JP4515039B2 - Gear unit using double-row integrated angular bearing - Google Patents

Gear unit using double-row integrated angular bearing Download PDF

Info

Publication number
JP4515039B2
JP4515039B2 JP2003103447A JP2003103447A JP4515039B2 JP 4515039 B2 JP4515039 B2 JP 4515039B2 JP 2003103447 A JP2003103447 A JP 2003103447A JP 2003103447 A JP2003103447 A JP 2003103447A JP 4515039 B2 JP4515039 B2 JP 4515039B2
Authority
JP
Japan
Prior art keywords
rolling elements
row
bearing
balls
rows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003103447A
Other languages
Japanese (ja)
Other versions
JP2004308792A (en
Inventor
実 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabtesco Corp
Original Assignee
Nabtesco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabtesco Corp filed Critical Nabtesco Corp
Priority to JP2003103447A priority Critical patent/JP4515039B2/en
Publication of JP2004308792A publication Critical patent/JP2004308792A/en
Application granted granted Critical
Publication of JP4515039B2 publication Critical patent/JP4515039B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/546Systems with spaced apart rolling bearings including at least one angular contact bearing
    • F16C19/547Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings
    • F16C19/548Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/182Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact in tandem arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts

Description

【0001】
【発明の属する技術分野】
本発明は、アンギュラ軸受を用いた歯車装置に関する。より詳しくは、本発明は、特に、産業ロボット用減速機などのような過酷なモーメント荷重が作用する条件下で使用されるアンギュラ玉軸受を用いた減速機などのような歯車装置に関する。
【0002】
【従来の技術】
【特許文献1】
特開平9−264321号公報
【特許文献2】
特開平11−325060号公報
【特許文献3】
特公昭43−4721号公報
【特許文献4】
特公昭44−26242号公報
【0003】
一般に、アンギュラ軸受は、図8に示すように、転動体10と、転動体10を保持する保持器12と、転動体10の内外軌道面14a、16aを有し、かつ、転動体10と内外軌道面14a、16aとがラジアル方向に対して所定の接触角θをもって接触する内外輪14、16とを具備した構成となっている。
【0004】
この構成のため、アンギュラ軸受においては、ラジアル荷重と一方向のアキシャル荷重とを負荷可能である。なお、アンギュラ軸受は、図8に示すように一つのアンギュラ軸受に転動体(玉)10を一列に配置したものや、図10に示すように一つのアンギュラ軸受に転動体(玉)10を二列に配置したものがある(なお、図10では保持器の図示を省略している)が、これはアンギュラ軸受が大きくなる。
【0005】
また、特許文献1(特開平9−264321号公報)に記載されているように、アンギュラ軸受は用途および負荷の大きさによって、単列で使用したり、複数のアンギュラ軸受を用いて複列で正面合わせや背面合わせで組合わせて使用している。しかし、複列で組合わせて使用すると、軸受の大きさが大きくなると言う問題がある。
【0006】
従来、アンギュラ軸受の負荷能力を向上させるには、軌道輪の肉厚を大きくしたり、転動体の個数を多くしたり、転動体と内外軌道面の曲率半径を最適にすることが一般的に採用されている。
【0007】
アンギュラ軸受の負荷能力を向上させるに当たって、従来のように、軌道輪の肉厚を大きくしたり、転動体の配列を並列に配置したりすると軸受全体の大きさが大きくなり、軸受の組付け箇所の制約を受け易くなり、コンパクト化の要請に対処できないという制約がある。
【0008】
また、転動体個数を多くしようとても、充填できる転動体の数にも限界がある。例えば、図11に示すような産業ロボット用減速機の軸受に使用される従来のアンギュラ軸受の場合、転動体の充填率は85%以下である。ここに、充頃率とは転動体の直径(D)を転動体数(N)で乗した距離を転動体のピッチ円直径上の円周長さ(L)で除した百分率(100×D×N/L)を言う。このように、保持器を有する従来のアンギュラ軸受では、充填率は精々85%である。
【0009】
特許文献2(特開平11−325060号公報)には、保持器を無くし総ボール(玉)として充填率を増加させた軸受が開示されている。しかし、この特許文献2に開示された総ボール転がり軸受では、図11に示したような、より過酷なモーメントが発生する産業ロボット用減速機などに使用すると、アンギュラ軸受は転動体(玉)同士が擦り合うことにより、転動体(玉)の表面に鉢巻状の傷が付き軸受寿命を低下させる場合がある。
【0010】
また、特許文献3(特公昭43−4721号公報)および特許文献4(特公昭44−26242号公報)には、一つのアンギュラ軸受に2組の保持器によりピッチ円直径が異なる二列の玉軸受を軸方向に玉直径より大きな間隔を開けて配置することが開示されている。しかし、特許文献3、特許文献4に開示されたアンギュラ軸受では二列の玉軸受を軸方向に玉直径より大きな間隔を開けて配置しているので、前述した特許文献1において複列で組合わせて使用した場合と同様に軸受の大きさが大きくなると言う問題がある。
【0011】
【発明が解決しようとする課題】
本発明は、上述したような従来技術に付随する問題を解消して、軸受の幅寸法を従来の単列の軸受と略同程度として著しく大きくすることがなく、しかも負荷能力を向上させることができるアンギュラ軸受を用いた歯車装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明においては、二個の複列式一体アンギュラ軸受がアンギュラ軸受の軸方向に間隔を開けて対向配置されている歯車装置であり、各複列式一体アンギュラ軸受は、ピッチ円直径が異なる複数列の転動体と、前記複数列の転動体を保持する一つの保持器と、転動体の内外軌道面を有し且つ転動体と内外軌道面とがラジアル方向に対して所定の接触角を持って接触する内外輪とを具備し、前記複数列の転動体がアンギュラ軸受の軸方向に間隔を開けて且つ隣接する複数列の転動体の軸方向中心間隔が転動体の軸方向寸法未満に配置されており、前記転動体が玉であり、前記複数列の玉の接触角を同方向で且つ一方の列の接触角を0°に近づけるとともに他方の列の接触角を90°に近づけて異なる角度に設定したことを特徴とする複列式一体アンギュラ軸受を用いた歯車装置により、上述した目的を達成する。
【0013】
本発明においては、特に実施例に示すように、前記転動体が玉であり、複数列の転動体に対して一つの保持器があり、該保持器の周面に複数列の玉を受ける凹部が千鳥状に形成されていることが好ましい。この凹部に玉を受けることにより、玉は保持器の周方向に千鳥状に交互に配列され、転動体の充填率を85%以上にすることもできる。後述する実施例においては充填率は115%である。
【0014】
更に、本発明においては、転動体が玉であり、前記複数列の玉の接触角を同方向で且つ異なる角度に設定することにより、用途に応じて(すなわち、過大なラジアル荷重や過大なアキシャル荷重が発生する場合)、複列の転動体(玉)の接触角を互いに違う接触角にして、各列の転動体(玉)に、それぞれ過大なラジアル荷重および過大なアキシャル荷重に対応させている。すなわち、一方の列の接触角を0°に近づけることにより、ラジアル荷重に強くし、また、他方の列の接触角を90°に近づけることにより、アキシャル荷重に強くしている。このようにして、ラジアル荷重およびアキシャル荷重にともに強い軸受としている
【0015】
【実施の形態】
以下、本発明の実施例を図示した図面を参照して、本発明を詳細に説明する。図6は本発明の実施例の歯車装置(図示した実施例は産業ロボット用減速機)の一例を示す断面図である。図6に示すように、この実施例においては、複列式一体アンギュラ軸受1、1の二個がアンギュラ軸受1、1の軸方向に間隔を開けて対向配置されている。
図1は本発明の複列式一体アンギュラ軸受1の一実施例の断面図である。図1において、この実施例のアンギュラ軸受1は、転動体10と、転動体10を保持する保持器12と、内外輪14、16とから構成されている。この実施例の転動体10は玉である。内外輪14、16は転動体(玉)10の内外軌道面14a、16aを有しており、転動体(玉)10と内外軌道面14a、16aとがラジアル方向に対して所定の接触角θを持って接触している。
【0016】
この実施例において、転動体(玉)10は複数列(図示した実施例では2列)18a、18b配設されており、各列18a、18bには、転動体10(玉)が周方向にそれぞれn1個、n2個、共通の保持器12に、アンギュラ軸受1の回転軸心Xを中心として異なるピッチ円直径d、dで設けられている。
【0017】
複数列18a、18bの転動体(玉)10は、アンギュラ軸受1の軸方向に間隔aを開けて配置されている。互いに隣接する該複数列18a、18bの転動体(玉)10の軸方向中心間隔aが転動体(玉)10の軸方向寸法未満となっており、図示した実施例では転動体10は玉のため、その直径DまたはDの小さい方未満となっている。
【0018】
アンギュラ軸受1の軸方向厚さHと内外輪14、16の半径方向幅Wとの関係は、W≧Hとすることが好ましい。なお、図示した実施例ではW=Hとしている。
【0019】
保持器12は、図3に示すように、その主要部が円錐面となっており、その円錐面12の周方向に第1列18aの転動体(玉)を受ける凹部12aが形成されており、第1列18aの凹部12aから軸方向に間隔aを開けて第2列18bの転動体(玉)を受ける凹部12bが形成されている。ここに、周方向に見た場合に、凹部12bは隣合う凹部12aの中間位置に位置しており、前述した間隔aを有していることにより、保持器12の周面に複数列18a、18bの玉10を受ける凹部12a、12bが千鳥状に形成されている。
【0020】
なお、複数列における周方向の転動体10(玉)の数n、nは等しく、すなわち、n=nとすることが好ましく、また、複数列における転動体10(玉)の直径D、Dは等しく、すなわち、D=Dとしてもよい。
【0021】
複数列18a、18bの転動体(玉)10のピッチ円直径d、d上の円周長さL、Lは、円周率をπとすると、
=πd
=πd
である。従って、第1列18aの転動体(玉)10の充填率は、
【0022】
【数式1】

Figure 0004515039
となる。同様に、第2列18bの転動体(玉)10の充填率は、
【0023】
【数式2】
Figure 0004515039
となる。図示した実施例の複列式一体アンギュラ軸受においては、複列に転動体(玉)10が配列されているので、軸受全体としての転動体(玉)10の充填率は、
【0024】
【数式3】
Figure 0004515039
となり、前述したように、保持器を有する従来のアンギュラ軸受では、充填率は精々85%であったのに比較し、本発明によれば、85%を越える充填率を達成することができ、この実施例においては充填率は115%であった。
【0025】
しかも、本発明においては、複数列の転動体(玉)10を転動体の軸方向に中心間隔が転動体の軸方向寸法未満となるようにして、図3に示すように千鳥状に配列しているので、軸受の幅寸法を(従来の単列のものと同等程度と)著しく大きくすることなく、転動面を複列にして転動体の個数を可及的に増加させ、モーメント荷重剛性と軸受容量とを向上させた複列式一体アンギュラ軸受が提供される。
【0026】
図5に示すように、本発明における複数列18a、18bの玉10の接触角をθ、θと異ならせている
【0027】
このようにして、用途に応じて(例えば、過大なラジアル荷重や過大なアキシャル荷重が発生する場合)、複数列18a、18bの転動体(玉)10の接触角θ1、θ2を互いに異ならせて、各列の転動体(玉)に、それぞれ過大なラジアル荷重および過大なアキシャル荷重に対応させることができる。すなわち、一方の列の接触角を0°に近づけることにより、ラジアル荷重に強くでき、また、他方の列の接触角を90°に近づけることにより、アキシャル荷重に強できる。このようにして、ラジアル荷重およびアキシャル荷重にともに強い軸受とすることができる。
【0028】
また、保持器12は薄板状の鋼板から打ち抜いて形成したものでもよいが、ナイロン系樹脂などの合成樹脂製の保持器としてもよい。樹脂保持器とすることによって容易に安価に製作できる。
【0029】
図6において、支持ブロック23本体は、円板状部27および円板状部27に突設した柱状部31からなる。円板状部27の表面には隣接柱状部31間に所定深さの軸受装着孔27bおよび支持ブロック23をフレーム等にボルト結合するための螺子孔27cを形成している。支持ブロック23の一部をなす端円板35を支持ブロックの柱状部31にピン(図示せず)により一体的に結合しており、端円板35を支持ブロックの柱状部31にボルト34によって固定している。螺子孔31eはボルト34の締結孔であり、柱状部31に形成されている。
【0030】
端円板35には、柱状部31のピン孔に対応してピン孔(図示せず)を穿ち、螺子孔31eに対応してボルト貫通孔35cを穿ち、前述の円板状部27に形成した軸受装着孔27bに対応して軸受装着孔35dを形成している。軸受装着孔27b、35dにそれぞれコロ軸受37、39を装着し、該軸受37、39間にピニオン33の自転運動を取出すピンとしてクランクピン41を回転可能に両端支持している。クランクピン41はその回転軸線に対し偏心配置した2つのクランク部41a、41cを有し、ピニオン33がクランク部41a、41cに嵌合されている。
【0031】
ピニオン33は外周面にペリサイクロイド曲線への等距離曲線からなる歯形の外歯を有し、クランクピン41のクランク部41aまたは41cに軸受45を介して係合するピン孔33bを具備する。さらにピニオン33の中心部から半径方向に放射状に延在し支持ブロック23に形成した柱状部41より僅かに大きい寸法の柱状部用溝(図示せず)を形成している。
【0032】
本実施例においては支持ブロック23の円板状部27および端円板35の外周部に本発明に係る複列式一体アンギュラ軸受1、1を装着し、ハブ40を回転可能に支持している。ハブ40は車両の駆動スプロケットを駆動するもので、その内周面に、ピニオン33の外周に形成した外歯の歯数より僅かに多い数の内歯を形成している。ピニオン33の柱状部用溝は支持ブロック23の柱状部31により形成される柱状部31に遊嵌合しており、クランクピン41の自転運動によりそのクランク部41a、41cの中心軸線がクランクピン41の回転軸線に対して公転運動することにより2つのピニオン33は偏心公転運動され、外歯がハブ40の内歯歯車と係合する。
【0033】
この実施例においては、軸受の幅寸法を著しく大きくすることなく、負荷能力を向上させることができる本発明のアンギュラ軸受を過酷なモーメント荷重が作用する産業ロボット用減速機に採用しているので、産業ロボットを大型化することなく大きなモーメント荷重を支えることができる。
【0034】
図7に本発明を産業ロボット用減速機等に使用した別の実施例を示している。図7に示すように、この実施例においては、複列式一体アンギュラ軸受1、1の二個がアンギュラ軸受1、1の軸方向に間隔を開けて対向配置されている
この図7に示す実施例においては、本発明に係るアンギュラ軸受の内輪軌道面を軸(実施例においては、円板状部27の周面)に形成している。この構成により、アンギュラ軸受をコンパクトにでき、大型化することなく大きなモーメント荷重を支えることができる産業ロボットが提供される。
【0035】
図6および図7に示した実施例では本発明に係るアンギュラ軸受を産業ロボット用減速機等に使用したが、減速機に限らず増速機など、歯車装置に用いることができる。また、本発明に係るアンギュラ軸受は産業ロボットに限られるものではなく、軸受の幅寸法を著しく大きくすることなく、充填率を高め、アンギュラ軸受の負荷能力を向上させることが要求される機器に採用することができる。
【0036】
【発明の効果】
本発明によれば、軸受の幅寸法を著しく大きくすることなく、充填率を高め、アンギュラ軸受の負荷能力を向上させることができる。
すなわち、本発明においては、ピッチ円直径が異なる複数列の転動体を一つの保持器で保持し且つ転動体の軸方向に中心間隔が転動体の軸方向寸法未満にしているので、軸受の幅寸法を(従来の単列のものと同等程度と)著しく大きくすることなく、転動面を複列にして転動体の個数を可及的に増加させ、モーメント荷重剛性と軸受容量とを向上させた複列式一体アンギュラ軸受が提供される。
更に、本発明においては、転動体が玉であり、前記複数列の玉の接触角を同方向で且つ異なる角度に設定することにより、過大なラジアル荷重や過大なアキシャル荷重が発生する場合などの用途に応じて、複列の転動体(玉)の接触角を互いに違う接触角にして、各列の転動体(玉)に、それぞれ過大なラジアル荷重および過大なアキシャル荷重に対応させることができる。すなわち、一方の列の接触角を0°に近づけることにより、ラジアル荷重に強くし、また、他方の列の接触角を90°に近づけることにより、アキシャル荷重に強くしている。このようにして、ラジアル荷重およびアキシャル荷重にともに強い軸受としている。
上述のように、本発明のアンギュラ軸受においては、軸受の幅寸法を著しく大きくすることなく、負荷能力を向上させることができる。この負荷能力を向上させることができる本発明のアンギュラ軸受を二つ対向配置して過酷なモーメント荷重が作用する産業ロボット用歯車装置(減速機)に採用することにより、産業ロボットを大型化することなく大きなモーメント荷重を支えることができる。
【図面の簡単な説明】
【図1】本発明の複列式一体アンギュラ軸受の一例を示す断面図である。
【図2】本発明の一実施例のアンギュラ軸受の保持器上での玉の配列を示す斜視図である。
【図3】図2に示した実施例の保持器を示し、(a)は部分斜視図、(b)は上面図である。
【図4】図1に示した実施例の上部の部分断面図である。
【図5】他の実施例の上部の部分断面図である。
【図6】図1に示した実施例の軸受を用いた歯車装置を示す断面図である。
【図7】本発明の軸受の内輪を歯車装置の軸に一体的に形成した実施例を示す断面図である。
【図8】従来のアンギュラ軸受の一例を示す断面図である。
【図9】図8に示すアンギュラ軸受の保持器上での玉の配列を示す斜視図である。
【図10】従来の別のアンギュラ軸受を示す断面図である。
【図11】従来のアンギュラ軸受を用いた従来の歯車装置を示す断面図である。
【符号の説明】
1 アンギュラ軸受
10 転動体(玉)
12 保持器
14 内輪
14a 内軌道面
16 外輪
16a 外軌道面
18a、18b 転動体(玉)列
、D 玉の直径
、d ピッチ円直径
θ、θ 接触角[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gear device using an angular bearing. More particularly, the present invention relates to a gear device such as a speed reducer using an angular ball bearing that is used under a condition where a severe moment load acts, such as a speed reducer for an industrial robot.
[0002]
[Prior art]
[Patent Document 1]
JP-A-9-264321 [Patent Document 2]
Japanese Patent Laid-Open No. 11-325060 [Patent Document 3]
Japanese Patent Publication No. 43-4721 [Patent Document 4]
Japanese Examined Patent Publication No. 44-26242 [0003]
In general, as shown in FIG. 8, the angular bearing has a rolling element 10, a cage 12 that holds the rolling element 10, and inner and outer raceway surfaces 14 a and 16 a of the rolling element 10, and The raceway surfaces 14a and 16a are configured to include inner and outer rings 14 and 16 that are in contact with the radial direction with a predetermined contact angle θ.
[0004]
Due to this configuration, the angular bearing can be loaded with a radial load and an axial load in one direction. As shown in FIG. 8, the angular bearing has a single angular bearing in which rolling elements (balls) 10 are arranged in a row, or a single angular bearing has two rolling elements (balls) 10 as shown in FIG. Some are arranged in a row (note that the cage is not shown in FIG. 10), but this increases the angular bearing.
[0005]
Further, as described in Patent Document 1 (Japanese Patent Laid-Open No. 9-264321), the angular bearings can be used in a single row or in multiple rows using a plurality of angular bearings depending on the application and the size of the load. Used in combination for front-to-back and back-to-back alignment. However, there is a problem that the size of the bearing increases when used in combination in double rows.
[0006]
Conventionally, in order to improve the load capacity of angular bearings, it has been common to increase the wall thickness of the bearing ring, increase the number of rolling elements, and optimize the radius of curvature of the rolling elements and the inner and outer raceway surfaces. It has been adopted.
[0007]
In order to improve the load capacity of angular bearings, if the wall thickness of the bearing rings is increased or the arrangement of rolling elements is arranged in parallel as in the past, the overall size of the bearing will increase, and the bearing assembly location There is a restriction that it is difficult to cope with the request for downsizing.
[0008]
Also, increasing the number of rolling elements, there is a limit to the number of rolling elements that can be filled. For example, in the case of a conventional angular bearing used in a reduction gear bearing for an industrial robot as shown in FIG. 11, the filling factor of the rolling elements is 85% or less. Here, the filling rate is a percentage (100 × D) obtained by dividing the distance obtained by multiplying the diameter (D) of the rolling element by the number of rolling elements (N) by the circumferential length (L) on the pitch circle diameter of the rolling element. XN / L). Thus, in a conventional angular bearing having a cage, the filling rate is at most 85%.
[0009]
Patent Document 2 (Japanese Patent Application Laid-Open No. 11-325060) discloses a bearing in which the cage is eliminated and the filling rate is increased as a total ball (ball). However, in the total ball rolling bearing disclosed in Patent Document 2, when used in a reduction gear for an industrial robot or the like that generates a more severe moment as shown in FIG. As a result of rubbing, the surface of the rolling element (ball) may have a headband-like flaw and may reduce the bearing life.
[0010]
Patent Document 3 (Japanese Patent Publication No. 43-4721) and Patent Document 4 (Japanese Patent Publication No. 44-26242) describe two rows of balls having different pitch circle diameters by two pairs of cages on one angular bearing. It is disclosed that the bearings are arranged in the axial direction with an interval larger than the ball diameter. However, in the angular bearings disclosed in Patent Document 3 and Patent Document 4, two rows of ball bearings are arranged in the axial direction with a larger interval than the ball diameter. There is a problem that the size of the bearing becomes large as in the case of using it.
[0011]
[Problems to be solved by the invention]
The present invention eliminates the problems associated with the prior art as described above, and does not significantly increase the bearing width dimension to be substantially the same as that of a conventional single row bearing, and can improve the load capacity. An object of the present invention is to provide a gear device using an angular bearing that can be used .
[0012]
[Means for Solving the Problems]
The present invention is a gear device in which two double-row integrated angular bearings are arranged opposite each other with an interval in the axial direction of the angular bearing, and each double-row integrated angular bearing has a plurality of pitch circle diameters different from each other. with a rolling element row, and one cage for retaining the rolling elements of the plurality of rows, and the rolling has inner and outer raceways of the rolling elements and the rolling elements and the inner and outer raceway surfaces a predetermined contact angle with respect to the radial direction contacting Te equipped with inner and outer rings, disposed below the plurality of columns a plurality of rows axial dimension axial center spacing of the rolling elements of the rolling element of the rolling element and adjacent at intervals in the axial direction of the angular bearing of The rolling elements are balls, and the contact angles of the plurality of rows of balls are in the same direction and the contact angle of one row is close to 0 ° and the contact angle of the other row is close to 90 °. Double row integrated doors characterized by the angle setting The above-described object is achieved by the gear device using the angular bearing .
[0013]
In the present invention, as particularly shown in the embodiment, the rolling elements are balls, and there is one cage for the plurality of rows of rolling elements, and the recesses that receive the rows of balls on the peripheral surface of the cage. Is preferably formed in a staggered pattern. By receiving the balls in the recesses, the balls are alternately arranged in a staggered manner in the circumferential direction of the cage, and the filling rate of the rolling elements can be 85% or more. In an example described later, the filling rate is 115%.
[0014]
Furthermore, in the present invention, the rolling elements are balls, and the contact angles of the plurality of rows of balls are set in the same direction and different angles, so that they can be used depending on the application ( that is , excessive radial load or excessive axial). If a load is generated), and the contact angle different from each other the contact angle of the rolling elements of the double row (balls), the rolling elements of each row (balls), respectively in correspondence to the excessive radial loads and excessive axial load Yes. That is, by bringing the contact angle of one of the columns to 0 °, strong comb radial load and by bringing the contact angle of the other row to 90 °, it is strongly axial load. In this way, and are both strong bearings radial load and axial load.
[0015]
Embodiment
Hereinafter, the present invention will be described in detail with reference to the drawings illustrating embodiments of the present invention. FIG. 6 is a cross-sectional view showing an example of a gear device according to an embodiment of the present invention (the illustrated embodiment is an industrial robot speed reducer). As shown in FIG. 6, in this embodiment, two double-row integrated angular bearings 1, 1 are opposed to each other with an interval in the axial direction of the angular bearings 1, 1.
FIG. 1 is a cross-sectional view of one embodiment of a double row integral angular bearing 1 of the present invention. In FIG. 1, the angular bearing 1 of this embodiment includes a rolling element 10, a cage 12 that holds the rolling element 10, and inner and outer rings 14 and 16. The rolling element 10 of this embodiment is a ball. The inner and outer rings 14 and 16 have inner and outer raceway surfaces 14a and 16a of a rolling element (ball) 10, and the rolling element (ball) 10 and the inner and outer raceway surfaces 14a and 16a have a predetermined contact angle θ with respect to the radial direction. Have contact.
[0016]
In this embodiment, rolling elements (balls) 10 are arranged in a plurality of rows (two rows in the illustrated embodiment) 18a, 18b, and in each row 18a, 18b, the rolling elements 10 (balls) are arranged in the circumferential direction. The n1 and n2 common cages 12 are provided with different pitch circle diameters d 1 and d 2 around the rotational axis X of the angular bearing 1.
[0017]
The rolling elements (balls) 10 in the plurality of rows 18 a and 18 b are arranged with an interval a in the axial direction of the angular bearing 1. The axial center distance a of the rolling elements (balls) 10 of the plurality of rows 18a and 18b adjacent to each other is less than the axial dimension of the rolling elements (balls) 10. In the illustrated embodiment, the rolling elements 10 are ball-shaped. Therefore, it has become less than the smaller of the diameter D 1 or D 2.
[0018]
The relationship between the axial thickness H of the angular bearing 1 and the radial width W of the inner and outer rings 14, 16 is preferably W ≧ H. In the illustrated embodiment, W = H.
[0019]
As shown in FIG. 3, the cage 12 has a conical surface as a main part, and a recess 12 a that receives the rolling elements (balls) in the first row 18 a is formed in the circumferential direction of the conical surface 12. The recesses 12b for receiving the rolling elements (balls) in the second row 18b are formed at an interval a in the axial direction from the recesses 12a in the first row 18a. Here, when viewed in the circumferential direction, the recess 12b is located at an intermediate position between the adjacent recesses 12a, and has the above-described interval a, so that the plurality of rows 18a, Recesses 12a and 12b that receive the balls 10 of 18b are formed in a staggered pattern.
[0020]
In addition, it is preferable that the numbers n 1 and n 2 of the rolling elements 10 (balls) in the circumferential direction in the plurality of rows are equal, that is, n 1 = n 2, and the diameter of the rolling elements 10 (balls) in the plurality of rows. D 1 and D 2 are equal, that is, D 1 = D 2 may be set.
[0021]
The circumferential lengths L 1 and L 2 on the pitch circle diameters d 1 and d 2 of the rolling elements (balls) 10 in the plurality of rows 18a and 18b are expressed as follows.
L 1 = πd 1 ,
L 2 = πd 2
It is. Therefore, the filling rate of the rolling elements (balls) 10 in the first row 18a is
[0022]
[Formula 1]
Figure 0004515039
It becomes. Similarly, the filling rate of the rolling elements (balls) 10 in the second row 18b is
[0023]
[Formula 2]
Figure 0004515039
It becomes. In the double row integral angular bearing of the illustrated embodiment, since the rolling elements (balls) 10 are arranged in a double row, the filling factor of the rolling elements (balls) 10 as a whole bearing is:
[0024]
[Formula 3]
Figure 0004515039
As described above, according to the present invention, the filling rate exceeding 85% can be achieved in the conventional angular bearing having the cage, compared with the filling rate of 85% at the most. In this example, the filling rate was 115%.
[0025]
Moreover, in the present invention, a plurality of rows of rolling elements (balls) 10 are arranged in a zigzag pattern as shown in FIG. 3 such that the center interval is less than the axial dimension of the rolling elements in the axial direction of the rolling elements. Therefore, without significantly increasing the width of the bearing (similar to that of the conventional single row), the number of rolling elements can be increased as much as possible by making the rolling surfaces double row, and the moment load rigidity And a double-row integrated angular bearing with improved bearing capacity.
[0026]
As shown in FIG. 5, and a plurality of rows 18a, the contact angle of the balls 10 of 18b theta 1, varied and theta 2 of the present invention.
[0027]
In this manner, the contact angles θ1 and θ2 of the rolling elements (balls) 10 in the plurality of rows 18a and 18b are made different from each other depending on the application (for example, when an excessive radial load or an excessive axial load occurs). The rolling elements (balls) in each row can correspond to an excessive radial load and an excessive axial load, respectively . That is , the radial load can be increased by bringing the contact angle of one row close to 0 °, and the axial load can be increased by bringing the contact angle of the other row close to 90 °. In this way, the bearing can be strong against both radial load and axial load.
[0028]
The cage 12 may be formed by punching from a thin steel plate , but may be a cage made of a synthetic resin such as a nylon resin. By using a resin cage, it can be easily manufactured at low cost .
[0029]
In FIG. 6, the main body of the support block 23 includes a disk-shaped part 27 and a columnar part 31 projecting from the disk-shaped part 27. On the surface of the disk-shaped portion 27, a bearing mounting hole 27b having a predetermined depth and a screw hole 27c for bolting the support block 23 to a frame or the like are formed between adjacent columnar portions 31. An end disk 35 forming a part of the support block 23 is integrally coupled to the columnar part 31 of the support block by a pin (not shown), and the end disk 35 is connected to the columnar part 31 of the support block by a bolt 34. It is fixed. The screw hole 31 e is a fastening hole for the bolt 34 and is formed in the columnar portion 31.
[0030]
The end disc 35 is formed with a pin hole (not shown) corresponding to the pin hole of the columnar portion 31, and a bolt through hole 35c corresponding to the screw hole 31e. A bearing mounting hole 35d is formed corresponding to the bearing mounting hole 27b. Roller bearings 37 and 39 are mounted in the bearing mounting holes 27b and 35d, respectively, and a crank pin 41 is rotatably supported between the bearings 37 and 39 as a pin for taking out the rotational motion of the pinion 33. The crank pin 41 has two crank portions 41a and 41c arranged eccentrically with respect to the rotation axis thereof, and the pinion 33 is fitted to the crank portions 41a and 41c.
[0031]
The pinion 33 has an outer tooth having a tooth shape that is an equidistant curve to a pericycloid curve on the outer peripheral surface, and includes a pin hole 33 b that engages with the crank portion 41 a or 41 c of the crank pin 41 via a bearing 45. Further, a columnar groove (not shown) is formed that extends radially from the center of the pinion 33 in a radial direction and is slightly larger than the columnar portion 41 formed in the support block 23.
[0032]
In the present embodiment, the double-row integrated angular bearings 1 and 1 according to the present invention are mounted on the outer peripheral portions of the disc-like portion 27 and the end disc 35 of the support block 23, and the hub 40 is rotatably supported. . The hub 40 drives a drive sprocket of the vehicle, and has a number of internal teeth slightly larger than the number of external teeth formed on the outer periphery of the pinion 33 on the inner peripheral surface thereof. The groove for the columnar portion of the pinion 33 is loosely fitted to the columnar portion 31 formed by the columnar portion 31 of the support block 23, and the center axis of the crank portions 41 a and 41 c is rotated by the crankpin 41 due to the rotation of the crankpin 41. The two pinions 33 are eccentrically revolved by revolving with respect to the rotation axis of the shaft, and the external teeth engage with the internal gear of the hub 40.
[0033]
In this embodiment, the angular bearing of the present invention that can improve the load capacity without significantly increasing the width dimension of the bearing is employed in a reduction gear for industrial robots that are subjected to severe moment loads. A large moment load can be supported without increasing the size of the industrial robot.
[0034]
FIG. 7 shows another embodiment in which the present invention is used for an industrial robot reducer or the like. As shown in FIG. 7, in this embodiment, two double row integrated angular bearings 1, 1 are opposed to each other with an interval in the axial direction of the angular bearings 1, 1 .
In the embodiment shown in FIG. 7, the inner ring raceway surface of the angular bearing according to the present invention is formed on the shaft (in the embodiment, the peripheral surface of the disk-shaped portion 27). This configuration provides an industrial robot that can make the angular bearing compact and can support a large moment load without increasing the size.
[0035]
In the embodiment shown in FIGS. 6 and 7, the angular bearing according to the present invention is used for a reduction gear for an industrial robot, but it can be used for a gear device such as a speed increaser as well as a reduction gear. In addition, the angular bearing according to the present invention is not limited to industrial robots, and it is used in equipment that is required to increase the filling rate and improve the load capacity of the angular bearing without significantly increasing the width of the bearing. can do.
[0036]
【The invention's effect】
According to the present invention, the filling rate can be increased and the load capacity of the angular bearing can be improved without significantly increasing the width of the bearing.
That is, in the present invention, a plurality of rolling elements having different pitch circle diameters are held by one cage, and the center distance in the axial direction of the rolling element is less than the axial dimension of the rolling element. Without significantly increasing the dimensions (similar to the conventional single-row type), the number of rolling elements is increased as much as possible by making the rolling surfaces double-rowed, and the moment load rigidity and bearing capacity are improved. A double row integral angular bearing is provided.
Furthermore, in the present invention, when the rolling elements are balls and the contact angles of the plurality of rows of balls are set in the same direction and different angles, an excessive radial load or an excessive axial load occurs. Depending on the application, the contact angle of the rolling elements (balls) in the double row can be made different from each other so that the rolling elements (balls) in each row can handle excessive radial loads and excessive axial loads. . That is, by making the contact angle of one row close to 0 °, the radial load is strengthened, and by making the contact angle of the other row close to 90 °, the axial load is made strong. In this way, the bearing is strong against both radial load and axial load.
As described above, in the angular bearing of the present invention, the load capacity can be improved without significantly increasing the width of the bearing. To increase the size of an industrial robot by adopting two angular bearings according to the present invention that can improve this load capacity and using them in a gear device (reduction gear) for an industrial robot that is subjected to a severe moment load. Can support a large moment load.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a double row integral angular bearing of the present invention.
FIG. 2 is a perspective view showing an arrangement of balls on a cage of an angular bearing according to an embodiment of the present invention.
3A and 3B show the cage of the embodiment shown in FIG. 2, wherein FIG. 3A is a partial perspective view, and FIG. 3B is a top view.
4 is a partial cross-sectional view of an upper portion of the embodiment shown in FIG.
FIG. 5 is a partial sectional view of the upper part of another embodiment.
6 is a cross-sectional view showing a gear device using the bearing of the embodiment shown in FIG. 1. FIG.
FIG. 7 is a cross-sectional view showing an embodiment in which an inner ring of a bearing of the present invention is formed integrally with a shaft of a gear device.
FIG. 8 is a cross-sectional view showing an example of a conventional angular bearing.
9 is a perspective view showing an arrangement of balls on the cage of the angular bearing shown in FIG. 8. FIG.
FIG. 10 is a cross-sectional view showing another conventional angular bearing.
FIG. 11 is a cross-sectional view showing a conventional gear device using a conventional angular bearing.
[Explanation of symbols]
1 Angular bearing 10 Rolling element (ball)
12 retainer 14 inner ring 14a in the raceway surface 16 outer ring 16a outside raceway surface 18a, 18b rolling elements (balls) column D 1, the diameter d 1 of the D 2 balls, d 2 pitch diameter theta 1, theta 2 contact angle

Claims (2)

二個の複列式一体アンギュラ軸受がアンギュラ軸受の軸方向に間隔を開けて対向配置されている歯車装置であり、各複列式一体アンギュラ軸受は、ピッチ円直径が異なる複数列の転動体と、前記複数列の転動体を保持する一つの保持器と、転動体の内外軌道面を有し且つ転動体と内外軌道面とがラジアル方向に対して所定の接触角を持って接触する内外輪とを具備し、前記複数列の転動体がアンギュラ軸受の軸方向に間隔を開けて且つ隣接する複数列の転動体の軸方向中心間隔が転動体の軸方向寸法未満に配置されており、前記転動体が玉であり、前記複数列の玉の接触角を同方向で且つ一方の列の接触角を0°に近づけるとともに他方の列の接触角を90°に近づけて異なる角度に設定したことを特徴とする複列式一体アンギュラ軸受を用いた歯車装置 Two double-row integrated angular bearings are gear devices in which the angular bearings are spaced apart from each other in the axial direction, and each double-row integrated angular bearing has a plurality of rolling elements with different pitch circle diameters. , inner and outer rings and one cage, where the rolling has inner and outer raceways of the rolling elements and the rolling elements and the inner and outer raceway surfaces are in contact with a predetermined contact angle with a radial direction for holding the rolling elements of said plurality of rows comprising the door, said plurality of rows of rolling elements are arranged below the axial dimension of the axial center spacing the rolling elements of the rolling element of a plurality of rows adjacent and spaced apart in the axial direction of the angular bearing, the The rolling elements are balls, the contact angles of the balls in the plurality of rows are set in the same direction, the contact angle in one row is close to 0 °, and the contact angle in the other row is set to a different angle close to 90 °. Using double row integrated angular bearings featuring Gear device . 前記保持器の周面に複数列の玉を受ける凹部が千鳥状に形成されていることを特徴とする請求項1に記載の複列式一体アンギュラ軸受を用いた歯車装置 The gear device using the double-row integrated angular bearing according to claim 1, wherein recesses for receiving a plurality of rows of balls are formed in a staggered pattern on a peripheral surface of the cage.
JP2003103447A 2003-04-07 2003-04-07 Gear unit using double-row integrated angular bearing Expired - Fee Related JP4515039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003103447A JP4515039B2 (en) 2003-04-07 2003-04-07 Gear unit using double-row integrated angular bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003103447A JP4515039B2 (en) 2003-04-07 2003-04-07 Gear unit using double-row integrated angular bearing

Publications (2)

Publication Number Publication Date
JP2004308792A JP2004308792A (en) 2004-11-04
JP4515039B2 true JP4515039B2 (en) 2010-07-28

Family

ID=33466545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003103447A Expired - Fee Related JP4515039B2 (en) 2003-04-07 2003-04-07 Gear unit using double-row integrated angular bearing

Country Status (1)

Country Link
JP (1) JP4515039B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005029983A1 (en) * 2005-06-28 2007-01-11 Schaeffler Kg Multi-row angular contact bearing, in particular for supporting the bevel pinion shaft in a motor vehicle rear-axle transmission
DE102006035163A1 (en) * 2006-07-29 2008-01-31 Schaeffler Kg Diagonal separable bearing i.e. clutch release bearing, for switching separation clutch, has roller body designed as ball roller, where width of body is reduced to certain percentages between side surfaces opposite to diameter of ball base
DE102006051643B4 (en) * 2006-11-02 2016-06-23 Schaeffler Technologies AG & Co. KG Tandem angular contact bearings
JP4680169B2 (en) * 2006-11-24 2011-05-11 Ntn株式会社 Tandem type double row angular contact ball bearing
JP2008138842A (en) * 2006-12-05 2008-06-19 Ntn Corp Tandem type double row angular contact ball bearing
JP2008169922A (en) * 2007-01-11 2008-07-24 Ntn Corp Differential device
KR100897092B1 (en) 2007-10-18 2009-05-14 현대자동차주식회사 Needle ball bearing supporting structure of manual transmission
EP2256357A1 (en) * 2009-05-28 2010-12-01 ZF Friedrichshafen AG Extraction device for a motor vehicle friction coupling with an oscillating ball bearing
JP5636887B2 (en) * 2010-11-09 2014-12-10 日本精工株式会社 Tandem angular contact ball bearings
WO2015057136A1 (en) * 2013-10-17 2015-04-23 Aktiebolaget Skf A marine current turbine comprising a multi row bearing
WO2015057127A1 (en) * 2013-10-17 2015-04-23 Aktiebolaget Skf A wind turbine comprising a multi row bearing
JP6562808B2 (en) * 2015-10-07 2019-08-21 住友重機械工業株式会社 Eccentric rocking gear device
DE102015014087B4 (en) * 2015-11-03 2017-11-09 Sew-Eurodrive Gmbh & Co Kg transmission
US10539210B2 (en) * 2016-10-13 2020-01-21 Superturbo Technologies, Inc. Angular contact ball ramps for driven turbocharger
JP7003369B1 (en) * 2021-01-05 2022-02-10 泰一 岡田 Ball bearings

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB206606A (en) * 1922-08-16 1923-11-15 Henry Marles Improvements in ball bearings
JPS49108453A (en) * 1973-12-08 1974-10-15
JPS50155851A (en) * 1974-06-06 1975-12-16
JPS61109916U (en) * 1984-05-11 1986-07-11
JPS6396314A (en) * 1986-10-08 1988-04-27 Komanii Kk Crossing thrust ball bearing
JPH0474726U (en) * 1990-11-01 1992-06-30
JP2001241434A (en) * 2000-03-01 2001-09-07 Nsk Ltd Bearing unit for wheel
JP2002523710A (en) * 1998-08-29 2002-07-30 イナーシエツフレル コマンディートゲゼルシャフト Automotive transfer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB206606A (en) * 1922-08-16 1923-11-15 Henry Marles Improvements in ball bearings
JPS49108453A (en) * 1973-12-08 1974-10-15
JPS50155851A (en) * 1974-06-06 1975-12-16
JPS61109916U (en) * 1984-05-11 1986-07-11
JPS6396314A (en) * 1986-10-08 1988-04-27 Komanii Kk Crossing thrust ball bearing
JPH0474726U (en) * 1990-11-01 1992-06-30
JP2002523710A (en) * 1998-08-29 2002-07-30 イナーシエツフレル コマンディートゲゼルシャフト Automotive transfer
JP2001241434A (en) * 2000-03-01 2001-09-07 Nsk Ltd Bearing unit for wheel

Also Published As

Publication number Publication date
JP2004308792A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
JP4515039B2 (en) Gear unit using double-row integrated angular bearing
EP2787229B1 (en) Rolling bearing with a cage
EP0161368B1 (en) Harmonic drive apparatus
US8882361B2 (en) Thrust roller bearing
JP5312364B2 (en) Bending gear system
TWI499726B (en) Large-size rolling bearing and wind power installation including the same
US8715123B2 (en) Rotation urging mechanism and pulley device
WO2010018821A1 (en) Variable valve timing device
JP2022048250A (en) Slewing bearing
EP2233789A1 (en) Ball screw device
JP2009036348A (en) Tandem type double-row angular contact ball bearing and bearing device for pinion shaft
JP2008025687A (en) Bearing for wave gear device
US20220373022A1 (en) Rolling Bearing
JP4618915B2 (en) Full roller bearing and planetary gear reduction device using the same
JP4075437B2 (en) Assembly method of double row rolling bearing
EP1519062A2 (en) Roller retainer assembly for planetary gear and planetary gear support using the same
WO2006109353A1 (en) Thrust roller bearing
JPH0324322A (en) Method and equipment for rotative retaining of bearing
JP2009092162A (en) Roller bearing
JP6627473B2 (en) Transmission
JP2007024105A (en) Angular contact ball bearing
JP7166099B2 (en) planetary gear
JP2020133683A (en) Double row thrust ball bearing
JP4123579B2 (en) How to assemble constant velocity joints
JP2010249164A (en) Railway vehicle drive unit

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041013

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081002

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090202

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090821

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090825

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090825

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100512

R150 Certificate of patent or registration of utility model

Ref document number: 4515039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees