JP4513178B2 - Method for producing weathering steel - Google Patents

Method for producing weathering steel Download PDF

Info

Publication number
JP4513178B2
JP4513178B2 JP2000200994A JP2000200994A JP4513178B2 JP 4513178 B2 JP4513178 B2 JP 4513178B2 JP 2000200994 A JP2000200994 A JP 2000200994A JP 2000200994 A JP2000200994 A JP 2000200994A JP 4513178 B2 JP4513178 B2 JP 4513178B2
Authority
JP
Japan
Prior art keywords
rust
steel
wet
dry
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000200994A
Other languages
Japanese (ja)
Other versions
JP2001172773A (en
Inventor
公宏 西村
章夫 大森
和彦 塩谷
康義 山根
文丸 川端
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2000200994A priority Critical patent/JP4513178B2/en
Publication of JP2001172773A publication Critical patent/JP2001172773A/en
Application granted granted Critical
Publication of JP4513178B2 publication Critical patent/JP4513178B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐候性鋼材の製造方法に関し、とくに鋼材表面に防食性を有した錆層を早期に形成させ、流れ錆の発生を防止した耐候性鋼材の製造方法に関する。
本発明において、鋼材には、厚鋼板、薄鋼板、棒鋼、形鋼が含まれる。
【0002】
【従来の技術】
鋼中にP、Cu、Cr、Ni等の合金元素を添加し大気中における耐食性を向上させた耐候性鋼は、暴露環境において腐食の原因である酸素、水を通しにくい安定錆と呼ばれる錆層を数年で形成し、地鉄の腐食が抑制される。また、この安定錆は普通鋼に比べて暗褐色で景観にも調和するので、最近、建築外装材や橋梁等の鋼構造物への使用が増えてきている。耐候性鋼は防錆塗料の塗布が不要であり、いわゆる裸使用が可能な高耐食材料である。
【0003】
しかしながら、田園地帯で使用される場合には従来の耐候性鋼は、安定錆が形成するまでには数年かかり、その間錆汁と呼ばれる流れ錆を発生させるため、景観上問題があった。加えて、その期間には浮き錆と呼ばれる剥離性の錆も少なからず発生し、問題となっていた。さらに、耐候性鋼は、海岸地帯では飛来する海塩粒子の作用により、安定錆が形成されにくく、腐食の抑制が認められないという問題もあった。
【0004】
このような問題に対し、これまで鋼材に対して種々の処理法が検討されてきた。まず耐候性鋼表面に塗膜を施し、腐食環境を遮断することが広く行われている。
また、特開昭49−11739 号公報には鋼材表面に水、腐食液あるいは両者を作用させて錆を生成させてから、半透性被膜を形成せしめた耐候性錆層形成鋼材が開示されている。
【0005】
一方、塗膜を用いない方法として、あらかじめ防食機能を有した錆層を形成することにより流れ錆を防止する手法も提案されている。例えば、特開平1−142088号公報には酸性溶液で鋼板表面を処理したのちリン酸塩被膜を形成させる耐候性鋼の表面処理方法が、特公平7−37672 号公報には特殊な組成の錆付け処理液で処理した錆付け耐候性鋼板が、特許第2765425 号公報には平均結晶粒径200nm 以下の錆層あるいは平均結晶粒径200nm 以下のα-FeOOHで覆われている鋼材が、それぞれ開示されている。
【0006】
【発明が解決しようとする課題】
しかしながら、耐候性鋼表面に塗膜を形成する方法では塗膜の防食性が高いため、安定錆層が形成するまでに数十年もの長期間を要するという問題がある。その期間、塗膜の劣化により剥離などが生じ、外観上見苦しくなる場合があった。また、環境により特に劣化が激しい場合には再塗装を施す必要があり、メンテナンスフリーで使用できるという耐候性鋼材の利点を必ずしも生かしてはいない。さらに、塗膜下の腐食の進行度合いの違いにより、色むらが生じるという問題もある。
【0007】
特開昭49−11739 号公報に開示された耐候性錆層形成鋼材は、鋼材に半透性膜を被覆して製造されるが、前処理として腐食液により鋼材表面に錆を発生させ、流れ錆や剥離錆の抑制効果を高めたものである。しかし、同公報第2図に示されるように、錆層そのものの防食効果は不十分であり、錆促進処理と塗膜の塗布という2つの処理を行うため、工程が煩雑である。
【0008】
これに対し、特開平1−142088号公報、特公平7−37672 号公報、特許第2765425 号公報に記載された技術は、塗料を用いず、あらかじめ防食性能を有した錆層を形成して流れ錆の生成を抑制するものである。これらの技術においては、耐候性を有した錆層の形成という点に主眼を置き、腐食処理液や錆層の形成方法について検討がなされている。
【0009】
しかしながら、特開平1−142088号公報に記載された技術では、pHが2.3 以下の酸性腐食液を1回塗布し乾燥させて錆層を生成させているが、その後にリン酸塩被膜を形成させることが必須である。しかし、リン酸塩被膜は耐候性鋼のさび安定化処理として知られているもので、この技術でも錆付けとさび安定化処理という2つの処理を行うため、工程が煩雑である。
【0010】
また、特公平7−37672 号公報に記載された技術では、腐食処理液に含まれるイオンの濃度を低くし、実際の暴露環境に近い腐食を再現して耐候性錆層を形成するようにしているが、同公報第1図に示されているように、暴露後初期の腐食抑制効果は必ずしも十分なものではなく、この間にやはり流れ錆を発生するという問題があった。さらに錆付け処理に3日間という長期間を要することも問題であった。
【0011】
特許第2765425 号公報に開示されている平均結晶粒径200nm 以下の錆層あるいは平均結晶粒径200nm 以下のα-FeOOHで覆われている鋼材を得るためには、裸鋼材に硫酸クロム溶液を塗布して暴露するか、暴露によって生じた錆上に同じく硫酸クロム溶液を塗布すればよい。しかし、溶液を塗布して暴露するだけでは、場所によっては降雨により硫酸クロムが流されてしまいその効果が十分ではなく、同じ建物あるいは橋梁で、場所によって錆の進行などにむらができて見苦しいという問題があった。
【0012】
なお、この技術に関連するものとして、特許第2666673 号公報に、硫酸クロム等の錆安定化に効果のある物質を含有する塗料が開示されているが、前述のように塗膜の防食性が高いため安定錆層が生成するまでに長期間を要するという問題がある。
このように、従来技術においては、耐候性鋼板にあらかじめ防食性に富む錆層を生成させてその後の暴露での流れ錆低減を図ることは検討されてきたのであるが、当該錆層を短時間で生成させるプロセスについては全く検討されていなかった。
【0013】
そこで、本発明は、鋼材表面に防食性に富む錆層を短時間で生成させ得る耐候性鋼材の製造方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明者らは、前記目的を達成するために錆層形成プロセスについて鋭意検討した結果、鋼材表面をpH2.5 以上7未満の溶液0.10〜5mg/cm2で5〜60分湿潤させ次いで乾燥させる工程を繰り返すことにより、短期間で防食性に富む耐候性錆層が形成するという知見を得た。
【0015】
また、前記溶液中に0.05〜2.5g/lのFe2+を含有させると、耐候性錆層の防食性がより向上することを見いだした。
また、前記溶液中に0.05〜2.5g/lのFe2+を含有させ、さらにFe3+、Cu2+、Ni2+、Co2+、Cr3+、PO4 3- 、Mo5+、Ti3+、W6+、Al3+、Mg2+、Sr2+、MoO4 2+、TiO3 2-、WO4 2- の1種または2種以上の組合せを前記Fe2+の20質量%以下で含有させると、耐候性錆層の防食性がさらに一段と向上することを見いだした。
【0016】
本発明は、これらの知見に基づき完成されたもので、その要旨とするところは以下に記載の耐候性鋼材の製造方法にある。
(1)鋼材表面をpH2.5 以上7未満の溶液0.10〜5mg/cm2で5〜60分湿潤し次いで強制乾燥する乾湿サイクルを繰り返すにあたり、該乾湿サイクルを10回以上とし、且つ、1つの乾湿サイクルの強制乾燥完了後、遅滞なく次の乾湿サイクルの湿潤処理に移行することを特徴とする耐候性鋼材の製造方法。
(2)鋼材表面を、Fe2+を0.05〜2.5g/l含有するpH2.5 以上7未満の溶液0.10〜5mg/cm2で5〜60分湿潤し次いで強制乾燥する乾湿サイクルを繰り返すにあたり、該乾湿サイクルを10回以上とし、且つ、1つの乾湿サイクルの強制乾燥完了後、遅滞なく次の乾湿サイクルの湿潤処理に移行することを特徴とする耐候性鋼材の製造方法。
【0017】
(3)鋼材表面を、Fe2+を0.05〜2.5g/l含有しさらにFe3+、Cu2+、Ni2+、Co2+、Cr3+、PO4 3- 、Mo5+、Ti3+、W6+、Al3+、Mg2+、Sr2+、MoO4 2+、TiO3 2-、WO4 2- の1種または2種以上の組合せを前記Fe2+の20質量%以下含有するpH2.5 以上7未満の溶液0.10〜5mg/cm2で5〜60分湿潤し次いで強制乾燥する乾湿サイクルを繰り返すにあたり、該乾湿サイクルを10回以上とし、且つ、1つの乾湿サイクルの強制乾燥完了後、遅滞なく次の乾湿サイクルの湿潤処理に移行することを特徴とする耐候性鋼材の製造方法。
【0018】
【発明の実施の形態】
鋼板に錆を発生させるには、鋼板上に水を供給すればよいが、常に水で湿潤した状態(湿状態)では鋼板に密着した錆は生成せず、このためには乾燥工程が必要とされている。耐候性鋼の防食性の錆も自然の暴露環境の中で乾湿の繰り返しによって徐々に形成されるものである。メカニズムは必ずしも明らかではないが、防食性を有する密着した錆層が乾湿の繰り返しによって生成するという点については、例えば特開昭49−11739 号公報の実施例にも開示されているように、古くから知られている。
【0019】
本発明のポイントは、乾湿の繰り返しプロセスにおいて、適用する液の質、量、繰り返しのサイクルを、防食性を有する密着した錆層が短期間で形成し得る範囲に制限したことにある。
以下、本発明の要件限定理由を説明する。
鋼材表面を湿状態にするための液の質について、この液はpH2.5 以上7未満の溶液でなければならない。溶液は水溶液が好ましい。腐食すなわち地鉄の電気化学的な溶解を十分な速度で進行させるために溶液はpH7未満すなわち酸性側にする必要がある。しかし、pH2.5 未満の強酸性液では、地鉄の溶解は十分な速度で進行するものの、密着性に富む錆層が形成しにくくなる。よって、適用する液は、pH2.5 以上7未満の溶液に限られる。
【0020】
pHを2.5 以上7未満の溶液としては、硫酸、塩酸、硝酸、リン酸、ホウ酸などを水で希釈した水溶液が、pH調整も簡単で好適である。本発明ではこのような弱酸性液を使用することにより防食性錆層を形成できる。
本発明において錆層の防食性をさらに高めるには、溶液にFe2+を0.05〜2.5g/l含有させるのがよい。原理は明らかではないが、Fe2+は腐食を促進し錆層の形成を早め、錆層の防食性も向上させる効果を有する。この効果は0.05g/l 以上で顕著となるが、2.5g/l超では腐食性が強すぎて密着性のさび層を形成しないため、溶液のFe2+濃度は0.05〜2.5g/lの範囲が好ましい。
【0021】
Fe2+含有溶液を作製するには、硫酸鉄、塩化鉄、硝酸鉄等の鉄塩の1種または2種以上を所定のFe2+濃度になるように水に溶解すればよい。これらの塩は酸性塩なので、特にpH調整の必要もなくpH2.5 以上7未満の溶液を得ることができる。もちろん必要に応じて酸を添加しpH調整を行ってもよい。なお、Fe2+含有溶液の調整にあたっては上記のように必然的に陰イオンも添加されるが、工業的には硫酸鉄、塩化鉄を用いるのが安価でよい。もちろん本発明はこれらの鉄塩に限定されるものではない。
【0022】
本発明では、0.05〜2.5g/lFe2+含有溶液にさらに第3成分として、Fe3+、Cu2+、Ni2+、Co2+、Cr3+、PO4 3- 、Mo5+、Ti3+、W6+、Al3+、Mg2+、Sr2+、MoO4 2+、TiO3 2-、WO4 2- の1種または2種以上の組合せを、その含有量がFe2+量の20質量%以下の範囲となるように添加すると、錆がより微細化し、より良好な防食性を有する錆層が形成されて好ましい。第3成分(Fe3+、Cu2+、Ni2+、Co2+、Cr3+、PO4 3- 、Mo5+、Ti3+、W6+、Al3+、Mg2+、Sr2+、MoO4 2+、TiO3 2-、WO4 2- の1種または2種以上の組合せ)の含有量がFe2+量の20質量%を超えると、錆層の防食性が逆に劣化するばかりか、溶液のコストが上昇するので好ましくない。なお、第3成分の含有量は、Fe2+量の2質量%未満ではその効果が現れにくいのでこれ以上が好ましく、さらに好ましくはFe2+量の4質量%以上である。
【0023】
次に、鋼材表面を湿潤状態に置くための液の量について、この液量は、0.10〜5mg/cm2(鋼材表面1cm2 当たり0.10〜5mg)とする必要がある。液量0.10mg/cm2未満では、液が不足して腐食の進行が遅くなるばかりか、液量の制御が実質的に困難で、すぐに蒸発してしまうなど、むらができやすい。一方、液量5mg/cm2超では、地鉄界面への酸素の供給が不十分となり、腐食生成物として非密着性のFe3O4 を生じ耐候性錆層が形成されにくい。液量は0.10〜5mg/cm2の範囲内にある限り後述する保持時間のなかで変動してもとくに問題はないが、湿状態では鋼材をセットする湿潤処理室内の雰囲気を高湿度に保つなどして鋼材表面に接する液の蒸発を防ぎ、液量を一定にすることが好ましい。なお、前記特開昭49−11739 号公報に開示された方法では、湿状態をつくる手段が腐食液中への浸漬であるため、腐食の進行が遅いうえ、密着錆層が形成されにくい。
【0024】
次に、乾湿を繰り返すサイクルにおいて、1サイクル当たりの湿状態の保持時間は5〜60分とする必要がある。5分未満では腐食はあまり進行せず耐候性錆層の形成に時間を要する。また、60分を超えると錆中にFe3O4 を多く生成してしまい、錆層の耐候性は劣化する。
また、乾湿の繰り返し回数(乾湿サイクル回数)は、1回では繰り返しにならないので2回以上必要であることはいうまでもないが、好ましいのは10回以上である。乾湿サイクル回数が10回未満では、形成した錆層の厚さが薄過ぎて暴露環境での流れ錆発生を防止することが難しい。本発明では、乾湿サイクル回数を増すことにより錆層を厚みを増し10回以上処理すれば暴露環境での流れ錆防止効果がある。しかし、あまりに乾湿サイクル回数を増しても錆層の防食性は飽和する傾向にあり、時間を費やすだけで、経済的にも好ましくない。本発明における乾湿サイクル回数は溶液組成などにもよるが、10〜300 回が望ましい範囲であり、実用的には30〜150 回が適当である。
【0025】
一方、乾燥に要する時間は、乾燥状態では腐食は進行しないし錆質も変化することはないので、とくに限定されず、例えば鋼材のサイズや装置の仕様によって適宜設定すればよいのであるが、錆層形成期間を短縮するためには、1サイクルの乾燥完了後は遅滞なく次サイクルの湿潤処理に移行するのが好ましい。
なお、本発明の方法(2)〜(3)においては、溶液中の添加成分が乾燥後に残留し、サイクルを重ねる度に蓄積して錆層の防食性に悪影響を及ぼすことがあるため、1サイクル毎に乾燥後湿潤前の鋼材表面を水で洗浄し再度乾燥することが好ましい。
【0026】
本発明により鋼材表面に高い防食性を有した耐候性錆層を短期間で形成された耐候性鋼材では、無塗装使用時の流れ錆発生が大幅に低減し、景観上あるいは環境汚染の問題が解決される。この効果は安定錆が形成されにくいとされる海岸地帯でも発揮され、海岸に近い地域でも耐候性鋼材の流れ錆発生は格段に低減する。
【0027】
本発明の方法(1)〜(3)により錆層を形成させる鋼材は、JIS G3114に規定されたSMA400AW、SMA400AP、SMA400BW、SMA400BP、SMA400CW、SMA400CP、SMA490AW、SMA490AP、SMA490BW、SMA490BP、SMA490CW、SMA490CP、SMA570W、SMA570Pのいずれかに該当するものが好ましく、また、とくに海岸地帯での使用に供する場合には、以下の(S1)〜(S4)のいずれかに記載の高海岸耐候性鋼材が好適である。
【0028】
(S1)
質量%で、C:0.001 〜0.025 %、Si:0.60%以下、Mn:0.10〜3.00%、P:0.005 〜0.030 %、S:0.01%以下、Al:0.10%以下、Cu:0.1 〜1.5 %、Ni:0.1 〜6.0 %、B:0.0001〜0.0050%を含み、残部Feにおよび不可避的不純物からなる耐候性鋼。
【0029】
(S2)
S1において、さらに質量%で、Mo:0.005 〜0.5 %を含み、かつ式(1)を満足する耐候性鋼。
(11P+4.0 Cu+3.1 Ni+2.6 Mo)/(1−0.1(10000 B)0.35)≧1+13X
…………(1)
(ここに、P、Cu、Ni、Mo、B:各元素の含有量(質量%)、X:飛来塩分量(mg/dm2/day) )
(S3)
S1において、さらに質量%で、Nb:0.005 〜0.20%、V:0.005 〜0.20%、Ti:0.005 〜0.20%、REM :0.02%以下のうちから選ばれた1種または2種以上を含有する耐候性鋼。
【0030】
(S4)
S1において、さらに質量%で、Mo:0.005 〜0.5 %を含み、かつ式(1)を満足し、さらに質量%で、Nb:0.005 〜0.20%、V:0.005 〜0.20%、Ti:0.005 〜0.20%、REM :0.02%以下のうちから選ばれた1種または2種以上を含有する耐候性鋼。
【0031】
【実施例】
図1に模式図で示す試験装置を用いて以下の要領で錆促進試験を行った。
複数の試験片Sを槽1内に置き、槽1上部に設置したスプレー式のノズル4により溶液を試験片S表面に供給して、試験片S表面を湿状態にした。ノズル4の配置は試験片毎に同じ溶液量が供給されるように設定した。ノズル4へは溶液タンク2内に貯えた溶液をポンプ3にて送給した。試験片S表面上の溶液量はスプレー時間を変えることにより調整した。溶液供給後、加湿装置5を用いて槽1内を高湿度雰囲気(湿度80%以上)に保ち、試験片S表面上の溶液の蒸発逃散を防いだ。この湿状態を所定の保持時間だけ継続させた後、乾燥ブロワ6により乾燥したエアを槽1内に導入し、試験片S表面を強制乾燥した。次に、試験片S表面を大量の洗浄水で洗浄し、再度強制乾燥した。この湿潤(湿状態)−乾燥のサイクルを所定の回数繰り返した。
【0032】
試験片としては、表1に示す化学組成をもつ2種類の鋼材A、Bから採取した100 ×50×10mm3 の短冊片をショットブラスト加工したものを用いた。鋼材AはJIS G3114に規定された耐候性鋼に該当し、鋼材Bは前記高海岸耐候性鋼材に該当する。
【0033】
【表1】

Figure 0004513178
【0034】
錆促進試験後の試験片は、鋼材Aについては田園地帯および海岸地帯で、鋼材Bについては海岸地帯で、3ヵ月間の暴露試験に供し、流れ錆と浮き錆の発生状況を調査した。流れ錆は、試験片表面を流れた雨水をポリエチレン瓶に捕集して1ヵ月毎に回収し、該回収液中の錆量および鉄イオン量を測定し、該測定結果の3ヵ月分を合計した全流出鉄量で評価した。浮き錆は、錆表面上に粘着テープを貼った後に再度はがして、テープに付着した量を目視にて判定評価した。
【0035】
(ケース1)
ケース1では試験条件として方法(1)の要件項目、すなわち溶液のpH、試験片表面上の溶液量、湿状態保持時間を表2に示すように種々変更した。なお、pH調整用の酸および乾湿サイクル回数は表2に示すように変更した。流れ錆と浮き錆の発生状況の調査結果を表2に示す。なお、表2には試験条件毎に試験開始から終了までに要した時間(錆付け所要時間)を併示した。
【0036】
【表2】
Figure 0004513178
【0037】
【表3】
Figure 0004513178
【0038】
以下、No.iの条件で錆促進処理された鋼材A、Bの試験片を鋼板Ai、Biと称する。
鋼板A50、B50は比較のために無処理(裸)で暴露したもの(裸暴露材)で、鋼板A50は田園地帯で多くの流れ錆、浮き錆を発生し、海岸地帯ではさらに多くの流れ錆、浮き錆を発生した。鋼板B50は、海岸地帯での流れ錆、浮き錆が、鋼材Aよりも低減したが、田園地帯での鋼板A50と同程度に発生した。
【0039】
鋼板A1〜A18、B1〜B18は、硫酸でpH調整した溶液を用いたものであるが、うち方法(1)の範囲内にある実施例、すなわち鋼板A1〜A8、A17〜A18、B1〜B8、B17〜B18は、裸暴露材(鋼板A50、B50)の同鋼材側と比べて流れ錆、浮き錆が大幅に低減した。
これに対し、方法(1)の範囲を外れる比較例、すなわち方法(1)の範囲を溶液量の面で外れる鋼板A9〜A10、B9〜B10、湿状態保持時間の面で外れる鋼板A11〜A12、B11〜B12、溶液pHの面で外れる鋼板A13、B13、乾湿サイクル回数の面で外れる鋼板A14〜A16、B14〜B16では、流れ錆、浮き錆は、裸暴露材(鋼板A50、B50)の同鋼材側と比べてわずかしか低減しなかった。
【0040】
なお、乾湿サイクル回数を変えた鋼板A15〜A18、B15〜B18において、乾湿サイクル回数が10回未満の鋼板A15〜A16、B15〜B16は、乾湿サイクル回数が10回以上の鋼板A17〜A18、B17〜B18に比べ、流れ錆、浮き錆の低減効果が小さかった。
鋼板A19〜A31、B19〜B31は、塩酸でpH調整した溶液を用いたものであるが、うち方法(1)の範囲内にある実施例、すなわち鋼板A19〜A23、A30〜A31、B19〜B23、B30〜B31は、裸暴露材(鋼板A50、B50)の同鋼材側と比べて流れ錆、浮き錆が大幅に低減した。
【0041】
これに対し、方法(1)の範囲を外れる比較例、すなわち方法(1)の範囲を溶液量の面で外れる鋼板A24、B24、湿状態保持時間の面で外れる鋼板A25、B25、溶液pHの面で外れる鋼板A26、B26、乾湿サイクル回数の面で外れる鋼板A27〜A29、B27〜B29では、流れ錆、浮き錆は、裸暴露材(鋼板A50、B50)の同鋼材側と比べてわずかしか低減しなかった。
【0042】
なお、乾湿サイクル回数を変えた鋼板A28〜A31、B28〜B31において、乾湿サイクル回数が10回未満の鋼板A28〜A29、B28〜B29は、乾湿サイクル回数が10回以上の鋼板A30〜A31、B30〜B31に比べ、流れ錆、浮き錆の低減効果が小さかった。
鋼板A32〜A39、B32〜B39は、硝酸でpH調整した溶液を用いたものであるが、うち方法(1)の範囲内にある実施例、すなわち鋼板A32〜A36、B32〜B36は、裸暴露材(鋼板A50、B50)の同鋼材側と比べて流れ錆、浮き錆が大幅に低減した。
【0043】
これに対し、方法(1)の範囲を外れる比較例、すなわち方法(1)の範囲を溶液量の面で外れる鋼板A37、B37、湿状態保持時間の面で外れる鋼板A38、B38、溶液pHの面で外れる鋼板A39、B39では、流れ錆、浮き錆は、裸暴露材(鋼板A50、B50)の同鋼材側と比べてわずかしか低減しなかった。
鋼板A40〜A43、B40〜B43は、硫酸と塩酸を等量混合した酸でpH調整した溶液を用いたものであるが、うち方法(1)の範囲内にある実施例、すなわち鋼板A40〜A42、B40〜B42は、裸暴露材(鋼板A50、B50)の同鋼材側と比べて流れ錆、浮き錆が大幅に低減した。
【0044】
これに対し、方法(1)の範囲を外れる比較例、すなわち方法(1)の範囲を溶液量の面で外れる鋼板A43、B43では、流れ錆、浮き錆は、裸暴露材(鋼板A50、B50)の同鋼材側と比べてわずかしか低減しなかった。
鋼板A44〜A46、B44〜B46は、リン酸でpH調整した溶液を用いたものであるが、うち方法(1)の範囲内にある実施例、すなわち鋼板A44〜A45、B44〜B45は、裸暴露材(鋼板A50、B50)の同鋼材側と比べて流れ錆、浮き錆が大幅に低減した。
【0045】
これに対し、方法(1)の範囲を外れる比較例、すなわち方法(1)の範囲を湿状態保持時間の面で外れる鋼板A46、B46では、流れ錆、浮き錆は、裸暴露材(鋼板A50、B50)の同鋼材側と比べて比べてわずかしか低減しなかった。
鋼板A47〜A49、B47〜B49は、ホウ酸でpH調整した溶液を用いたものであるが、うち方法(1)の範囲内にある実施例、すなわち鋼板A47〜A48、B47〜B48は、裸暴露材(鋼板A50、B50)の同鋼材側と比べて流れ錆、浮き錆が大幅に低減した。
【0046】
これに対し、方法(1)の範囲を外れる比較例、すなわち方法(1)の範囲を溶液量の面で外れる鋼板A49、B49では、流れ錆、浮き錆は、裸暴露材(鋼板A50、B50)の同鋼材側と比べてわずかしか低減しなかった。
そして、実施例の錆付け所要時間は2.5 〜52.5hであり、従来(前記特開平7−37672 号公報載の方法)の72hに比べて大幅に短縮した。
【0047】
(ケース2)
ケース2では試験条件として方法(2)の要件項目、すなわち溶液のpHおよびFe2+濃度、試験片表面上の溶液量、湿状態保持時間を表3に示すように種々変更した。なお、pH調整用の酸、Fe2+の添加剤、乾湿サイクル回数は表3に示すように変更した。ケース2の試験条件は、すべて方法(1)の範囲内とし、また、一部Fe2+濃度の面で方法(2)の範囲外とした以外はすべて方法(2)の範囲内とした。流れ錆と浮き錆の発生状況の調査結果を表3に示す。なお、表3には試験条件毎に試験開始から終了までに要した時間(錆付け所要時間)を併示した。
【0048】
【表4】
Figure 0004513178
【0049】
鋼板A51〜A60、B51〜B60は、溶液へのFe2+添加剤として硫酸鉄(II)を用いたものである。うち方法(2)適合例である鋼板A51〜A58、B51〜B58は、浮き錆がほとんど認められないのはもちろん、ケース1での実施例の同鋼材のものに比べて流れ錆が顕著に低減した。これに対し、方法(1)の範囲内にあるが方法(2)の範囲を外れる鋼板A59〜A60、B59〜B60の流れ錆、浮き錆は、ケース1での実施例の同鋼材のものと同程度であった。
【0050】
鋼板A61〜A67、B61〜B67は、溶液へのFe2+添加剤として塩化鉄(II)を用いたものである。うち方法(2)適合例である鋼板A61〜A65、B61〜B65は、浮き錆がほとんど認められないのはもちろん、ケース1での実施例の同鋼材のものに比べて流れ錆が顕著に低減した。これに対し、方法(1)の範囲内にあるが方法(2)の範囲を外れる鋼板A66〜A67、B66〜B67の流れ錆、浮き錆は、ケース1での実施例の同鋼材のものと同程度であった。
【0051】
鋼板A68〜A70、B68〜B70は、溶液へのFe2+添加剤として硫酸鉄(II)と塩化鉄(II)を等量混合したものを用いたものであり、すべて方法(2)適合例であるので、浮き錆がほとんど認められないのはもちろん、ケース1での実施例の同鋼材のものに比べて流れ錆が顕著に低減した。
そして、ケース2での錆付け所要時間は16.6〜33.3hであり、ケース1での実施例と同程度の短期間で防食性錆層を形成することができた。
【0052】
(ケース3)
ケース3では試験条件として方法(3)の要件項目、すなわち溶液のpH、Fe2+濃度、第3成分(Fe3+、Cu2+、Ni2+、Co2+、Cr3+、PO4 3- 、Mo5+、Ti3+、W6+、Al3+、Mg2+、Sr2+、MoO4 2+、TiO3 2-、WO4 2- の1種または2種以上の組合せ)の添加量(濃度)、および、試験片表面上の溶液量、湿状態保持時間を表4に示すように種々変更した。なお、pH調整用の酸、Fe2+の添加剤、第3成分の添加剤、乾湿サイクル回数は表4に示すように変更した。ケース3の試験条件は、すべて方法(2)の範囲内とし、また、一部第3成分含有量の面で方法(3)の範囲外とした以外はすべて方法(3)の範囲内とした。流れ錆と浮き錆の発生状況の調査結果を表4に示す。なお、表4には試験条件毎に試験開始から終了までに要した時間(錆付け所要時間)を併示した。
【0053】
【表5】
Figure 0004513178
【0054】
【表6】
Figure 0004513178
【0055】
鋼板A71〜A82、B71〜B82は、溶液へのFe2+添加剤として硫酸鉄(II)を用いたものである。うち方法(3)適合例である鋼板A71〜A80、B71〜B80は、浮き錆がほとんど認められないのはもちろん、ケース2での方法(2)適合例の同鋼材のものに比べて流れ錆が顕著に低減した。これに対し、方法(2)の範囲内にあるが方法(3)の範囲を外れる鋼板A81〜A82、B81〜B82の流れ錆は、ケース2での方法(2)適合例の同鋼材のものと同程度であった。
【0056】
鋼板A83〜A102 、B83〜B102 は、溶液へのFe2+添加剤として塩化鉄(II)を用いたものである。うち方法(3)適合例である鋼板A83〜A87、A90〜A102 、B83〜B87、B90〜B102 は、浮き錆がほとんど認められないのはもちろん、ケース2での方法(2)適合例の同鋼材のものに比べて流れ錆が顕著に低減した。これに対し、方法(2)の範囲内にあるが方法(3)の範囲を外れる鋼板A88〜A89、B88〜B89の流れ錆は、ケース2での方法(2)適合例の同鋼材のものと同程度であった。
【0057】
そして、ケース3での錆付け所要時間は16.6〜50hであり、ケース1での実施例およびケース2と同程度の短期間で防食性錆層を形成することができた。
【0058】
【発明の効果】
本発明によれば、田園地帯や海岸地帯で無塗装使用される耐候性鋼、高海岸耐候性鋼材などの鋼材の表面に防食性に富む錆層を短時間で生成させることができるので、無塗装使用時の流れ錆や浮き錆の発生を防止した耐候性鋼材の生産性が向上し、環境上・景観上の問題をより経済的かつ迅速に解決できるようになるという優れた効果を奏する。
【図面の簡単な説明】
【図1】錆促進試験に用いた試験装置を示す模式図である。
【符号の説明】
1 槽
2 溶液タンク
3 ポンプ
4 ノズル
5 加湿装置
6 乾燥ブロワ
S 試験片[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a weathering steel material, and more particularly to a method for producing a weathering steel material in which a rust layer having corrosion resistance is formed at an early stage on the steel material surface to prevent the occurrence of flow rust.
In the present invention, the steel material includes a thick steel plate, a thin steel plate, a bar steel, and a shaped steel.
[0002]
[Prior art]
The weather-resistant steel with improved corrosion resistance in the atmosphere by adding alloy elements such as P, Cu, Cr, Ni, etc. into the steel is a rust layer called stable rust that is difficult to pass oxygen and water that cause corrosion in the exposed environment. Is formed in several years, and the corrosion of the steel is suppressed. Moreover, since this stable rust is dark brown compared with ordinary steel and harmonizes with the landscape, recently, it has been increasingly used for steel structures such as building exterior materials and bridges. Weather resistant steel does not require the application of a rust preventive paint and is a highly corrosion resistant material that can be used barely.
[0003]
However, when used in the countryside, the conventional weathering steel takes several years for stable rust to form, and during that time, it generates flow rust called rust soup, which has a problem in landscape. In addition, there was a considerable amount of peelable rust called floating rust during that period, which was a problem. Further, the weather resistant steel has a problem that stable rust is hardly formed due to the action of sea salt particles flying in the coastal area, and corrosion inhibition is not recognized.
[0004]
To deal with such problems, various treatment methods have been studied for steel materials. First, a coating film is applied to the surface of weathering steel to block the corrosive environment.
JP-A-49-11739 discloses a weather-resistant rust layer-formed steel material in which water, a corrosive solution or both are applied to the steel surface to generate rust, and then a semipermeable film is formed. Yes.
[0005]
On the other hand, as a method not using a coating film, a method of preventing flow rust by forming a rust layer having a corrosion prevention function in advance has been proposed. For example, Japanese Patent Laid-Open No. 1-142088 discloses a surface treatment method for weathering steel in which a phosphate coating is formed after treating the surface of a steel sheet with an acidic solution, and Japanese Patent Publication No. 7-37672 discloses rust having a special composition. The rust weathering steel sheet treated with the tempering treatment liquid is disclosed in Japanese Patent No. 2765425 as steel materials covered with a rust layer having an average crystal grain size of 200 nm or less or α-FeOOH having an average crystal grain size of 200 nm or less. Has been.
[0006]
[Problems to be solved by the invention]
However, the method of forming a coating film on the weathering steel surface has a problem that it takes a long period of several decades to form a stable rust layer because the coating film has high corrosion resistance. During the period, peeling or the like occurred due to deterioration of the coating film, and it sometimes became unsightly in appearance. In addition, when the deterioration is particularly severe depending on the environment, it is necessary to repaint, and the advantage of the weather-resistant steel material that can be used without maintenance is not necessarily utilized. Furthermore, there is also a problem that color unevenness occurs due to the difference in the degree of progress of corrosion under the coating film.
[0007]
The weather-resistant rust layer-forming steel material disclosed in JP-A-49-11739 is produced by coating a steel material with a semipermeable film. The effect of suppressing rust and peeling rust is enhanced. However, as shown in FIG. 2 of the same publication, the anticorrosive effect of the rust layer itself is insufficient, and the two processes of rust acceleration treatment and coating coating are performed, so the process is complicated.
[0008]
On the other hand, the techniques described in JP-A-1-142088, JP-B-7-37672, and Japanese Patent No. 2765425 do not use a paint and flow by forming a rust layer having anticorrosion performance in advance. It suppresses the generation of rust. In these techniques, the focus is on the formation of a weather-resistant rust layer, and studies are being made on a corrosion treatment solution and a method for forming a rust layer.
[0009]
However, in the technique described in Japanese Patent Application Laid-Open No. 1-142088, an acidic corrosive solution having a pH of 2.3 or less is applied once and dried to form a rust layer, but a phosphate coating is then formed. It is essential. However, the phosphate coating is known as a rust stabilization treatment for weathering steel, and this technique also involves two processes, namely rusting and rust stabilization treatment, and the process is complicated.
[0010]
In the technique described in Japanese Patent Publication No. 7-37672, the concentration of ions contained in the corrosion treatment solution is lowered to reproduce the corrosion close to the actual exposure environment to form a weather-resistant rust layer. However, as shown in FIG. 1 of the same publication, the initial corrosion inhibition effect after exposure is not always sufficient, and there is a problem that rust is also generated during this period. Furthermore, it took a long time of 3 days for the rusting treatment.
[0011]
In order to obtain a steel material covered with a rust layer having an average crystal grain size of 200 nm or less or α-FeOOH having an average crystal grain size of 200 nm or less, as disclosed in Japanese Patent No. 2765425, a chromium sulfate solution is applied to the bare steel material. The chromium sulfate solution may be applied to the rust generated by the exposure. However, just applying the solution and exposing it causes chromium sulfate to be washed away by rain in some places, so the effect is not sufficient, and it is unsightly because the rust is uneven depending on the place in the same building or bridge There was a problem.
[0012]
In addition, as related to this technology, Japanese Patent No. 2666673 discloses a paint containing a substance effective for rust stabilization such as chromium sulfate. Since it is high, there is a problem that it takes a long time to form a stable rust layer.
As described above, in the prior art, it has been studied to generate a rust layer rich in corrosion resistance on a weather-resistant steel plate in advance and reduce flow rust in subsequent exposure. The process of generating by is not studied at all.
[0013]
Then, an object of this invention is to provide the manufacturing method of the weathering steel material which can produce | generate the rust layer which is rich in corrosion resistance on the steel material surface in a short time.
[0014]
[Means for Solving the Problems]
As a result of intensive studies on the rust layer formation process in order to achieve the above object, the present inventors have found that the steel material surface is a solution having a pH of 2.5 or more and less than 7 and a solution of 0.10 to 5 mg / cm.2It was found that a weather-resistant rust layer rich in corrosion resistance was formed in a short period of time by repeating the steps of wetting and drying for 5 to 60 minutes.
[0015]
In addition, 0.05 to 2.5 g / l Fe in the solution2+It has been found that the corrosion resistance of the weather-resistant rust layer is further improved by containing.
In addition, 0.05 to 2.5 g / l Fe in the solution2+And further Fe3+, Cu2+, Ni2+, Co2+, Cr3+, POFour 3-, Mo5+, Ti3+, W6+, Al3+, Mg2+, Sr2+, MoOFour 2+, TiOThree 2-, WOFour 2-One or a combination of two or more of the above Fe2+It has been found that the corrosion resistance of the weather-resistant rust layer is further improved when the content is 20% by mass or less.
[0016]
  The present invention has been completed based on these findings. The gist of the present invention resides in a method for producing a weather-resistant steel material described below.
  (1) 0.10-5mg / cm solution with pH 2.5 or more and less than 7 on steel surface2For 5 to 60 minutes and thenForceddryIn repeating the wet and dry cycle, the wet and dry cycle is set to 10 times or more, and after the forced drying of one dry and wet cycle is completed, the process proceeds to the wet treatment of the next dry and wet cycle without delay.A method for producing a weather-resistant steel material.
  (2) The steel surface is made of Fe2+A solution containing 0.05 to 2.5 g / l of pH 2.5 or more and less than 7, 0.10 to 5 mg / cm2For 5 to 60 minutes and thenForceddryIn repeating the wet and dry cycle, the wet and dry cycle is set to 10 times or more, and after the forced drying of one dry and wet cycle is completed, the process proceeds to the wet treatment of the next dry and wet cycle without delay.A method for producing a weather-resistant steel material.
[0017]
  (3) The steel surface is made of Fe2+0.05-2.5g / l and further Fe3+, Cu2+, Ni2+, Co2+, Cr3+, POFour 3- , Mo5+, Ti3+, W6+, Al3+, Mg2+, Sr2+, MoOFour 2+, TiOThree 2-, WOFour 2- One or a combination of two or more of the above Fe2+0.10 to 5 mg / cm of a solution containing 20% by mass or less of pH 2.5 to less than 72For 5 to 60 minutes and thenForceddryIn repeating the wet and dry cycle, the wet and dry cycle is set to 10 times or more, and after the forced drying of one dry and wet cycle is completed, the process proceeds to the wet treatment of the next dry and wet cycle without delay.A method for producing a weather-resistant steel material.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
In order to generate rust on the steel plate, it is only necessary to supply water on the steel plate. However, in a state where it is always wet with water (wet state), rust that adheres to the steel plate is not generated, and a drying process is required for this purpose. Has been. The anticorrosive rust of weathering steel is also gradually formed by repeated dry and wet conditions in a natural exposure environment. Although the mechanism is not necessarily clear, the fact that a closely adhered rust layer having anticorrosive properties is produced by repeated drying and wetting has been used for a long time as disclosed in, for example, JP-A-49-11739. Known from.
[0019]
The point of the present invention is that, in the dry and wet repetitive process, the quality, amount, and repetitive cycle of the liquid to be applied are limited to a range in which an adherent rust layer having corrosion resistance can be formed in a short period of time.
The reason for limiting the requirements of the present invention will be described below.
As for the quality of the liquid used to wet the steel surface, this liquid must be a solution having a pH of 2.5 or more and less than 7. The solution is preferably an aqueous solution. The solution needs to be below pH 7, i.e. acidic, in order for corrosion or electrochemical dissolution of the steel to proceed at a sufficient rate. However, in a strongly acidic liquid having a pH of less than 2.5, although dissolution of the ground iron proceeds at a sufficient rate, it becomes difficult to form a rust layer with high adhesion. Therefore, the liquid to be applied is limited to a solution having a pH of 2.5 or more and less than 7.
[0020]
As a solution having a pH of 2.5 or more and less than 7, an aqueous solution obtained by diluting sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, boric acid or the like with water is suitable because the pH adjustment is simple. In the present invention, an anticorrosive rust layer can be formed by using such a weakly acidic liquid.
In the present invention, in order to further improve the corrosion resistance of the rust layer, Fe2+0.05 to 2.5 g / l. The principle is not clear, but Fe2+Has the effect of accelerating the corrosion, speeding up the formation of the rust layer, and improving the corrosion resistance of the rust layer. This effect becomes significant at 0.05 g / l or more, but if it exceeds 2.5 g / l, it is too corrosive and does not form an adhesive rust layer.2+The concentration is preferably in the range of 0.05 to 2.5 g / l.
[0021]
Fe2+In order to prepare the containing solution, one or more of iron salts such as iron sulfate, iron chloride, and iron nitrate are added to a predetermined Fe.2+What is necessary is just to dissolve | melt in water so that it may become a density | concentration. Since these salts are acidic salts, a solution having a pH of 2.5 or more and less than 7 can be obtained without particularly adjusting the pH. Of course, if necessary, the pH may be adjusted by adding an acid. Fe2+In preparing the contained solution, an anion is inevitably added as described above, but it is inexpensive to use iron sulfate or iron chloride industrially. Of course, the present invention is not limited to these iron salts.
[0022]
In the present invention, 0.05 to 2.5 g / l Fe2+As a third component in the contained solution, Fe3+, Cu2+, Ni2+, Co2+, Cr3+, POFour 3-, Mo5+, Ti3+, W6+, Al3+, Mg2+, Sr2+, MoOFour 2+, TiOThree 2-, WOFour 2-One or a combination of two or more of which the content is Fe2+When added so as to be in the range of 20% by mass or less of the amount, rust is further refined, and a rust layer having better corrosion resistance is formed, which is preferable. Third component (Fe3+, Cu2+, Ni2+, Co2+, Cr3+, POFour 3-, Mo5+, Ti3+, W6+, Al3+, Mg2+, Sr2+, MoOFour 2+, TiOThree 2-, WOFour 2-1 type or a combination of two or more types)2+If the amount exceeds 20% by mass, the corrosion resistance of the rust layer is deteriorated, and the cost of the solution increases. The content of the third component is Fe2+If the amount is less than 2% by mass, the effect is less likely to appear.2+4% by mass or more of the amount.
[0023]
Next, regarding the amount of liquid for placing the steel surface in a wet state, this liquid amount is 0.10 to 5 mg / cm.2(Steel material surface 1cm2 0.10-5 mg per unit). Liquid amount 0.10mg / cm2If it is less than 1, not only will the liquid be insufficient and the progress of corrosion will be slow, but it will also be difficult to control the amount of liquid, and it will readily evaporate. On the other hand, liquid volume 5mg / cm2If it is too high, the supply of oxygen to the iron-iron interface will be insufficient, and non-adhesive Fe will be used as a corrosion product.ThreeOFourAnd a weather-resistant rust layer is hardly formed. Liquid volume is 0.10-5mg / cm2As long as it is within the range, there is no particular problem even if it fluctuates in the holding time described later, but in a wet state, the liquid in contact with the steel surface is evaporated by keeping the atmosphere in the wet treatment chamber where the steel material is set at high humidity. It is preferable that the amount of liquid is kept constant. In the method disclosed in Japanese Patent Laid-Open No. 49-11739, the means for creating a wet state is immersion in a corrosive solution, so that the progress of corrosion is slow and the adhesion rust layer is difficult to form.
[0024]
Next, in the cycle where the drying and drying are repeated, the retention time of the wet state per cycle needs to be 5 to 60 minutes. If it is less than 5 minutes, the corrosion does not proceed so much and it takes time to form a weather-resistant rust layer. In addition, if it exceeds 60 minutes,ThreeOFourAs a result, the weather resistance of the rust layer deteriorates.
Further, the number of repetitions of drying and wetting (the number of cycles of drying and wetting) is not necessarily repeated at one time, and needless to say, it is needless than two, but is preferably ten or more. If the number of wet and dry cycles is less than 10, the thickness of the formed rust layer is too thin and it is difficult to prevent flow rust from occurring in the exposure environment. In the present invention, if the thickness of the rust layer is increased by increasing the number of dry and wet cycles and the treatment is performed 10 times or more, there is an effect of preventing flow rust in the exposure environment. However, even if the number of wet and dry cycles is increased too much, the anticorrosive property of the rust layer tends to saturate. In the present invention, the number of wet and dry cycles depends on the solution composition and the like, but is preferably 10 to 300 times, and practically 30 to 150 times.
[0025]
On the other hand, the time required for drying is not particularly limited because corrosion does not proceed and the rust quality does not change in the dry state. For example, the time required for drying may be appropriately set according to the size of the steel material and the specifications of the apparatus. In order to shorten the layer formation period, it is preferable to shift to the wet treatment of the next cycle without delay after completion of drying of one cycle.
In the methods (2) to (3) of the present invention, the additive components in the solution remain after drying and accumulate every time the cycle is repeated, which may adversely affect the corrosion resistance of the rust layer. It is preferable to wash the surface of the steel material before drying and after wetting with water with each cycle and dry it again.
[0026]
According to the present invention, the weather-resistant steel material in which the weather-resistant rust layer having high corrosion resistance on the steel material surface is formed in a short period of time greatly reduces the occurrence of flow rust at the time of unpainted use, and there is a problem of landscape or environmental pollution. Solved. This effect is also exerted in coastal areas where stable rust is unlikely to be formed, and the occurrence of flow rust in weathering steel is greatly reduced even in areas close to the coast.
[0027]
Steel materials for forming a rust layer by the methods (1) to (3) of the present invention are SMA400AW, SMA400AP, SMA400BW, SMA400BP, SMA400CW, SMA400CP, SMA490AW, SMA490AP, SMA490BW, SMA490BP, SMA490BP, SMA490CP, SMA490CP, SMA490CP, Those corresponding to either SMA570W or SMA570P are preferable, and particularly when used for use in a coastal area, the high coast weathering steel materials described in any of the following (S1) to (S4) are suitable. is there.
[0028]
(S1)
In mass%, C: 0.001 to 0.025%, Si: 0.60% or less, Mn: 0.10 to 3.00%, P: 0.005 to 0.030%, S: 0.01% or less, Al: 0.10% or less, Cu: 0.1 to 1.5%, Weather-resistant steel comprising Ni: 0.1 to 6.0%, B: 0.0001 to 0.0050%, and the balance Fe and inevitable impurities.
[0029]
(S2)
A weathering steel which further contains Mo: 0.005 to 0.5% in S1 and satisfies the formula (1).
(11P + 4.0 Cu + 3.1 Ni + 2.6 Mo) / (1-0.1 (10000 B)0.35) ≧ 1 + 13X
………… (1)
(Here, P, Cu, Ni, Mo, B: content of each element (mass%), X: amount of incoming salt (mg / dm2/ day))
(S3)
In S1, the weather resistance further contains one or more selected from Nb: 0.005 to 0.20%, V: 0.005 to 0.20%, Ti: 0.005 to 0.20%, and REM: 0.02% or less in mass%. Steel.
[0030]
(S4)
In S1, Mo: 0.005 to 0.5% is further included, and the formula (1) is satisfied. Further, Nb: 0.005 to 0.20%, V: 0.005 to 0.20%, Ti: 0.005 to 0.20. %, REM: Weather-resistant steel containing one or more selected from 0.02% or less.
[0031]
【Example】
A rust acceleration test was conducted in the following manner using the test apparatus shown in the schematic diagram of FIG.
A plurality of test pieces S were placed in the tank 1, and the solution was supplied to the surface of the test piece S by the spray type nozzle 4 installed in the upper part of the tank 1 to make the surface of the test piece S wet. The arrangement of the nozzles 4 was set so that the same amount of solution was supplied for each test piece. The solution stored in the solution tank 2 was fed to the nozzle 4 by a pump 3. The amount of solution on the surface of the test piece S was adjusted by changing the spray time. After supplying the solution, the inside of the tank 1 was kept in a high humidity atmosphere (humidity of 80% or more) using the humidifying device 5 to prevent evaporation of the solution on the surface of the test piece S. After this wet state was continued for a predetermined holding time, air dried by the drying blower 6 was introduced into the tank 1 to forcibly dry the surface of the test piece S. Next, the surface of the test piece S was washed with a large amount of washing water and again forcedly dried. This wet (wet state) -dry cycle was repeated a predetermined number of times.
[0032]
As a test piece, 100 × 50 × 10 mm collected from two types of steel materials A and B having the chemical composition shown in Table 1.ThreeThis was a shot blasted piece of strip. The steel material A corresponds to the weathering steel specified in JIS G3114, and the steel material B corresponds to the high coast weathering steel material.
[0033]
[Table 1]
Figure 0004513178
[0034]
The specimens after the rust acceleration test were subjected to an exposure test for 3 months in the countryside and coastal area for steel A and in the coastal area for steel B, and the occurrence of flow rust and floating rust was investigated. For flowing rust, rainwater that flows on the surface of the test specimen is collected in a polyethylene bottle and collected every month, and the amount of rust and iron ions in the collected liquid is measured. The total amount of spilled iron was evaluated. The floating rust was peeled off again after sticking the adhesive tape on the rust surface, and the amount attached to the tape was judged and evaluated visually.
[0035]
(Case 1)
In case 1, the requirements of method (1) as test conditions, that is, the pH of the solution, the amount of solution on the surface of the test piece, and the wet state retention time were variously changed as shown in Table 2. The acid for pH adjustment and the number of wet and dry cycles were changed as shown in Table 2. Table 2 shows the results of investigation on the occurrence of flow rust and floating rust. Table 2 also shows the time (rusting time) required from the start to the end of the test for each test condition.
[0036]
[Table 2]
Figure 0004513178
[0037]
[Table 3]
Figure 0004513178
[0038]
Hereinafter, the test pieces of the steel materials A and B subjected to the rust acceleration treatment under the conditions of No. i are referred to as steel plates Ai and Bi.
Steel plates A50 and B50 were untreated (bare) exposed for comparison (bare exposed material), and steel plate A50 generated a lot of flowing rust and floating rust in the countryside, and more flowing rust in the coastal area. , Floating rust occurred. In the steel plate B50, flow rust and floating rust in the coastal zone were reduced as compared with the steel material A, but were generated to the same extent as the steel plate A50 in the countryside.
[0039]
  The steel plates A1 to A18 and B1 to B18 are prepared using solutions adjusted to pH with sulfuric acid, of which examples are within the scope of the method (1), that is, the steel plates A1 to A8, A.17~ A18, B1-B8, B17In ~ B18, flow rust and floating rust were greatly reduced compared to the bare steel (steel plates A50, B50) on the same steel material side.
  On the other hand, the comparative example which deviates from the range of the method (1), that is, the steel plates A9 to A10 and B9 to B10 which deviate from the range of the method (1) in terms of the solution amount, and the steel plates A11 to A12 which deviate in terms of the wet state holding time. , B11 to B12, steel plates A13 and B13 coming off in terms of solution pH, steel plates A14 coming off in terms of the number of wet and dry cycles~ A16, B14~ B16Then, flow rust and floating rust were reduced only slightly compared to the bare steel (steel plates A50 and B50) on the same steel material side.
[0040]
  In additionDryIn steel plates A15 to A18 and B15 to B18 with different numbers of wet cycles, steel plates A15 to A16 and B15 to B16 with less than 10 wet and dry cycles are steel plates A17 to A18 and B17 to B18 with 10 or more wet and dry cycles. Compared with, the effect of reducing flow rust and floating rust was small.
  The steel plates A19 to A31 and B19 to B31 were prepared using solutions adjusted to pH with hydrochloric acid, but the examples within the range of the method (1), that is, the steel plates A19 to A23, A30~ A31, B19 ~ B23, B30In ~ B31, the flow rust and floating rust were greatly reduced as compared to the bare steel (steel plates A50, B50) on the same steel material side.
[0041]
  On the other hand, the comparative example out of the range of the method (1), that is, the steel plates A24 and B24 out of the range of the method (1) in terms of the solution amount, the steel plates A25 and B25 out of the wet state holding time, and the solution pH Steel plates A26, B26 coming off at the surface, Steel plates A27 coming off at the surface of the number of wet and dry cycles~ A29, B27~ B29Then, flow rust and floating rust were reduced only slightly compared to the bare steel (steel plates A50 and B50) on the same steel material side.
[0042]
  In additionDryIn steel plates A28 to A31 and B28 to B31 with different numbers of wet cycles, steel plates A28 to A29 and B28 to B29 having a dry cycle number of less than 10 are steel plates A30 to A31 and B30 to B31 having a dry cycle number of 10 or more. Compared with, the effect of reducing flow rust and floating rust was small.
  The steel plates A32 to A39 and B32 to B39 use solutions adjusted to pH with nitric acid, of which the examples within the range of the method (1), that is, the steel plates A32 to A36 and B32 to B36 are exposed naked. The flow rust and floating rust were greatly reduced compared to the same steel material side of the steel (steel plates A50, B50).
[0043]
On the other hand, comparative examples that deviate from the range of method (1), that is, steel plates A37 and B37 that deviate from the range of method (1) in terms of solution amount, steel plates A38 and B38 that deviate in terms of wet state retention time, and solution pH. In the steel plates A39 and B39 which are separated from each other, the flow rust and the floating rust are slightly reduced compared to the steel material side of the bare exposed materials (steel plates A50 and B50).
The steel plates A40 to A43 and B40 to B43 use solutions adjusted in pH with an acid in which an equal amount of sulfuric acid and hydrochloric acid are mixed. Of these, the examples within the range of the method (1), that is, the steel plates A40 to A42. In B40 to B42, flow rust and floating rust were greatly reduced as compared to the bare steel (steel plates A50 and B50) on the same steel material side.
[0044]
On the other hand, in the comparative example out of the range of the method (1), that is, in the steel plates A43 and B43 out of the range of the method (1) in terms of the amount of solution, the flow rust and the floating rust are bare exposed materials (steel plates A50 and B50). ) Was reduced only slightly compared to the same steel material side.
Steel plates A44 to A46 and B44 to B46 were prepared using a solution adjusted in pH with phosphoric acid, but the examples within the range of method (1), namely, steel plates A44 to A45 and B44 to B45 were bare. Compared with the exposed steel (steel plates A50 and B50), the flow rust and floating rust were greatly reduced.
[0045]
On the other hand, in the comparative example which deviates from the range of the method (1), that is, in the steel plates A46 and B46 which deviate from the range of the method (1) in terms of the wet state retention time, Compared with the same steel material side of B50), it was reduced only slightly.
Steel plates A47 to A49 and B47 to B49 were prepared using solutions adjusted to pH with boric acid. Of these, Examples within the scope of method (1), namely, steel plates A47 to A48 and B47 to B48 were bare. Compared with the exposed steel (steel plates A50 and B50), the flow rust and floating rust were greatly reduced.
[0046]
On the other hand, in the comparative example out of the range of the method (1), that is, the steel plates A49 and B49 out of the range of the method (1) in terms of the amount of solution, the flow rust and the floating rust are bare exposed materials (steel plates A50 and B50). ) Was reduced only slightly compared to the same steel material side.
The time required for rusting in the examples was 2.5 to 52.5 hours, which was significantly shorter than the conventional 72 hours (the method described in Japanese Patent Laid-Open No. 7-37672).
[0047]
(Case 2)
In Case 2, the requirements of method (2) as test conditions, that is, the pH of the solution and Fe2+As shown in Table 3, the concentration, the amount of solution on the surface of the test piece, and the wet state retention time were variously changed. In addition, acid for adjusting pH, Fe2+The additives and the number of wet and dry cycles were changed as shown in Table 3. The test conditions for Case 2 are all within the scope of Method (1), and some Fe2+Except for being outside the range of method (2) in terms of concentration, all were within the range of method (2). Table 3 shows the results of investigation on the occurrence of flow rust and floating rust. Table 3 also shows the time (rusting time) required from the start to the end of the test for each test condition.
[0048]
[Table 4]
Figure 0004513178
[0049]
Steel plates A51 to A60 and B51 to B602+This uses iron (II) sulfate as an additive. Of these, steel plates A51 to A58 and B51 to B58, which are examples of conforming to method (2), show that floating rust is hardly observed, and flow rust is significantly reduced compared to that of the steel material of the embodiment in case 1. did. On the other hand, the flow rust and floating rust of the steel plates A59 to A60 and B59 to B60 that are within the range of the method (1) but outside the range of the method (2) are the same as those of the steel material of the example in the case 1. It was about the same.
[0050]
Steel plates A61 to A67 and B61 to B672+Iron (II) chloride is used as an additive. Of these, steel plates A61 to A65 and B61 to B65, which are examples of conforming to method (2), have not much floating rust, and flow rust is significantly reduced compared to that of the steel material of the embodiment in case 1. did. On the other hand, the flow rust and floating rust of the steel plates A66 to A67 and B66 to B67 which are within the range of the method (1) but outside the range of the method (2) are the same as those of the steel material of the example in the case 1. It was about the same.
[0051]
Steel plates A68 to A70 and B68 to B702+As an additive, a mixture of equal amounts of iron (II) sulfate and iron (II) chloride is used, and all cases are compatible with method (2). The flow rust was remarkably reduced as compared with that of the steel material of the example in 1.
The time required for rusting in case 2 was 16.6 to 33.3 h, and the anticorrosive rust layer could be formed in a short period of time similar to the example in case 1.
[0052]
(Case 3)
In case 3, the requirements of method (3) as test conditions, ie, pH of solution, Fe2+Concentration, 3rd component (Fe3+, Cu2+, Ni2+, Co2+, Cr3+, POFour 3-, Mo5+, Ti3+, W6+, Al3+, Mg2+, Sr2+, MoOFour 2+, TiOThree 2-, WOFour 2-As shown in Table 4, the addition amount (concentration) of one or a combination of two or more), the amount of solution on the surface of the test piece, and the wet state retention time were variously changed. In addition, acid for adjusting pH, Fe2+The additives, the third component additive, and the number of wet and dry cycles were changed as shown in Table 4. The test conditions for case 3 were all within the range of method (2), and all were within the range of method (3) except that the third component content was outside the range of method (3). . Table 4 shows the results of investigation on the occurrence of flow rust and floating rust. Table 4 also shows the time (rusting time) required from the start to the end of the test for each test condition.
[0053]
[Table 5]
Figure 0004513178
[0054]
[Table 6]
Figure 0004513178
[0055]
Steel plates A71 to A82 and B71 to B822+This uses iron (II) sulfate as an additive. Among them, steel plates A71 to A80 and B71 to B80, which are applicable to method (3), have almost no floating rust, and flow rust compared to that in case 2 (2) Was significantly reduced. On the other hand, the flow rust of the steel plates A81 to A82 and B81 to B82 that fall within the range of the method (2) but outside the range of the method (3) is the same as that of the same steel material of the method (2) in the case 2 It was comparable.
[0056]
Steel plates A83 to A102 and B83 to B1022+Iron (II) chloride is used as an additive. Method (3) Steel plates A83 to A87, A90 to A102, B83 to B87, and B90 to B102, which are examples of conformity, have almost no floating rust. Flow rust was significantly reduced compared to steel. On the other hand, the flow rust of the steel plates A88 to A89 and B88 to B89 that are within the range of the method (2) but outside the range of the method (3) are those of the same steel material of the case (2) conforming example of the case 2 It was comparable.
[0057]
The time required for rusting in Case 3 was 16.6 to 50 hours, and the anticorrosive rust layer could be formed in a time as short as that in Example 1 and Case 2.
[0058]
【The invention's effect】
According to the present invention, a corrosion-resistant rust layer can be formed in a short time on the surface of a steel material such as a weather-resistant steel or a high-shore weather-resistant steel material that is used without painting in a rural area or a coastal area. Productivity of weather-resistant steel that prevents the occurrence of flow rust and floating rust when using paint is improved, and it is possible to solve environmental and landscape problems more economically and quickly.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a test apparatus used in a rust acceleration test.
[Explanation of symbols]
1 tank
2 Solution tank
3 Pump
4 nozzles
5 Humidifier
6 Drying blower
S specimen

Claims (3)

鋼材表面をpH2.5 以上7未満の溶液0.10〜5mg/cm2で5〜60分湿潤し次いで強制乾燥する乾湿サイクルを繰り返すにあたり、該乾湿サイクルを10回以上とし、且つ、1つの乾湿サイクルの強制乾燥完了後、遅滞なく次の乾湿サイクルの湿潤処理に移行することを特徴とする耐候性鋼材の製造方法。In repeating the wet and dry cycle in which the steel surface is wetted with a solution of 0.10 to 5 mg / cm 2 having a pH of 2.5 or more and less than 7 for 5 to 60 minutes and then forced to dry, the dry and wet cycle is repeated 10 times or more and A process for producing a weather-resistant steel material, characterized in that, after completion of forced drying, the process proceeds to a wet treatment of the next wet / dry cycle without delay . 鋼材表面を、Fe2+を0.05〜2.5g/l含有するpH2.5 以上7未満の溶液0.10〜5mg/cm2で5〜60分湿潤し次いで強制乾燥する乾湿サイクルを繰り返すにあたり、該乾湿サイクルを10回以上とし、且つ、1つの乾湿サイクルの強制乾燥完了後、遅滞なく次の乾湿サイクルの湿潤処理に移行することを特徴とする耐候性鋼材の製造方法。When the wet and dry cycle is repeated in which the steel surface is wetted with a solution of 0.05 to 2.5 g / l of Fe 2+ and containing 0.10 to 5 mg / cm 2 of pH 2.5 or more and less than 7 for 5 to 60 minutes and then forced to dry, 10 or more times, and after completion of forced drying in one dry-wet cycle, the process proceeds to the wet treatment of the next dry-wet cycle without delay . 鋼材表面を、Fe2+を0.05〜2.5g/l含有しさらにFe3+、Cu2+、Ni2+、Co2+、Cr3+、PO4 3- 、Mo5+、Ti3+、W6+、Al3+、Mg2+、Sr2+、MoO4 2+、TiO3 2-、WO4 2- の1種または2種以上の組合せを前記Fe2+の20質量%以下含有するpH2.5 以上7未満の溶液0.10〜5mg/cm2で5〜60分湿潤し次いで強制乾燥する乾湿サイクルを繰り返すにあたり、該乾湿サイクルを10回以上とし、且つ、1つの乾湿サイクルの強制乾燥完了後、遅滞なく次の乾湿サイクルの湿潤処理に移行することを特徴とする耐候性鋼材の製造方法。The steel surface contains 0.05 to 2.5 g / l of Fe 2+ and Fe 3+ , Cu 2+ , Ni 2+ , Co 2+ , Cr 3+ , PO 4 3− , Mo 5+ , Ti 3+ , Contains one or more of W 6+ , Al 3+ , Mg 2+ , Sr 2+ , MoO 4 2+ , TiO 3 2− , WO 4 2− or less than 20% by mass of Fe 2+ When repeating the drying / wetting cycle in which the solution is moistened with 0.10 to 5 mg / cm 2 of pH 2.5 or more and less than 7 for 5 to 60 minutes and then forcedly dried, the drying and wetting cycle is repeated 10 times or more and forced drying of one drying cycle After completion, the method for producing a weather-resistant steel material is characterized in that the process proceeds to a wet treatment of the next wet / dry cycle without delay .
JP2000200994A 1999-10-05 2000-07-03 Method for producing weathering steel Expired - Fee Related JP4513178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000200994A JP4513178B2 (en) 1999-10-05 2000-07-03 Method for producing weathering steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28395099 1999-10-05
JP11-283950 1999-10-05
JP2000200994A JP4513178B2 (en) 1999-10-05 2000-07-03 Method for producing weathering steel

Publications (2)

Publication Number Publication Date
JP2001172773A JP2001172773A (en) 2001-06-26
JP4513178B2 true JP4513178B2 (en) 2010-07-28

Family

ID=26555257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000200994A Expired - Fee Related JP4513178B2 (en) 1999-10-05 2000-07-03 Method for producing weathering steel

Country Status (1)

Country Link
JP (1) JP4513178B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4091349B2 (en) * 2002-06-11 2008-05-28 Dowaホールディングス株式会社 Method for improving weather resistance of rare earth magnet alloys
JP5655280B2 (en) * 2009-06-03 2015-01-21 新日鐵住金株式会社 Early rust aging weathering steel and method for producing the same
JP5827792B2 (en) * 2010-05-18 2015-12-02 日本パーカライジング株式会社 Chemically treated iron-based materials
JP2012117145A (en) * 2010-11-10 2012-06-21 Nippon Sharyo Seizo Kaisha Ltd Method for forming rust layer on weather resistance steel at early stage
JP5844324B2 (en) * 2013-09-10 2016-01-13 中国電力株式会社 Eggplant manufacturing method
CN111850533A (en) * 2019-04-30 2020-10-30 宝山钢铁股份有限公司 Bare weathering steel with stable rust layer and manufacturing method thereof
CN113652680B (en) * 2021-08-16 2022-12-13 兰州理工大学 Weather-resistant steel surface stabilizing treatment agent suitable for industrial atmospheric environment and treatment method
CN115404474B (en) * 2022-08-12 2023-11-24 武汉钢铁有限公司 Medium-chromium weathering steel small member surface stabilization treatment fluid and preparation and use methods thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4911739A (en) * 1972-05-16 1974-02-01
JPH0693467A (en) * 1992-07-27 1994-04-05 Sumitomo Metal Ind Ltd Formation of steel excellent in weather resistance and rust layer
JPH07207455A (en) * 1994-01-14 1995-08-08 Sumitomo Metal Ind Ltd Surface treatment for steel excellent in weather resistance
JPH09316660A (en) * 1996-05-29 1997-12-09 Nippon Parkerizing Co Ltd Treatment of surface of weathering resistant steel
JP2001303281A (en) * 2000-04-25 2001-10-31 Kawasaki Steel Corp Method for manufacturing surface treated steel material excellent in weather resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4911739A (en) * 1972-05-16 1974-02-01
JPH0693467A (en) * 1992-07-27 1994-04-05 Sumitomo Metal Ind Ltd Formation of steel excellent in weather resistance and rust layer
JPH07207455A (en) * 1994-01-14 1995-08-08 Sumitomo Metal Ind Ltd Surface treatment for steel excellent in weather resistance
JPH09316660A (en) * 1996-05-29 1997-12-09 Nippon Parkerizing Co Ltd Treatment of surface of weathering resistant steel
JP2001303281A (en) * 2000-04-25 2001-10-31 Kawasaki Steel Corp Method for manufacturing surface treated steel material excellent in weather resistance

Also Published As

Publication number Publication date
JP2001172773A (en) 2001-06-26

Similar Documents

Publication Publication Date Title
EP1970470B1 (en) Chrome(VI)-free black passivates for surfaces containing zinc
JP4513178B2 (en) Method for producing weathering steel
JP5600992B2 (en) Surface-treated corrosion-resistant steel with excellent weather resistance
DE102008020576A1 (en) Method for diffusion galvanizing
CN101045980A (en) High aluminium zinc alloy hot dip coating process for iron steel product
EP1678344B1 (en) Essentially chromium-free method for passivating metallic surfaces consisting of zn, zn alloys, al or al alloys
CN103459670B (en) The steel of the band rusty scale had excellent weather resistance under high salinity environment
Mrad et al. Effect of doping by corrosion inhibitors on the morphological properties and the performance against corrosion of polypyrrole electrodeposited on AA6061-T6
EP3455392A1 (en) Conversion coatings for metal surfaces
JP5571881B2 (en) Surface treatment liquid for autodeposition coating treatment of metal material, and autodeposition coating treatment method
Toghan et al. Effect of deposition potential on the mechanism and corrosion behavior of Zn-Fe-Co thin coatings electrochemically deposited on a steel substrate
CN111876767B (en) Weather-resistant steel rust layer stabilizing treatment agent and use method thereof
CN106756939A (en) aluminum passivation liquid and preparation method thereof
DE2051925B2 (en) Galvanizing paste and process for the production of coatings from this paste on iron and steel objects
JP2001303281A (en) Method for manufacturing surface treated steel material excellent in weather resistance
JP4455712B2 (en) Coated steel with atmospheric corrosion resistance
KR100326653B1 (en) Manufacturing method of hot-dip galvanized steel sheet containing chromate treatment with excellent black resistance and whiteness
JP2002105658A (en) Galvanized steel sheet having excellent blackening resistance and corrosion resistance after working, chemically treating solution and chemical conversion treatment method
JPS5867886A (en) Steel article coated with iron-zinc alloy plating layer having concentration gradient and manufacture thereof
JP2001342576A (en) Method for manufacturing weather resistant steel
US10458022B2 (en) Optimized process control in the anti-corrosive metal pretreatment based on fluoride-containing baths
JP2009262477A (en) Weather-resistant steel material
KR20200096980A (en) Pretreatment method for corrosion prevention and cleaning of metal parts
JP2787365B2 (en) Organic thin film coated Cr-containing zinc-based multi-layer rust-proof steel sheet having excellent long-term adhesion of organic thin film and cationic electrodeposition coating property, and method for producing the same
JP3056372B2 (en) Super-painting durable steel and its painting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100503

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees