JP4508571B2 - Electrode catalyst and method for producing the same - Google Patents

Electrode catalyst and method for producing the same Download PDF

Info

Publication number
JP4508571B2
JP4508571B2 JP2003289551A JP2003289551A JP4508571B2 JP 4508571 B2 JP4508571 B2 JP 4508571B2 JP 2003289551 A JP2003289551 A JP 2003289551A JP 2003289551 A JP2003289551 A JP 2003289551A JP 4508571 B2 JP4508571 B2 JP 4508571B2
Authority
JP
Japan
Prior art keywords
carbonaceous
catalyst
carbonaceous support
electrode catalyst
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003289551A
Other languages
Japanese (ja)
Other versions
JP2005063713A (en
Inventor
賢彦 朝岡
房美 三浦
友 森本
剛 高橋
勉 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2003289551A priority Critical patent/JP4508571B2/en
Publication of JP2005063713A publication Critical patent/JP2005063713A/en
Application granted granted Critical
Publication of JP4508571B2 publication Critical patent/JP4508571B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、電極触媒に関し、さらに詳しくは、燃料電池、水電解装置、ハロゲン化水素酸電解装置、食塩電解装置、酸素及び/又は水素濃縮器、湿度センサ、ガスセンサ等の各種電気化学デバイスの電極に用いられる電極触媒に関する。   The present invention relates to an electrode catalyst, and more specifically, electrodes of various electrochemical devices such as a fuel cell, a water electrolysis apparatus, a hydrohalic acid electrolysis apparatus, a salt electrolysis apparatus, an oxygen and / or hydrogen concentrator, a humidity sensor, and a gas sensor. The present invention relates to an electrode catalyst used in the above.

固体高分子型燃料電池において、電極は、一般に、拡散層と触媒層の二層構造をとる。拡散層は、触媒層に反応ガス及び電子を供給するためのものであり、カーボン繊維、カーボンペーパー等が用いられる。また、触媒層は、電極反応の反応場となる部分であり、一般に、電極触媒と固体高分子電解質との複合体からなる。   In a polymer electrolyte fuel cell, an electrode generally has a two-layer structure of a diffusion layer and a catalyst layer. The diffusion layer is for supplying reaction gas and electrons to the catalyst layer, and carbon fiber, carbon paper, or the like is used. The catalyst layer is a part that becomes a reaction field for electrode reaction, and is generally composed of a composite of an electrode catalyst and a solid polymer electrolyte.

このような各種電気化学デバイスに用いられる電極触媒には、一般に、炭素質担体上にPt等の貴金属を含む触媒成分の微粒子を担持したものが用いられている。電極触媒に用いられる炭素質担体には、(1)触媒成分をより高分散に担持するために表面積が大きいこと、(2)反応ガス成分である酸素や水素の供給、及び生成物である水の排出を促進するために、一次粒子の凝集体の鎖状枝分かれ構造(ストラクチャー)が発達し、適度な空隙容積を有すること、並びに(3)必要程度の導電性を有すること、が必要であることが知られている。   As an electrode catalyst used for such various electrochemical devices, generally, a catalyst in which fine particles of a catalyst component containing a noble metal such as Pt is supported on a carbonaceous support is used. The carbonaceous carrier used for the electrode catalyst has (1) a large surface area to support the catalyst component in a higher dispersion, (2) supply of oxygen and hydrogen as reaction gas components, and water as a product. In order to promote the discharge of particles, it is necessary to develop a chain-branched structure (structure) of aggregates of primary particles, to have an appropriate void volume, and (3) to have a necessary degree of conductivity. It is known.

また、ある種のカーボンブラック(例えば、Cabot社製 VULCAN XC−72など)は、良好な電気化学的特性をもたらすことが知られており、燃料電池の電極触媒用の炭素質担体等として用いられている。   In addition, certain types of carbon black (for example, VULCAN XC-72 manufactured by Cabot) are known to provide good electrochemical characteristics and are used as a carbonaceous support for fuel cell electrode catalysts. ing.

さらに、炭素材料に種々の機能を付与するために、炭素材料の表面を改質し、あるいは修飾することも行われている。例えば、非特許文献1には、カーボンブラックの親水性を制御するために、カーボンブラックを硝酸、NOと空気の混合ガス、オゾン等で処理することによってその表面を酸化させ、カーボンブラックに親水性を付与する点が記載されている。 Furthermore, in order to impart various functions to the carbon material, the surface of the carbon material is modified or modified. For example, in Non-Patent Document 1, in order to control the hydrophilicity of carbon black, the surface of carbon black is oxidized by treatment with nitric acid, a mixed gas of NO 2 and air, ozone, etc. The point which gives sex is indicated.

カーボンブラック便覧、カーボンブラック協会(編)、287頁〜289頁Carbon Black Handbook, Carbon Black Association (ed.) Pp. 287-289

固体高分子型燃料電池等の過酷な条件下で使用される電気化学デバイスにおいては、電極反応の副反応によって過酸化水素が発生すること、及び過酸化水素が電解質膜を劣化させる原因物質の一つであることが知られている。この問題を解決するために、従来では、電解質膜として耐酸化性に優れたパーフルオロ系電解質を用いるのが一般的である。   In electrochemical devices used under harsh conditions such as polymer electrolyte fuel cells, hydrogen peroxide is generated as a result of side reactions of electrode reactions, and one of the causative substances that hydrogen peroxide degrades electrolyte membranes. It is known that In order to solve this problem, conventionally, it is common to use a perfluoro-based electrolyte having excellent oxidation resistance as the electrolyte membrane.

しかしながら、電極触媒に用いられる炭素質担体に関しては、上述した非特許文献1に記載されているように、専ら表面の親水性を制御するための改良が行われているだけであり、過酸化水素による劣化の問題を解決するために、電極触媒に用いられる炭素質担体に着目し、その改良を試みた例は、従来にはない。   However, with respect to the carbonaceous support used for the electrode catalyst, as described in Non-Patent Document 1 described above, only an improvement for controlling the hydrophilicity of the surface has been made. In order to solve the problem of deterioration due to the above, there has been no example in which the improvement was attempted by paying attention to the carbonaceous support used in the electrode catalyst.

本発明が解決しようとする課題は、過酸化水素による電解質膜の劣化を抑制し、固体高分子型燃料電池等の各種電気化学デバイスの耐久性を向上させることが可能な電極触媒を提供することにある。   The problem to be solved by the present invention is to provide an electrode catalyst capable of suppressing the deterioration of the electrolyte membrane due to hydrogen peroxide and improving the durability of various electrochemical devices such as solid polymer fuel cells. It is in.

上記課題を解決するために本発明に係る電極触媒は、炭素質担体と、該炭素質担体の表面に担持させた貴金属微粒子と、前記炭素質担体の表面と化学結合した、前記炭素質担体の表面を電気化学的に不活性にする表面層(フッ化物被膜を除く)とを備えていることを要旨とする。
In order to solve the above problems, an electrode catalyst according to the present invention comprises a carbonaceous support , noble metal fine particles supported on the surface of the carbonaceous support, and the carbonaceous support chemically bonded to the surface of the carbonaceous support. The gist of the invention is that it comprises a surface layer (excluding a fluoride coating) that renders the surface electrochemically inactive.

各種電気化学デバイスにおいて、過酸化水素が発生するのは、電極触媒の表面の内、主に炭素質担体の表面である。従って、炭素質担体の表面と化学結合した、炭素質担体の表面を電気化学的に不活性にする表面層(フッ化物被膜を除く)を炭素質担体表面に形成すれば、過酸化水素の発生が抑制され、過酸化水素に起因する電解質膜の劣化を抑制することができる。 In various electrochemical devices, hydrogen peroxide is generated mainly on the surface of the carbonaceous support in the surface of the electrode catalyst. Therefore, if a surface layer (excluding fluoride coating) that is chemically bonded to the surface of the carbonaceous support and is electrochemically inactive is formed on the surface of the carbonaceous support, hydrogen peroxide is generated. And the deterioration of the electrolyte membrane due to hydrogen peroxide can be suppressed.

以下、本発明の一実施の形態について詳細に説明する。本発明に係る電極触媒は、炭素質担体と、炭素質担体の表面に担持させた貴金属微粒子と、炭素質担体の表面を電気化学的に不活性にする表面層とを備えている。   Hereinafter, an embodiment of the present invention will be described in detail. The electrode catalyst according to the present invention includes a carbonaceous support, noble metal fine particles supported on the surface of the carbonaceous support, and a surface layer that makes the surface of the carbonaceous support electrochemically inactive.

本発明において、炭素質担体の材質は、特に限定されるものではないが、良好な電気化学的特性を得るためには、上述したように、(1)表面積が大きく、(2)適度な空隙容積を有し、さらに(3)必要程度の導電性を有している材料を用いるのが好ましい。   In the present invention, the material of the carbonaceous support is not particularly limited, but in order to obtain good electrochemical characteristics, as described above, (1) a large surface area and (2) an appropriate void It is preferable to use a material having a volume and (3) a necessary degree of conductivity.

炭素質担体の材質としては、具体的には、ある種のカーボンブラック(例えば、Cabot社製 VULCAN XC−72、ケチェンブラック・インターナショナル社製 ケチェンブラックEC、デグサ社製 PRINTEXなど)、活性炭、黒鉛粉末、グラッシーカーボン、カーボンファイバ等が好適な一例として挙げられる。   Specific examples of the carbonaceous carrier material include certain types of carbon black (for example, VULCAN XC-72 manufactured by Cabot, Kechen Black EC manufactured by Kechen Black International, PRINTEX manufactured by Degussa, etc.), activated carbon, Suitable examples include graphite powder, glassy carbon, carbon fiber and the like.

貴金属微粒子は、触媒としての機能を有するもの、すなわち、水素の酸化及び/又は酸素の還元に対して活性を有するものが用いられる。具体的には、Pt、Pd、Ir、Ru等及びこれらの合金、あるいは、これらと他の金属成分との合金が好適な一例として挙げられる。   As the noble metal fine particles, those having a function as a catalyst, that is, those having activity for hydrogen oxidation and / or oxygen reduction are used. Specifically, Pt, Pd, Ir, Ru, and the like and alloys thereof, or alloys of these with other metal components are listed as preferable examples.

炭素質担体への貴金属微粒子の担持量は、特に限定されるものではなく、電極触媒の用途、電極触媒に要求される特性等に応じて、最適な担持量を選択すればよい。また、これらの炭素質担体及び貴金属触媒は、それぞれ単独で用いても良く、あるいは、炭素質担体及び貴金属触媒の少なくとも一方について、2種以上の材料を組み合わせて用いても良い。   The loading amount of the noble metal fine particles on the carbonaceous support is not particularly limited, and an optimum loading amount may be selected according to the use of the electrode catalyst, the characteristics required for the electrode catalyst, and the like. In addition, these carbonaceous support and noble metal catalyst may be used alone, or two or more kinds of materials may be used in combination for at least one of the carbonaceous support and the noble metal catalyst.

表面層は、炭素質担体の表面を電気化学的に不活性にし、炭素質担体表面で生ずる過酸化水素の生成反応を抑制するためのものである。炭素質担体の表面を電気化学的に不活性にするためには、表面層として、室温における比抵抗が炭素質担体より高い高抵抗材料を用いるか、炭素質担体の表面の炭素と反応して比抵抗が炭素質担体より高い表面層を形成するか、のいずれかが好ましい。   The surface layer is used to electrochemically inactivate the surface of the carbonaceous support and suppress the hydrogen peroxide production reaction that occurs on the surface of the carbonaceous support. In order to make the surface of the carbonaceous support electrochemically inactive, a high resistance material having a higher specific resistance at room temperature than that of the carbonaceous support is used as the surface layer, or it reacts with carbon on the surface of the carbonaceous support. It is preferable to form a surface layer having a specific resistance higher than that of the carbonaceous support.

表面層として高抵抗材料を用いるか、表面に高抵抗の表面層を形成すると、炭素質担体表面における過酸化水素の発生を効率よく抑制することができる。過酸化水素の発生を効率よく抑制するためには、表面層の比抵抗は、10Ωcm以上が好ましく、さらに好ましくは、100Ωcm以上である。   When a high resistance material is used as the surface layer or a high resistance surface layer is formed on the surface, generation of hydrogen peroxide on the surface of the carbonaceous support can be efficiently suppressed. In order to efficiently suppress the generation of hydrogen peroxide, the specific resistance of the surface layer is preferably 10 Ωcm or more, and more preferably 100 Ωcm or more.

表面層の材質としては、具体的には、ポリスチレン、ポリアクリロニトリル、ポリ酢酸ビニルなどのビニルポリマや、ポリエチレン、ポリプロピレン等の相対的に高い比抵抗を有する高分子化合物、炭化珪素(SiC)、窒化ケイ素(Si)等の相対的に高い比抵抗を有する炭素化合物等が好適な一例として挙げられる。 Specific examples of the material for the surface layer include vinyl polymers such as polystyrene, polyacrylonitrile, and polyvinyl acetate, polymer compounds having relatively high specific resistance such as polyethylene and polypropylene, silicon carbide (SiC), and silicon nitride. A suitable example is a carbon compound having a relatively high specific resistance such as (Si 3 N 4 ).

炭素質担体表面に形成する表面層の厚さは、特に限定されるものではなく、炭素質担体の材質、表面層の材質、電極触媒に要求される特性等に応じて、最適な厚さを選択すればよい。一般に、表面層の厚さが厚くなるほど、過酸化水素が発生する確率を小さくすることができる。   The thickness of the surface layer formed on the surface of the carbonaceous support is not particularly limited, and an optimum thickness is selected according to the material of the carbonaceous support, the material of the surface layer, the characteristics required for the electrode catalyst, and the like. Just choose. In general, as the thickness of the surface layer increases, the probability that hydrogen peroxide is generated can be reduced.

また、炭素質担体の表面に形成する表面層の面積は、特に限定されるものではなく、炭素質担体の材質、表面層の材質、電極触媒に要求される特性等に応じて、最適な面積を選択すればよい。一般に、炭素質担体の全表面に占める表面層の面積の割合が大きくなるほど、過酸化水素が発生する確率を小さくすることができる。一方、表面層の面積割合が大きくなりすぎると、炭素質担体間の電子電導が遮断され、電極反応が阻害されるので好ましくない。   In addition, the area of the surface layer formed on the surface of the carbonaceous support is not particularly limited, and the optimum area is determined according to the material of the carbonaceous support, the material of the surface layer, the characteristics required for the electrode catalyst, etc. Should be selected. Generally, the probability that hydrogen peroxide is generated can be reduced as the ratio of the area of the surface layer to the entire surface of the carbonaceous support increases. On the other hand, if the area ratio of the surface layer becomes too large, the electron conduction between the carbonaceous supports is interrupted and the electrode reaction is inhibited, which is not preferable.

次に、本発明に係る電極触媒の製造方法について説明する。本発明に係る電極触媒は、炭素質担体表面に貴金属微粒子を担持させ、次いで炭素質担体の表面に表面層を形成することにより製造することができる。   Next, the method for producing the electrode catalyst according to the present invention will be described. The electrode catalyst according to the present invention can be produced by supporting noble metal fine particles on the surface of a carbonaceous support and then forming a surface layer on the surface of the carbonaceous support.

本発明において、炭素質担体表面への貴金属微粒子の担持方法は、特に限定されるものではなく、周知の方法を用いることができる。具体的には、(1)貴金属を含む化合物であって、適当な溶媒に溶解させることが可能なもの(以下、これを「貴金属源」という。)を、その溶媒に溶解させ、(2)この溶液中に炭素質担体を浸漬又は分散させることにより、炭素質担体表面に貴金属を担持させることができる。この場合、必要に応じて、貴金属源から貴金属原子を析出させるための試薬を溶液中に加えたり、あるいは、溶液から分離した炭素質担体に対して所定の条件下で還元処理を施しても良い。   In the present invention, the method for supporting the noble metal fine particles on the surface of the carbonaceous support is not particularly limited, and a well-known method can be used. Specifically, (1) a compound containing a noble metal which can be dissolved in an appropriate solvent (hereinafter referred to as “noble metal source”) is dissolved in the solvent, and (2) By immersing or dispersing the carbonaceous support in this solution, it is possible to support the noble metal on the surface of the carbonaceous support. In this case, if necessary, a reagent for precipitating noble metal atoms from the noble metal source may be added to the solution, or the carbonaceous carrier separated from the solution may be subjected to a reduction treatment under predetermined conditions. .

例えば、貴金属がPtである場合には、貴金属源として、ヘキサヒドロキシ白金酸(HPt(OH))を用い、これを亜硫酸(HSO)水溶液に溶解させる。次いで、この溶液中に炭素質担体を分散させた後、これに過酸化水素を加えて80℃〜100℃で0.1時間〜3時間加温し、炭素質担体表面にPtを析出させる。さらに、水素気流中において50℃〜300℃以下で0.1時間〜3時間還元させると、Ptを担持させた炭素質担体を得ることができる。 For example, when the noble metal is Pt, hexahydroxyplatinic acid (H 2 Pt (OH) 6 ) is used as a noble metal source, and this is dissolved in a sulfurous acid (H 2 SO 3 ) aqueous solution. Next, after dispersing the carbonaceous support in this solution, hydrogen peroxide is added thereto and heated at 80 ° C. to 100 ° C. for 0.1 to 3 hours to precipitate Pt on the surface of the carbonaceous support. Furthermore, a carbonaceous carrier carrying Pt can be obtained by reducing for 0.1 to 3 hours at 50 to 300 ° C. in a hydrogen stream.

次に、貴金属微粒子を担持させた炭素質担体表面に表面層を形成する。表面層を形成する方法には、具体的には、以下のような方法がある。第1の方法は、炭素質担体の表面に高分子化合物を合成するためのモノマと反応可能な官能基を導入し、次いで、官能基が導入された炭素質担体が共存する条件下でモノマを重合させ、炭素質担体の表面に高分子化合物からなる表面層を形成する方法である。   Next, a surface layer is formed on the surface of the carbonaceous support on which the noble metal fine particles are supported. Specific methods for forming the surface layer include the following methods. In the first method, a functional group capable of reacting with a monomer for synthesizing a polymer compound is introduced on the surface of a carbonaceous support, and then the monomer is added under conditions where the carbonaceous support into which the functional group is introduced coexists. In this method, a surface layer made of a polymer compound is formed on the surface of a carbonaceous carrier by polymerization.

炭素質担体の表面に導入する官能基としては、具体的には、−COCl基が好適である。また、−COCl基は、具体的には、炭素質担体を硝酸水溶液等で処理することにより炭素質担体表面に−OH基、−COOH基、−CO基等の含酸素官能基を導入し、この含酸素官能基をさらに塩化チオニル(SOCl)等で処理することにより炭素質担体表面に導入することができる。 Specifically, a —COCl group is preferred as the functional group to be introduced on the surface of the carbonaceous support. Further, the —COCl group specifically introduces an oxygen-containing functional group such as —OH group, —COOH group, and —CO group on the surface of the carbonaceous carrier by treating the carbonaceous carrier with an aqueous nitric acid solution, This oxygen-containing functional group can be introduced on the surface of the carbonaceous support by further treatment with thionyl chloride (SOCl 2 ) or the like.

また、モノマには、作製しようとする表面層の材質に応じて、最適なものを用いる。モノマとしては、具体的には、スチレン(CCH=CH)、アクリロニトリル(CH=CHCN)、酢酸ビニル(CH=CHOCOCH)、エチレン(CH=CH)、プロピレン(CHCH=CH)等が好適な一例として挙げられる。 Moreover, the optimal monomer is used according to the material of the surface layer to be manufactured. Specific examples of the monomer include styrene (C 6 H 5 CH═CH 2 ), acrylonitrile (CH 2 ═CHCN), vinyl acetate (CH 2 ═CHOCOCH 3 ), ethylene (CH 2 ═CH 2 ), propylene ( CH 3 CH═CH 2 ) and the like are preferable examples.

さらに、モノマの重合方法は、特に限定されるものではなく、ラジカル重合法、熱重合法、光重合法、放射線重合法等の周知の方法を用いることができる。また、重合方法、モノマ及び炭素質担体の表面に導入される官能基の種類に応じて重合条件を最適化すると、炭素質担体表面に所定の厚さ及び面積を有する高分子化合物からなる表面層を形成することができる。   Furthermore, the monomer polymerization method is not particularly limited, and a known method such as a radical polymerization method, a thermal polymerization method, a photopolymerization method, or a radiation polymerization method can be used. Further, when the polymerization conditions are optimized in accordance with the polymerization method, the monomer and the type of functional group introduced on the surface of the carbonaceous support, the surface layer made of a polymer compound having a predetermined thickness and area on the surface of the carbonaceous support Can be formed.

第2の方法は、貴金属微粒子を担持させた炭素質担体と、炭素化合物を形成可能な化合物を含むガスとを反応させ、炭素質担体の表面に炭素化合物からなる表面層を形成する方法である。   The second method is a method of forming a surface layer made of a carbon compound on the surface of the carbonaceous carrier by reacting a carbonaceous carrier carrying noble metal fine particles with a gas containing a compound capable of forming a carbon compound. .

例えば、表面層が炭化珪素(SiC)である場合、反応ガスには、
(1)メチルトリクロロシラン(CHSiCl)、メチルジクロロシラン((CH)HSiCl)、ジメチルジクロロシラン((CH)SiCl)、トリメチルクロロシラン((CH)SiCl)等の有機珪素化合物ガスと水素ガスとの混合ガス、
(2)四塩化珪素(SiCl)、炭化水素(メタン、エタン、プロパン等)及び水素の混合ガス等を用いるのが好ましい。
For example, when the surface layer is silicon carbide (SiC), the reaction gas includes
(1) methyltrichlorosilane (CH 3 SiCl 3 ), methyldichlorosilane ((CH 3 ) HSiCl 2 ), dimethyldichlorosilane ((CH 3 ) 2 SiCl 2 ), trimethylchlorosilane ((CH 3 ) 3 SiCl), etc. A mixed gas of organosilicon compound gas and hydrogen gas,
(2) It is preferable to use a mixed gas of silicon tetrachloride (SiCl 4 ), hydrocarbons (methane, ethane, propane, etc.) and hydrogen.

炭素質担体と反応ガスとを所定の温度で加熱すると、反応ガスの組成に応じて、炭素質担体の表面に種々の組成を有する炭素化合物を形成することができる。また、この時、反応条件を最適化すると、表面層の厚さ及び/又は面積を制御することができる。一般に、反応温度が高くなるほど、及び/又は、反応時間が長くなるほど、炭素質坦体の表面に形成される表面層の厚さを厚くし、及び/又は面積を広くすることができる。   When the carbonaceous carrier and the reaction gas are heated at a predetermined temperature, carbon compounds having various compositions can be formed on the surface of the carbonaceous carrier according to the composition of the reaction gas. At this time, if the reaction conditions are optimized, the thickness and / or area of the surface layer can be controlled. In general, the higher the reaction temperature and / or the longer the reaction time, the thicker the surface layer formed on the surface of the carbonaceous carrier and / or the wider the area.

例えば、反応ガスとして、有機珪素化合物ガス及び水素ガスとの混合ガスを用いる場合、反応温度は、800℃〜1300℃が好ましい。また、反応時間は、所定の厚さ及び/又は面積を有する表面層が得られるように、反応温度に応じて選択する。   For example, when a mixed gas of an organosilicon compound gas and hydrogen gas is used as the reaction gas, the reaction temperature is preferably 800 ° C. to 1300 ° C. The reaction time is selected according to the reaction temperature so that a surface layer having a predetermined thickness and / or area can be obtained.

次に、本発明に係る電極触媒の作用について説明する。固体高分子型燃料電池の電解質膜として炭化水素系電解質を用いると、相対的に短時間で電解質膜が劣化することが知られている。また、このような電解質膜の劣化が、電極反応の副反応によって生ずる過酸化水素によって引き起こされることも知られている。そのため、固体高分子型燃料電池用の電解質膜には、ナフィオン(登録商標、デュポン社製)等のパーフルオロ系電解質を用いるのが一般的である。   Next, the operation of the electrode catalyst according to the present invention will be described. It is known that when a hydrocarbon-based electrolyte is used as an electrolyte membrane of a polymer electrolyte fuel cell, the electrolyte membrane deteriorates in a relatively short time. It is also known that such deterioration of the electrolyte membrane is caused by hydrogen peroxide generated by a side reaction of the electrode reaction. For this reason, it is common to use a perfluoro-based electrolyte such as Nafion (registered trademark, manufactured by DuPont) for the electrolyte membrane for a polymer electrolyte fuel cell.

しかしながら、電解質膜としてパーフルオロ系電解質を用いた場合であっても、固体高分子型燃料電池を長時間運転すると、パーフルオロ系電解質膜が劣化する現象が認められた。その劣化現象を詳細に検討した結果、電極反応の副生物である過酸化水素が劣化に大きく影響していること、及びこの過酸化水素は、主に触媒担体として用いる炭素質担体表面上において生成することを見出した。   However, even when a perfluoro-based electrolyte was used as the electrolyte membrane, a phenomenon that the perfluoro-based electrolyte membrane deteriorates was observed when the polymer electrolyte fuel cell was operated for a long time. As a result of examining the deterioration phenomenon in detail, hydrogen peroxide, which is a by-product of the electrode reaction, has a great influence on the deterioration, and this hydrogen peroxide is mainly generated on the surface of the carbonaceous support used as a catalyst support. I found out.

すなわち、固体高分子型燃料電池の空気極での反応は、酸素の電気化学的還元反応であり、次の(1)式に示すように、空気極に供給された酸素が水まで還元される4電子還元反応である。このような4電子還元反応は、主として触媒担体上に担持させたPt等の貴金属微粒子表面で起こる。   That is, the reaction at the air electrode of the polymer electrolyte fuel cell is an electrochemical reduction reaction of oxygen, and as shown in the following equation (1), oxygen supplied to the air electrode is reduced to water. This is a 4-electron reduction reaction. Such a four-electron reduction reaction mainly occurs on the surface of noble metal fine particles such as Pt supported on a catalyst carrier.

+4H+4e→HO ・・・(1) O 2 + 4H + + 4e → H 2 O (1)

一方、副生物である過酸化水素の生成反応は、次の(2)式に示すように、2電子還元反応である。このような2電子還元反応は、主として触媒担体として用いる炭素質担体表面で起こる。従って、ある種のカーボンブラック等の炭素質担体は、触媒担体としては好適な条件を備えているが、過酸化水素の生成という観点では、不利と言わざるを得ず、これが固体高分子型燃料電池の寿命を短くする原因となっていた。   On the other hand, the production reaction of hydrogen peroxide as a by-product is a two-electron reduction reaction as shown in the following equation (2). Such a two-electron reduction reaction mainly occurs on the surface of a carbonaceous support used as a catalyst support. Therefore, although a carbonaceous carrier such as a certain type of carbon black has suitable conditions as a catalyst carrier, it must be said that it is disadvantageous in terms of the production of hydrogen peroxide. This was a cause of shortening the battery life.

+2H+2e→H ・・・(2) O 2 + 2H + + 2e → H 2 O 2 (2)

これに対し、貴金属触媒を担持させた炭素質担体の表面の一部を、高抵抗材料等からなる表面層で被覆すると、(2)式に示す2電子還元反応が抑制され(すなわち、炭素質担体の表面が電気化学的に不活性となり)、過酸化水素の生成を抑制することができる。そのため、過酸化水素による電解質膜の劣化を抑制することができる。   On the other hand, when a part of the surface of the carbonaceous support on which the noble metal catalyst is supported is coated with a surface layer made of a high resistance material or the like, the two-electron reduction reaction represented by the formula (2) is suppressed (ie, the carbonaceous The surface of the carrier becomes electrochemically inactive), and the production of hydrogen peroxide can be suppressed. Therefore, the deterioration of the electrolyte membrane due to hydrogen peroxide can be suppressed.

また、電解質膜として、パーフルオロ系電解質を用いた場合において、電解質膜が劣化すると、導電率が低下したり、あるいは、排ガス中に有害なフッ素イオンが含まれることがある。これに対し、本発明に係る電極触媒を用いれば、このような導電率の低下やフッ素イオンの排出を抑制することができる。   In the case where a perfluoro-based electrolyte is used as the electrolyte membrane, when the electrolyte membrane is deteriorated, the conductivity may be reduced, or harmful fluorine ions may be contained in the exhaust gas. On the other hand, if the electrode catalyst according to the present invention is used, it is possible to suppress such a decrease in conductivity and the discharge of fluorine ions.

ヘキサヒドロキシ白金酸(HPt(OH))3gを300mlの純水中に分散させ、これに6%亜硫酸(HSO)水溶液を100ml投入して1時間撹拌した。その後、120℃に加温して、残留している亜硫酸を除去し、純水を加えて500mlとし、Pt薬液(4g−Pt/L相当品)とした。 3 g of hexahydroxyplatinic acid (H 2 Pt (OH) 6 ) was dispersed in 300 ml of pure water, and 100 ml of 6% aqueous sulfurous acid (H 2 SO 3 ) solution was added thereto and stirred for 1 hour. Then, it heated at 120 degreeC, the remaining sulfurous acid was removed, and pure water was added to make 500 ml, and it was set as the Pt chemical | medical solution (4g-Pt / L equivalent).

次に、カーボンブラック(Cabot社製、VULCAN XC−72)0.5gを秤量し、これを水中に分散させ、これにPt薬液をPt重量とカーボンブラックの重量との比が3:2になるように投入した。次いで、この溶液に20%H水溶液を50ml加え、120℃で1時間加温し、カーボンブラック上にPtを担持させた。さらに、Ptを担持させたカーボンブラックを濾過した後、純水で洗浄し、室温において真空乾燥させ、粉砕した。最後に水素気流中において200℃で2時間還元し、Pt担持カーボン触媒(以下、これを「Pt/C触媒」)を得た。 Next, 0.5 g of carbon black (manufactured by Cabot, VULCAN XC-72) is weighed and dispersed in water, and the Pt chemical solution has a ratio of Pt weight to carbon black weight of 3: 2. I put it in. Next, 50 ml of a 20% H 2 O 2 aqueous solution was added to this solution and heated at 120 ° C. for 1 hour to support Pt on carbon black. Further, the carbon black carrying Pt was filtered, washed with pure water, vacuum dried at room temperature, and pulverized. Finally, it was reduced in a hydrogen stream at 200 ° C. for 2 hours to obtain a Pt-supported carbon catalyst (hereinafter referred to as “Pt / C catalyst”).

次に、このPt/C触媒を電気炉内に挿入し、1000℃に加熱した後、メチルトリクロロシラン(CHSiCl)と水素の混合ガス(メチルトリクロロシラン濃度:約6%)を供給し、カーボンブラック表面に珪素を反応させることにより、カーボンブラック表面に炭化珪素(SiC)の被膜が形成されたPt/C触媒(以下、これを「Pt/C−SiC触媒」という。)を得た。 Next, this Pt / C catalyst is inserted into an electric furnace and heated to 1000 ° C., and then a mixed gas of methyltrichlorosilane (CH 3 SiCl 3 ) and hydrogen (methyltrichlorosilane concentration: about 6%) is supplied. By reacting silicon with the carbon black surface, a Pt / C catalyst (hereinafter referred to as “Pt / C—SiC catalyst”) having a silicon carbide (SiC) film formed on the carbon black surface was obtained. .

なお、本実施例では、SiC被膜の形成には、電気炉内に反応ガスを供給し、1秒間反応させた後、残留未反応ガス及び反応生成ガスを排気する処理を500パルス繰り返す、間欠的化学気相浸透反応蒸着処理法を用いた。   In this embodiment, the SiC coating is formed by intermittently supplying a reactive gas into the electric furnace, reacting for 1 second, and then exhausting residual unreacted gas and reaction product gas by 500 pulses. A chemical vapor infiltration reactive deposition process was used.

実施例1と同一の手順に従い、Pt/C触媒を調製した。次に、このPt/Cを硝酸水溶液中に分散させ、80℃、一昼夜、還流しながら加熱した。冷却後、濾過及び純水による洗浄を繰り返した後、真空乾燥させ、粉砕した。この硝酸酸化処理済みのPt/Cをベンゼン中に分散させ、過剰量の塩化チオニル(SOCl)を加えて50時間還流し、硝酸処理によって導入された含酸素官能基を−COCl基に変換した。 A Pt / C catalyst was prepared according to the same procedure as in Example 1. Next, this Pt / C was dispersed in a nitric acid aqueous solution and heated at 80 ° C. for one day and night while refluxing. After cooling, filtration and washing with pure water were repeated, followed by vacuum drying and pulverization. This nitrate-treated Pt / C was dispersed in benzene, an excess amount of thionyl chloride (SOCl 2 ) was added and refluxed for 50 hours, and the oxygen-containing functional group introduced by the nitric acid treatment was converted to a —COCl group. .

次に、−COCl基が導入されたPt/Cをベンゼンで洗浄、乾燥した後、これをニトロベンゼン中に分散させ、重合触媒として過塩素酸銀(AgClO)を加え、48時間撹拌した。次いで、この溶液にスチレン(CCH=CH)を加え、撹拌しながら、40℃で6時間重合反応を進行させた。反応終了後、メタノールで洗浄、乾燥し、カーボン表面にポリスチレンをグラフトしたPt/C触媒(以下、これを「Pt/C−PS触媒」という。)を得た。 Next, Pt / C into which —COCl group was introduced was washed with benzene and dried, and then dispersed in nitrobenzene. Silver perchlorate (AgClO 4 ) was added as a polymerization catalyst, and the mixture was stirred for 48 hours. Next, styrene (C 6 H 5 CH═CH 2 ) was added to this solution, and the polymerization reaction was allowed to proceed at 40 ° C. for 6 hours while stirring. After the completion of the reaction, it was washed with methanol and dried to obtain a Pt / C catalyst having polystyrene grafted on the carbon surface (hereinafter referred to as “Pt / C-PS catalyst”).

(比較例1)
実施例1で得られたPt/C触媒をそのまま試験に用いた。
(Comparative Example 1)
The Pt / C catalyst obtained in Example 1 was used for the test as it was.

実施例1、2及び比較例1で得られた触媒を電極触媒として用いて、以下の手順に従い、小型の試験燃料電池を作製した。すなわち、まず、拡散層として、カーボンクロスの表面にポリテトラフルオロエチレン(PTFE)ディスパージョンで撥水化したカーボンブラックを塗布し、撥水化処理したものを用意した。次いで、撥水化処理した拡散層の表面に、触媒とナフィオン溶液(ポリマ分5%、アルドリッチ社製)との混合物を塗布・乾燥することによって、拡散層の表面に触媒層を形成し、ガス拡散電極とした。   Using the catalysts obtained in Examples 1 and 2 and Comparative Example 1 as an electrode catalyst, a small test fuel cell was produced according to the following procedure. That is, first, a diffusion layer was prepared by applying carbon black water-repellent with polytetrafluoroethylene (PTFE) dispersion to the surface of a carbon cloth and performing water-repellent treatment. Next, a catalyst layer is formed on the surface of the diffusion layer by applying and drying a mixture of a catalyst and a Nafion solution (polymer content 5%, manufactured by Aldrich) on the surface of the diffusion layer subjected to water repellency treatment. A diffusion electrode was obtained.

次に、触媒層を内側にして、電解質膜(厚さ約50μmのナフィオン(登録商標)膜、デュポン社製)の両面からガス拡散電極を熱圧着し、膜電極接合体(MEA)を得た。なお、熱圧着は、圧着温度:130℃、圧力:20kg/cm(1.96MPa)の条件下で行った。さらに、MEAをグラファイト板にガス流路を設けた集電体で挟んで、試験電池とした。なお、電極面積は、25cmとした。 Next, with the catalyst layer inside, gas diffusion electrodes were thermocompression bonded from both surfaces of the electrolyte membrane (Nafion (registered trademark) membrane, manufactured by DuPont) having a thickness of about 50 μm to obtain a membrane electrode assembly (MEA). . The thermocompression bonding was performed under the conditions of a pressure bonding temperature: 130 ° C. and a pressure: 20 kg / cm 2 (1.96 MPa). Further, the MEA was sandwiched between current collectors provided with a gas flow path on a graphite plate to obtain a test battery. The electrode area was 25 cm 2 .

次に、得られた試験電池を用いて、耐久試験を行った。耐久試験は、電流密度0.1A/cmでの連続12時間放電と、12時間の休止を繰り返して行った。なお、燃料極には、圧力:1.5ata、温度:80℃、露点:80℃の水素ガスを供給し、空気極には、圧力:1.5ata、温度:80℃、露点:70℃の空気を供給した。また、休止中も、水素と空気を供給しながら試験を行った。 Next, the durability test was done using the obtained test battery. The durability test was performed by repeating a continuous 12-hour discharge at a current density of 0.1 A / cm 2 and a 12-hour pause. The fuel electrode is supplied with hydrogen gas at a pressure of 1.5 at, temperature: 80 ° C. and dew point: 80 ° C., and the air electrode is at pressure: 1.5 at, temperature: 80 ° C., dew point: 70 ° C. Air was supplied. In addition, the test was conducted while supplying hydrogen and air during the rest.

図1は、各放電再開後2時間経過した後の端子電圧を全試験経過時間に対してプロットしたものである。比較例1で得られたPt/C触媒を用いた試験電池の場合、全試験経過時間が400時間を超えると、端子電圧が低下した。これは、カーボンブラック表面で発生した過酸化水素によって、電解質膜が劣化しているためと考えられる。   FIG. 1 is a plot of terminal voltages after 2 hours have elapsed since each discharge resumed against the total test elapsed time. In the case of the test battery using the Pt / C catalyst obtained in Comparative Example 1, the terminal voltage decreased when the total test elapsed time exceeded 400 hours. This is presumably because the electrolyte membrane is deteriorated by hydrogen peroxide generated on the carbon black surface.

これに対し、実施例1で得られたPt/C−SiC触媒及び実施例2で得られたPt/C−PS触媒を用いた試験電池の場合、全試験経過時間が400時間を超えても、端子電圧は、ほぼ初期の値を維持した。これは、カーボブラック表面にSiC被膜又はポリスチレン被膜を形成することにより、カーボンブラック表面が電気化学的に不活性になったためと考えられる。   On the other hand, in the case of the test battery using the Pt / C-SiC catalyst obtained in Example 1 and the Pt / C-PS catalyst obtained in Example 2, the total test elapsed time exceeded 400 hours. The terminal voltage maintained almost the initial value. This is presumably because the carbon black surface became electrochemically inactive by forming a SiC film or polystyrene film on the carbo black surface.

さらに、耐久試験中に試験電池から排出された水分を捕集し、水分中に含まれるフッ素イオン濃度からフッ素イオンの溶出速度を算出した。その結果、実施例1のPt/C−SiC触媒を用いた試験電池及び実施例2のPt/C−PS触媒を用いた試験電池からのフッ素イオンの溶出速度は、それぞれ、比較例1のPt/C触媒を用いた試験電池からのフッ素イオンの溶出速度の、1/20倍及び1/30倍に低下しており、フッ素イオンの溶出が抑制されていることが確認された。   Furthermore, the water | moisture content discharged | emitted from the test battery was collected during the durability test, and the elution rate of the fluorine ion was computed from the fluorine ion concentration contained in the water | moisture content. As a result, the elution rates of fluorine ions from the test battery using the Pt / C-SiC catalyst of Example 1 and the test battery using the Pt / C-PS catalyst of Example 2 were respectively Pt of Comparative Example 1. It decreased to 1/20 times and 1/30 times the elution rate of the fluorine ion from the test battery using the / C catalyst, and it was confirmed that elution of the fluorine ion was suppressed.

以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改変が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the present invention.

本発明に係る電極触媒は、固体高分子型燃料電池用の電極触媒として特に好適であるが、本発明の用途はこれに限定されるものではなく、各種電気化学デバイスに用いられる電極触媒としても使用することができる。   The electrode catalyst according to the present invention is particularly suitable as an electrode catalyst for a polymer electrolyte fuel cell. However, the application of the present invention is not limited to this, and it can be used as an electrode catalyst used in various electrochemical devices. Can be used.

実施例1(Pt/C−SiC)、実施例2(Pt/C−PS)及び比較例1(Pt/C)で得られた電極触媒を用いた燃料電池の耐久試験の結果を示す図である。It is a figure which shows the result of the endurance test of the fuel cell using the electrode catalyst obtained in Example 1 (Pt / C-SiC), Example 2 (Pt / C-PS), and Comparative Example 1 (Pt / C). is there.

Claims (3)

炭素質担体と、
該炭素質担体の表面に担持させた貴金属微粒子と、
前記炭素質担体の表面と化学結合した、前記炭素質担体の表面を電気化学的に不活性にする表面層(フッ化物被膜を除く)とを備えた電極触媒。
A carbonaceous carrier;
Noble metal fine particles supported on the surface of the carbonaceous support;
An electrode catalyst comprising a surface layer (excluding a fluoride coating) that is chemically bonded to the surface of the carbonaceous support and renders the surface of the carbonaceous support electrochemically inactive.
前記表面層は、前記炭素質担体の表面を被覆する有機分子である請求項1に記載の電極触媒。   The electrode catalyst according to claim 1, wherein the surface layer is an organic molecule that covers the surface of the carbonaceous support. 前記表面層は、前記炭素質担体の表面を被覆する炭素化合物である請求項1に記載の電極触媒。   The electrode catalyst according to claim 1, wherein the surface layer is a carbon compound that coats a surface of the carbonaceous support.
JP2003289551A 2003-08-08 2003-08-08 Electrode catalyst and method for producing the same Expired - Fee Related JP4508571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003289551A JP4508571B2 (en) 2003-08-08 2003-08-08 Electrode catalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003289551A JP4508571B2 (en) 2003-08-08 2003-08-08 Electrode catalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005063713A JP2005063713A (en) 2005-03-10
JP4508571B2 true JP4508571B2 (en) 2010-07-21

Family

ID=34367835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003289551A Expired - Fee Related JP4508571B2 (en) 2003-08-08 2003-08-08 Electrode catalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP4508571B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310002A (en) * 2005-04-27 2006-11-09 Asahi Kasei Corp Electrode catalyst for fuel cell and its manufacturing method
JP5031336B2 (en) 2006-11-21 2012-09-19 ペルメレック電極株式会社 Oxygen gas diffusion cathode for salt electrolysis
US7989115B2 (en) 2007-12-14 2011-08-02 Gore Enterprise Holdings, Inc. Highly stable fuel cell membranes and methods of making them
WO2011071971A1 (en) * 2009-12-09 2011-06-16 Michigan Molecular Institute Fuel cells with improved durability
JP5672752B2 (en) * 2010-04-07 2015-02-18 トヨタ自動車株式会社 Method for producing carbon-supported core-shell type catalyst fine particles, and method for producing catalyst ink using core-shell type catalyst fine particles obtained by the production method
JP2012024745A (en) * 2010-07-28 2012-02-09 Hitachi Ltd Catalyst material and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270052A (en) * 1997-03-27 1998-10-09 Toyota Central Res & Dev Lab Inc Manufacture of electrode for gas reaction or generation based battery
JP2003086188A (en) * 2001-06-27 2003-03-20 Basf Ag Fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270052A (en) * 1997-03-27 1998-10-09 Toyota Central Res & Dev Lab Inc Manufacture of electrode for gas reaction or generation based battery
JP2003086188A (en) * 2001-06-27 2003-03-20 Basf Ag Fuel cell

Also Published As

Publication number Publication date
JP2005063713A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
US8846271B2 (en) Electrode material
Maruyama et al. Formation of platinum-free fuel cell cathode catalyst with highly developed nanospace by carbonizing catalase
CN101384360A (en) Catalyst support for an electrochemical fuel cell
CN1630958A (en) Fuel cells and other products containing modified carbon products
CN1404177A (en) Combination electrode used for oxygen reduction
CN1329372A (en) Polymer electrolytic fuel battery and manufacturing method thereof
KR20120089858A (en) Catalyst with metal oxide doping for fuel cells
CN1674327A (en) Fuel cell and membrane electrode assembly
CN1801514A (en) Pt/Ru alloy catalyst for fuel cell
CN1694288A (en) Membrane-electrode assembly for fuel cell and fuel cell system comprising the same
Tsionsky et al. Investigation of the kinetics and mechanism of Co‐porphyrin catalyzed oxygen reduction by hydrophobic carbon‐ceramic electrodes
JP4508571B2 (en) Electrode catalyst and method for producing the same
JP4759507B2 (en) Fuel cell electrode catalyst and fuel cell using the same
US7931998B2 (en) Catalyst for fuel cell and fuel cell comprising the same
JP2002015745A (en) Solid polymer fuel cell
JP2006164574A (en) Water-repellent electrode catalyst layer for solid polymer fuel cell
JP2003208905A (en) Carbonaceous material for fuel cell and dispersion liquid containing the same
Arico et al. Carbon monoxide electrooxidation on porous Pt–Ru electrodes in sulphuric acid
JP7260061B2 (en) Porous silicon oxycarbide composite material and method for producing porous silicon oxycarbide composite material
JP2005078978A (en) Electrode catalyst, its manufacturing method, and fuel cell using electrode catalyst
JPWO2009051111A1 (en) Fuel cell supported catalyst and fuel cell
JP4878729B2 (en) Fuel cell electrode catalyst and method for producing the same
JP4882225B2 (en) Water-repellent electrode catalyst layer, catalyst layer transfer sheet and catalyst layer-electrolyte assembly for polymer electrolyte fuel cell
KR20060019851A (en) Electrode for fuel cell and a fuel cell system comprising the same
WO2023080107A1 (en) Electrode catalyst containing porous silicon oxycarbide composite material, electrode, fuel cell, and method for producing electrode catalyst containing porous silicon oxycarbide composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4508571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees