JP4512890B2 - Observation window in an environmental tester - Google Patents
Observation window in an environmental tester Download PDFInfo
- Publication number
- JP4512890B2 JP4512890B2 JP2004263166A JP2004263166A JP4512890B2 JP 4512890 B2 JP4512890 B2 JP 4512890B2 JP 2004263166 A JP2004263166 A JP 2004263166A JP 2004263166 A JP2004263166 A JP 2004263166A JP 4512890 B2 JP4512890 B2 JP 4512890B2
- Authority
- JP
- Japan
- Prior art keywords
- pair
- electrodes
- glass plate
- observation window
- induction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000007613 environmental effect Effects 0.000 title description 29
- 239000011521 glass Substances 0.000 claims description 71
- 230000006698 induction Effects 0.000 claims description 62
- 239000002184 metal Substances 0.000 claims description 4
- 238000005553 drilling Methods 0.000 claims description 3
- 230000005494 condensation Effects 0.000 description 23
- 238000009833 condensation Methods 0.000 description 23
- 230000005611 electricity Effects 0.000 description 7
- 238000009795 derivation Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 125000002066 L-histidyl group Chemical group [H]N1C([H])=NC(C([H])([H])[C@](C(=O)[*])([H])N([H])[H])=C1[H] 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Landscapes
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Description
この発明は、恒温恒湿槽や温度サイクル試験器等の環境試験器やその他内外温度差を発生させるような試験器において、該環境試験器等の内部の様子を外部より観測することを可能とする観測窓に関するものである。 The present invention makes it possible to observe the internal state of the environmental tester etc. from the outside in an environmental tester such as a constant temperature and humidity chamber and a temperature cycle tester and other testers that generate a temperature difference between inside and outside. It relates to the observation window.
従来、例えば恒温恒湿槽や温度サイクル試験器などの環境試験器においては、該環境試験器内部の様子を外部より観測することができるように、透明なガラス板よりなる観測窓が設けられている。ところが、環境試験器内の試験状態によっては該試験器内部の湿度が著しく上昇し、該観測窓を通して該環境試験器外部との温度差によって、該観測窓内部で結露による曇りが生じてしまうことがある。そのため、該観測窓内部に発生する結露による曇りを除去できるようにするため、例えば観測窓を構成するガラス板を、抵抗を有しつつも通電可能として、発熱可能なものとした上で、該ガラス板の互いに対向する辺縁又はその近傍において、平行に一対の通電電極を配置してなるものがある。そのため、該観測窓において配置される一対の通電電極間で通電を行うと、通電可能なガラス板の有する抵抗でガラス板が発熱して、環境試験器内の高湿度に起因する観測窓の結露による曇りを確実に除去することができるものである。 Conventionally, in an environmental tester such as a constant temperature and humidity chamber or a temperature cycle tester, an observation window made of a transparent glass plate is provided so that the inside of the environmental tester can be observed from the outside. Yes. However, depending on the test conditions in the environmental tester, the humidity inside the tester increases significantly, and the clouding due to condensation occurs inside the observation window due to the temperature difference between the environmental tester and the outside through the observation window. There is. Therefore, in order to be able to remove fogging due to dew condensation generated inside the observation window, for example, a glass plate constituting the observation window can be energized while having resistance, and can generate heat. There is one in which a pair of current-carrying electrodes are arranged in parallel at the edges of the glass plate facing each other or in the vicinity thereof. For this reason, when energization is performed between a pair of energized electrodes arranged in the observation window, the glass plate generates heat due to the resistance of the energizable glass plate, and condensation of the observation window due to high humidity in the environmental tester It is possible to surely remove fogging due to.
しかしながら、上記環境試験器の観測窓において、環境試験器内部で直接実験操作が行えるよう、手が差し入れられる単独又は複数の操作孔が観測窓に設けられることがある。
その場合、該操作孔は、観測窓を構成する通電可能なガラス板の互いに対向する辺縁又はその近傍に設けられた一対の通電電極に対する任意の垂線を想定した場合の垂線上において穿設されることとなるが(例えば2個の操作孔を設けた場合、その2個の操作孔は前記垂線上に並列するように設けられる。)、そうすると該通電電極間において、該操作孔を中心として該操作孔から通電電極に対する垂線方向へ結露による曇りが生じることがある〔図8(イ)及び(ロ)における点部参照)。この原因は、以下のように考えられる。
すなわち、通常、観測窓を構成する通電可能なガラス板の互いに対向する辺縁又はその近傍に設けられた一対の通電電極間の通電は、一対の通電電極に対する任意の垂線を想定した場合の垂線方向間で行われるものである。その結果、該一対の通電電極間全体にわたって通電し、該ガラス板全体が均一に発熱して、結露による曇りを除去できるものである。
ところが、該一対の通電電極間で、該一対の通電電極に対する任意の垂線を想定した場合
の垂線上において単独又は複数の操作孔が穿設されると、該操作孔により通電が阻害されることとなる.つまり、電流は該操作孔を通ることができないので、ガラス板を流れる電流の分布が不均一となるので、該ガラス板の有する抵抗による発熱が不均一となってしまうものである。その結果、一対の通電電極間において、該一対の通電電極間に対して想定する垂線上に穿設する単数又は複数の操作孔に対向する各々の通電電極との間が、周囲に比べて相対的に低温部となることで結露による曇りが発生してしまい、作業者の視界を妨げるものとなる。特に、複数の操作孔を穿設した場合には、該操作孔間の部分が特に周囲に比べて低温部となるので、結露による曇りが発生しやすく、且つ濃いものとなる。一方、該操作孔に手を差し入れて作業を行う作業者にとっては、特に2個の並列した操作孔に左右の手をそれぞれ差し入れた場合、視界を確保できる範囲が概ね該操作孔間に限定されてしまうことから、まさにその限定された視界の範囲、即ちその操作孔間に発生する結露
により、観測窓の曇りを除去することができず、観察のみならず、作業時に必要となる視界を安定的に確保することができないものである。
However, in the observation window of the environmental tester, single or a plurality of operation holes into which a hand can be inserted may be provided in the observation window so that an experimental operation can be directly performed inside the environmental tester.
In that case, the operation hole is drilled on a perpendicular line assuming an arbitrary perpendicular line to a pair of energizing electrodes provided at or near the opposite edges of the energizable glass plate constituting the observation window. (For example, when two operation holes are provided, the two operation holes are provided so as to be parallel to the perpendicular.) Then, between the energized electrodes, the operation holes are centered. Clouding due to condensation may occur in the direction perpendicular to the current-carrying electrode from the operation hole (see the dot portions in FIGS. 8A and 8B ). The cause is considered as follows.
That is, normally, energization between a pair of energizing electrodes provided at or near the edges of the energized glass plates constituting the observation window is a normal when assuming an arbitrary perpendicular to the pair of energizing electrodes. It is done between directions. As a result, energization is performed across the pair of energizing electrodes, the entire glass plate generates heat uniformly, and fogging due to condensation can be removed.
However, when a single or a plurality of operation holes are formed between the pair of energization electrodes on the perpendicular line when an arbitrary perpendicular to the pair of energization electrodes is assumed, energization is inhibited by the operation holes. It becomes. That is, since the current cannot pass through the operation hole, the distribution of the current flowing through the glass plate becomes non-uniform, and heat generation due to the resistance of the glass plate becomes non-uniform. As a result, between the pair of energized electrodes, the distance between each energized electrode facing the operation hole or holes formed on the normal perpendicular to the pair of energized electrodes is relative to the surroundings. When it becomes a low temperature part, the cloudiness by condensation will generate | occur | produce and will disturb an operator's visual field. In particular, when a plurality of operation holes are drilled, the portion between the operation holes becomes a low-temperature part, especially compared to the surroundings, so that clouding due to condensation is likely to occur and the area becomes dark. On the other hand, for an operator who inserts his / her hand into the operation hole, especially when the left and right hands are respectively inserted into two parallel operation holes, the range in which visibility can be secured is generally limited between the operation holes. Therefore, due to the limited field of view, that is, condensation that occurs between the operation holes, the clouding of the observation window cannot be removed, and not only observation but also the field of view necessary for work is stable. Cannot be secured.
解決しようとする問題点は、試験器の観測窓において、特に該観測窓に穿設される操作孔により発生する結露による曇りを除去することができず、該試験器内の観察のみならず、実験操作を行うに際しての作業者の視界を安定的に確保することができない点てある。 The problem to be solved is that, in the observation window of the tester, it is not possible to remove the fogging due to condensation generated by the operation hole drilled in the observation window, not only the observation in the tester, There is a point that it is impossible to stably ensure the worker's field of view when performing the experimental operation.
そのため、開閉自在に取り付けられる扉体を有する試験器本体の、扉体を含む任意の面に設けられ、
当該面の枠体に一体に嵌着、保持され、互いに対向する各々の辺縁又はその近傍において、平行に一対の通電電極を配置すると共に、その表面に金属膜を溶融して通電、発熱可能となるガラス板よりなる観測窓であって、
該観測窓の、互いに対向する各々の辺縁又はその近傍に平行に配置される一対の通電電極間に、該一対の通電電極に対する任意の垂線を想定した場合の垂線上において単数もしくは並列に複数の操作孔を穿設すると共に、
該各操作孔の周縁又はその近傍に、該操作孔を挟んで互いに対向し、且つ、前記垂線上に位置するようそれぞれ一対の誘導電極を配置し、
前記誘導電極の配置された位置における該一対の通電電極間の総抵抗値が、該通電電極間のガラス板の抵抗値と略同等となるよう、前記各一対の誘導電極それぞれを抵抗体と操作孔周縁のガラス板とを並列的に介して電気的に接続してなるものである。
以上により、観測窓の、互いに対向する各々の辺縁又はその近傍に平行に配置される一対の通電電極間において通電を行うと、該一対の通電電極間に想定する垂線上において穿設された単数又は複数の操作孔に対応する以外の該一対の通電電極間の部分では、該一対の通電電極間のガラス板において垂線方向に直接通電が行われ、該ガラス板の有する抵抗値に応じた発熱が行われるものである。一方、該単数又は複数の操作孔の周縁又はその近傍に設けられた誘導電極に対応する該一対の通電電極間の部分は、ガラス板及び単数又は複数の各操作孔の周縁又はその近傍に、該孔を挟んで互いに対向し、且つ、前記垂線上に位置するようそれぞれ配置され、且つ、抵抗体を介して電気的に接続してなる一対の誘導電極を介して、通電を行うものである。即ち、一対の通電電極間に1個の操作孔が設けられた場合、一方の通電電極から他方の通電電極へ流れる電流は、まず一方の通電電極から
ガラス板を通って直近の誘導電極へ流れ込むものである。そして、該電流の流れ込んだ一方の誘導電極から、抵抗体と操作孔周縁のガラス板とを並列的に介して電気的に接続される他方の誘導電極に電流は誘導され、再びガラス板を通って、他方の通電電極へ流れ込むものである。この場合に、ガラス板は電流通過時において発熱を行うものであり、該誘導電極を電気的に接続させる際に介在させる抵抗体の抵抗値は、垂線上に操作孔を有しない位置における通電電極間の総抵抗値(すなわち、一対の通電電極間のガラス板の抵抗値)と略同等であるので、ガラス板全体の発熱は均一となって、観測窓のガラス板に発生する結露による曇りを満遍なく、且つ、確実に除去することができるものとなる。なお、複数の操作孔が穿設されている場合には、再度同じような経路を繰り返すことにより、電流は他方の通電電極に到達し、操作孔間も含めて発熱を行うものである。
Therefore, provided on any surface including the door body of the tester body having a door body that can be freely opened and closed,
A pair of current-carrying electrodes, which are fitted and held integrally with the frame of the surface, are arranged in parallel at or near each side edge facing each other, and a metal film is melted on the surface to allow current and heat to be generated. An observation window made of a glass plate,
A single or a plurality of parallel lines on a perpendicular line when assuming an arbitrary perpendicular line to the pair of energizing electrodes between a pair of energizing electrodes arranged parallel to each other or in the vicinity of each edge of the observation window facing each other. And drilling the operation hole,
A pair of induction electrodes are arranged on the periphery of each operation hole or in the vicinity thereof so as to face each other across the operation hole and to be located on the perpendicular line,
Each of the pair of induction electrodes is operated with a resistor so that the total resistance value between the pair of energizing electrodes at the position where the induction electrode is disposed is substantially equal to the resistance value of the glass plate between the energizing electrodes. It is formed by electrically connecting the hole peripheral glass plates in parallel .
As described above, when energization is performed between a pair of current-carrying electrodes arranged in parallel with each other on the edges of the observation window facing each other or in the vicinity thereof, the observation window is formed on the assumed perpendicular line between the pair of current-carrying electrodes. In the portion between the pair of energizing electrodes other than one or a plurality of operation holes, direct energization is performed in the perpendicular direction on the glass plate between the pair of energizing electrodes, and the resistance value of the glass plate is determined. Heat is generated. On the other hand, the portion between the pair of current-carrying electrodes corresponding to the induction electrode provided at or near the peripheral edge of the operation hole or holes is at or near the periphery of the glass plate and each of the operation holes. Energization is performed through a pair of induction electrodes which are arranged so as to face each other across the hole and are located on the perpendicular, and are electrically connected via a resistor. . That is, when one operation hole is provided between a pair of current-carrying electrodes, the current flowing from one current-carrying electrode to the other current-carrying electrode first flows from one current-carrying electrode through the glass plate to the nearest induction electrode. Is. Then, current is induced from one induction electrode into which the current flows to the other induction electrode electrically connected in parallel through the resistor and the glass plate at the periphery of the operation hole, and again passes through the glass plate. Thus, it flows into the other energizing electrode. In this case, the glass plate generates heat at the time of current passage, and the resistance value of the resistor interposed when the induction electrode is electrically connected is the current-carrying electrode at a position that does not have an operation hole on the vertical line. The total resistance value between them (that is, the resistance value of the glass plate between a pair of current-carrying electrodes) is almost the same, so the heat generation of the entire glass plate is uniform, and clouding due to condensation that occurs on the glass plate of the observation window It can be removed evenly and reliably. When a plurality of operation holes are formed, the same path is repeated again, so that the current reaches the other energizing electrode and generates heat including between the operation holes.
この発明の観測窓は、該観測窓を構成するガラス板に操作孔を設けることで発生する相対的な低温部分での結露による曇りを満遍なく、且つ、確実に除去することができるので、試験器内部の観察のみならず、該試験器内での実験操作において、その視界を確実に確保できるので、作業者にとって、安全且つ正確な試験を行うことができる優れた効果を有するものである。 The observation window according to the present invention can uniformly and reliably remove fogging due to condensation in a relatively low temperature portion generated by providing an operation hole in the glass plate constituting the observation window. The field of view can be reliably ensured not only in internal observation but also in the experimental operation in the tester, so that the operator has an excellent effect of being able to perform a safe and accurate test.
図1において示す(1)は、この発明の実施例を具える恒温恒湿槽や温度サイクル試験器等の環境試験器である。この環境試験器(1)は、環境試験器本体(2)と、該環境試験器本体(2)の開口部に対して閉成自在に取り付けられる扉体(3)からなるものである。そして、該環境試験器本体(2)の開口部に対して閉成自在に取り付けられる扉体(3)は、把手(5)を有する枠体(4)と、該枠体(4)内において嵌着、保持される該環境試験器本体(2)内を観測できる透明な観測窓(6)から構成されるものである。 (1) shown in FIG. 1 is an environmental tester such as a constant temperature and humidity chamber or a temperature cycle tester having an embodiment of the present invention. The environmental tester (1) includes an environmental tester main body (2) and a door body (3) attached to the opening of the environmental tester main body (2) so as to be closable. And the door body (3) attached slidably with respect to the opening part of this environmental test device main body (2) is the frame body (4) which has a handle (5), and in this frame body (4). It consists of a transparent observation window (6) through which the inside of the environmental tester main body (2) to be fitted and held can be observed.
そして、扉体(3)の枠体(4)内に嵌着、保持される該観測窓(6)は、枠体(4)内に一体に嵌着、保持され、互いに対向する各々の辺縁(8)の近傍において、平行に一対の通電電極(9)(9)を配置すると共に、その表面に金属膜を溶融して抵抗を有しつつも通電を可能とすることから発熱可能となるガラス板(7)よりなるものである。
図2においては、該観測窓(6)のガラス板(7)において、互いに対向する各々の辺縁(8)の近傍に平行に配置される一対の通電電極(9)(9)間に、該一対の通電電極(9)(9)に対する任意の垂線を想定した場合の垂線上において、蓋体(10)により閉塞自在となる1個の円形状の操作孔(11)を穿設すると共に、
該操作孔(11)の周縁(12)近傍に、該操作孔(11)を挟んで互いに対向し、且つ、前記垂線上に位置し、誤操作孔(11)の同心円状に描かれる左右対称な弧形状の一対の誘導電極(13)(13)を配置し、
前記誘導電極(13)(13)の配置された位置における該一対の通電電極(9a’)(9b’)間における総抵抗値が、それ以外の該通電電極(9a)(9b)間のガラス板(7)の抵抗値と略同等となるよう、前記各一対の誘導電極(13)(13)を抵抗体(14)を介して接続してなるものである。なお、該一対の誘導電極(13)(13)間を電気的に接続する際に介在させる抵抗体(14)は単数であっても複数であっても良いものである。そもそも該ガラス板(7)自体が通電可能な抵抗体であることから、該一対の誘導電極(13)(13)間においては前記抵抗体(14)とガラス板(7)とが並列に接続されていることになり、更に、複数の抵抗体(14)を並列に接続することによって該一対の誘導電極(13)(13)間の抵抗値を小さくすることができるものである。
The observation window (6) fitted and held in the frame (4) of the door (3) is fitted and held integrally in the frame (4), and the sides facing each other. In the vicinity of the edge (8), a pair of current-carrying electrodes (9) and (9) are arranged in parallel, and a metal film is melted on the surface to allow current to flow while having resistance. It consists of a glass plate (7).
In FIG. 2, in the glass plate (7) of the observation window (6), between a pair of current-carrying electrodes (9) and (9) arranged in parallel in the vicinity of the edges (8) facing each other, In addition to drilling one circular operation hole (11) that can be closed by the lid (10) on the perpendicular when assuming an arbitrary perpendicular to the pair of energizing electrodes (9, 9). ,
In the vicinity of the peripheral edge (12) of the operation hole (11), opposite to each other with the operation hole (11) interposed therebetween, and located on the perpendicular line, the left and right symmetry drawn in the concentric circle shape of the erroneous operation hole (11) Arranging a pair of arc-shaped induction electrodes (13) (13),
The total resistance value between the pair of current-carrying electrodes (9a ′) and (9b ′) at the position where the induction electrodes (13) and (13) are disposed is a glass between the other current-carrying electrodes (9a) and (9b). The pair of induction electrodes (13) and (13) are connected via a resistor (14) so as to be approximately equal to the resistance value of the plate (7). The resistor (14) interposed when the pair of induction electrodes (13) (13) are electrically connected may be singular or plural. Since the glass plate (7) itself is a resistor that can be energized, the resistor (14) and the glass plate (7) are connected in parallel between the pair of induction electrodes (13) and (13). Furthermore, the resistance value between the pair of induction electrodes (13) and (13) can be reduced by connecting a plurality of resistors (14) in parallel.
なお、上記一対の誘電電極(13)(13)の形状は、結線時の困難性を考慮した上で、作業時における作業者の視界を著しく妨げることがなければどのような形状でも適用することができる。そのため、図6(イ)乃至(ハ)において示すように、例えば、該操作孔(11)の同心円状に描かれる左右対称な弧形状〔同図(ロ)参照〕の他、直線状〔同図(イ)参照〕、くの字形状〔同図(ハ)参照〕であってもよく、また各々の形状を反転又は組み合わせたものであってもよいものである。 In addition, the shape of the pair of dielectric electrodes (13) and (13) may be any shape as long as it does not significantly hinder the worker's field of view in consideration of the difficulty during connection. Can do. Therefore, as shown in FIGS. 6 (a) to 6 (c), for example, in addition to the symmetrical arc shape drawn in a concentric circle shape of the operation hole (11) [see FIG. The shape may be a dogleg shape (see FIG. 6C), or may be a combination of the shapes reversed or combined.
また、上記一対の誘電電極(13)(13)の長さは、該誘電電極(13)の形状の他に、上記操作孔(11)の大きさ、形状及び配置方法に依存することになる。即ち、直線状の誘導電極(13a)の場合、該誘導電極(13a)の長さは、例えば該操作孔(11)を対向する通電電極(9)に投影した場合の長さと略同等とすれば良いものである。つまり該操作孔(11)が円形状の場合はその長さは直径と略同等となり、方形状の操作孔(11’)の場合は、該操作孔(11’)の対向する通電電極(9)への最大投影長と略同等とすれば良いということである。具体的には、直線状の誘導電極(13a)であって、該操作孔(11’)が長方形である場合には、長方形である該操作孔(11’)の一辺が対向する通電電極(9)と平行であるように配置されているならば、該誘導電極(13)の長さは、長方形である操作孔(11’)の該一辺の長さと略同等とすることで足りるものとなる。ところが、長方形である操作孔(11’)の対角線(11”)が通電電極(9)と平行となっている場合には、該長方形の操作孔(11’)における対角線(11”)の長さを該誘導電極(13)の長さとする必要があるものである(図7参照)。
そして、該誘導電極(13)の形状が円形状の操作孔(11)の同心円状に描かれる弧状の場合、該弧状である誘導電極(13)のなす仮想の弦(13’)の長さが、上記の場合と同様に、該操作孔(11)(11’)を通電電極(9)に投影した場合の長さと略同等であれば良いこととなる。
The length of the pair of dielectric electrodes (13) and (13) depends on the size, shape and arrangement method of the operation hole (11) in addition to the shape of the dielectric electrode (13). . That is, in the case of the linear induction electrode (13a), the length of the induction electrode (13a) is substantially equal to the length when the operation hole (11) is projected onto the opposing energizing electrode (9), for example. It ’s good. That is, when the operation hole (11) is circular, the length is substantially equal to the diameter. When the operation hole (11 ′) is square, the current-carrying electrode (9) facing the operation hole (11 ′) is opposed to the operation hole (11 ′). This means that it may be approximately the same as the maximum projection length to. Specifically, in the case of the linear induction electrode (13a), when the operation hole (11 ′) is rectangular, the conductive electrode (1) facing one side of the rectangular operation hole (11 ′) ( If it is arranged so as to be parallel to 9), it is sufficient that the length of the induction electrode (13) is substantially equal to the length of the one side of the rectangular operation hole (11 ′). Become. However, when the diagonal line (11 ″) of the rectangular operation hole (11 ′) is parallel to the energizing electrode (9), the length of the diagonal line (11 ″) in the rectangular operation hole (11 ′) is long. This is the length of the induction electrode (13) (see FIG. 7 ).
When the shape of the induction electrode (13) is an arc shape drawn concentrically with the circular operation hole (11), the length of the virtual string (13 ′) formed by the arc-shaped induction electrode (13) is formed. However, as in the case described above, the length may be substantially equal to the length when the operation holes (11) and (11 ′) are projected onto the energizing electrode (9).
そして、該誘導電極(13)の配置は、最大限に結露による曇りを除去することができるように、観測窓(6)に穿設される操作孔(11)の周縁又はその近傍であればよく、例えば該操作孔(11)が円形状であるとき、互いに対向する位置に配置される一対の弧状の誘導電極(13)(13)を、該操作孔(11)を構成する部材の内周に沿わせて配置することで、作業者は、その視界を遮られることがほとんどなくなるため、安全且つ確実に作業を行うことができるようになる。 And the arrangement | positioning of this induction | guidance | derivation electrode (13) should be the periphery of the operation hole (11) drilled in the observation window (6), or its vicinity so that the clouding by condensation can be removed to the maximum For example, when the operation hole (11) has a circular shape, a pair of arc-shaped induction electrodes (13) and (13) disposed at positions facing each other are connected to the members constituting the operation hole (11). By arranging along the circumference, the worker is hardly obstructed by the field of view, and can work safely and reliably.
この発明の実施例1である環境試験器(1)の観測窓(6)は以上の構成を具えるので、該環境試験器(1)の使用に際して該観測窓(6)に結露による曇りが生じた場合、次のようにして結露による曇りを除去するものである。
即ち、該観測窓(6)を構成するガラス板(7)において、互いに対向する各々の辺縁(8)の近傍において平行に配置される一対の通電電極(9a)(9b)間において電圧を掛けることにより、該一対の通電電極(9a)(9b)間で該ガラス板(7)を介して通電が行われ、該ガラス板(7)は発熱することとなる。ところが、該一対の通電電極(9a)(9b)間での通電において、操作孔(11)の有無によりその通電する経路が異なるものとなる(図3参照)。つまり、一対の通電電極(9a)(9b)間において操作孔(11)の存在しない範囲では、該電流は該一対の通電電極(9a)(9b)間をガラス板(7)を介して直接通電するものである。従って、該ガラス板(7)は、その有する抵抗に応じた発熱を行うこととなるものである(図3矢印実線参照)。
一方、一対の通電電極(9)(9)に対する任意の垂線を想定した場合の垂線上において1個の操作孔(11)が存在する範囲の一対の通電電極(9a’)(9b’)では、まず、一方の通電電極(9a’)からの電流は、該操作孔(11)を挟んで互いに対向し、且つ、前記垂線上に位置し、該操作孔(11)の同心円状に描かれる左右対称な弧形状の一対の誘導電極(13a)(13b)のうち、一方の通電電極(9a’)に近接して配置される誘導電極(13a)へとガラス板(7)を介して誘導されるものである。そして、該誘導電極(13a)に誘導された電流は、抵抗体(14)を介して電気的に接続される他方の誘導電極(13b)へと流れる。その際、ガラス板(7)も通電可能であることから、該ガラス板(7)自体も抵抗体となって、一対の誘導電極(13a)(13b)間において前記抵抗体(14)と並列に接続されることとなる。そして、該他方の誘導電極(13b)から他方の通電電極(9b’)へと再度ガラス板(7)を介して通電していく経路を辿るものである。従って、例え一対の通電電極(9a)(9b)に対する任意の垂線を想定した場合の垂線上において1個の操作孔(11)が存在していても、該一対の通電電極(9a’)(9b’)間での通電は行われるので、ガラス板(7)は十分に発熱することとなるものである(図3矢印点線参照)。しかも、該一対の通電電極(9a)(9b)に対する任意の垂線を想定した場合の垂線上において操作孔(11)が存在する範囲の通電電極(9a’)(9b’)間での通電においては、その総抵抗値が操作孔(11)のない位置における通電電極(9a)(9b)間におけるガラス板(7)の抵抗値と略図等となるよう抵抗体(14)の抵抗値が調整されているので、操作孔(11)の有無にかかわらずガラス板(7)の発生する熱は一定となる。その結果、ガラス板(7)全体として均一に発熱することとなるものである。従って、観測窓(6)内部において結露による曇りが発生しても、観測窓(6)全体において満遍なく、且つ、確実にその結露を除去する
ことができるものである。
Since the observation window (6) of the environmental tester (1) according to the first embodiment of the present invention has the above-described configuration, the observation window (6) is clouded by condensation when the environmental tester (1) is used. When it occurs, the cloudiness due to condensation is removed as follows.
That is, in the glass plate (7) constituting the observation window (6), a voltage is applied between the pair of energized electrodes (9a) (9b) arranged in parallel in the vicinity of the edges (8) facing each other. By applying, energization is performed between the pair of energizing electrodes (9a) and (9b) via the glass plate (7), and the glass plate (7) generates heat. However, in the energization between the pair of energization electrodes (9a) and (9b), the energization path differs depending on the presence or absence of the operation hole (11) (see FIG. 3 ). That is, in the range where the operation hole (11) does not exist between the pair of current-carrying electrodes (9a) and (9b), the current flows directly between the pair of current-carrying electrodes (9a) and (9b) via the glass plate (7). Energize. Therefore, this glass plate (7) will generate heat according to its resistance (see solid line in FIG. 3 ).
On the other hand, in the pair of energizing electrodes (9a ′) and (9b ′) in the range where one operation hole (11) exists on the perpendicular when an arbitrary perpendicular to the pair of energizing electrodes (9) and (9) is assumed. First, the current from one energizing electrode (9a ') is drawn concentrically with the operation hole (11), facing each other across the operation hole (11) and positioned on the perpendicular. It guide | induces via a glass plate (7) to the induction | guidance | derivation electrode (13a) arrange | positioned adjacent to one electricity supply electrode (9a ') among a pair of induction | guidance | derivation electrodes (13a) (13b) of a symmetrical arc shape. It is what is done. Then, the current induced in the induction electrode (13a) flows to the other induction electrode (13b) electrically connected through the resistor (14). At this time, since the glass plate (7) can also be energized, the glass plate (7) itself becomes a resistor, and is parallel to the resistor (14) between the pair of induction electrodes (13a) and (13b). Will be connected. And the path | route which supplies with electricity through the glass plate (7) again from this other induction | guidance | derivation electrode (13b) to the other electricity supply electrode (9b ') is followed. Therefore, even if one operating hole (11) exists on the perpendicular when assuming an arbitrary perpendicular to the pair of energization electrodes (9a) and (9b), the pair of energization electrodes (9a ′) ( 9b '), the glass plate (7) generates sufficient heat (see the dotted line in FIG. 3 ). In addition, in energization between the energization electrodes (9a ′) and (9b ′) in the range where the operation hole (11) exists on the perpendicular when assuming an arbitrary perpendicular to the pair of energization electrodes (9a) and (9b). The resistance value of the resistor (14) is adjusted so that the total resistance value is substantially the same as the resistance value of the glass plate (7) between the current-carrying electrodes (9a) and (9b) at the position where there is no operation hole (11). Therefore, the heat generated by the glass plate (7) is constant regardless of the presence or absence of the operation hole (11). As a result, the entire glass plate (7) generates heat uniformly. Therefore, even if fogging due to condensation occurs inside the observation window (6), the condensation can be removed uniformly and surely throughout the observation window (6).
そこで、この発明の効果を確認すべく実機にて発熱試験を行った。そのため、実施例1における観測窓(6)において、一対の通電電極(9)(9)間のガラス板(7)の抵抗値を19〜20Ω/□とした。一方、該一対の通電電極(9)(9)間に穿設された操作孔(11)を挟んで左右対称に配置された一対の誘導電極(13)(13)間を電気的に接続するものであって、該誘導電極(13)(13)間の電気的接続に当たって使用する抵抗体(14)の抵抗値を調整することによって、該誘導電極(13)の配置された位置における一対の通電電極(9a’)(9b’)間の総抵抗値を、該一対の通電電極(9)(9)間のガラス板(7)の抵抗値と同様にした。その上で、該一対の通電電極(9)(9)間で通電を行ったところ、ガラス板(7)全体において均一に通電が行われ、ガラス板(7)全体が均一に発熱することが確認された。 In order to confirm the effect of the present invention, an exothermic test was conducted with an actual machine. Therefore, in the observation window (6) in Example 1, the resistance value of the glass plate (7) between the pair of current-carrying electrodes (9) and (9) was set to 19 to 20Ω / □. On the other hand, the pair of induction electrodes (13) and (13) arranged symmetrically with respect to the operation hole (11) formed between the pair of energizing electrodes (9) and (9) is electrically connected. Adjusting the resistance value of the resistor (14) used for the electrical connection between the induction electrodes (13) and (13), thereby adjusting the pair of the induction electrodes (13) at the position where the induction electrodes (13) are disposed. The total resistance value between the current-carrying electrodes (9a ′) and (9b ′) was made the same as the resistance value of the glass plate (7) between the pair of current-carrying electrodes (9) and (9). In addition, when energization is performed between the pair of energizing electrodes (9) and (9), the entire glass plate (7) is energized uniformly, and the entire glass plate (7) generates heat uniformly. confirmed.
図4において示すものは、この発明の実施例2である環境試験器(1)の観測窓(6’)である。そして、実施例1の環境試験器(1)と同様に、該環境試験器(1)の環境試験器本体(2)の開口部を閉成自在にする扉体(3)の枠体(4)内に嵌着、保持される該観測窓(6’)は、枠体(4)内に一体に嵌着、保持され、互いに対向する各々の辺縁(8)の近傍において、平行に一対の通電電極(9)(9)を配置すると共に、その表面に金属膜を溶融して抵抗を有しつつも通電を可能とすることから発熱可能となるガラス板(7)よりなるものであって、
該観測窓(6)のガラス板(7)において、互いに対向する各々の辺縁(8)の近傍に平行に配置される一対の通電電極(9)(9)間に、該一対の通電電極(9)(9)に対する任意の垂線を想定した場合の垂線上において、蓋体(10)により閉塞自在となる複数(本実施例の場合は、2個である。)の円形状の操作孔(11a)(11b)を穿設すると共に、
該各孔(11a)(11b)の周縁(12)の近傍に、該孔(11a)(11b)を挟んで互いに対向し、且つ、前記垂線上に位置するようそれぞれ一対の誘導電極(13)(13)を配置し、
前記誘導電極(13)(13)の配置された位置における該一対の通電電極(9)(9)間の総抵抗値が、該通電電極(9)(9)間のガラス板(7)の抵抗値と略同等となるよう、前記各一対の誘導電極(13)(13)それぞれを抵抗体(14)を介して接続してなるものである(図4参照)。
What is shown in FIG. 4 is an observation window (6 ′) of an environmental tester (1) which is Embodiment 2 of the present invention. Then, similarly to the environmental tester (1) of the first embodiment, the frame (4) of the door (3) that allows the opening of the environmental tester main body (2) of the environmental tester (1) to be closed. The observation windows (6 ′) fitted and held in the frame) are fitted and held integrally in the frame (4), and are paired in parallel in the vicinity of the edges (8) facing each other. In addition, the current-carrying electrodes (9) and (9) are disposed, and a metal film is melted on the surface of the electrodes to make it possible to conduct electricity while having resistance. And
In the glass plate (7) of the observation window (6), the pair of energization electrodes between a pair of energization electrodes (9) and (9) arranged in parallel in the vicinity of the edges (8) facing each other. (9) A plurality of circular operation holes (two in the present embodiment) that can be closed by the lid (10) on the vertical line when an arbitrary vertical line with respect to (9) is assumed. (11a) and (11b) are drilled,
A pair of induction electrodes (13) in the vicinity of the peripheral edge (12) of each of the holes (11a) and (11b) so as to face each other with the holes (11a) and (11b) interposed therebetween and to be positioned on the perpendicular line. (13)
The total resistance value between the pair of current-carrying electrodes (9) and (9) at the position where the induction electrodes (13) and (13) are arranged is the value of the glass plate (7) between the current-carrying electrodes (9) and (9). Each of the pair of induction electrodes (13) and (13) is connected via a resistor (14) so as to be approximately equal to the resistance value (see FIG. 4 ).
なお、この実施例2の観測窓(6’)に使用される誘導電極(13)は、実施例1で説明した誘導電極(13)と同様で足り、該誘導電極(13)の形状、長さ及び配置も、各々実施例1の観測窓(6’)における誘導電極(13)に準ずるものであれば良いものである。 The induction electrode (13) used in the observation window (6 ′) of Example 2 is sufficient as the induction electrode (13) described in Example 1, and the shape and length of the induction electrode (13) are sufficient. The length and the arrangement may be any as long as they conform to the induction electrode (13) in the observation window (6 ′) of the first embodiment.
この発明の実施例2である環境試験器(1)の観測窓(6’)は以上の構成を具えるので、該環境試験器(1)の使用に際して該観測窓(6’)に結露による曇りが生じた場合、次のようにして結露による曇りを除去するものである。
まず、該観測窓(6’)を構成するガラス板(7)において、互いに対向する各々の辺縁(8)の近傍において平行に配置される一対の通電電極(9a)(9b)間において電圧を掛けることにより、該一対の通電電極(9a)(9b)間で該ガラス板(7)を介して通電が行われ、該ガラス板(7)は発熱することとなる。ところが、該一対の通電電極(9a)(9b)間での通電において、操作孔(11)の有無によりその通電する経路が異なるものである。即ち、一対の通電電極(9a)(9b)間において操作孔(11)の存在しない範囲では、該電流は該一対の通電電極(9a)(9b)間をガラス板(7)を介して直接通電する経路を辿るものである。従って、ガラス板(7)は、通電によりガラス板(7)の有する抵抗に応じた発熱を行うものである(図5矢印実線参照)。
一方、一対の通電電極(9a)(9b)に対する任意の垂線を想定した場合の垂線上において2個の操作孔(11a)(11b)が存在する範囲では、まず、一方の通電電極(9a)からの電流は、並設する2つの操作孔(11a)(11b)のうち、一方の通電電極(9a)に近接する操作孔(11a)において、該操作孔(11a)を挟んで互いに対向し、且つ、前記垂線上に位置する左右対称な弧形状の一対の誘導電極(13a)(13b)の、更に該一方の通電電極(9a)の直近に配置される誘導電極(13a)へとガラス板(7)を介して誘導されるものである。そして、該誘導電極(13a)に誘導された電流は、抵抗体(14)を介して電気的に接続される他方の誘導電極(13b)へと流れるものとなる。その際、ガラス板(7)も通電可能であることから、該ガラス板(7)自体も抵抗体となって、一対の誘導電極(13a)(13b)間において前記抵抗体(14)と並列に接続されることとなる。そして更に電流は、並設される他方の操作孔(11b)において設けられる、左右対称な弧形状の一対の誘導電極(13c)(13d)のうち、該一方の操作孔(11a)の他方の誘導電極(13b)の直近に配置される一方の誘導電極(13c)へと、ガラス板(7)を介して誘導されるものである。そして、該一方の誘導電極(13c)に誘導された電流は、抵抗体(14)を介して電気的に接続される他方の誘導電極(13d)へと流れるものとなる。その際同様に、ガラス板(7)も通電可能であることから、該ガラス板(7)自体も抵抗体となって、一対の誘導電極(13c)(13d)間において前記抵抗体(14)と並列に接続されることとなる。その後、該他方の誘導電極(13d)から他方の通電電極(9b)へと再度ガラス板(7)を介して通電を行うものである(図5矢印点線参照)。従って、例え一対の通電電極(9a)(9b)に対する任意の垂線を想定した場合の垂線上において複数の操作孔(11a)(11b)が存在していても、一対の通電電極(9a’)(9b’)間での通電は、抵抗体(14)を介して電気的に接続された複数の一対の誘導電極(13a)(13b)及び(13c)(13d)を介して行われるので、その間にあるガラス板(7)は十分に発熱するものである。しかも、該一対の通電電極(9a)(9b)に対する任意の垂線を想定した場合の垂線上において複数の操作孔(11a)(11b)が存在する範囲での一対の通電電極(9a’)(9b’)間の通電において、その総抵抗値は、操作孔(11a)(11b)が存在しない位置における通電電極(9a)(9b)間におけるガラス板(7)の抵抗値と略同等となるよう調整されているので、その抵抗により発生する熱も一対の通電電極(9a)(9b)間において操作孔(11a)(11b)の有無に関わらず同等となるものである。その結果、ガラス板(7)全体として均一に発熱することとなるものである。従って、観測窓(6’)内部において結露による曇りが発生しても、観測窓(6’)全体において満遍なく、且つ、確実に結露を除去することができるものである。
Since the observation window (6 ′) of the environmental tester (1) according to the second embodiment of the present invention has the above-described configuration, the observation window (6 ′) is caused by condensation when the environmental tester (1) is used. When cloudiness occurs, the cloudiness due to condensation is removed as follows.
First, in the glass plate (7) constituting the observation window (6 ′), a voltage is applied between a pair of current-carrying electrodes (9a) (9b) arranged in parallel in the vicinity of the edges (8) facing each other. By energizing, energization is performed between the pair of energizing electrodes (9a) and (9b) via the glass plate (7), and the glass plate (7) generates heat. However, in the energization between the pair of energization electrodes (9a) and (9b), the energization path differs depending on the presence or absence of the operation hole (11). That is, in a range where the operation hole (11) does not exist between the pair of current-carrying electrodes (9a) and (9b), the current flows directly between the pair of current-carrying electrodes (9a) and (9b) via the glass plate (7). It follows the path of energization. Therefore, the glass plate (7) generates heat according to the resistance of the glass plate (7) when energized (see the solid line in FIG. 5 ).
On the other hand, in the range in which two operation holes (11a) and (11b) exist on the perpendicular line when assuming an arbitrary perpendicular line to the pair of energizing electrodes (9a) and (9b), first, one energizing electrode (9a) From the two operation holes (11a) and (11b) arranged side by side in the operation hole (11a) close to one energizing electrode (9a), facing each other across the operation hole (11a). Further, a pair of symmetrical arc-shaped induction electrodes (13a) (13b) located on the perpendicular line and further to the induction electrode (13a) disposed in the immediate vicinity of the one energization electrode (9a) It is guided through the plate (7). Then, the current induced in the induction electrode (13a) flows to the other induction electrode (13b) electrically connected via the resistor (14). At this time, since the glass plate (7) can also be energized, the glass plate (7) itself becomes a resistor, and is parallel to the resistor (14) between the pair of induction electrodes (13a) and (13b). Will be connected. Further, among the pair of symmetrical arc-shaped induction electrodes (13c) (13d) provided in the other operation hole (11b) arranged side by side, the other current of the one operation hole (11a) is the other. It is induced via the glass plate (7) to one induction electrode (13c) arranged in the immediate vicinity of the induction electrode (13b). Then, the current induced in the one induction electrode (13c) flows to the other induction electrode (13d) electrically connected via the resistor (14). Similarly, since the glass plate (7) can also be energized, the glass plate (7) itself becomes a resistor, and the resistor (14) is interposed between the pair of induction electrodes (13c) and (13d). Will be connected in parallel. Thereafter, the other induction electrode (13d) is energized again through the glass plate (7) to the other energization electrode (9b) (see the dotted line in FIG. 5 ). Therefore, even if there are a plurality of operation holes (11a) and (11b) on the perpendicular when assuming an arbitrary perpendicular to the pair of energization electrodes (9a) and (9b), the pair of energization electrodes (9a ′) Since energization between (9b ') is performed via a plurality of pairs of induction electrodes (13a) (13b) and (13c) (13d) electrically connected via a resistor (14), The glass plate (7) between them generates enough heat. Moreover, a pair of energizing electrodes (9a ′) (9a ′) in a range in which a plurality of operation holes (11a) (11b) exist on the perpendicular when assuming an arbitrary perpendicular to the pair of energizing electrodes (9a) (9b) 9b ′), the total resistance value is substantially the same as the resistance value of the glass plate (7) between the current-carrying electrodes (9a) and (9b) at positions where the operation holes (11a) and (11b) do not exist. Therefore, the heat generated by the resistance is equal between the pair of energizing electrodes (9a) and (9b) regardless of the presence or absence of the operation holes (11a) and (11b). As a result, the entire glass plate (7) generates heat uniformly. Therefore, even if fogging due to condensation occurs inside the observation window (6 ′), the condensation can be removed uniformly and surely throughout the observation window (6 ′).
そこで、実施例2における観測窓(6’)においても、実施例1の場合と同様に、実機にて発熱実験を行った。そのため、まず一対の通電電極(9a)(9b)間のガラス板(7)の抵抗値を19〜20Ω/□とした。一方、該一対の通電電極(9a’)(9b’)間に並設された操作孔(11a)(11b)に対して、各操作孔(11a)(11b)を挟んでそれぞれ左右対称に配置された二対の誘導電極(13a)(13b)及び(13c)(13d)間をそれぞれ抵抗体(14)を介して電気的に接続するものであって、該抵抗体(14)の抵抗値を調整することによって、該誘導電極(13)(13)の配置された位置における一対の通電電極(9a’)(9b’)間の総抵抗値を、該一対の通電電極(9a)(9b)間のガラス板(7)の抵抗値と同様にした。その上で、該一対の通電電極(9a)(9b)間に通電を行ったところ、ガラス板(7)全体において、均一に発熱することが確認された。 Therefore, as in the case of Example 1, an exothermic experiment was conducted on the observation window (6 ') in Example 2 as well. Therefore, first, the resistance value of the glass plate (7) between the pair of current-carrying electrodes (9a) and (9b) was set to 19 to 20Ω / □. On the other hand, with respect to the operation holes (11a) and (11b) arranged in parallel between the pair of energization electrodes (9a ′) and (9b ′), the operation holes (11a) and (11b) are arranged symmetrically with respect to each other. The two pairs of induction electrodes (13a) (13b) and (13c) (13d) are electrically connected to each other via a resistor (14), and the resistance value of the resistor (14) By adjusting the total resistance value between the pair of current-carrying electrodes (9a ′) and (9b ′) at the position where the induction electrodes (13) and (13) are arranged, the pair of current-carrying electrodes (9a) and (9b) ) In the same manner as the resistance value of the glass plate (7). After that, when energization was performed between the pair of energizing electrodes (9a) and (9b), it was confirmed that the entire glass plate (7) generated heat uniformly.
観測窓のガラス板に通電することにより発熱させて結露を防止するものの、本体内部での実験操作を行えるように穿設された操作孔に起因して、局部的に結露による曇りが発生し易いあらゆる環境試験器等の機器に対して適用することができる。 Although heat is generated by energizing the glass plate of the observation window to prevent condensation, clouding due to condensation is likely to occur locally due to the operation hole drilled so that experimental operation can be performed inside the main body. It can be applied to any equipment such as an environmental tester.
1 環境試験器
2 環境試験器本体
3 扉体
4 枠体
5 把手
6,6’ 観測窓
7 ガラス板
8 辺縁
9、9’、9a、9a’、9b、9b’ 通電電極
10 蓋体
11、11a、11b 操作孔
11’ 対角線
12 周縁
13、13a、13b、13c、13d 誘導電極
13’ 弦
14 抵抗体
DESCRIPTION OF
Claims (1)
当該面の枠体に一体に嵌着、保持され、互いに対向する各々の辺縁又はその近傍において、平行に一対の通電電極を配置すると共に、その表面に金属膜を溶融して通電、発熱可能となるガラス板よりなる観測窓であって、
該観測窓の、互いに対向する各々の辺縁又はその近傍に平行に配置される一対の通電電極間に、該一対の通電電極に対する任意の垂線を想定した場合の垂線上において単数もしくは並列に複数の操作孔を穿設すると共に、
該各操作孔の周縁又はその近傍に、該操作孔を挟んで互いに対向し、且つ、前記垂線上に位置するようそれぞれ一対の誘導電極を配置し、
前記誘導電極の配置された位置における該一対の通電電極間の総抵抗値が、該通電電極間のガラス板の抵抗値と略同等となるよう、前記各一対の誘導電極それぞれを抵抗体と操作孔周縁のガラス板とを並列的に介して電気的に接続してなる
試験器における観測窓。 Provided on any surface including the door body of the tester body having a door body that can be freely opened and closed,
A pair of current-carrying electrodes, which are fitted and held integrally with the frame of the surface, are arranged in parallel at or near each side edge facing each other, and a metal film is melted on the surface to allow current and heat to be generated. An observation window made of a glass plate,
A single or a plurality of parallel lines on a perpendicular line when assuming an arbitrary perpendicular line to the pair of energizing electrodes between a pair of energizing electrodes arranged parallel to each other or in the vicinity of each edge of the observation window facing each other. And drilling the operation hole,
A pair of induction electrodes are arranged on the periphery of each operation hole or in the vicinity thereof so as to face each other across the operation hole and to be located on the perpendicular line,
Each of the pair of induction electrodes is operated with a resistor so that the total resistance value between the pair of energizing electrodes at the position where the induction electrode is disposed is substantially equal to the resistance value of the glass plate between the energizing electrodes. An observation window in a tester that is electrically connected to a glass plate around the hole in parallel .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004263166A JP4512890B2 (en) | 2004-09-10 | 2004-09-10 | Observation window in an environmental tester |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004263166A JP4512890B2 (en) | 2004-09-10 | 2004-09-10 | Observation window in an environmental tester |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006078353A JP2006078353A (en) | 2006-03-23 |
JP4512890B2 true JP4512890B2 (en) | 2010-07-28 |
Family
ID=36157940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004263166A Expired - Lifetime JP4512890B2 (en) | 2004-09-10 | 2004-09-10 | Observation window in an environmental tester |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4512890B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0986965A (en) * | 1995-09-25 | 1997-03-31 | Central Glass Co Ltd | Conductive film-laminated glass having penetrated hole or the like |
-
2004
- 2004-09-10 JP JP2004263166A patent/JP4512890B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0986965A (en) * | 1995-09-25 | 1997-03-31 | Central Glass Co Ltd | Conductive film-laminated glass having penetrated hole or the like |
Also Published As
Publication number | Publication date |
---|---|
JP2006078353A (en) | 2006-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105144267B (en) | Weld training system and device | |
CN105164740B (en) | For welding the multi-mode software and method of training system | |
CN105051801B (en) | Data for welding training system store and analysis | |
CN106425012A (en) | Stick welding electrode holders with real-time feedback features | |
CN105074796A (en) | Welding torch for a welding training system | |
JP2006202623A (en) | Cooker | |
JP4512890B2 (en) | Observation window in an environmental tester | |
JP2016090569A (en) | Gas sensor | |
BR102017003721A2 (en) | WELDING TYPE SYSTEMS AND USER INTERFACES CONTAINING A COLOR DISPLAY TO DISPLAY PHYSICAL CONFIGURATION INSTRUCTIONS | |
BR202014017803U2 (en) | SIGNALING ARRANGEMENT THROUGH VIBRATORY SYSTEM IN REAL-TIME WELDING MEASUREMENT MEASUREMENT AND ANALYSIS | |
JP4137894B2 (en) | Observation window with operation hole and environmental test equipment. | |
JP6818069B2 (en) | Welding surface and welding method | |
JP2004281343A (en) | Heating cooker | |
JP5213043B2 (en) | Game machine fraud prevention device | |
JP6902981B2 (en) | Welding robot operation terminal | |
US20090096631A1 (en) | Operating device for operating a machine tool, production machine and/or a robot | |
JP2015200531A (en) | Plasma processing determination sheet | |
US20190192722A1 (en) | Ion generation device | |
EP1409188B1 (en) | Device for controlling the cooling power of a cooling apparatus | |
JP2017162586A (en) | Induction heating cooker | |
KR200349116Y1 (en) | Transparent heater for lcd | |
CN104323801B (en) | A kind of Ultrasonic-B probe | |
JPH02130318A (en) | Heating cooker | |
KR20230148987A (en) | Helmet | |
JPH0919102A (en) | Protector for axial fan motor having magnetic shield |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070822 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100329 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100420 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100423 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4512890 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130521 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130521 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |