 and subsequent steps without waiting for the elapse of a predetermined time due to a decrease in outside air temperature or the like. This is to prevent the temperature in the fuel cell 1 from further decreasing with the passage of time. That is, as the temperature in the fuel cell 1 becomes lower than the set lower limit temperature, the moisture is less likely to evaporate in the scavenging gas, and the water removal efficiency in the cell during the second scavenging process is reduced. Therefore, in order to eliminate this problem, standby processing (waiting for a predetermined time) is not performed.

以上のようにこの実施形態の燃料電池自動車によれば、燃料電池1の発電停止直後に第1段の大流量の掃気によって短時間で燃料電池1内の多く残留水を排出し、その後に燃料電池1の温度が設定下限温度以下でなければ、運転者が車両から離れるのに充分な所定時間の経過を待った後に、第2段の小流量の掃気によって電解質膜1a内の残存水分や流路表面に付着した水分の除去を行うようにしているため、燃料電池1の発電停止時に充分に、かつ効率良く電池内の水分除去を行うことができるとともに、運転者が車両から離れる際に燃料電池1の掃気処理を一時的に停止することで、掃気ノイズによる違和感を運転者に与える不具合を無くすことができる。
したがって、この燃料電池自動車においては、発電停止時に電池内部の水分を充分に除去することで冷寒時における燃料電池の始動性の向上を図り、かつ大流量掃気と小流量掃気を段階的に行うことで省エネルギ化を図ることができるとともに、運転者が車両から離れる際の掃気ノイズを無くすことで車両の商品性を高めることができる。
As described above, according to the fuel cell vehicle of this embodiment, immediately after the power generation of the fuel cell 1 is stopped, a large amount of residual water in the fuel cell 1 is discharged in a short time by scavenging the first stage with a large flow rate, and then the fuel If the temperature of the battery 1 is not equal to or lower than the set lower limit temperature, after waiting for a predetermined time sufficient for the driver to leave the vehicle, the remaining moisture and the flow path in the electrolyte membrane 1a are removed by scavenging at a small flow rate in the second stage. Since the water adhering to the surface is removed, the water in the battery can be removed sufficiently and efficiently when the power generation of the fuel cell 1 is stopped, and the fuel cell when the driver leaves the vehicle. By temporarily stopping the one scavenging process, it is possible to eliminate the problem of giving the driver a sense of discomfort due to the scavenging noise.
Therefore, in this fuel cell vehicle, the startability of the fuel cell is improved in cold weather by sufficiently removing moisture inside the battery when power generation is stopped, and a large flow scavenging and a small flow scavenging are performed in stages. Thus, energy saving can be achieved, and the merchantability of the vehicle can be improved by eliminating scavenging noise when the driver leaves the vehicle.

図3は、この実施形態の燃料電池システムと、掃気を行わない対策前の燃料電池システムの再起動時の出力の変化の様子を示す特性図(この実施形態の特性は、「対策後」と記載)であり、この図から明らかなようにこの実施形態の燃料電池システムを採用した場合には、再起動後に即時に充分な出力を得ることができる。   FIG. 3 is a characteristic diagram showing the change in output when the fuel cell system of this embodiment and the fuel cell system before scavenging without countermeasures are restarted (the characteristic of this embodiment is “after countermeasures” As is clear from this figure, when the fuel cell system of this embodiment is adopted, sufficient output can be obtained immediately after restarting.

つづいて、図5に示す第2の実施形態について説明する。
この実施形態の燃料電池システムの構成は、第1の実施形態とほぼ同様であるが、燃料電池の内部温度が設定下限温度よりも低い場合に、さらに別の処理を行う点が異なっている。
具体的には、この実施形態の場合、燃料電池1の作動による反応熱を、燃料電池1を加熱するための手段として用い、燃料電池1の温度が設定下限温度以下の場合に、その設定下限温度を超えるまで再度燃料電池1の発電を継続するようにしている。
Next, the second embodiment shown in FIG. 5 will be described.
The configuration of the fuel cell system of this embodiment is substantially the same as that of the first embodiment, except that another process is performed when the internal temperature of the fuel cell is lower than the set lower limit temperature.
Specifically, in the case of this embodiment, the reaction heat due to the operation of the fuel cell 1 is used as a means for heating the fuel cell 1, and when the temperature of the fuel cell 1 is equal to or lower than the set lower limit temperature, the set lower limit The power generation of the fuel cell 1 is continued again until the temperature is exceeded.

図5のフローチャートのステップS18とステップS20の間の介在するステップS31,ステップS32がここで説明した制御に相当する部分である。なお、図2のフローチャートと同一処理部分には同一ステップ名を付してある。
以下、ステップS18とステップ20の間の処理について説明する。
ステップS18では、燃料電池1内の温度が設定下限温度よりも高い場合には、第1の実施形態と同様にステップS20に進んで所定時間の経過を待ち、電池1内の温度が設定下限温度以下の場合には、ステップS31に進んで燃料電池1の発電を開始して電池1内の温度を高める。この昇温のための燃料電池1の発電は、次のステップS32で電池1内温度が設定下限温度を超えたと判断されるまで続け、ステップS32で設定下限温度を超えたと判断されると、ステップS20に進んで所定時間が経過したかどうかを判断する。
Steps S31 and S32 interposed between steps S18 and S20 in the flowchart of FIG. 5 correspond to the control described here. The same processing parts as those in the flowchart of FIG. 2 are given the same step names.
Hereinafter, the process between step S18 and step 20 will be described.
In step S18, when the temperature in the fuel cell 1 is higher than the set lower limit temperature, the process proceeds to step S20 in the same manner as in the first embodiment, waits for a predetermined time, and the temperature in the battery 1 is set to the set lower limit temperature. In the following cases, the process proceeds to step S31 to start power generation of the fuel cell 1 to increase the temperature in the cell 1. The power generation of the fuel cell 1 for increasing the temperature is continued until it is determined in step S32 that the temperature in the battery 1 has exceeded the set lower limit temperature, and if it is determined in step S32 that the set lower limit temperature has been exceeded, step S32 is performed. It progresses to S20 and it is judged whether predetermined time passed.

したがって、この実施形態の制御においては、冷寒地等で燃料電池1の温度が設定下限温度以下になることがあっても、燃料電池1の再発電によって燃料電池1の温度を積極的に高め、それによって後の小流量掃気において掃気ガス中に効率良く水分を蒸発させることができる。   Therefore, in the control of this embodiment, even if the temperature of the fuel cell 1 is lower than the set lower limit temperature in a cold region or the like, the temperature of the fuel cell 1 is actively increased by regenerating the fuel cell 1. As a result, moisture can be efficiently evaporated into the scavenging gas in the subsequent small flow scavenging.

また、図6,図7は、第3の実施形態を示すものである。
この実施形態の燃料電池システムは第1の実施形態とほぼ同様であるが、図6に示すように温度調整回路23中に水素を用いる触媒燃焼ヒータや電気ヒータ等の外部ヒータ40を介装した点が異なっている。したがって、図6では、図1の構成と同一部分に同一符号を付し、重複する説明を省略するものとする。
6 and 7 show a third embodiment.
The fuel cell system of this embodiment is almost the same as that of the first embodiment, but an external heater 40 such as a catalytic combustion heater or an electric heater using hydrogen is interposed in the temperature adjustment circuit 23 as shown in FIG. The point is different. Therefore, in FIG. 6, the same parts as those in FIG.

また、図7は、この実施形態の燃料電池システムの制御を示すフローチャートであるが、図5に示す第2の実施形態のフローチャートに対してステップS131の部分だけが異なり、他の部分は同様の処理を行っている。即ち、この実施形態では、第2の実施形態ではステップS31で、燃料電池の再発電を行っていたのを、ステップS131で外部ヒータ40によって加熱するようにしている。   FIG. 7 is a flowchart showing the control of the fuel cell system of this embodiment, but only the step S131 is different from the flowchart of the second embodiment shown in FIG. Processing is in progress. That is, in this embodiment, in the second embodiment, the re-power generation of the fuel cell in step S31 is heated by the external heater 40 in step S131.

この実施形態の場合、燃料電池1の発電を再開しないために新たな水分の生成が生じず、そのために、より効率良く残留水分の除去を行うことができる。   In the case of this embodiment, the generation of new moisture does not occur because the power generation of the fuel cell 1 is not resumed, so that the remaining moisture can be removed more efficiently.

なお、この発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の設計変更が可能である。例えば、燃料電池の内部温度の検出は温度調整回路の水温に限らず、反応ガス流路の入口側に温度センサを設け、そのセンサによって温度を検出するようにしても良い。   In addition, this invention is not limited to the said embodiment, A various design change is possible in the range which does not deviate from the summary. For example, the detection of the internal temperature of the fuel cell is not limited to the water temperature of the temperature adjustment circuit, and a temperature sensor may be provided on the inlet side of the reaction gas flow path, and the temperature may be detected by the sensor.

この発明の第1の実施形態における燃料電池システムのブロック図。1 is a block diagram of a fuel cell system according to a first embodiment of the present invention. 同実施形態の制御を示すフローチャート。The flowchart which shows the control of the same embodiment. 同実施形態と比較例の再起動時の出力特性図。The output characteristic figure at the time of restart of the embodiment and a comparative example. 同実施形態を説明するための掃気開始温度と再起動出力の関係特性図。FIG. 6 is a relationship characteristic diagram between a scavenging start temperature and a restart output for explaining the embodiment. この発明の第2の実施形態の制御を示すフローチャート。The flowchart which shows the control of 2nd Embodiment of this invention. この発明の第3の実施形態における燃料電池システムのブロック図。The block diagram of the fuel cell system in 3rd Embodiment of this invention. 同実施形態の制御を示すフローチャート。The flowchart which shows the control of the same embodiment.

符号の説明Explanation of symbols

1…燃料電池
3…水素供給流路(反応ガス流路)
5…エアコンプレッサ
6…エア供給流路(反応ガス流路)
7…水素排出流路(反応ガス流路)
8…エア排出流路(反応ガス流路)
12…コントロールユニット(制御手段)

DESCRIPTION OF SYMBOLS 1 ... Fuel cell 3 ... Hydrogen supply flow path (reaction gas flow path)
5 ... Air compressor 6 ... Air supply channel (reactive gas channel)
7 ... Hydrogen discharge channel (reaction gas channel)
8 ... Air discharge channel (reactive gas channel)
12 ... Control unit (control means)

Claims (5)

供給される反応ガスの化学反応により発電を行う燃料電池を搭載した自動車において、
前記反応ガスが流通する反応ガス流路と、
この反応ガス通路内を掃気ガスにより掃気する掃気手段と、
前記燃料電池の発電停止時に、前記反応ガス流路内の液化した水分を除去するための大流量の掃気を行わせる第1の掃気処理と、この第1の掃気処理の後に所定時間掃気を停止する待機処理と、この待機処理の後に前記反応ガス流路内の掃気を行う第2の掃気処理を行わせる制御手段と、を備え
前記所定時間を、運転者がイグニッションスイッチをオフにし、車両を降りて車両から充分に離れるまでの平均的な時間よりも充分に長い時間に設定し、
前記掃気手段を、エアコンプレッサで構成し、
前記制御手段は、前記待機処理中に前記エアコンプレッサを停止させることを特徴とする燃料電池自動車。
In an automobile equipped with a fuel cell that generates electricity by a chemical reaction of the supplied reaction gas,
A reaction gas flow path through which the reaction gas flows;
Scavenging means for scavenging the reaction gas passage with scavenging gas;
A first scavenging process for performing scavenging at a large flow rate to remove liquefied water in the reaction gas channel when power generation of the fuel cell is stopped, and scavenging is stopped for a predetermined time after the first scavenging process And a control means for performing a second scavenging process for scavenging the reaction gas flow path after the standby process ,
The predetermined time is set to a time sufficiently longer than an average time until the driver turns off the ignition switch, gets off the vehicle and sufficiently leaves the vehicle,
The scavenging means is composed of an air compressor,
The fuel cell vehicle characterized in that the control means stops the air compressor during the standby process .
前記第2の掃気処理は、燃料電池内の除湿性能の低下する設定下限温度を超える温度で行うことを特徴とする請求項1に記載の燃料電池自動車。   2. The fuel cell vehicle according to claim 1, wherein the second scavenging process is performed at a temperature that exceeds a set lower limit temperature at which the dehumidifying performance in the fuel cell decreases. 前記燃料電池を加熱する加熱手段を備え、
前記制御手段は、前記燃料電池の温度が前記設定下限温度以下になる場合に、前記第1の掃気処理を行わせた後に、前記加熱手段による加熱処理を行わせ、その後に前記燃料電池の温度が前記設定下限温度を超えた後に、前記掃気手段による第2の掃気処理を行わせることを特徴とする請求項2に記載の燃料電池自動車。
A heating means for heating the fuel cell;
When the temperature of the fuel cell is equal to or lower than the set lower limit temperature, the control means causes the heating means to perform heat treatment after the first scavenging process, and then the temperature of the fuel cell. 3. The fuel cell vehicle according to claim 2, wherein after the temperature exceeds the set lower limit temperature, the second scavenging process is performed by the scavenging means.
前記第2の掃気処理は、前記第1の掃気処理の際の流量よりも少ない流量で行うことを特徴とする請求項1〜3のいずれかに記載の燃料電池自動車。   The fuel cell vehicle according to any one of claims 1 to 3, wherein the second scavenging process is performed at a flow rate that is smaller than a flow rate during the first scavenging process. 車両に搭載され、供給される反応ガスの化学反応により発電を行う燃料電池の制御方法において、
前記燃料電池の発電停止時には、反応ガス流路内の液化した水分を除去するための大流量の掃気をエアコンプレッサで行い、その後に前記エアコンプレッサを停止して所定時間掃気を停止した後に、前記反応ガス流路内を再度掃気し、前記所定時間を、運転者がイグニッションスイッチをオフにし、車両を降りて車両から充分に離れるまでの平均的な時間よりも充分に長い時間に設定したことを特徴とする燃料電池の制御方法。
In a control method of a fuel cell that is mounted on a vehicle and generates power by a chemical reaction of a supplied reactive gas,
At the time of stopping the power generation of the fuel cell, scavenging at a large flow rate for removing liquefied water in the reaction gas flow path is performed by an air compressor, and then the air compressor is stopped and the scavenging is stopped for a predetermined time. The inside of the reaction gas passage is scavenged again, and the predetermined time is set to a time sufficiently longer than the average time until the driver turns off the ignition switch, gets off the vehicle and sufficiently leaves the vehicle. A control method for a fuel cell.
JP2005258929A 2005-09-07 2005-09-07 Fuel cell vehicle and fuel cell control method Expired - Fee Related JP4515362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005258929A JP4515362B2 (en) 2005-09-07 2005-09-07 Fuel cell vehicle and fuel cell control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005258929A JP4515362B2 (en) 2005-09-07 2005-09-07 Fuel cell vehicle and fuel cell control method

Publications (2)

Publication Number Publication Date
JP2007073328A JP2007073328A (en) 2007-03-22
JP4515362B2 true JP4515362B2 (en) 2010-07-28

Family

ID=37934619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005258929A Expired - Fee Related JP4515362B2 (en) 2005-09-07 2005-09-07 Fuel cell vehicle and fuel cell control method

Country Status (1)

Country Link
JP (1) JP4515362B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4856428B2 (en) * 2006-01-17 2012-01-18 本田技研工業株式会社 Fuel cell system and operation method thereof
JP5009761B2 (en) * 2007-11-27 2012-08-22 本田技研工業株式会社 Fuel cell system and control method thereof
JP5314332B2 (en) * 2008-06-19 2013-10-16 本田技研工業株式会社 Fuel cell system and operation method thereof
US9570768B2 (en) 2012-03-08 2017-02-14 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method thereof
JP6237715B2 (en) * 2015-06-23 2017-11-29 トヨタ自動車株式会社 Fuel cell system
JP6179560B2 (en) * 2015-06-26 2017-08-16 トヨタ自動車株式会社 Fuel cell system
JP7298541B2 (en) * 2020-05-19 2023-06-27 トヨタ自動車株式会社 fuel cell system
JP7363674B2 (en) * 2020-05-29 2023-10-18 トヨタ自動車株式会社 fuel cell system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116269A (en) * 2003-10-06 2005-04-28 Honda Motor Co Ltd Method for stopping fuel cell
JP2005183197A (en) * 2003-12-19 2005-07-07 Honda Motor Co Ltd Stopping method of fuel cell
JP2005228637A (en) * 2004-02-13 2005-08-25 Nissan Motor Co Ltd Fuel cell system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116269A (en) * 2003-10-06 2005-04-28 Honda Motor Co Ltd Method for stopping fuel cell
JP2005183197A (en) * 2003-12-19 2005-07-07 Honda Motor Co Ltd Stopping method of fuel cell
JP2005228637A (en) * 2004-02-13 2005-08-25 Nissan Motor Co Ltd Fuel cell system

Also Published As

Publication number Publication date
JP2007073328A (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP4515362B2 (en) Fuel cell vehicle and fuel cell control method
JP4997804B2 (en) Fuel cell system
JP4209611B2 (en) Control device for fuel cell system
US6926980B2 (en) System and method for draining remaining water in fuel cell
US20180034087A1 (en) Method of controlling fuel cell system
JP4632055B2 (en) Fuel cell system and liquid discharge method thereof
JP2007220425A (en) Fuel cell system
JP4844352B2 (en) Control device for fuel cell system
JP2004129433A (en) Fuel cell powered vehicle and its control method
JP2009037865A (en) Fuel cell system
JP4498707B2 (en) Operation method of fuel cell system and fuel cell operation device
JP2005259526A (en) Conditioning method for fuel cell
JP2004207030A (en) Fuel cell system
JP2009004243A (en) Fuel cell system
JP2005285610A (en) Fuel cell system
JP2002141094A (en) Fuel cell system
JP5187477B2 (en) Fuel cell system
JP2009224179A (en) Fuel cell system
JP2009004291A (en) Fuel cell system and performance recovery method therefor
JP2007311087A (en) Fuel cell system, and ion removal method in cooling system in the same
JP2005093231A (en) Fuel cell operation device and operation method
JP2006179199A (en) Fuel cell system
JP3879435B2 (en) Fuel cell system
JP6173282B2 (en) How to stop the fuel cell system
JP2006156181A (en) Low-temperature starting method of fuel cell, and fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100506

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100512

R150 Certificate of patent or registration of utility model

Ref document number: 4515362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees