JP4512048B2 - Water supply pump - Google Patents

Water supply pump Download PDF

Info

Publication number
JP4512048B2
JP4512048B2 JP2006041496A JP2006041496A JP4512048B2 JP 4512048 B2 JP4512048 B2 JP 4512048B2 JP 2006041496 A JP2006041496 A JP 2006041496A JP 2006041496 A JP2006041496 A JP 2006041496A JP 4512048 B2 JP4512048 B2 JP 4512048B2
Authority
JP
Japan
Prior art keywords
water supply
pressure
supply passage
casing
discharge chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006041496A
Other languages
Japanese (ja)
Other versions
JP2007218210A (en
Inventor
憲宏 前田
彰三 井藤
剛 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2006041496A priority Critical patent/JP4512048B2/en
Publication of JP2007218210A publication Critical patent/JP2007218210A/en
Application granted granted Critical
Publication of JP4512048B2 publication Critical patent/JP4512048B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、複合発電プラントなどの給水設備などに適用される給水ポンプに関するものである。   The present invention relates to a water supply pump applied to water supply equipment such as a combined power plant.

発電プラントの高効率化の観点から、ガスタービンと蒸気タービンを組み合わせた複合発電プラントが提案されている。この複合発電プラントでは、ガスタービンから排出された高温の排気ガスを排熱回収ボイラに送り、この排熱回収ボイラ内で加熱ユニットを用いて蒸気を生成し、生成した蒸気を蒸気タービンに送ってこの蒸気タービンを駆動するようにしている。この排熱回収ボイラに設けられた加熱ユニットは、複数段(例えば、高圧、中圧、低圧)のユニットからなり、それぞれ節炭器、蒸発器、過熱器等を有しており、各加熱ユニットは、生成した蒸気を複数段(例えば、高圧、中圧、低圧)のユニットからなっている。   From the viewpoint of increasing the efficiency of a power plant, a combined power plant combining a gas turbine and a steam turbine has been proposed. In this combined power plant, high-temperature exhaust gas discharged from the gas turbine is sent to the exhaust heat recovery boiler, steam is generated in the exhaust heat recovery boiler using a heating unit, and the generated steam is sent to the steam turbine. This steam turbine is driven. The heating unit provided in the exhaust heat recovery boiler is composed of a plurality of units (for example, high pressure, medium pressure, low pressure), each having a economizer, an evaporator, a superheater, etc. Consists of units of the generated steam in a plurality of stages (for example, high pressure, medium pressure, low pressure).

従って、蒸気タービンにおける低圧タービンから排出された蒸気は、復水器で冷却されて復水となり、復水ポンプ及び給水ポンプにより高圧過熱系に送られ、ここで過熱されて高圧蒸気となって高圧タービンに送られて仕事をして中圧蒸気となる。そして、この中圧蒸気は再熱器で過熱されて中圧タービンに送られて仕事をして低圧蒸気となる。そして、この低圧蒸気は低圧タービンに送られて仕事をする。また、復水器から高圧過熱系に送られる復水の一部は中圧過熱系に送られ、ここで過熱されてから高圧タービンからの中圧蒸気と共に再熱器に送られる。更に、復水器から高圧及び中圧過熱系に送られる復水の一部は低圧過熱系に送られ、ここで過熱されてから中圧タービンからの低圧蒸気と共に低圧タービンに送られる。   Therefore, the steam discharged from the low-pressure turbine in the steam turbine is cooled by the condenser to become condensate, and is sent to the high-pressure superheat system by the condensate pump and the feed water pump, where it is superheated to become high-pressure steam. It is sent to the turbine to work and becomes medium pressure steam. This intermediate pressure steam is superheated by a reheater and sent to an intermediate pressure turbine to work and become low pressure steam. This low-pressure steam is sent to a low-pressure turbine for work. A part of the condensate sent from the condenser to the high pressure superheat system is sent to the intermediate pressure superheat system, where it is superheated and then sent to the reheater together with the medium pressure steam from the high pressure turbine. Further, a part of the condensate sent from the condenser to the high-pressure and medium-pressure superheat system is sent to the low-pressure superheat system, where it is superheated and then sent to the low-pressure turbine together with the low-pressure steam from the medium-pressure turbine.

このような複合プラントにあっては、復水器から復水は、復水ポンプ及び給水ポンプにより高圧過熱系、中圧過熱系、低圧過熱系に送られるが、この場合、復水を高圧過熱系に送る給水ポンプの途中から所定量の復水を抽気して中圧過熱系へ送っている。   In such a complex plant, the condensate from the condenser is sent to the high-pressure superheating system, the medium-pressure superheating system, and the low-pressure superheating system by the condensate pump and the feed water pump. A predetermined amount of condensate is extracted from the middle of the feed water pump sent to the system and sent to the medium pressure superheat system.

図5は、従来の給水ポンプの要部断面図、図6は、図5のVI−VI断面図である。従来の給水ポンプにおいて、図5及び図6に示すように、中空形状をなすケーシング001内には、回転軸002が駆動回転可能に支持されている。この回転軸002に複数のブレードからなるインペラ003が装着されることでここに給水通路004が形成されており、また、ケーシング001の内面にディフューザ005が設けられている。そして、ケーシング001における給水通路004の中途部に連通するように中間抽出管006が連結されている。   5 is a cross-sectional view of a main part of a conventional water supply pump, and FIG. 6 is a cross-sectional view taken along the line VI-VI in FIG. In a conventional water supply pump, as shown in FIGS. 5 and 6, a rotary shaft 002 is supported in a hollow casing 001 so as to be driven to rotate. A water supply passage 004 is formed by mounting an impeller 003 composed of a plurality of blades on the rotating shaft 002, and a diffuser 005 is provided on the inner surface of the casing 001. Then, an intermediate extraction pipe 006 is connected so as to communicate with the middle part of the water supply passage 004 in the casing 001.

従って、回転軸002が駆動回転すると、復水が図示しない吸込口からケーシング001内の給水通路004に吸い込まれ、インペラ003を流過する過程で昇圧された後にディフューザ005に吐出され、ここで復水の動圧が静圧に変換され、吐出口から吐出される。このとき、給水通路004内を流れる復水の一部が中間抽出管006から抽出される。   Accordingly, when the rotating shaft 002 is driven to rotate, condensate is sucked into a water supply passage 004 in the casing 001 from a suction port (not shown), and is boosted in the process of flowing through the impeller 003 and then discharged to the diffuser 005. The dynamic pressure of water is converted into static pressure and discharged from the discharge port. At this time, a part of the condensate flowing in the water supply passage 004 is extracted from the intermediate extraction pipe 006.

このような給水ポンプとしては、下記特許文献1に記載されたものがある。   As such a water supply pump, there is one described in Patent Document 1 below.

特開2003−0148165号公報JP 2003-0148165 A

上述した従来の給水ポンプでは、給水通路004を流動する間にインペラ003により昇圧された復水の一部が中間抽出管006から抽出されるものであるが、この中間抽出管006がケーシング001の周方向に対して非対称に設けられているため、給水通路004の周方向における復水の圧力分布及び流速分布が不均一となり、ラジアル荷重が増加して給水性能が低下してしまうという問題がある。この場合、中間抽出管006をケーシング001の周方向に対して対称に設けることも考えられるが、給水ポンプのレイアウト上、その下方に中間抽出管006を配設する空間が不十分であり、配管が複雑となって設備コストが増加してしまう。また、中間抽出管006から抽出する復水の吐出量が増加した場合には、給水通路004での復水の逆流が発生しやすくなり、給水性能の低下が顕著となってしまう。   In the conventional water supply pump described above, a part of the condensate whose pressure has been increased by the impeller 003 while flowing in the water supply passage 004 is extracted from the intermediate extraction pipe 006. This intermediate extraction pipe 006 is provided in the casing 001. Since it is provided asymmetrically with respect to the circumferential direction, there is a problem in that the condensate pressure distribution and flow velocity distribution in the circumferential direction of the water supply passage 004 become non-uniform, and the radial load increases and the water supply performance decreases. . In this case, it is conceivable to provide the intermediate extraction pipe 006 symmetrically with respect to the circumferential direction of the casing 001. However, due to the layout of the water supply pump, there is not enough space for the intermediate extraction pipe 006 to be provided below the piping. Becomes complicated and the equipment cost increases. Moreover, when the discharge amount of the condensate extracted from the intermediate extraction pipe 006 increases, the reverse flow of the condensate in the water supply passage 004 is likely to occur, and the water supply performance is significantly deteriorated.

本発明は上述した課題を解決するものであり、中間抽出量に拘らず給水性能の低下を抑制した給水ポンプを提供することを目的とする。   This invention solves the subject mentioned above, and aims at providing the feed pump which suppressed the fall of feed water performance irrespective of the intermediate | middle extraction amount.

上記の目的を達成するための請求項1の発明の給水ポンプは、中空形状をなすケーシング内に回転軸が回転自在に支持され、該回転軸に軸方向に沿って複数の羽根車が装着され、該羽根車に対して前記回転軸の軸方向に沿って給水通路が形成され、前記ケーシングに前記給水通路の一端部に連通する前記吸込口が設けられる一方、前記給水通路の他端部に連通する吐出口が設けられた給水ポンプにおいて、前記ケーシングにおける前記複数の羽根車の間に前記給水通路から区画された中間吐出室が形成され、該中間吐出室が連通孔を介して前記給水通路に連通されると共に、前記中間吐出室に中間抽出管が連結されたことを特徴とするものである。   In order to achieve the above object, a water supply pump according to a first aspect of the present invention has a rotating shaft rotatably supported in a hollow casing, and a plurality of impellers are mounted on the rotating shaft along the axial direction. The water supply passage is formed along the axial direction of the rotary shaft with respect to the impeller, and the suction port communicating with one end portion of the water supply passage is provided in the casing, while the other end portion of the water supply passage is provided. In the water supply pump provided with the discharge port that communicates, an intermediate discharge chamber partitioned from the water supply passage is formed between the plurality of impellers in the casing, and the intermediate discharge chamber is connected to the water supply passage through the communication hole. And an intermediate extraction pipe connected to the intermediate discharge chamber.

請求項2の発明の給水ポンプでは、前記中間吐出室は、前記複数の羽根車の間に所定間隔をもって配設された一対のドーナッツ形状をなす第1隔壁及び第2隔壁と、前記回転軸の外周側に所定間隔をもって配設されて前記第1隔壁及び前記第2隔壁の内周部に連結されたリング形状をなす第3隔壁とから構成され、前記第3隔壁に周方向に均等間隔で前記連通孔が複数設けられたことを特徴としている。   In the water supply pump according to a second aspect of the present invention, the intermediate discharge chamber includes a pair of donut-shaped first and second partitions disposed between the plurality of impellers at a predetermined interval, and the rotating shaft. A ring-shaped third partition wall disposed at a predetermined interval on the outer peripheral side and connected to the inner peripheral portion of the first partition wall and the second partition wall; A plurality of the communication holes are provided.

請求項3の発明の給水ポンプでは、前記中間吐出管は前記ケーシングの上部に配設されたことを特徴としている。   The water supply pump according to a third aspect of the invention is characterized in that the intermediate discharge pipe is disposed in an upper part of the casing.

請求項4の発明の給水ポンプでは、前記給水通路の外周側に前記羽根車における給水方向の下流側に対向してディフューザが設けられたことを特徴としている。   The water supply pump according to a fourth aspect of the invention is characterized in that a diffuser is provided on the outer peripheral side of the water supply passage so as to face the downstream side in the water supply direction of the impeller.

請求項1の発明の給水ポンプによれば、中空形状をなすケーシング内に回転軸を回転自在に支持し、この回転軸に軸方向に沿って複数の羽根車を装着し、羽根車に対して回転軸の軸方向に沿って給水通路を形成し、ケーシングに給水通路の一端部に連通する吸込口を設ける一方、給水通路の他端部に連通する吐出口を設け、ケーシングにおける複数の羽根車の間に給水通路から区画して中間吐出室を形成し、この中間吐出室を連通孔を介して給水通路に連通すると共に、中間吐出室に中間抽出管を連結したので、回転軸と共に羽根車が回転すると、流体が吸込口から給水通路に吸い込まれ、羽根車を流過する過程で昇圧されて吐出口から吐出されるが、給水通路内を流れる流体の一部が連通孔を通して中間吐出室に流動し、中間抽出管から抽出されることとなり、中間吐出室への流体の抽出が給水通路を流動する流体の圧力や流速に対して悪影響を与えることはなく、十分な抽出量を確保することができる一方で、給水性能の低下を抑制することができる。   According to the water supply pump of the first aspect of the invention, the rotary shaft is rotatably supported in the hollow casing, and a plurality of impellers are mounted on the rotary shaft along the axial direction. A water supply passage is formed along the axial direction of the rotation shaft, and a suction port that communicates with one end of the water supply passage is provided in the casing, while a discharge port that communicates with the other end of the water supply passage is provided, and a plurality of impellers in the casing An intermediate discharge chamber is formed by partitioning from the water supply passage, and the intermediate discharge chamber is connected to the water supply passage through the communication hole, and the intermediate extraction pipe is connected to the intermediate discharge chamber. Is rotated, the fluid is sucked into the water supply passage from the suction port, and the pressure is increased in the process of flowing through the impeller and discharged from the discharge port. However, a part of the fluid flowing in the water supply passage passes through the communication hole to the intermediate discharge chamber. And extracted from the intermediate extraction pipe Therefore, the extraction of the fluid into the intermediate discharge chamber does not adversely affect the pressure and flow velocity of the fluid flowing in the water supply passage, and a sufficient extraction amount can be secured, while the water supply performance is improved. The decrease can be suppressed.

請求項2の発明の給水ポンプによれば、中間吐出室を、複数の羽根車の間に所定間隔をもって配設された一対のドーナッツ形状をなす第1隔壁及び第2隔壁と、回転軸の外周側に所定間隔をもって配設されて第1隔壁及び第2隔壁の内周部に連結されたリング形状をなす第3隔壁とから構成し、第3隔壁に周方向に均等間隔で連通孔を複数設けたので、給水通路から区画して中間吐出室を適正に構成することができると共に、給水通路と中間吐出室とを連通する連通孔を周方向に均等間隔に設けることで、給水通路を流動する流体の圧力及び流速が不均一になることはなく、性能の低下を確実に抑制することができる。   According to the water supply pump of the invention of claim 2, the intermediate discharge chamber has a pair of donut-shaped first and second partition walls arranged at a predetermined interval between the plurality of impellers, and the outer periphery of the rotating shaft. And a ring-shaped third partition wall disposed at a predetermined interval on the side and connected to the inner peripheral portion of the first partition wall and the second partition wall, and a plurality of communication holes are formed at equal intervals in the circumferential direction on the third partition wall. Since it is provided, the intermediate discharge chamber can be properly configured by dividing from the water supply passage, and the water supply passage can be flowed by providing communication holes that communicate the water supply passage and the intermediate discharge chamber at equal intervals in the circumferential direction. The pressure and flow rate of the fluid to be performed are not uneven, and the performance degradation can be reliably suppressed.

請求項3の発明の給水ポンプによれば、中間吐出管をケーシングの上部に配設したので、全体のレイアウトを変更することなく、十分な抽出量を確保することができると共に、給水性能の低下を抑制することができる。   According to the water supply pump of the invention of claim 3, since the intermediate discharge pipe is disposed at the upper part of the casing, a sufficient extraction amount can be ensured without changing the overall layout, and the water supply performance is deteriorated. Can be suppressed.

請求項4の発明の給水ポンプによれば、給水通路の外周側に羽根車における給水方向の下流側に対向してディフューザを設けたので、羽根車で昇圧した流体の動圧をディフューザにて静圧に変換することで、流体を適正状態で吐出口から吐出することができる。   According to the water supply pump of the invention of claim 4, since the diffuser is provided on the outer peripheral side of the water supply passage so as to oppose the downstream side in the water supply direction of the impeller, the dynamic pressure of the fluid boosted by the impeller is statically reduced by the diffuser. By converting the pressure, the fluid can be discharged from the discharge port in an appropriate state.

以下に添付図面を参照して、本発明に係る給水ポンプの好適な実施例を詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。   Exemplary embodiments of a water supply pump according to the present invention will be described below in detail with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments.

図1は、本発明の一実施例に係る給水ポンプを表す要部断面図、図2は、図1のII−II断面図、図3は、本実施例の給水ポンプを表す全体構成図、図4は、本実施例の給水ポンプが適用された複合プラントの概略構成図である。   FIG. 1 is a cross-sectional view of a main part showing a water supply pump according to one embodiment of the present invention, FIG. 2 is a cross-sectional view taken along II-II in FIG. 1, and FIG. FIG. 4 is a schematic configuration diagram of a complex plant to which the feed water pump of this embodiment is applied.

本実施例の給水ポンプが適用された複合プラントにおいて、図4に示すように、ガスタービン11は、圧縮機12と燃焼器13とタービン14とを有している。また、蒸気タービン15は、高圧タービン16と中圧タービン17と低圧タービン18とが一軸に連結されて構成されている。そして、ガスタービン11の圧縮機12に吸気ライン19が設けられる一方、タービン14に排気ライン20が設けられ、この排気ライン20によりガスタービン11から排出された排気ガスを排熱回収ボイラ21に送ることができる。   In the complex plant to which the feed water pump of the present embodiment is applied, as shown in FIG. 4, the gas turbine 11 includes a compressor 12, a combustor 13, and a turbine 14. The steam turbine 15 is configured by connecting a high-pressure turbine 16, an intermediate-pressure turbine 17, and a low-pressure turbine 18 to one shaft. The compressor 12 of the gas turbine 11 is provided with an intake line 19, while the turbine 14 is provided with an exhaust line 20, and exhaust gas discharged from the gas turbine 11 through the exhaust line 20 is sent to the exhaust heat recovery boiler 21. be able to.

排熱回収ボイラ21は、低圧ユニット22と中圧ユニット23と高圧ユニット24と再熱器25を有している。この排熱回収ボイラ21内では、ガスタービン11からの排気ガスが上方に移送することで、高圧ユニット24、中圧ユニット23、低圧ユニット22の順に熱回収を行って蒸気を発生させ、発生した蒸気を蒸気タービン15に送って駆動し、発電機26を運転可能となっている。   The exhaust heat recovery boiler 21 includes a low pressure unit 22, an intermediate pressure unit 23, a high pressure unit 24, and a reheater 25. In the exhaust heat recovery boiler 21, the exhaust gas from the gas turbine 11 is transferred upward, so that heat is recovered in the order of the high pressure unit 24, the intermediate pressure unit 23, and the low pressure unit 22 to generate steam. Steam is sent to the steam turbine 15 for driving, and the generator 26 can be operated.

この排熱回収ボイラ21において、低圧ユニット22は、低圧節炭器27、低圧蒸発器28、低圧過熱器29を有している。即ち、低圧節炭器27で加熱された給水が第1低圧給水路30を介して低圧蒸発器28に送られ、ここで加熱されて低圧蒸気を発生する。この低圧蒸発器28で発生した低圧蒸気は第2低圧給水路31を介して低圧過熱器29に送られ、ここで過熱される。   In the exhaust heat recovery boiler 21, the low pressure unit 22 includes a low pressure economizer 27, a low pressure evaporator 28, and a low pressure superheater 29. That is, the feed water heated by the low-pressure economizer 27 is sent to the low-pressure evaporator 28 via the first low-pressure feed water channel 30, and is heated here to generate low-pressure steam. The low-pressure steam generated in the low-pressure evaporator 28 is sent to the low-pressure superheater 29 via the second low-pressure feed water channel 31 and is heated there.

また、中圧ユニット23は、中圧節炭器32、中圧蒸発器33、中圧過熱器34を有している。即ち、中圧節炭器32で加熱された給水が第1中圧給水路35を介して中圧蒸発器33に送られ、ここで加熱されて中圧蒸気を発生する。この中圧蒸発器33で発生した中圧蒸気は第2中圧給水路36を介して中圧過熱器34に送られ、ここで過熱される。   The intermediate pressure unit 23 includes an intermediate pressure economizer 32, an intermediate pressure evaporator 33, and an intermediate pressure superheater 34. That is, the feed water heated by the intermediate pressure economizer 32 is sent to the intermediate pressure evaporator 33 via the first intermediate pressure feed water channel 35, where it is heated to generate intermediate pressure steam. The intermediate-pressure steam generated in the intermediate-pressure evaporator 33 is sent to the intermediate-pressure superheater 34 through the second intermediate-pressure feed water channel 36 and is heated there.

更に、高圧ユニット24は、高圧節炭器37、高圧蒸発器38、高圧過熱器39を有している。即ち、高圧節炭器37で加熱された給水が第1高圧給水路40を介して高圧蒸発器38に送られ、ここで加熱されて高圧蒸気を発生する。この高圧蒸発器38で発生した高圧蒸気は第2高圧給水路41を介して高圧過熱器39に送られ、ここで過熱される。   Furthermore, the high pressure unit 24 includes a high pressure economizer 37, a high pressure evaporator 38, and a high pressure superheater 39. That is, the feed water heated by the high-pressure economizer 37 is sent to the high-pressure evaporator 38 via the first high-pressure feed water channel 40, where it is heated to generate high-pressure steam. The high-pressure steam generated in the high-pressure evaporator 38 is sent to the high-pressure superheater 39 through the second high-pressure feed water channel 41 and is heated there.

そして、高圧過熱器39の高圧蒸気を高圧タービン16に供給する高圧蒸気供給ライン42が設けられると共に、高圧タービン16から排出された中圧蒸気を再熱器29に戻す中圧蒸気回収ライン43が設けられている。また、中圧過熱器34に発生した中圧蒸気をこの中圧蒸気回収ライン43に供給する中圧蒸気供給ライン44が設けられている。一方、再熱器で過熱された中圧蒸気を中圧タービン17に供給する中圧蒸気供給ライン45が設けられると共に、中圧タービン17から排出された中圧蒸気を低圧タービン18に供給する低圧蒸気搬送ライン46が設けられている。また、低圧過熱器29に発生した低圧蒸気をこの低圧蒸気搬送ライン46に供給する低圧蒸気供給ライン47が設けられている。   A high-pressure steam supply line 42 for supplying the high-pressure steam from the high-pressure superheater 39 to the high-pressure turbine 16 is provided, and an intermediate-pressure steam recovery line 43 for returning the intermediate-pressure steam discharged from the high-pressure turbine 16 to the reheater 29 is provided. Is provided. Further, an intermediate pressure steam supply line 44 for supplying the intermediate pressure steam generated in the intermediate pressure superheater 34 to the intermediate pressure steam recovery line 43 is provided. On the other hand, an intermediate pressure steam supply line 45 for supplying the intermediate pressure steam superheated by the reheater to the intermediate pressure turbine 17 is provided, and a low pressure for supplying the intermediate pressure steam discharged from the intermediate pressure turbine 17 to the low pressure turbine 18. A steam transfer line 46 is provided. A low-pressure steam supply line 47 that supplies low-pressure steam generated in the low-pressure superheater 29 to the low-pressure steam transfer line 46 is provided.

低圧タービン18から排出された蒸気を凝縮する復水器48には、海水により冷却する冷却水循環ライン49が設けられている。そして、この復水器48には、凝縮した復水を排熱回収ボイラ21に戻す復水回収ライン50が設けられており、この復水回収ライン50には復水ポンプ51及び脱気器52が設けられている。この復水回収ライン50の下流端部は、給水ポンプ53及び高圧給水ライン54を介して高圧節炭器37に連結されると共に、給水ポンプ53から分岐した中圧給水ライン55を介して中圧節炭器32連結されている。また、復水回収ライン50の下流端部は、分岐した低圧給水ライン56を介して低圧節炭器27連結されている。   A condenser 48 that condenses the steam discharged from the low-pressure turbine 18 is provided with a cooling water circulation line 49 that is cooled by seawater. The condenser 48 is provided with a condensate recovery line 50 that returns the condensed condensate to the exhaust heat recovery boiler 21. The condensate recovery line 50 includes a condensate pump 51 and a deaerator 52. Is provided. The downstream end of the condensate recovery line 50 is connected to the high-pressure economizer 37 via a water supply pump 53 and a high-pressure water supply line 54, and has an intermediate pressure via an intermediate-pressure water supply line 55 branched from the water supply pump 53. The economizer 32 is connected. The downstream end of the condensate recovery line 50 is connected to the low-pressure economizer 27 via a branched low-pressure water supply line 56.

従って、ガスタービン11では、吸気ライン19を通して圧縮機12に取り込まれた空気が圧縮されることで高温・高圧の圧縮空気となり、この圧縮空気が燃焼器13に送られ、ここで圧縮空気と燃料の混合気に着火されて燃焼し、この燃焼器13で生成された高温・高圧の燃焼ガスがタービン14に送られて駆動する。そして、タービン14から排出された排気ガスは排気ライン20を通って排熱回収ボイラ21に送られ、ここで、高温・高圧の排気ガスにより蒸気を生成する。   Accordingly, in the gas turbine 11, the air taken into the compressor 12 through the intake line 19 is compressed to become high-temperature and high-pressure compressed air, which is sent to the combustor 13, where the compressed air and fuel The air-fuel mixture is ignited and combusted, and the high-temperature and high-pressure combustion gas generated in the combustor 13 is sent to the turbine 14 to be driven. The exhaust gas discharged from the turbine 14 is sent to the exhaust heat recovery boiler 21 through the exhaust line 20, where steam is generated by the high-temperature and high-pressure exhaust gas.

即ち、復水器48で凝縮された復水が、復水ポンプ51で加圧されて脱気器52で溶存酸素が取り除かれた後、給水ポンプ53により復水回収ライン50を通って排熱回収ボイラ21の高圧ユニット24に戻される。すると、この高圧ユニット24で過熱されて発生した高圧蒸気が、高圧蒸気供給ライン42を通して高圧タービン16に送られ、ここで仕事をして中圧蒸気となる。この中圧蒸気は中圧蒸気回収ライン43を通して再熱器29に送られ、再加熱された後、中圧蒸気供給ライン45を通して中圧タービン17に送られ、ここで仕事をして低圧蒸気となる。そして、この低圧蒸気は低圧蒸気搬送ライン46を通して低圧タービン18に送られ、ここで仕事をして復水器48に戻される。   That is, the condensate condensed by the condenser 48 is pressurized by the condensate pump 51 and dissolved oxygen is removed by the deaerator 52, and then exhausted through the condensate recovery line 50 by the feed water pump 53. The high pressure unit 24 of the recovery boiler 21 is returned. Then, the high-pressure steam generated by overheating in the high-pressure unit 24 is sent to the high-pressure turbine 16 through the high-pressure steam supply line 42, where it works to become medium-pressure steam. This intermediate pressure steam is sent to the reheater 29 through the intermediate pressure steam recovery line 43, and after being reheated, it is sent to the intermediate pressure turbine 17 through the intermediate pressure steam supply line 45, where it works to produce the low pressure steam. Become. This low-pressure steam is then sent to the low-pressure turbine 18 through the low-pressure steam conveyance line 46, where it works and is returned to the condenser 48.

また、給水ポンプ53から抽気された復水は、中圧給水ライン55を通して中圧ユニット23に戻され、この中圧ユニット23で過熱されてから、中圧蒸気供給ライン44を通して中圧蒸気回収ライン43に供給される。更に、復水回収ライン50を通る復水の一部は、低圧給水ライン56を通して低圧ユニット22に戻され、この低圧ユニットで過熱されてから、低圧蒸気供給ライン47を通して低圧蒸気搬送ライン46に供給される。   Further, the condensate extracted from the feed water pump 53 is returned to the intermediate pressure unit 23 through the intermediate pressure supply water line 55, is overheated by the intermediate pressure unit 23, and then is recovered through the intermediate pressure steam supply line 44. 43. Further, a part of the condensate passing through the condensate recovery line 50 is returned to the low-pressure unit 22 through the low-pressure water supply line 56 and is heated by the low-pressure unit and then supplied to the low-pressure steam transport line 46 through the low-pressure steam supply line 47. Is done.

このように構成された複合プラントにおける給水ポンプ53は、上述したように、復水を加圧して高圧ユニット24に供給すると共に、加圧した復水を抽気して中圧ユニット23に供給している。この場合、給水ポンプ53で加圧された復水の一部を抽出すると、内部の給水通路にて、復水の圧力分布及び流速分布が不均一となり、給水性能の低下を招いてしまう。そこで、本実施例では、給水ポンプ53内に給水通路から区画した中間吐出室を設け、この中間吐出室から抽気するようにしている。   As described above, the feed water pump 53 in the complex plant configured as described above pressurizes and supplies the condensate to the high-pressure unit 24, and bleeds the pressurized condensate and supplies it to the intermediate-pressure unit 23. Yes. In this case, if a part of the condensate pressurized by the feed water pump 53 is extracted, the pressure distribution and flow velocity distribution of the condensate become non-uniform in the internal water supply passage, leading to a reduction in water supply performance. Therefore, in this embodiment, an intermediate discharge chamber partitioned from the water supply passage is provided in the water supply pump 53, and air is extracted from the intermediate discharge chamber.

即ち、本実施例の給水ポンプ53において、図3に示すように、ケーシング61は、中空形状をなし、内部に回転軸62が貫通し、一対の軸受63,64により回転自在に支持されており、この回転軸62の一端部には図示しない駆動モータが駆動連結されている。この回転軸62には、軸方向に沿って複数(本実施例では、6段)のインペラ(羽根車)65が装着されることで、このインペラ65に対して回転軸62の軸方向に沿って給水通路66が形成されている。また、この給水通路66の外周側には、各インペラ65における給水方向の下流側に対向してディフューザ67が設けられている。そして、ケーシング61には、給水通路66の一端部に連通する給水管(吸込口)68が連結される一方、給水通路の他端部に連通する吐出管(吐出口)69が連結されている。   That is, in the water supply pump 53 of the present embodiment, as shown in FIG. 3, the casing 61 has a hollow shape, the rotation shaft 62 penetrates inside, and is rotatably supported by a pair of bearings 63 and 64. A driving motor (not shown) is drivingly connected to one end of the rotating shaft 62. A plurality of (in this embodiment, six stages) impellers (impellers) 65 are attached to the rotating shaft 62 along the axial direction, so that the rotating shaft 62 extends along the axial direction of the rotating shaft 62. Thus, a water supply passage 66 is formed. A diffuser 67 is provided on the outer peripheral side of the water supply passage 66 so as to face the downstream side of each impeller 65 in the water supply direction. The casing 61 is connected to a water supply pipe (suction port) 68 that communicates with one end of the water supply passage 66, and is connected to a discharge pipe (discharge port) 69 that communicates with the other end of the water supply passage. .

なお、本実施例のケーシング61は、リング形状をなす複数のリング部材61a〜61eが互いに嵌合すると共に、各端部に給水管68及び吐出管69の各リング部68a,69aが嵌合した状態で、複数の締結ボルト70により締結されて構成されている。   In the casing 61 of the present embodiment, a plurality of ring members 61a to 61e having a ring shape are fitted to each other, and the ring portions 68a and 69a of the water supply pipe 68 and the discharge pipe 69 are fitted to each end. In the state, it is configured to be fastened by a plurality of fastening bolts 70.

また、図1乃至図3に示すように、1段目のインペラ65と2段目のインペラ65との間には、ケーシング61を構成するリング部材61aと61bとに挟持されるように中間抽出管71のリング部71aが配設されている。そして、ケーシング61のリング部材61aの内周部には、ドーナッツ形状をなす第1隔壁72が一体に形成されると共に、中間抽出管71のリング部71aの内周部には、ドーナッツ形状をなす第2隔壁73が第1隔壁72と所定間隔をもって一体に形成されている。また、回転軸62の外周側には、この回転軸62の外周面と所定間隔をもってリング形状をなす第3隔壁74が配設されており、この第3隔壁74の軸方向一端部が第1隔壁72の内周部に接合されると共に、軸方向他端部が第2隔壁73の内周部に接合されている。   As shown in FIGS. 1 to 3, intermediate extraction is performed between the first stage impeller 65 and the second stage impeller 65 so as to be sandwiched between ring members 61a and 61b constituting the casing 61. A ring portion 71a of the pipe 71 is disposed. A first partition wall 72 having a donut shape is integrally formed on the inner peripheral portion of the ring member 61a of the casing 61, and a donut shape is formed on the inner peripheral portion of the ring portion 71a of the intermediate extraction pipe 71. The second partition wall 73 is integrally formed with the first partition wall 72 at a predetermined interval. In addition, a third partition wall 74 having a ring shape with a predetermined interval from the outer peripheral surface of the rotation shaft 62 is disposed on the outer periphery side of the rotation shaft 62, and one axial end portion of the third partition wall 74 is the first end portion. While being joined to the inner peripheral portion of the partition wall 72, the other axial end is joined to the inner peripheral portion of the second partition wall 73.

即ち、3つの隔壁72,73,74によりインペラ65の間に、給水通路66から区画された中間吐出室75が形成されている。そして、第3隔壁74に、周方向に均等間隔で複数の連通孔76が設けられており、給水通路66と中間吐出室75とが複数の連通孔76を介して連通されている。また、中間吐出室75は、中間抽出管71の抽出通路77に連通している。この場合、ケーシング61に対してその上部に中間吐出管71が配設されている。   That is, an intermediate discharge chamber 75 defined by the water supply passage 66 is formed between the impeller 65 by the three partition walls 72, 73, and 74. A plurality of communication holes 76 are provided in the third partition wall 74 at equal intervals in the circumferential direction, and the water supply passage 66 and the intermediate discharge chamber 75 are communicated with each other through the plurality of communication holes 76. In addition, the intermediate discharge chamber 75 communicates with the extraction passage 77 of the intermediate extraction pipe 71. In this case, an intermediate discharge pipe 71 is disposed above the casing 61.

従って、回転軸62と共に各インペラ65が回転すると、復水が吸込管68からケーシング61内の給水通路66に吸い込まれ、インペラ65を流過する過程で昇圧された後、各ディフューザ67で復水の動圧が静圧に変換され、吐出管69から吐出される。このとき、給水通路66内を流れる昇圧途中の復水の一部が各連通孔76を通して中間吐出室75に流動し、中間抽出管71の抽出通路77を通って抽出される。   Accordingly, when each impeller 65 rotates together with the rotating shaft 62, the condensate is sucked into the water supply passage 66 in the casing 61 from the suction pipe 68 and is pressurized in the process of flowing through the impeller 65, and then is condensed in each diffuser 67. Is converted into a static pressure and discharged from the discharge pipe 69. At this time, a part of the condensate during the pressure increase flowing in the water supply passage 66 flows into the intermediate discharge chamber 75 through each communication hole 76 and is extracted through the extraction passage 77 of the intermediate extraction pipe 71.

この場合、復水は、給水通路66から各連通孔76を通って一度中間吐出室75に流入してから、中間抽出管71により抽出されることとなり、給水通路66を流動する復水の圧力や流速が変動することはほとんどなく、十分な抽出量が確保されると共に、給水性能の低下が抑制される。   In this case, the condensate once flows into the intermediate discharge chamber 75 from the water supply passage 66 through each communication hole 76 and then extracted by the intermediate extraction pipe 71, and the pressure of the condensate flowing through the water supply passage 66 is increased. The flow rate hardly fluctuates, and a sufficient amount of extraction is ensured, and a decrease in water supply performance is suppressed.

このように本実施例の給水ポンプにあっては、中空形状をなすケーシング61内に回転軸62を回転自在に支持し、この回転軸62に軸方向に沿って複数のインペラ65を装着し、このインペラ65に対して回転軸62の軸方向に沿って給水通路66を形成し、ケーシング61に給水通路66の一端部に連通する吸込管68を連結する一方、給水通路66の他端部に連通する吐出管69を連結し、ケーシング61における複数のインペラ65の間に給水通路66から区画して中間吐出室75を形成し、この中間吐出室75を連通孔76を介して給水通路66に連通すると共に、中間吐出室75に中間抽出管71を連結している。   Thus, in the water supply pump of this embodiment, the rotary shaft 62 is rotatably supported in the hollow casing 61, and a plurality of impellers 65 are attached to the rotary shaft 62 along the axial direction. A water supply passage 66 is formed along the axial direction of the rotary shaft 62 with respect to the impeller 65, and a suction pipe 68 communicating with one end of the water supply passage 66 is connected to the casing 61, while the other end of the water supply passage 66 is connected to the casing 61. A discharge pipe 69 that communicates is connected, and is partitioned from a water supply passage 66 between a plurality of impellers 65 in the casing 61 to form an intermediate discharge chamber 75, and the intermediate discharge chamber 75 is connected to the water supply passage 66 through a communication hole 76. In addition to communication, an intermediate extraction pipe 71 is connected to the intermediate discharge chamber 75.

従って、回転軸62と共にインペラ65が回転すると、復水が吸込管68ら給水通路66に吸い込まれ、インペラ65を流過する過程で昇圧されて吐出管69から吐出されるが、給水通路66内を流れる復水の一部が連通孔76を通して中間吐出室75に流動し、中間抽出管71から抽出されることとなり、中間吐出室75への復水の抽出が給水通路66を流動する復水の圧力や流速に対して悪影響を与えることはなく、十分な抽出量を確保することができる一方で、給水性能の低下を抑制することができる。   Accordingly, when the impeller 65 rotates together with the rotating shaft 62, the condensed water is sucked into the water supply passage 66 from the suction pipe 68, and is boosted and discharged from the discharge pipe 69 in the process of flowing through the impeller 65. A part of the condensate flowing through the water flows into the intermediate discharge chamber 75 through the communication hole 76 and is extracted from the intermediate extraction pipe 71, and the condensate extracted into the intermediate discharge chamber 75 flows through the water supply passage 66. The pressure and flow velocity are not adversely affected, and a sufficient extraction amount can be ensured, while the water supply performance can be prevented from deteriorating.

また、本実施例の給水ポンプでは、ケーシング61のリング部材61aに形成したドーナッツ形状をなす第1隔壁72と、中間抽出管71のリング部71aに形成したドーナッツ形状をなす第2隔壁73と、回転軸62の外周側に配設したリング形状をなす第3隔壁74により中間吐出室75を形成し、第3隔壁74に周方向に均等間隔で連通孔76を複数設けている。従って、給水通路66から区画して中間吐出室75を適正に構成することができると共に、給水通路66と中間吐出室75とを連通する連通孔76を周方向に均等間隔に設けることで、給水通路66を流動する流体の圧力及び流速が不均一になることはなく、性能の低下を確実に抑制することができる。   Further, in the water supply pump of the present embodiment, a first partition wall 72 having a donut shape formed on the ring member 61a of the casing 61, a second partition wall 73 having a donut shape formed on the ring portion 71a of the intermediate extraction pipe 71, and An intermediate discharge chamber 75 is formed by a ring-shaped third partition 74 disposed on the outer peripheral side of the rotating shaft 62, and a plurality of communication holes 76 are provided in the third partition 74 at equal intervals in the circumferential direction. Therefore, the intermediate discharge chamber 75 can be appropriately configured by partitioning from the water supply passage 66, and the communication holes 76 communicating the water supply passage 66 and the intermediate discharge chamber 75 are provided at equal intervals in the circumferential direction. The pressure and flow velocity of the fluid flowing through the passage 66 do not become uneven, and the performance degradation can be reliably suppressed.

更に、本実施例では、中間吐出管71をケーシング61の上部に配設しており、全体のレイアウトを変更することなく、十分な抽出量を確保することができると共に、給水性能の低下を抑制することができる。また、給水通路66の外周側にインペラ65における給水方向の下流側に対向してディフューザ67を設けている。従って、インペラ65で昇圧した復水の動圧をディフューザ67にて静圧に変換することで、復水を適正状態で吐出管69から吐出することができる。   Furthermore, in the present embodiment, the intermediate discharge pipe 71 is disposed on the upper portion of the casing 61, so that a sufficient extraction amount can be ensured without changing the overall layout, and a decrease in water supply performance is suppressed. can do. Further, a diffuser 67 is provided on the outer peripheral side of the water supply passage 66 so as to face the downstream side in the water supply direction of the impeller 65. Therefore, the condensate can be discharged from the discharge pipe 69 in an appropriate state by converting the dynamic pressure of the condensate increased by the impeller 65 into a static pressure by the diffuser 67.

なお、上述した実施例では、ケーシング61を、リング形状をなす複数のリング部材61a〜61eを互いに嵌合すると共に、各端部に給水管68及び吐出管69の各リング部68a,69aが嵌合して締結ボルト70により締結されて構成し、リング部材61aと61bとの間に中間抽出管71のリング部71aを配設したが、この構造に限定されるものではない。例えば、ケーシングを一体に形成し、その外周部に吸込管と吐出管と中間抽出管を連結するようにしてもよい。   In the above-described embodiment, the casing 61 is fitted with a plurality of ring members 61a to 61e having a ring shape, and the ring portions 68a and 69a of the water supply pipe 68 and the discharge pipe 69 are fitted to each end. The ring portion 71a of the intermediate extraction pipe 71 is disposed between the ring members 61a and 61b. However, the present invention is not limited to this structure. For example, the casing may be integrally formed, and a suction pipe, a discharge pipe, and an intermediate extraction pipe may be connected to the outer periphery of the casing.

また、上述した実施例では、ケーシング61のリング部材61aに第1隔壁72を形成し、中間抽出管71のリング部71aに第2隔壁73を形成し、リング形状をなす第3隔壁74を第1隔壁72及び第2隔壁73に連結して中間吐出室75を形成したが、この構造に限定されるものではない、例えば、筒形状をなすケーシングの内周側に断面がコ字形状をなす隔壁部材を固定して構成してもよい。   In the embodiment described above, the first partition wall 72 is formed on the ring member 61 a of the casing 61, the second partition wall 73 is formed on the ring portion 71 a of the intermediate extraction pipe 71, and the ring-shaped third partition wall 74 is formed in the first shape. The intermediate discharge chamber 75 is formed by being connected to the first partition wall 72 and the second partition wall 73. However, the structure is not limited to this structure. For example, a cross-section is formed in a U shape on the inner peripheral side of a cylindrical casing. The partition member may be fixed.

更に、ケーシング61に対する中間抽出管71の配設位置を第1段インペラと第2段インペラの間としたが、抽出する復水の圧力に応じて別の部分から復水を抽出しても良い。   Furthermore, although the arrangement position of the intermediate extraction pipe 71 with respect to the casing 61 is set between the first stage impeller and the second stage impeller, the condensate may be extracted from another part depending on the pressure of the condensed water to be extracted. .

そして、本実施例では、本発明の給水ポンプを複合プラントにおける排熱回収ボイラ21の給水ポンプ53として適用したが、この分野に限らず、昇圧の途中で抽気するポンプであれば、いずれの分野でも適用可能である。   In this embodiment, the feed water pump of the present invention is applied as the feed water pump 53 of the exhaust heat recovery boiler 21 in the combined plant. However, the present invention is not limited to this field, and any field can be used as long as it is a pump that bleeds during pressure increase. But it is applicable.

本発明に係る給水ポンプは、抽気量に拘らず給水通路を流れる流体に悪影響を与えることなく、十分な抽気量を確保可能であると共に給水性能の低下を抑制したものであり、いずれの種類の給水ポンプにも適用することができる。   The water supply pump according to the present invention is capable of securing a sufficient amount of extraction without adversely affecting the fluid flowing through the water supply passage regardless of the amount of extraction, and suppressing a decrease in water supply performance. It can also be applied to a water supply pump.

本発明の一実施例に係る給水ポンプを表す要部断面図である。It is principal part sectional drawing showing the feed water pump which concerns on one Example of this invention. 図1のII−II断面図である。It is II-II sectional drawing of FIG. 本実施例の給水ポンプを表す全体構成図である。It is a whole block diagram showing the feed pump of a present Example. 本実施例の給水ポンプが適用された複合プラントの概略構成図である。It is a schematic block diagram of the complex plant to which the feed water pump of the present Example was applied. 従来の給水ポンプの要部断面図である。It is principal part sectional drawing of the conventional water supply pump. 図5のVI−VI断面図である。It is VI-VI sectional drawing of FIG.

符号の説明Explanation of symbols

11 ガスタービン
15 蒸気タービン
21 排熱回収ボイラ
22 低圧ユニット
23 中圧ユニット
24 高圧ユニット
25 再熱器
26 発電機
48 復水器
50 復水回収ライン
53 給水ポンプ
54 高圧給水ライン
55 中圧給水ライン
56 低圧給水ライン
61 ケーシング
62 回転軸
65 インペラ(羽根車)
66 給水通路
67 ディフューザ
68 給水管(吸込口)
69 吐出管(吐出口)
71 中間抽出管
72 第1隔壁
73 第2隔壁
74 第3隔壁
75 中間吐出室
76 連通部
DESCRIPTION OF SYMBOLS 11 Gas turbine 15 Steam turbine 21 Waste heat recovery boiler 22 Low pressure unit 23 Medium pressure unit 24 High pressure unit 25 Reheater 26 Generator 48 Condenser 50 Condensate recovery line 53 Water feed pump 54 High pressure feed water line 55 Medium pressure feed water line 56 Low pressure water supply line 61 Casing 62 Rotating shaft 65 Impeller (impeller)
66 Water supply passage 67 Diffuser 68 Water supply pipe (suction port)
69 Discharge pipe (discharge port)
71 Intermediate extraction pipe 72 First partition 73 Second partition 74 Third partition 75 Intermediate discharge chamber 76 Communication portion

Claims (4)

中空形状をなすケーシング内に回転軸が回転自在に支持され、該回転軸に軸方向に沿って複数の羽根車が装着され、該羽根車に対して前記回転軸の軸方向に沿って給水通路が形成され、前記ケーシングに前記給水通路の一端部に連通する前記吸込口が設けられる一方、前記給水通路の他端部に連通する吐出口が設けられた給水ポンプにおいて、前記ケーシングにおける前記複数の羽根車の間に前記給水通路から区画された中間吐出室が形成され、該中間吐出室が連通孔を介して前記給水通路に連通されると共に、前記中間吐出室に中間抽出管が連結されたことを特徴とする給水ポンプ。   A rotating shaft is rotatably supported in a hollow casing, and a plurality of impellers are mounted on the rotating shaft along the axial direction, and a water supply passage is provided along the axial direction of the rotating shaft with respect to the impeller. In the water supply pump in which the suction port that communicates with one end portion of the water supply passage is provided in the casing, and the discharge port that communicates with the other end portion of the water supply passage is provided in the casing, An intermediate discharge chamber partitioned from the water supply passage is formed between the impellers, the intermediate discharge chamber communicates with the water supply passage through a communication hole, and an intermediate extraction pipe is connected to the intermediate discharge chamber. A water supply pump characterized by that. 請求項1に記載の給水ポンプにおいて、前記中間吐出室は、前記複数の羽根車の間に所定間隔をもって配設された一対のドーナッツ形状をなす第1隔壁及び第2隔壁と、前記回転軸の外周側に所定間隔をもって配設されて前記第1隔壁及び前記第2隔壁の内周部に連結されたリング形状をなす第3隔壁とから構成され、前記第3隔壁に周方向に均等間隔で前記連通孔が複数設けられたことを特徴とする給水ポンプ。   2. The water supply pump according to claim 1, wherein the intermediate discharge chamber includes a pair of donut-shaped first and second partitions disposed between the plurality of impellers at a predetermined interval, and the rotating shaft. A ring-shaped third partition wall disposed at a predetermined interval on the outer peripheral side and connected to the inner peripheral portion of the first partition wall and the second partition wall; A water supply pump comprising a plurality of the communication holes. 請求項1または2に記載の給水ポンプにおいて、前記中間吐出管は前記ケーシングの上部に配設されたことを特徴とする給水ポンプ。   3. The water supply pump according to claim 1, wherein the intermediate discharge pipe is disposed on an upper portion of the casing. 請求項1から3のいずれか一つに記載の給水ポンプにおいて、前記給水通路の外周側に前記羽根車における給水方向の下流側に対向してディフューザが設けられたことを特徴とする給水ポンプ。   The water supply pump as described in any one of Claim 1 to 3 WHEREIN: The diffuser was provided facing the downstream of the water supply direction in the said impeller on the outer peripheral side of the said water supply channel | path.
JP2006041496A 2006-02-17 2006-02-17 Water supply pump Active JP4512048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006041496A JP4512048B2 (en) 2006-02-17 2006-02-17 Water supply pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006041496A JP4512048B2 (en) 2006-02-17 2006-02-17 Water supply pump

Publications (2)

Publication Number Publication Date
JP2007218210A JP2007218210A (en) 2007-08-30
JP4512048B2 true JP4512048B2 (en) 2010-07-28

Family

ID=38495762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006041496A Active JP4512048B2 (en) 2006-02-17 2006-02-17 Water supply pump

Country Status (1)

Country Link
JP (1) JP4512048B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013072997A1 (en) * 2011-11-14 2013-05-23 五大産業株式会社 Pump device
JP6832540B2 (en) * 2017-05-16 2021-02-24 靖 平田 pump

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08151993A (en) * 1994-11-29 1996-06-11 Hitachi Ltd Barrel casing type turbine rump

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08151993A (en) * 1994-11-29 1996-06-11 Hitachi Ltd Barrel casing type turbine rump

Also Published As

Publication number Publication date
JP2007218210A (en) 2007-08-30

Similar Documents

Publication Publication Date Title
US8858158B2 (en) Steam turbine and steam turbine plant system
JP6097487B2 (en) Centrifugal pump
US20040261417A1 (en) Steam turbine, steam turbine plant and method of operating a steam turbine in a steam turbine plant
CN103036361B (en) Blast Furnace Top Gas Recovery Turbine Unit (TRT)
JP4301692B2 (en) gas turbine
CN104066937A (en) Method and turbine for expanding an organic operating fluid in a rankine cycle
WO2019044984A1 (en) Steam turbine system and combined cycle plant
JP6071271B2 (en) Turbine blade cooling system and gas turbine
JP4512048B2 (en) Water supply pump
WO2018151259A1 (en) Steam turbine plant
EP3353387A1 (en) A multistage evaporation organic rankine cycle
JP7093238B2 (en) Steam turbine equipment and combined cycle plant
KR102040424B1 (en) Seal device
US11352912B2 (en) Steam turbine facility and combined cycle plant
JP2018141452A (en) Steam turbine system
JP6100626B2 (en) gas turbine
JP2013060931A (en) Steam turbine
JP6793663B2 (en) A storage sleeve for turbomachine bearings, and a turbomachine equipped with the sleeve.
JP2004346932A (en) Steam turbine, its cooling method and steam turbine plant
JP2016153640A (en) Power generation device using steam and compressor drive device
JP7059347B2 (en) Waste heat recovery plant and combined cycle plant
EP3056695B1 (en) Single shaft combined cycle power plant shaft arrangement
JP6826449B2 (en) Steam turbine system
JP2011043113A (en) Centrifugal pump
JP6884720B2 (en) Steam turbine packing head and steam turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090202

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100326

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4512048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250