JP4508446B2 - Refrigerant circuit switching device for refrigeration cycle apparatus - Google Patents

Refrigerant circuit switching device for refrigeration cycle apparatus Download PDF

Info

Publication number
JP4508446B2
JP4508446B2 JP2001060463A JP2001060463A JP4508446B2 JP 4508446 B2 JP4508446 B2 JP 4508446B2 JP 2001060463 A JP2001060463 A JP 2001060463A JP 2001060463 A JP2001060463 A JP 2001060463A JP 4508446 B2 JP4508446 B2 JP 4508446B2
Authority
JP
Japan
Prior art keywords
refrigerant
valve
connection pipe
bypass
refrigerant circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001060463A
Other languages
Japanese (ja)
Other versions
JP2002267294A (en
Inventor
博文 高下
智彦 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001060463A priority Critical patent/JP4508446B2/en
Publication of JP2002267294A publication Critical patent/JP2002267294A/en
Application granted granted Critical
Publication of JP4508446B2 publication Critical patent/JP4508446B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、冷凍サイクル装置の冷媒回路切換装置、特にCFCやHCFC等の旧冷媒をHFC等の新冷媒に置換する際に行なわれる洗浄運転時に、冷媒が室内機をバイパスするように冷媒回路を切換える装置に関するものである。
【0002】
【従来の技術】
従来、一般に用いられているセパレート形の空気調和装置の冷媒回路を図10に示す。この図において、Aは熱源機であり、圧縮機1,四方弁2,熱源機側熱交換器3,第1の操作弁4,第2の操作弁5,アキュムレータ6を内蔵している。Bは室内機であり、流量調整器7(あるいは流量制御弁7)、及び利用側熱交換器8を備えている。熱源機Aと室内機Bは離れた場所に設置され、第1の接続配管C、第2の接続配管Dにより接続されて、冷凍サイクルを形成する。
第1の接続配管Cの一端は熱源機側熱交換器3と第1の操作弁4を介して接続され、第1の接続配管Cの他の一端は流量調整器7と接続されている。
第2の接続配管Dの一端は四方弁2と第2の操作弁5を介して接続され、第2の接続配管Dの他の一端は利用側熱交換器8と接続されている。
また、アキュムレータ6のU字管状の流出配管の下部には返油穴6aが設けられている。
【0003】
この空気調和装置の冷媒回路と冷媒の流れを図10によって説明する。図中、実線矢印が冷房運転の流れを、破線矢印が暖房運転の流れを示す。
まず、冷房運転の流れを説明する。圧縮機1で圧縮された高温高圧のガス冷媒は四方弁2を経て、熱源機側熱交換器3へと流入し、ここで空気・水など熱源媒体と熱交換して凝縮液化する。凝縮液化した冷媒は第1の操作弁4,第1の接続配管Cを経て流量調整器7へ流入し、ここで低圧まで減圧されて低圧二相状態となり、利用側熱交換器8で空気などの利用側媒体と熱交換して蒸発・ガス化する。蒸発・ガス化した冷媒は第2の接続配管D、第2の操作弁5,四方弁2,アキュムレータ6を経て圧縮機1へ戻る。
【0004】
次に、暖房運転の流れを説明する。圧縮機1で圧縮された高温高圧のガス冷媒は四方弁2、第2の操作弁5,第2の接続配管Dを経て、利用側熱交換器8へと流入し、ここで空気など利用側媒体と熱交換して凝縮液化する。凝縮液化した冷媒は流量調整器7へ流入し、ここで低圧まで減圧されて低圧二相状態となり、第1の接続配管C、第1の操作弁4を経て、熱源機側熱交換器3で空気・水などの熱源媒体と熱交換して蒸発・ガス化する。蒸発・ガス化した冷媒は四方弁2,アキュムレータ6を経て圧縮機1へ戻る。
【0005】
従来、このような空気調和装置の冷媒として、CFC(クロロフルオロカーボン)やHCFC(ハイドロクロロフルオロカーボン)が用いられてきたが、これらの分子に含まれる塩素が成層圏でオゾン層を破壊するため、CFCは既に全廃され、HCFCも生産規制が開始されている。
これらに代わって、分子に塩素を含まないHFC(ハイドロフルオロカーボン)を使用する空気調和装置が実用化されている。CFCやHCFCを用いた空気調和装置が老朽化した場合、これらの冷媒は全廃あるいは生産規制されているため、HFCを用いた空気調和装置に入れ替える必要がある。
熱源機Aと室内機Bは、HFCで使用する冷凍機油・有機材料・熱交換器がHCFCとは異なるため、HFC専用のものと交換する必要があるが、元々CFC・HCFC用の熱源機Aと室内機Bは老朽化しているため交換する必要があるものであり、交換も比較的容易である。
【0006】
一方、熱源機Aと室内機Bを接続する第1の接続配管Cと第2の接続配管Dは配管長が長い場合や、パイプシャフトや天井裏など建物に埋設されている場合には、新規配管に交換することは困難で、しかも老朽化もしないため、CFCやHCFCを用いた空気調和装置で使用していた第1の接続配管Cと第2の接続配管Dをそのまま使用できれば、配管工事が簡略化できる。
しかし、CFCやHCFCを用いた空気調和装置で使用していた第1の接続配管Cと第2の接続配管Dには、CFCやHCFCを用いた空気調和装置の冷凍機油である鉱油やCFC・HCFCや冷凍機油の劣化物がスラッジとなったものが残留している。
このため、従来はCFCやHCFCを用いた空気調和装置で使用していた第1の接続配管Cと第2の接続配管Dを、洗浄装置(図示せず)を用いて専用の洗浄液(HCFC141bやHCFC225)で洗浄することが行われている(以下、これを洗浄方法1という)。
【0007】
また、特開平7−83545号公報に開示された方法は、図11にフロー図を示すように、ステップS10で、洗浄装置を用いずに、HFC用熱源機A、HFC用室内機Bを交換して、第1の接続配管C、第2の接続配管Dと接続し、ステップS11で、真空引きしてHFC、HFC用冷凍機油を充填した後、ステップS12で装置を運転することにより洗浄し、その後ステップS13で空気調和装置内の冷媒と冷凍機油を回収すると共に、新しい冷媒と冷凍機油を充填し、その後ステップS14で、再度運転による洗浄を実施し、ステップS12とS13を3回繰り返すことが行なわれている(以下、これを洗浄方法2という) 。
【0008】
【発明が解決しようとする課題】
上述した従来の洗浄方法1では以下に述べるような問題点があった。
第1に、使用する洗浄液がHCFCであり、オゾン層破壊係数がゼロでないため、空気調和装置の冷媒をHCFCからHFCへと代替することと矛盾する。
特に、HCFC141bはオゾン破壊係数が0.11と大きいため問題である。第2に、使用する洗浄液は可燃性・毒性が完全に安全なレベルではないことがあげられる。HCFC141bは可燃性で、低毒性である。HCFC225は不燃性であるが、低毒性である。第3に、沸点が高く(HCFC141bは32℃、HCFC225は51.1〜56.1℃) 、外気温度がこの沸点より低い場合、特に冬期には、洗浄後に洗浄液が液状態で、第1の接続配管Cと第2の接続配管Dに残留する。これら洗浄液はHCFCであることから、塩素成分を含んでおり、HFC用冷凍機油が劣化する。
第4に、洗浄液は環境上全量回収する必要があり、かつ上記第3の問題点が発生しないように高温の窒素ガスなどで再洗浄するなど、洗浄工事に手間がかかる。
【0009】
また、従来の洗浄方法2では、以下に述べるような問題点があった。
第1に、HFC冷媒による洗浄が、特開平7−83545号公報の場合には3回必要であり、また各洗浄運転で使用したHFC冷媒は不純物を含むため、回収後その場での再利用は不可能である。つまり、通常の充填冷媒量の3倍の冷媒が必要であり、コスト・環境上の問題がある。
第2に、冷凍機油も各洗浄運転後に入れ替えるため、通常の充填冷凍機油量の3倍の冷凍機油が必要であり、コスト・環境上の問題がある。また、HFC用冷凍機油はエステル油またはエーテル油であり、吸湿性が高いため、交換用冷凍機油の水分管理も必要となる。また、冷凍機油を、洗浄する人間が封入するため、 過不足が生じる危険性もあり、その後の運転において支障を来す可能性がある( 過充填時は油圧縮による圧縮部破壊、モータ過熱を来たし、不足充填時は潤滑不良を来す) 。
【0010】
この発明は、上述した問題点を解消するためになされたもので、環境保護上問題があるとされる冷媒を用いた既設の冷凍サイクル装置を、環境保護上問題がないとされる冷媒にコスト・環境上有利に置換するための冷凍サイクル装置の冷媒回路切換装置を提供しようとするものである。
【0011】
【課題を解決するための手段】
この発明に係る冷凍サイクル装置の冷媒回路切換装置は、圧縮機と熱源機側熱交換器とを含む熱源機及びこの熱源機と接続配管によって接続され、流量調整器と利用側熱交換器とを含む室内機を有し、熱源機及び各接続配管並びに室内機の間に冷媒回路を構成すると共に、冷媒をCFC、HCFC等の旧冷媒からHFC等の新冷媒に置換して冷媒回路を洗浄するための運転を行なうようにした冷凍サイクル装置において、室内機の両端に接続された接続配管にそれぞれ流量調整器側電磁弁及び熱交換器側電磁弁を接続すると共に、バイパス用電磁弁を有するバイパス路装置を流量調整器側電磁弁及び熱交換器側電磁弁の反室内機側接続端にそれぞれ接続し、流量調整器側電磁弁及び熱交換器側電磁弁を通電時に閉となるようにし、バイパス用電磁弁を通電時に開となるようにしたものである。
【0012】
この発明に係る冷凍サイクル装置の冷媒回路切換装置は、また、圧縮機と熱源機側熱交換器とを含む熱源機及びこの熱源機と接続配管によって接続され、流量調整器と利用側熱交換器とを含む室内機を有し、熱源機及び各接続配管並びに室内機の間に冷媒回路を構成すると共に、冷媒をCFC、HCFC等の旧冷媒からHFC等の新冷媒に置換して冷媒回路を洗浄するための運転を行なうようにした冷凍サイクル装置において、室内機の両端にそれぞれ設けられ、室内機に対する接続部と、接続配管に対する接続部と、バイパス路用接続部とを有する気液分離手段及び各気液分離手段のバイパス路用接続部に接続され、バイパス用電磁弁を有するバイパス路装置を備え、洗浄運転時には流量調整器を閉止するようにしたものである。
この発明に係る冷凍サイクル装置の冷媒回路切換装置は、また、冷媒回路を洗浄するための運転は、冷房運転と暖房運転を行なうようにしたものである。
【0013】
この発明に係る冷凍サイクル装置の冷媒回路切換装置は、また、気液分離手段が、接続配管用接続部に連なる大径筒状の本体部と、本体部に連通し流量調整器または利用側熱交換器に接続される熱交換器用接続部と、本体部に連通し、バイパス路に接続されるバイパス接続部とを有するものである。
【0014】
この発明に係る冷凍サイクル装置の冷媒回路切換装置は、また、熱交換器用接続部が、上方に立ち上がるトラップ部を有するものである。
【0015】
この発明に係る冷凍サイクル装置の冷媒回路切換装置は、また、圧縮機と熱源機側熱交換器とを含む熱源機及びこの熱源機と接続配管によって接続され、流量調整器と利用側熱交換器とを含む室内機を有し、熱源機及び各接続配管並びに室内機の間に冷媒回路を構成すると共に、冷媒をCFC、HCFC等の旧冷媒からHFC等の新冷媒に置換して冷媒回路を洗浄するための運転を行なうようにした冷凍サイクル装置において、室内機の一方の端部にのみ設けられ、室内機に対する接続部と、接続配管に対する接続部と、バイパス路用接続部とを有する気液分離手段及び気液分離手段のバイパス路用接続部と室内機の他方の端部に接続され、バイパス用電磁弁を有するバイパス路装置を備え、洗浄運転は、流量調整器を閉止すると共に、冷房または暖房洗浄運転のいずれかのみを行なうようにしたものである。
【0016】
この発明に係る冷凍サイクル装置の冷媒回路切換装置は、また、バイパス用電磁弁を、所定の流入方向のみを開閉する片方向流れ用の電磁弁とするものである。
【0017】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施の形態1を図にもとづいて説明する。
図1は、実施の形態1の構成を示す冷媒回路図で、洗浄装置を接続した状態を示すものである。なお、この冷凍サイクル装置は、冷媒としてCFCやHCFC(以下、旧冷媒という)を使用しているものである。
この図において、Aは熱源機であり、圧縮機1,四方弁2,熱源機側熱交換器3,第1の操作弁4,第2の操作弁5,アキュムレータ6を内蔵している。Bは室内機であり、流量調整器7(あるいは流量制御弁7)、及び利用側熱交換器8を備えている。熱源機Aと室内機Bは離れた場所に設置され、第1の接続配管C、第2の接続配管Dにより接続されて、冷凍サイクルを形成する。
第1の接続配管Cの一端は熱源機側熱交換器3と第1の操作弁4を介して接続され、第1の接続配管Cの他の一端は流量調整器7と接続されている。
第2の接続配管Dの一端は四方弁2と第2の操作弁5を介して接続され、第2の接続配管Dの他の一端は利用側熱交換器8と接続されている。
また、アキュムレータ6のU字管状の流出配管の下部には返油穴6aが設けられている。
【0018】
また、CCは第1の接続配管Cと第1の操作弁4との間に設けられた第3の接続配管、9aは第3の接続配管CCに設けられた第3の操作弁、DDは第2の接続配管Dと第2の操作弁5との間に設けられた第4の接続配管、9bは第4の接続配管DDに設けられた第4の操作弁である。
Eは冷媒回路を洗浄するための洗浄装置で、以下に述べる各装置によって構成されている。即ち、10a、10b、10c、10dはそれぞれ洗浄装置の冷媒流入部あるいは流出部を構成する電磁弁で、10aと10bは第3の操作弁9aの両側で第3の接続配管CCに接続され、10cと10dは第4の操作弁9bの両側で第4の接続配管DDに接続されている。
【0019】
11は電磁弁10aと10cとの間に接続された第1の切換弁で、熱源機側熱交換器3の冷房運転時の出口端、即ち、第1の操作弁4及び電磁弁10aから洗浄装置内への冷媒の流通は許容するが、その逆は許容しないように設けられた逆止弁11aと、四方弁2の暖房運転時の出口端、即ち、第2の操作弁5及び電磁弁10cから洗浄装置内への冷媒の流通は許容するが、その逆は許容しないように設けられた逆止弁11bと、後述する異物捕捉装置の出口端から電磁弁10aへの冷媒の流通は許容するが、その逆は許容しないように設けられた逆止弁11cと、異物捕捉装置の出口端から電磁弁10cへの冷媒の流通は許容するが、その逆は許容しないように設けられた逆止弁11dとから構成され、電気信号によらず、各接続端の圧力により自己切換を行なう切換弁である。
【0020】
12は油分離器で、圧縮機1から冷媒とともに吐出される冷凍機油を分離する。12aは油分離器12の底部より端を発するバイパスである。
13は高温高圧のガス冷媒を冷却・液化する冷却装置、14は冷却装置13に接続された第1の流量調整装置、15は四方弁からなる第2の切換弁、16は第2の切換弁15に接続され冷媒を低圧まで減圧する第2の流量調整装置、17は低圧二相冷媒をガス化する加熱装置、18は上記加熱装置17の出口部に直列に設けられた異物捕捉装置である。
なお、上記冷却装置13の冷却源は、空気、水のいずれでもよく、上記加熱装置17の過熱源は空気、水のいずれでも、あるいはヒーターでもよい。
また、冷却装置13と加熱装置17は、第1の切換弁11と第2の切換弁15に挟まれた高温高圧側の配管と低温低圧側の配管を熱的に接触させて、例えば、二重管の外側を高温高圧側の配管、内側を低温低圧側の配管で構成し、加熱装置17と冷却装置13との間で熱移動させるようにしてもよい。
【0021】
洗浄装置Eは以上のように構成され、電磁弁10a〜10dにより、第3及び第4の接続配管CC及びDDを経て冷凍サイクル装置に着脱可能に接続されている。また、Fは室内機Bに並列的に接続されるバイパス路で、以下に述べる各装置によって構成されている。即ち、19aは第1の接続配管Cと流量調整器7との間に設けられた流量調整器側電磁弁、19bは第2の接続配管Dと利用側熱交換器8との間に設けられた熱交換器側電磁弁、19cは流量調整器側電磁弁19aの第1の接続配管C側の接続端と熱交換器側電磁弁19bの第2の接続配管D側の接続端とを接続するバイパス用電磁弁である。
なお、流量調整器側電磁弁19aと熱交換器側電磁弁19bは通電時に閉路するようにされ、バイパス用電磁弁19cは通電時に開路するようにされている。
【0022】
図3は、バイパス用電磁弁19cの構成の一例を示すもので、後述する冷房洗浄運転及び暖房洗浄運転のそれぞれの冷媒の流通を許容する双方向性電磁弁である。以下、この電磁弁の構成と機能について説明する。
構造は左右対称とされており、191は電磁弁の本体を構成するボディ、192、192Aはメインバルブ、193、193Aはメインバルブ192、192Aをその背後から押し付けるスプリング、194はプランジャー組立、195はシャトル、196、196Aはストッパー、197はプランジャー組立194の背後から押し付けるスプリング、198はコイルである。A1,A2は出入口配管で、それぞれが図1のバイパス路に接続される。B1,B2は弁室、C1、C2はメインバルブ192、192Aの側面に設けられたブリードポート、D1,D2はメインバルブ192、192Aの背室、Gはストッパー196、196Aに挟まれたシャトル195が摺動する空間、F1,F2は空間Gの両端のストッパー196、196Aの内部に設けられた通路、E1,E2は背室D1,D2と通路F1,F2とを連通する連通路、Jはメインポート、IはメインポートJと背室D1,D2とを連通させるパイロットポート、Hは空間GとパイロットポートIとを連結する空間である。
【0023】
まず、コイル198が非通電時の動作について説明する。A1が入口、A2が出口として説明する。入口配管A1が出口配管A2に対して高圧である場合、入口配管A1から入った冷媒は弁室B1に入り、ボディ191とメインバルブ192のクリアランス及びブリードポートC1を通って背室D1に入る。
更に、連通路E1、通路F1を通り、空間Gへ入った冷媒は、シャトル195を低圧側のストッパー196Aへ押し付け、低圧側との通路F2を塞ぐ。
空間Gの冷媒は空間Hまで達するが、プランジャー組立194がパイロットポートIを塞いでいるため、メインバルブ192の背圧は抜ける個所がない。
そのため、メインバルブ192は閉じたままであり、従って電磁弁は閉路状態である。
【0024】
次に、コイル198に通電した場合の動作について説明する。コイル198に通電すると、プランジャー組立194が磁気力で浮上してパイロットポートIが開き、空間Hに溜まった圧力がパイロットポートIを通りメインポートJに達する。メインポートJに溜まった圧力がメインバルブ192Aを押し開け、弁室B2より出口配管A2側に抜ける。以上より、メインバルブ192の背室D1の圧力は弁室B1より低くなり圧力差が生じる。
この圧力差により弁室B1側の圧力がスプリング193に抗してメインバルブ192を押し開く。このようにして、2つのメインバルブ192、192Aが開き、電磁弁が開路状態となる。
【0025】
次に、コイル198が通電状態より非通電状態となった場合の動作について説明する。コイル198の通電をOFFにすると、プランジャー組立194は自重及びスプリング197により落下して、パイロットポートIを塞ぐ。その結果、空間H、空間G、通路F1、連通路E1、背室D1に圧力が溜まる。このため、弁室B1と背室D1が同圧となり、スプリング193によってメインバルブ192がメインポートJを閉じる。
配管A2側が高圧になった場合も同様に動作するため、説明を省略する。
【0026】
次に、図1に示す冷凍サイクル装置の旧冷媒をHFC(以下、新冷媒という)に置換する手順を図2に示すフロー図を用いて説明する。
まず、ステップS20で、図1に示す冷凍サイクル装置から旧冷媒を回収し、ステップS21で熱源機Aと室内機Bを取り外す。この場合、旧冷媒と新冷媒の制御信号の伝送手段や伝送用配線が異なる場合には、旧冷媒で冷凍サイクル装置の運転切換スイッチとして使用していたリモコン及び伝送用配線も取り外す。
【0027】
次いで、ステップS22で熱源機A、室内機B及びリモコン並びに伝送用配線を新冷媒用のものに取り換える。
しかし、第1の接続配管C及び第2の接続配管Dは旧冷媒の冷凍サイクル装置のものを再利用し、第3の接続配管CCと第4の接続配管DDは新規に敷設する。次いで、ステップS23で洗浄装置Eを冷媒回路に接続すると共に、バイパス路Fを室内機Bに接続する。洗浄装置Eの接続は電磁弁10a、10bを第3の接続配管CCに、かつ、電磁弁10c、10dを第4の接続配管DDに接続し、バイパス路Fは第1の接続配管C、第2の接続配管Dをそれぞれ流量調整器側電磁弁19a、熱交換器側電磁弁19bを介して室内機Bに接続すると共に、バイパス用電磁弁19cを流量調整器側電磁弁19aの第1の接続配管C側の接続端及び熱交換器側電磁弁19bの第2の接続配管D側の接続端に接続してバイパス冷媒回路を形成する。
【0028】
次に、ステップS24で熱源機Aと室内機Bとの間、室内機Bとリモコンとの間及び洗浄装置の各電磁弁10a〜10d並びにバイパス路Fの各電磁弁19a〜19cを駆動するための供給電源かつ制御信号手段として熱源機Aと洗浄装置Eとの間及び室内機Bとバイパス路Fとの間に伝送配線を接続する。
更に、洗浄運転の切換スイッチとして、また、洗浄運転及び冷凍サイクル装置の試運転状況を即時に把握するため、パーソナルコンピュータ(以下、PCという)に接続する。その配線接続例を図4に示す。
熱源機Aには予め新冷媒が充填されているので、ステップS25で第1の操作弁4と第2の操作弁5は閉じたまま、室内機B、第1の接続配管C、第2の接続配管D、第3の接続配管CC、第4の接続配管DD、洗浄装置E及びバイパス路Fを接続状態で真空引きし、その後、第1の操作弁4と第2の操作弁5の開弁と新冷媒の追加充填を実施する。その後、ステップS26でPCを操作して各電磁弁に通電し、第3、第4の操作弁9a、9bを閉路し、洗浄装置の各電磁弁10a〜10dを開路し、流量調整器側電磁弁19a及び熱交換器側電磁弁19bを閉路すると共に、バイパス用電磁弁19cを開路して所定時間、洗浄運転を実施する。
【0029】
以下、図1にもとづいて洗浄運転について説明する。図中、実線矢印は冷房洗浄運転の流れを、また、破線矢印は暖房洗浄運転の流れを示す。
まず、冷房洗浄運転について説明する。圧縮機1で圧縮された高温高圧のガス冷媒は新冷媒用の冷凍機油と共に圧縮機1から吐出され、四方弁2を経て熱源機側熱交換器3へと流入し、ここで空気・水等の熱源媒体と熱交換せずに通過し、第1の操作弁4、洗浄装置の電磁弁10a及び第1の切換弁11の逆止弁11aを経て油分離器12へ流入する。ここで、新冷媒用の冷凍機油は完全に分離され、ガス冷媒のみが冷却装置13に流入し、ここで凝縮液化して第1の流量調整装置14で少し減圧されて気液二相状態となる。この気液二相状態の冷媒は、第2の切換弁15、電磁弁10bを経て第1の接続配管Cに流入する。
【0030】
気液二相状態の新冷媒が第1の接続配管Cを流れる時に、 第1の接続配管Cに残留している旧冷媒・鉱油・鉱油劣化物(以下、残留異物という)を気液二相状態のため比較的早く洗浄し、気液二相の新冷媒と共に流れ、 バイパス用電磁弁19cを経て、 第1の接続配管Cの残留異物と共に第2の接続配管Dに流入する。第2の接続配管Dに残留している残留異物は、ここを流れる冷媒が気液二相状態のため、流速も速く、かつ液冷媒と共に残留異物は洗浄され、比較的早い速度で洗浄される。その後、気液二相状態の冷媒は、第1の接続配管Cの残留異物と第2の接続配管Dの残留異物と共に、電磁弁10d、第2の切換弁15を経て第2の流量調整装置16で低圧まで減圧されて、加熱装置17へ流入し、ここで蒸発・ガス化され、異物捕捉装置18へ流入する。
【0031】
残留異物は、沸点の違いにより相が異なり、固体異物・液体異物・気体異物の3種類に分類される。異物捕捉装置18では、固体異物と液体異物は完全にガス冷媒分離され捕捉される。気体異物はその一部が捕捉され、一部は捕捉されない。その後、ガス冷媒は、異物捕捉装置18で捕捉されなかった気体異物と共に第1の切換弁11の逆止弁11d、電磁弁10c、第2の操作弁5、四方弁2,アキュムレータ6を経て圧縮機1へ戻る。油分離器12で、ガス冷媒と完全に分離された新冷媒用冷凍機油は、バイパス12aを経て、異物捕捉装置18の下流側で本流と合流して圧縮機1へ戻るので、第1の接続配管Cや第2の接続配管Dに残留していた固体・液体異物と混ざることはなく、新冷媒用冷凍機油は新冷媒に対して非相溶化することはなく、また新冷媒用冷凍機油は固体・液体異物により劣化することはない。
【0032】
また、気体異物は新冷媒が冷媒回路を1サイクル循環して、異物捕捉装置18を1回通る間には一部が捕捉されるだけで、新冷媒用冷凍機油と気体異物は混合されるが新冷媒用冷凍機油の劣化は化学反応で急激には進まない。
その劣化の一例を図5に示す。図5は、新冷媒用冷凍機油に塩素が混入している場合(175℃)の劣化の時間変化を示す図で、横軸は時間(hr) 、縦軸は全酸価(mgKOH/g)を示す。異物捕捉装置18を1回通る間に捕捉できなかった気体異物は新冷媒の循環と共に何回も異物捕捉装置18を通るので、新冷媒用冷凍機油が劣化するよりも早く異物捕捉装置18で捕捉すればよい。
【0033】
次に暖房洗浄運転の流れを説明する。圧縮機1で圧縮された高温高圧のガス冷媒は新冷媒用冷凍機油と共に圧縮機1から吐出され、四方弁2,第2の操作弁5,電磁弁10c、第1の切換弁11の逆止弁11bを経て、油分離機12へ流入する。ここで、新冷媒用の冷凍機油は完全に分離され、ガス冷媒のみが冷却装置13に流入し、ここで凝縮液化して、第1の流量調整装置14で少し減圧されて気液二相状態となる。この気液二相状態の冷媒は、第2の切換弁15、電磁弁10dを経て第2の接続配管Dに流入する。第2の接続配管Dに残留している残留異物は、ここを流れる冷媒が気液二相状態のため、流速も速く、かつ液冷媒と共に残留異物は洗浄され、比較的早い速度で洗浄される。その後、気液二相状態の冷媒は、第2の接続配管Dの残留異物と共にバイパス用電磁弁19cを経て、第1の接続配管Cに流入する。ここでは、気液二相状態のため、流速も速く、かつ液冷媒と共に残留異物は洗浄され、比較的早い速度で洗浄される。 第2の接続配管Dと第1の接続配管Cの残留異物と共に、気液二相状態の冷媒は、電磁弁10b、第2の切換弁15を経て、第2の流量調整装置16で低圧まで減圧されて、加熱装置17へ流入し、ここで蒸発・ガス化され、異物捕捉装置18へ流入する。
【0034】
残留異物は、沸点の違いにより相が異なり、固体異物・ 液体異物・ 気体異物の3種類に分類される。異物捕捉装置18では、固体異物と液体異物は完全にガス冷媒分離され捕捉される。気体異物はその一部が捕捉され、一部は捕捉されない。その後、ガス冷媒は、異物捕捉装置18で捕捉されなかった気体異物と共に第1の切換弁11の逆止弁11c、電磁弁10aを経て、熱源機側熱交換器3へ流入し、熱交換させずに通過させ、アキュムレータ6を経て圧縮機1へ戻る。
油分離器12で、ガス冷媒と完全に分離された新冷媒用冷凍機油は、バイパス12aを経て、異物捕捉装置18の下流側で本流と合流して圧縮機1へ戻るので、第1の接続配管Cや第2の接続配管Dに残留していた固体・液体異物と混ざることはなく、新冷媒用冷凍機油は新冷媒に対して非相溶化することはなく、また新冷媒用冷凍機油は固体・液体異物により劣化することはない。
また、気体異物は新冷媒が冷媒回路を1サイクル循環して、異物捕捉装置18を1回通る間には一部が捕捉されるだけで、新冷媒用冷凍機油と気体異物は混合されるが新冷媒用冷凍機油の劣化は化学反応で急激には進まない。
その劣化の一例を冷房洗浄運転の場合と同様に図5に示す。異物捕捉装置18を1回通る間に捕捉できなかった気体異物は新冷媒の循環と共に何回も異物捕捉装置18を通るので、新冷媒用冷凍機油が劣化するよりも早く異物捕捉装置18で捕捉すればよい。
【0035】
その後、ステップS27で、各電磁弁を非通電状態とすることにより、第3、第4の操作弁9a、9bを開路し、洗浄装置Eの各電磁弁10a〜10dを閉路し、流量調整器側電磁弁19a、熱交換器側電磁弁19bを開路し、バイパス用電磁弁19cを閉路して新冷媒による冷凍サイクル装置の試運転を行なう。
以下、試運転及び通常空調運転について図1にもとづいて説明する。
まず、冷房試運転及び空調運転について説明する。圧縮機1で圧縮された高温高圧のガス冷媒は新冷媒用冷凍機油と共に圧縮機1から吐出され、四方弁2を経て、熱源機側熱交換器3へと流入し、ここで空気・水等の熱源媒体と熱交換して凝縮液化する。凝縮液化した冷媒は、第1の操作弁4,第3の操作弁9a、第3及び第1の接続配管CC、C、流量調整器側電磁弁19aを経て、流量調整器7へ流入し、ここで低圧まで減圧されて低圧二相状態となり、利用側熱交換器8で空気等の利用側媒体と熱交換して蒸発・ガス化する。蒸発・ガス化した冷媒は、熱交換器側電磁弁19b、第2及び第4の接続配管D、DD、第4の操作弁9b、第2の操作弁5,四方弁2,アキュムレータ6を経て圧縮機1へ戻る。
また、電磁弁10a〜10dは閉じられており、異物捕捉装置18は閉鎖空間として隔離されているので、 洗浄運転中に捕捉した残留異物が再び冷媒回路中に戻ることがなく、また、冷媒が異物捕捉装置18を経由していないため、圧縮機1の吸入圧力損失が小さく、能力の低下が小さい。
【0036】
次に、暖房試運転及び空調運転について説明する。圧縮機1で圧縮された高温高圧のガス冷媒は新冷媒用冷凍機油と共に圧縮機1から吐出され、四方弁2を経て第2の操作弁5に流入し、第4の操作弁9b、第4及び第2の接続配管DD、D、熱交換器側電磁弁19bを経て利用側熱交換器8へと流入し、ここで空気等の利用側媒体と熱交換して凝縮液化する。
凝縮液化した冷媒は、流量調整器7へ流入し、ここで低圧まで減圧されて低圧二相状態となり、流量調整器側電磁弁19a、第1及び第3の接続配管C、CC、第3の操作弁9a、第1の操作弁4,熱源機側熱交換器3へ流入し、ここで空気・水等の熱源側媒体と熱交換して蒸発・ガス化する。蒸発・ガス化した冷媒は、四方弁2,アキュムレータ6を経て圧縮機1へ戻る。
【0037】
また、電磁弁10a〜10dは閉じられており、異物捕捉装置18は閉鎖空間として隔離されているので、 洗浄運転中に捕捉した残留異物が再び冷媒回路中に戻ることがなく、また、冷媒が異物捕捉装置18を経由していないため、圧縮機1の吸入圧力損失が小さく、能力の低下が小さい。また、冷却装置13へは冷媒が流れないので、暖房能力のロスもない。
なお、第3、第4の操作弁9a、9b及び流量調整器側電磁弁19a並びに熱交換器側電磁弁19bは電気信号により閉路する電磁弁であるため、洗浄運転時のみ通電し、試運転及び空調運転時には通電しない。また、バイパス用電磁弁19cは電気信号により開路する電磁弁であるため、これも洗浄運転時にのみ通電すればよいことから弁の切換が最低限ですむことになる。
また、PCに接続していることで冷房・暖房の運転状態に異常がないか容易に把握することが出来る。
【0038】
次に、図2のステップS28で洗浄装置E内の冷媒を回収し、洗浄装置Eを電磁弁の部分で冷媒回路から取り外し、異物捕捉装置18内の残留異物を排出することで洗浄装置Eを再利用する。そして、電磁弁10a〜10dの接続端に異物流入防止のため、キャップをする。また、熱源機Aと洗浄装置Eの供給電源(伝送配線)も取り外し、再利用する。バイパス路Fは、冷凍サイクル装置に接続したままとする。その後、通常空調運転を1週間程度経過した後、ステップS29で熱源機Aから少量の新冷媒用冷凍機油を採取し、新冷媒用冷凍機油の汚染状況を測定し、所定の基準値を越えていれば新冷媒用冷凍機油を追加、交換をする。新冷媒用冷凍機油の劣化は、化学反応であり希釈することで、反応を抑制することが出来る。
【0039】
実施の形態1は、以上のように、油分離器12と異物捕捉装置18とを洗浄装置Eに内蔵することで、熱源機Aと室内機Bのみを新規に交換し、 第1の接続配管Cと第2の接続配管Dを交換しないで、 老朽化した旧冷媒を用いた冷凍サイクル装置を新冷媒を用いた冷凍サイクル装置に入れ替えることができる。
この実施の形態では、既設配管の再利用方法として、従来の洗浄方法1とは違って、洗浄装置を用いて専用の洗浄液(HCFC141bやHCFC225)で洗浄するということをしないので、オゾン層破壊の恐れは全くなく、また、可燃性・毒性も皆無で、洗浄液残留の懸念もなく、洗浄液を回収する必要もない。
また、従来の洗浄方法2と違って、洗浄運転を3回繰り返して新冷媒や新冷媒用冷凍機油を入れ替える必要がないため、 必要な新冷媒や冷凍機油は1台分で済み、コスト・環境上も有利である。また、交換用冷凍機油の管理も不要で、かつ冷凍機油過不足の危険性も全く発生しない。また、新冷媒用冷凍機油の非相溶化や冷凍機油の劣化の恐れもない。
【0040】
また、洗浄装置Eの冷媒流入部及び流出部に電磁弁10a〜10dを設けたため、洗浄運転時には異物捕捉装置18を通過して上述した洗浄効果を得つつ、洗浄運転後の試運転時には、電磁弁10a〜10dを閉じ、異物捕捉装置18を閉鎖空間として隔離しているので、 洗浄運転中に捕捉した異物が再び冷媒回路中に戻ることがない。
また、洗浄装置の流入部、流出部に設けた電磁弁10a〜10dがそれぞれ電気的に開閉されるため、洗浄運転から試運転まで自動的に冷媒回路の切換をすることができる。また、冷媒が異物捕捉装置18を経由しないため、圧縮機1の吸入圧力損失が小さく、能力低下も小さい。
更に、洗浄装置Eに冷却装置13、加熱装置17、第1及び第2の切換弁11、15を設けたことにより、冷房・暖房に係わらず、洗浄運転時に第1の接続配管C、第2の接続配管Dに気液二相冷媒もしくは液冷媒を流すことができるため、残留異物の洗浄効果が高く、洗浄時間を短くすることができる。
【0041】
また、冷却装置13、加熱装置17により熱交換量を制御できるので、外気温度や室内の負荷に関係なく、任意の条件でほぼ同一の洗浄運転が可能であり、効果・手間が一定化する。
また、第1の流量調整装置14と第2の流量調整装置16を設けたので、第1の接続配管C、第2の接続配管Dを流れる冷媒を必ず気液二相状態とすることができ、更に、残留異物を洗浄するのに洗浄効果が高く、洗浄時間を短くすることができる。また、第1の接続配管C、第2の接続配管Dを流れる気液二相冷媒の圧力と乾き度も制御できるので、さらに任意の条件でほぼ同一の洗浄運転が可能であり、効果・手間が一定化する。
【0042】
また、バイパス路Fを設け、流量調整器側電磁弁19a及び熱交換器側電磁弁19bを通電時に閉路するようにし、バイパス用電磁弁19cを通電時に開路するようにしたため、洗浄運転時にのみ通電すればよく、弁の切換を最低限とすることができるのに加え、第1の接続配管C、第2の接続配管Dを流れる冷媒の状態をほぼ同じにすることができ、均一な洗浄運転が可能で、効果・手間が一定化する。また、残留異物が新しい室内機Bに流入することがないので、室内機Bの汚染を防ぐことができる。
【0043】
また、油分離器12、バイパス12a、冷却装置13、加熱装置17、異物捕捉装置18、第1の切換弁11、第2の切換弁15、第1の流量調整装置14、第2の流量調整装置16を洗浄装置Eに内蔵したため、熱源機Aを小型化・低コスト化することができる。また、熱源機Aは、第1の接続配管C、第2の接続配管Dを新規に敷設する場合にも共通の熱源機とすることができる。
また、 洗浄装置Eは、電磁弁10a〜10dの部分で冷凍サイクル装置から着脱可能になっているので、 洗浄運転後にこれら電磁弁を閉じてから洗浄装置Eの内部の冷媒を回収して冷凍サイクル装置から取り外し、他の同様の冷凍サイクル装置に取り付けて繰り返し洗浄運転を実施することができる。これらの電磁弁は自動的に開閉させることが可能なため、洗浄運転と試運転時の切換ミスをすることが少なくなり、手間を省くことができる。
【0044】
なお、上述の実施の形態1では、室内機Bが1台接続された例について説明したが、室内機Bが並列または直列に複数台接続された冷凍サイクル装置でも同様の効果を奏することは言うまでもない。また、熱源機側熱交換器3と直列または並列に氷蓄熱槽や水蓄熱槽(湯を含む)が設置されても同様の効果を奏することは明らかである。
また、 熱源機Aが複数台並列に接続された冷凍サイクル装置においても同様の効果を期待することができる。更に、この実施の形態は、蒸気圧縮式の冷凍サイクル応用品で、熱源機側熱交換器が内蔵されたユニットと利用側熱交換器が内蔵されたユニットが離れて設置されているような場合にも適用することができ、同様な効果を期待することができる。
また、この実施の形態では、洗浄装置Eは一つの冷凍サイクル装置に1個だけ設置されるケースを示したが、複数個設置されていても同様の効果を奏することは明らかである。
【0045】
実施の形態2.
次に、 この発明の実施の形態2を図にもとづいて説明する。
図6は、実施の形態2の構成を示す冷媒回路図で、洗浄装置を接続した状態を示すものである。この図において、図1と同一または相当部分には同一符号を付して説明を省略する。図1と異なる点は、室内機Bの両端部において、バイパス路Fの接続部にそれぞれ気液分離装置を設け、流量調整器側電磁弁と熱交換器側電磁弁とを省略した点である。即ち、図6において、20aは第1の接続配管Cと流量調整器7とバイパス路との接続部分に設けられた第1の気液分離装置、20bは同じく第2の接続配管Dと利用側熱交換器8とバイパス路との接続部分に設けられた第2の気液分離装置で、その構成の一例を図7に示す。
【0046】
即ち、21は第1の接続配管Cまたは第2の接続配管Dに接続される接続配管用接続部、22は上記接続配管用接続部21に一端が連なる大径筒状の本体部、23は本体部22の他端部近傍に設けられ、本体内と連通する熱交換器用接続部で、上方に立ち上がるトラップ部23aと、流量調整器7または利用側熱交換器8に接続される接続端23bとを有する。24は本体部22の中間部に設けられ、本体内と連通するバイパス接続部で、接続端24aがバイパス用電磁弁19cに接続されるものである。
【0047】
このような構成において、冷凍サイクル装置の洗浄運転が行なわれる場合には、流量調整器7は全閉状態とされる。
冷房洗浄運転時には、図1で説明したように、気液二相状態の新冷媒が第3の操作弁9aを経て第1の接続配管Cに流入する。第1の接続配管Cは気液二相状態の流速の速い冷媒によって比較的早く洗浄され、配管内の残留異物と共に第1の気液分離装置20aの接続配管用接続部21から本体部22に流入する。
本体部22は第1の接続配管Cよりも大径のため、冷媒の流動様式が層状硫へと遷移し、重力の影響で気体は上、液体は図7にWで示すように、残留異物を含む形で下に分かれ気液分離する。
【0048】
流量調整器7が全閉状態であるため、残留異物が室内機Bに流入することはないが、熱交換器用接続部23にトラップ部23aを設け、室内機Bに残留異物が過渡的に流入することも防止している。
本体部22の下方に分離した液体と残留異物は、バイパス接続部24からバイパス用電磁弁19cに流入し、第2の気液分離装置20bのバイパス接続部24から本体部22を経て第2の接続配管Dに流入し、残留異物は上述したように洗浄装置E内で捕捉される。
【0049】
次に、暖房洗浄運転時の流れについて説明する。気液二相状態の新冷媒が第4の操作弁9bを経て第2の接続配管Dに流入し、流速の速い気液二相冷媒によって管内は比較的早く洗浄され、残留異物と共に第2の気液分離装置20bの接続配管用接続部21から本体部22に流入する。本体部22では、上述した冷房洗浄運転と同様に気液分離され、残留異物は室内機Bに流入することなく、バイパス接続部24を経てバイパス用電磁弁19cから第1の気液分離装置20aのバイパス接続部24、本体部22を経て第1の接続配管Cに流入し、電磁弁10bを経て洗浄装置E内で捕捉される。
実施の形態2は以上のように構成されているため、実施の形態1における流量調整器側電磁弁19aと熱交換器側電磁弁19bを省略することができ、部品点数を低減することができる他、電磁弁の切換ミスによる不具合を防止することができ、信頼性の向上を図ることができる。
【0050】
実施の形態3.
次に、この発明の実施の形態3について説明する。この実施の形態は、洗浄運転を冷房または暖房のいずれかのみとするものである。
このようにすることによって、第1及び第2の気液分離装置20a、20bのうちの一方を省略しようとするものである。即ち、冷房洗浄運転のみとする場合は、第2の気液分離装置20bを省略することができ、暖房洗浄運転のみとする場合は、第1の気液分離装置20aを省略することができるため、実施の形態2に比して更に、部品点数を低減することができるものである。
【0051】
実施の形態4.
次に、この発明の実施の形態4について説明する。実施の形態3のように、洗浄運転を冷房または暖房のいずれかのみとする場合には、バイパス路Fのバイパス用電磁弁19cに流入する冷媒は一方向のみとなるため、バイパス用電磁弁19cを逆圧によって閉止する機能を設けた片方向電磁弁として構造を簡略化することができるものである。図8及び図9は、片方向電磁弁の構成の一例を示すもので、図8は開路状態、図9は閉路状態を示すものである。
【0052】
これらの図において、31は入口配管、32は出口配管、33はメインボディ、34はメインバルブ(弁体の例)、35はサブボディ、36はボールなどからなるサブバルブ、37はプランジャー、38はヘッド、39はコイル、40はスプリング、41はOリング、42は弁室、43は流出室、44はメインバルブ34の背室、45はパイロット流入管、46はパイロット弁室、47はパイロットポート、48は第1のパイロット流出管、49はパイロット流出室、50は第2のパイロット流出管、50Aはパイロット流出部である。51はメインバルブ34の摺動側面、52はメインバルブ34の摺動側面51の下部にある非摺動側面、53はテーパー状に加工したメインバルブ34のバルブシート面、54はメインバルブ33のボディシート面、55はメインポートである。
【0053】
56はサブボディ35に設けられた雌ネジ、57はサブボディ35に設けられたサブメタルタッチ面、58はメインボディ33に設けられ、サブメタルタッチ面57と金属接触して電磁弁の内部空間と外部との流通を遮断して気密性を確保するメインメタルタッチ面、59はメインボディ33に設けられ、雌ネジ56とのペアでサブボディ35をメインボディ33へねじ込む雄ネジである。
メインバルブ34の非摺動面52は摺動面51よりもその外径がやや小さくなっているため、弁室42に横穴(この実施の形態では流入配管の弁室42の一端)があっても、引っかかりを生じないので、動作不良は発生しない。
【0054】
即ち、この電磁弁は、メインボディ33に設けられて冷媒を流入させる入口配管31と、メインボディ33に設けられて冷媒を流出させる流出室43と、入口配管31と流出室43の境に設けられたメインポート55と、メインポート55の手前で入口配管31から分岐して形成された弁室42と、弁室42内で摺動してメインポート55を開閉するメインバルブ34と、弁室42のメタルタッチ面58に装着され弁室42と外部とを遮断するサブボディ35と、弁室42とパイロット流入管45を介して連通するパイロット弁室46と、パイロット弁室46と流出室43とを連通するパイロット流出部50Aと、コイル39による電磁駆動によりパイロット弁室46内で摺動してパイロット流出部50Aを開閉するパイロットバルブ36とを有してなり、入口配管31内の圧力と弁室42のパイロット流入管45寄りの空間の圧力との圧力差によりメインバルブ34を駆動してメインポート55を開閉するものである。
【0055】
そして、この電磁弁は、特に、パイロット弁室46及びパイロット流入管45がサブボディ35に形成されるとともに、サブボディ35に形成されるパイロットポート47、第1のパイロット流出管48、パイロット流出室49と、メインボディ33に形成されてパイロットポート47に連通する第2のパイロット流 出管50とから、パイロット流出部50Aが構成されていて、サブボディ35のパイロット弁室46内でパイロットバルブ36を摺動させてパイロット流出部50Aのパイロットポート47を開閉するように構成されている。
【0056】
次に、この電磁弁の動作について説明する。まず、コイル39が非通電の場合について説明する。一般に、入口配管31の圧力の方が出口配管32の圧力よりも高い。入口配管31から入った冷媒は弁室42に入り、更にメインボディ33とメインバルブ34とのクリアランスを通って背室44に入る。
背室44に入った冷媒はパイロット流入管45を経て、パイロット弁室46へ入るが、プランジャー37によりサブバルブ36が押し付けられ、パイロットポート47を塞いでいるため、背室44の圧力はパイロットポート47を経ては流出室43に抜けない。また、背室44とパイロット流出室49とはOリング41でシールされているため、この経路を経由しても背室44の圧力は流出室43に抜けない。故に、メインバルブ34はリフトすることなく、メインポート55をメインバルブ34が塞いで、バルブシート面53とボディシート面54が接触するため、図8に示すように電磁弁は閉路したままである。
【0057】
次に、コイル39に通電した場合の動作について説明する。コイル39に通電すると、プランジャー37がヘッド38の磁気力で吸引されて浮上し、パイロットポート47が開き、パイロット弁室49に溜まった圧力がパイロットポート47を通り、第1のパイロット流出管48、パイロット流出室49、第2のパイロット流出管50を経て流出室43へと抜ける。これにより、背室44の圧力は流出室43の圧力とほぼ等しくなり、弁室42の圧力より低くなる。これにより、メインバルブ34には上向きの力が作用し、メインバルブ34は自重に抗して上向きにリフトし、その結果、メインポート55が開かれ、図9に示すように、電磁弁は開路状態となる。
【0058】
次に、コイル39が通電状態より非通電状態となった場合の動作について説明する。コイル39の通電をOFFにすると、プランジャー37は自重及びスプリング37により落下して、パイロットポート47を塞ぐ。その結果、パイロット弁室46、パイロット流入管45、背室44に圧力が溜まる。このため、弁室42と背室44が同圧となり自重により、図8に示すように、メインバルブ34がメインポート55を閉じる。
実施の形態4は以上のように構成されているため、電磁弁の構成を簡略化することができる。
【0059】
【発明の効果】
この発明の冷凍サイクル装置の冷媒回路切換装置は、圧縮機と熱源機側熱交換器とを含む熱源機及びこの熱源機と接続配管によって接続され、流量調整器と利用側熱交換器とを含む室内機を有し、熱源機及び各接続配管並びに室内機の間に冷媒回路を構成すると共に、冷媒をCFC、HCFC等の旧冷媒からHFC等の新冷媒に置換して冷媒回路を洗浄するための運転を行なうようにした冷凍サイクル装置において、室内機の両端に接続された接続配管にそれぞれ流量調整器側電磁弁及び熱交換器側電磁弁を接続すると共に、バイパス用電磁弁を有するバイパス路装置を流量調整器側電磁弁及び熱交換器側電磁弁の反室内機側接続端にそれぞれ接続し、流量調整器側電磁弁及び熱交換器側電磁弁を通電時に閉となるようにし、バイパス用電磁弁を通電時に開となるようにしたため、各電磁弁は洗浄運転時にのみ通電すればよいことになり、通常空調運転中は通電しないため、弁操作の回数及び切換に伴う音の発生回数が減り、弁の耐久性と共に信頼性が向上するものである。
【0060】
この発明に係る冷凍サイクル装置の冷媒回路切換装置は、また、室内機の両端にそれぞれ設けられ、室内機に対する接続部と、接続配管に対する接続部と、バイパス路用接続部とを有する気液分離手段及び各気液分離手段のバイパス路用接続部に接続され、バイパス用電磁弁を有するバイパス路装置を備え、洗浄運転時には流量調整器を閉止するようにしたため、室内機の両端に接続していた電磁弁を省略することができ、部品点数を低減させることができると共に、電磁弁の切換ミスによる不具合を防止することができ、信頼性を向上することができる。
【0061】
更に、洗浄運転を冷房または暖房のいずれかのみとしたため、室内機の両側に接続していた気液分離装置の一つを省略することができ、部品点数の低減と共に、信頼性を向上することができる。
また、洗浄運転を冷房または暖房のいずれかのみとすることにより、バイパス路のバイパス用電磁弁を片方向電磁弁とすることができ、構成の簡略化と部品点数の低減を図り、信頼性を向上することができる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1の構成を示す冷媒回路図である。
【図2】 実施の形態1における冷媒置換の手順を示すフロー図である。
【図3】 実施の形態1におけるバイパス用電磁弁の一例を示す断面図である。
【図4】 実施の形態1の洗浄運転の切換え及び運転状況把握のため冷凍サイクル装置にPCを接続した状況を示す概略図である。
【図5】 新冷媒用冷凍機油に塩素が混入している場合(175℃)の劣化の時間変化を示す特性図である。
【図6】 この発明の実施の形態2の構成を示す冷媒回路図である。
【図7】 実施の形態2における気液分離装置の構成を示す概略図である。
【図8】 この発明の実施の形態4におけるバイパス用電磁弁の構成の一例を示すもので、閉路状態を示す断面図である。
【図9】 この発明の実施の形態4におけるバイパス用電磁弁の構成の一例を示すもので、開路状態を示す断面図である。
【図10】 旧冷媒を使用した従来の冷凍サイクル装置の構成を示す冷媒回路図である。
【図11】 従来の冷凍サイクル装置における冷媒置換手順を示すフロー図である。
【符号の説明】
A 熱源機、 B 室内機、 C 第1の接続配管、 D 第2の接続配管、CC 第3の接続配管、 DD 第3の接続配管、 E 洗浄装置、 F バイパス路、 PC パーソナルコンピュータ、 1 圧縮機、 2 四方弁、 3 熱源機側熱交換器、 7 流量調整器、 8 利用側熱交換器、 9a 第3の操作弁、 9b 第4の操作弁、 10a〜10d 電磁弁、 11 第1の切換弁、 12 油分離機、 13 冷却装置、 15 第2の切換弁、17加熱装置、 18 異物捕捉装置、 19a 流量調整器側電磁弁、 19b熱交換器側電磁弁、 19c バイパス用電磁弁、 20a 第1の気液分離装置、 20b 第2の気液分離装置、 21 接続配管用接続部、 22 本体部、 23 熱交換器用接続部、 23a トラップ部、 23b 接続端、 24 バイパス接続部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigerant circuit switching device for a refrigeration cycle device, particularly a refrigerant circuit so that the refrigerant bypasses the indoor unit during a cleaning operation performed when replacing an old refrigerant such as CFC or HCFC with a new refrigerant such as HFC. It relates to a switching device.
[0002]
[Prior art]
FIG. 10 shows a refrigerant circuit of a separate type air conditioner that has been conventionally used. In this figure, A is a heat source machine, which includes a compressor 1, a four-way valve 2, a heat source machine side heat exchanger 3, a first operation valve 4, a second operation valve 5, and an accumulator 6. B is an indoor unit and includes a flow rate regulator 7 (or a flow rate control valve 7) and a use side heat exchanger 8. The heat source unit A and the indoor unit B are installed at separate locations and are connected by a first connection pipe C and a second connection pipe D to form a refrigeration cycle.
One end of the first connection pipe C is connected to the heat source unit side heat exchanger 3 via the first operation valve 4, and the other end of the first connection pipe C is connected to the flow rate regulator 7.
One end of the second connection pipe D is connected via the four-way valve 2 and the second operation valve 5, and the other end of the second connection pipe D is connected to the use side heat exchanger 8.
An oil return hole 6 a is provided in the lower part of the U-shaped outflow pipe of the accumulator 6.
[0003]
The refrigerant circuit of this air conditioner and the flow of the refrigerant will be described with reference to FIG. In the figure, solid arrows indicate the flow of cooling operation, and broken arrows indicate the flow of heating operation.
First, the flow of the cooling operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 passes through the four-way valve 2 and flows into the heat source machine side heat exchanger 3 where it heat-exchanges with a heat source medium such as air and water to be condensed and liquefied. The condensed and liquefied refrigerant flows into the flow rate regulator 7 through the first operation valve 4 and the first connection pipe C, where the refrigerant is decompressed to a low pressure to become a low-pressure two-phase state, and air etc. in the use side heat exchanger 8 Exchanges heat with the medium on the use side and evaporates and gasifies. The evaporated and gasified refrigerant returns to the compressor 1 through the second connection pipe D, the second operation valve 5, the four-way valve 2, and the accumulator 6.
[0004]
Next, the flow of heating operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 flows into the use-side heat exchanger 8 through the four-way valve 2, the second operation valve 5, and the second connection pipe D, where the use side such as air is used. Exchanges heat with the medium and condensates. The condensed and liquefied refrigerant flows into the flow rate regulator 7, where it is decompressed to a low pressure to become a low pressure two-phase state, passes through the first connection pipe C and the first operation valve 4, and then in the heat source machine side heat exchanger 3. Evaporates and gasifies by exchanging heat with heat source media such as air and water. The evaporated and gasified refrigerant returns to the compressor 1 through the four-way valve 2 and the accumulator 6.
[0005]
Conventionally, CFCs (chlorofluorocarbons) and HCFCs (hydrochlorofluorocarbons) have been used as refrigerants in such air conditioners. However, since chlorine contained in these molecules destroys the ozone layer in the stratosphere, Already abolished, HCFC production regulations have begun.
Instead of these, an air conditioner using HFC (hydrofluorocarbon) that does not contain chlorine in the molecule has been put into practical use. When an air conditioner using CFC or HCFC is aged, these refrigerants are completely abolished or production regulated, so it is necessary to replace them with an air conditioner using HFC.
Heat source unit A and indoor unit B are different from HCFC in refrigeration oil, organic materials, and heat exchangers used in HFC, so it is necessary to replace them with those dedicated to HFC, but originally heat source unit A for CFC / HCFC Since the indoor unit B is old, it needs to be replaced, and replacement is relatively easy.
[0006]
On the other hand, the first connection pipe C and the second connection pipe D that connect the heat source unit A and the indoor unit B are new when the pipe length is long or when they are buried in a building such as a pipe shaft or a ceiling. Since it is difficult to replace the pipes and they do not age, if the first connection pipe C and the second connection pipe D used in the air conditioner using CFC or HCFC can be used as they are, pipe work Can be simplified.
However, the first connection pipe C and the second connection pipe D used in the air conditioner using CFC or HCFC include mineral oil or CFC / refrigeration oil for the air conditioner using CFC or HCFC. There is a residual HCFC or refrigeration oil that has become sludge.
For this reason, the first connection pipe C and the second connection pipe D that are conventionally used in an air conditioner using a CFC or HCFC are replaced with a dedicated cleaning liquid (HCFC 141b or the like) using a cleaning device (not shown). Cleaning with HCFC 225) is performed (hereinafter referred to as cleaning method 1).
[0007]
Further, in the method disclosed in Japanese Patent Laid-Open No. 7-83545, as shown in the flowchart in FIG. 11, in step S10, the heat source unit A for HFC and the indoor unit B for HFC are replaced without using a cleaning device. Then, it is connected to the first connection pipe C and the second connection pipe D, and is evacuated and filled with refrigeration oil for HFC and HFC in step S11, and then cleaned by operating the apparatus in step S12. Then, in step S13, the refrigerant and refrigeration oil in the air conditioner are recovered, and new refrigerant and refrigeration oil are charged. Then, in step S14, cleaning by operation is performed again, and steps S12 and S13 are repeated three times. (Hereinafter, this is called cleaning method 2).
[0008]
[Problems to be solved by the invention]
The conventional cleaning method 1 described above has the following problems.
First, since the cleaning liquid to be used is HCFC and the ozone layer depletion coefficient is not zero, it is contradictory to replacing the refrigerant of the air conditioner from HCFC to HFC.
In particular, HCFC 141b is a problem because the ozone depletion coefficient is as large as 0.11. Second, the cleaning solution used is not completely safe in terms of flammability and toxicity. HCFC141b is flammable and has low toxicity. HCFC225 is nonflammable but has low toxicity. Third, when the boiling point is high (HCFC 141b is 32 ° C., HCFC 225 is 51.1 to 56.1 ° C.) and the outside air temperature is lower than this boiling point, particularly in winter, the cleaning liquid is in a liquid state after the cleaning. It remains in the connection pipe C and the second connection pipe D. Since these cleaning liquids are HCFCs, they contain a chlorine component, and the refrigeration oil for HFC deteriorates.
Fourthly, it is necessary to collect the entire amount of the cleaning solution in terms of the environment, and the cleaning work is troublesome, such as re-cleaning with high-temperature nitrogen gas or the like so that the third problem does not occur.
[0009]
Further, the conventional cleaning method 2 has the following problems.
First, cleaning with an HFC refrigerant requires three times in the case of Japanese Patent Laid-Open No. 7-83545, and the HFC refrigerant used in each cleaning operation contains impurities, so it can be reused in situ after recovery. Is impossible. That is, a refrigerant that is three times the normal amount of refrigerant to be charged is required, and there are problems in cost and environment.
Secondly, since the refrigerating machine oil is also replaced after each washing operation, the refrigerating machine oil is required three times as much as the normal filling refrigerating machine oil amount, and there is a problem in terms of cost and environment. Moreover, since the HFC refrigerating machine oil is ester oil or ether oil and has high hygroscopicity, water management of the replacement refrigerating machine oil is also required. In addition, since the refrigeration oil is encapsulated by the person to be washed, there is a risk of over and shortage, which may cause problems in the subsequent operation. And poor lubrication when underfilled).
[0010]
The present invention has been made in order to solve the above-described problems, and an existing refrigeration cycle apparatus using a refrigerant that is considered to have a problem in environmental protection is reduced to a refrigerant that has no problem in environmental protection. The present invention intends to provide a refrigerant circuit switching device for a refrigeration cycle device for environmentally advantageous replacement.
[0011]
[Means for Solving the Problems]
A refrigerant circuit switching device for a refrigeration cycle apparatus according to the present invention is connected to a heat source device including a compressor and a heat source device side heat exchanger, and the heat source device by a connection pipe, and includes a flow rate regulator and a use side heat exchanger. A refrigerant circuit is formed between the heat source unit, each connection pipe, and the indoor unit, and the refrigerant circuit is cleaned by replacing the old refrigerant such as CFC or HCFC with a new refrigerant such as HFC. In the refrigeration cycle apparatus configured to perform the operation for the bypass, the flow regulator side solenoid valve and the heat exchanger side solenoid valve are respectively connected to the connection pipes connected to both ends of the indoor unit, and the bypass having the bypass solenoid valve Connect the flow device to the non-indoor unit side connection end of the flow regulator side solenoid valve and the heat exchanger side solenoid valve, respectively, and close the flow regulator side solenoid valve and the heat exchanger side solenoid valve when energized, For bypass Is obtained as an open when energized the solenoid valves.
[0012]
The refrigerant circuit switching device of the refrigeration cycle apparatus according to the present invention is also connected to a heat source unit including a compressor and a heat source unit side heat exchanger, and the heat source unit and a connection pipe, and a flow rate regulator and a utilization side heat exchanger. A refrigerant circuit is formed between the heat source unit, each connection pipe, and the indoor unit, and the refrigerant circuit is replaced by replacing the old refrigerant such as CFC or HCFC with a new refrigerant such as HFC. In the refrigeration cycle apparatus configured to perform an operation for cleaning, gas-liquid separation means provided at both ends of the indoor unit, and having a connection part for the indoor unit, a connection part for the connection pipe, and a bypass path connection part And a bypass passage device connected to the bypass passage connecting portion of each gas-liquid separation means and having a bypass electromagnetic valve, and the flow regulator is closed during the cleaning operation.
In the refrigerant circuit switching device of the refrigeration cycle apparatus according to the present invention, the operation for cleaning the refrigerant circuit is performed in the cooling operation and the heating operation.
[0013]
In the refrigerant circuit switching device of the refrigeration cycle apparatus according to the present invention, the gas-liquid separation means includes a large-diameter cylindrical main body connected to the connection part for connection piping, a flow rate regulator or a use side heat communicating with the main body. A heat exchanger connection portion connected to the exchanger and a bypass connection portion communicating with the main body portion and connected to the bypass path are provided.
[0014]
In the refrigerant circuit switching device of the refrigeration cycle apparatus according to the present invention, the heat exchanger connecting portion has a trap portion that rises upward.
[0015]
The refrigerant circuit switching device of the refrigeration cycle apparatus according to the present invention is also connected to a heat source unit including a compressor and a heat source unit side heat exchanger, and the heat source unit and a connection pipe, and a flow rate regulator and a utilization side heat exchanger. A refrigerant circuit is formed between the heat source unit, each connection pipe, and the indoor unit, and the refrigerant circuit is replaced by replacing the old refrigerant such as CFC or HCFC with a new refrigerant such as HFC. In the refrigeration cycle apparatus configured to perform the operation for cleaning, the air conditioner is provided only at one end of the indoor unit, and has a connection part for the indoor unit, a connection part for the connection pipe, and a bypass path connection part. The bypass unit is connected to the bypass path connection part of the liquid separation means and the gas-liquid separation means and the other end of the indoor unit, and includes a bypass path device having a bypass solenoid valve, and the cleaning operation closes the flow rate regulator, Air conditioning Other process in which to perform only one of flushing operation for heating.
[0016]
In the refrigerant circuit switching device of the refrigeration cycle apparatus according to the present invention, the bypass solenoid valve is a one-way flow solenoid valve that opens and closes only a predetermined inflow direction.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to the drawings.
FIG. 1 is a refrigerant circuit diagram showing the configuration of the first embodiment, and shows a state in which a cleaning device is connected. This refrigeration cycle apparatus uses CFC or HCFC (hereinafter referred to as old refrigerant) as a refrigerant.
In this figure, A is a heat source machine, which includes a compressor 1, a four-way valve 2, a heat source machine side heat exchanger 3, a first operation valve 4, a second operation valve 5, and an accumulator 6. B is an indoor unit and includes a flow rate regulator 7 (or a flow rate control valve 7) and a use side heat exchanger 8. The heat source unit A and the indoor unit B are installed at separate locations and are connected by a first connection pipe C and a second connection pipe D to form a refrigeration cycle.
One end of the first connection pipe C is connected to the heat source unit side heat exchanger 3 via the first operation valve 4, and the other end of the first connection pipe C is connected to the flow rate regulator 7.
One end of the second connection pipe D is connected via the four-way valve 2 and the second operation valve 5, and the other end of the second connection pipe D is connected to the use side heat exchanger 8.
An oil return hole 6 a is provided in the lower part of the U-shaped outflow pipe of the accumulator 6.
[0018]
CC is a third connection pipe provided between the first connection pipe C and the first operation valve 4, 9a is a third operation valve provided in the third connection pipe CC, and DD is A fourth connection pipe 9b provided between the second connection pipe D and the second operation valve 5 is a fourth operation valve provided in the fourth connection pipe DD.
E is a cleaning device for cleaning the refrigerant circuit, and is constituted by each device described below. That is, 10a, 10b, 10c, and 10d are electromagnetic valves that constitute the refrigerant inflow portion or the outflow portion of the cleaning device, respectively, and 10a and 10b are connected to the third connection pipe CC on both sides of the third operation valve 9a. 10c and 10d are connected to the fourth connection pipe DD on both sides of the fourth operation valve 9b.
[0019]
Reference numeral 11 denotes a first switching valve connected between the electromagnetic valves 10a and 10c, which is cleaned from the outlet end during the cooling operation of the heat source unit side heat exchanger 3, that is, from the first operation valve 4 and the electromagnetic valve 10a. The check valve 11a provided so as to allow the refrigerant to flow into the apparatus but not vice versa, and the outlet end of the four-way valve 2 during the heating operation, that is, the second operation valve 5 and the electromagnetic valve The flow of the refrigerant from 10c into the cleaning device is allowed, but the reverse is not allowed, and the flow of the refrigerant from the outlet end of the foreign matter trapping device described later to the electromagnetic valve 10a is allowed. However, the reverse valve 11c is provided so as not to allow the reverse, and the reverse flow provided so as to allow the refrigerant to flow from the outlet end of the foreign matter trapping device to the electromagnetic valve 10c, but not the reverse. It consists of stop valve 11d, and the pressure at each connection end is independent of the electrical signal. A switching valve that performs a more self-switching.
[0020]
An oil separator 12 separates refrigeration oil discharged from the compressor 1 together with the refrigerant. Reference numeral 12 a denotes a bypass that starts from the bottom of the oil separator 12.
13 is a cooling device for cooling and liquefying the high-temperature and high-pressure gas refrigerant, 14 is a first flow rate adjusting device connected to the cooling device 13, 15 is a second switching valve comprising a four-way valve, and 16 is a second switching valve. 15 is a second flow rate adjusting device that depressurizes the refrigerant to a low pressure, 17 is a heating device that gasifies the low-pressure two-phase refrigerant, and 18 is a foreign matter trapping device that is provided in series at the outlet of the heating device 17. .
Note that the cooling source of the cooling device 13 may be either air or water, and the overheating source of the heating device 17 may be either air or water, or a heater.
In addition, the cooling device 13 and the heating device 17 are configured so that the high-temperature high-pressure side pipe and the low-temperature low-pressure side pipe sandwiched between the first switching valve 11 and the second switching valve 15 are in thermal contact with each other, for example, two The outer side of the heavy pipe may be constituted by a high-temperature and high-pressure side pipe, and the inner side may be constituted by a low-temperature and low-pressure side pipe, and heat transfer may be performed between the heating device 17 and the cooling device 13.
[0021]
The cleaning device E is configured as described above, and is detachably connected to the refrigeration cycle device via the third and fourth connection pipes CC and DD by the electromagnetic valves 10a to 10d. F is a bypass path connected in parallel to the indoor unit B, and is constituted by each device described below. That is, 19a is a flow regulator side solenoid valve provided between the first connection pipe C and the flow regulator 7, and 19b is provided between the second connection pipe D and the use side heat exchanger 8. The heat exchanger side solenoid valve 19c connects the connection end on the first connection pipe C side of the flow regulator side solenoid valve 19a and the connection end on the second connection pipe D side of the heat exchanger side solenoid valve 19b. This is a bypass solenoid valve.
The flow regulator side solenoid valve 19a and the heat exchanger side solenoid valve 19b are closed when energized, and the bypass solenoid valve 19c is opened when energized.
[0022]
FIG. 3 shows an example of the configuration of the bypass solenoid valve 19c, which is a bidirectional solenoid valve that allows the refrigerant to flow in a cooling cleaning operation and a heating cleaning operation, which will be described later. Hereinafter, the configuration and function of this solenoid valve will be described.
The structure is symmetrical, 191 is a body constituting the main body of the solenoid valve, 192 and 192A are main valves, 193 and 193A are springs that press the main valves 192 and 192A from behind, 194 is a plunger assembly, and 195 Is a shuttle, 196 and 196A are stoppers, 197 is a spring pressing from behind the plunger assembly 194, and 198 is a coil. A1 and A2 are entrance and exit pipes, and each is connected to the bypass path of FIG. B1 and B2 are valve chambers, C1 and C2 are bleed ports provided on the side surfaces of the main valves 192 and 192A, D1 and D2 are back chambers of the main valves 192 and 192A, and G is a shuttle 195 sandwiched between stoppers 196 and 196A. F1, F2 are passages provided in the stoppers 196, 196A at both ends of the space G, E1, E2 are communication passages that connect the back chambers D1, D2 and the passages F1, F2, J is A main port I is a pilot port that connects the main port J and the back chambers D1 and D2, and H is a space that connects the space G and the pilot port I.
[0023]
First, the operation when the coil 198 is not energized will be described. A1 will be described as an entrance and A2 as an exit. When the inlet pipe A1 has a higher pressure than the outlet pipe A2, the refrigerant entering from the inlet pipe A1 enters the valve chamber B1, and enters the back chamber D1 through the clearance between the body 191 and the main valve 192 and the bleed port C1.
Further, the refrigerant that has entered the space G through the communication passage E1 and the passage F1 presses the shuttle 195 against the stopper 196A on the low pressure side, and closes the passage F2 with the low pressure side.
Although the refrigerant in the space G reaches the space H, since the plunger assembly 194 blocks the pilot port I, there is no place where the back pressure of the main valve 192 is released.
Therefore, the main valve 192 remains closed, and therefore the electromagnetic valve is in a closed state.
[0024]
Next, the operation when the coil 198 is energized will be described. When the coil 198 is energized, the plunger assembly 194 is lifted by magnetic force, the pilot port I is opened, and the pressure accumulated in the space H reaches the main port J through the pilot port I. The pressure accumulated in the main port J pushes the main valve 192A open and exits from the valve chamber B2 to the outlet pipe A2. As described above, the pressure in the back chamber D1 of the main valve 192 becomes lower than that in the valve chamber B1, and a pressure difference is generated.
Due to this pressure difference, the pressure on the valve chamber B1 side pushes the main valve 192 against the spring 193. In this way, the two main valves 192 and 192A are opened, and the solenoid valve is opened.
[0025]
Next, the operation when the coil 198 is changed from the energized state to the non-energized state will be described. When the energization of the coil 198 is turned off, the plunger assembly 194 falls by its own weight and the spring 197 and closes the pilot port I. As a result, pressure accumulates in the space H, the space G, the passage F1, the communication passage E1, and the back chamber D1. Therefore, the valve chamber B1 and the back chamber D1 have the same pressure, and the main valve 192 closes the main port J by the spring 193.
Since the same operation is performed when the pressure on the pipe A2 side becomes high, the description is omitted.
[0026]
Next, a procedure for replacing the old refrigerant of the refrigeration cycle apparatus shown in FIG. 1 with HFC (hereinafter referred to as a new refrigerant) will be described with reference to the flowchart shown in FIG.
First, at step S20, the old refrigerant is recovered from the refrigeration cycle apparatus shown in FIG. 1, and the heat source unit A and the indoor unit B are removed at step S21. In this case, if the transmission means and transmission wiring for the control signal of the old refrigerant and the new refrigerant are different, the remote control and transmission wiring used as the operation changeover switch of the refrigeration cycle apparatus with the old refrigerant are also removed.
[0027]
Next, in step S22, the heat source unit A, the indoor unit B, the remote controller, and the transmission wiring are replaced with those for the new refrigerant.
However, the first connection pipe C and the second connection pipe D reuse those of the old refrigerant refrigeration cycle apparatus, and the third connection pipe CC and the fourth connection pipe DD are newly laid. Next, in step S23, the cleaning device E is connected to the refrigerant circuit, and the bypass path F is connected to the indoor unit B. The cleaning device E is connected to the solenoid valves 10a and 10b to the third connection pipe CC and the solenoid valves 10c and 10d to the fourth connection pipe DD, and the bypass path F is connected to the first connection pipe C and the first connection pipe C. 2 connection pipes D are connected to the indoor unit B via the flow regulator side solenoid valve 19a and the heat exchanger side solenoid valve 19b, respectively, and the bypass solenoid valve 19c is connected to the first regulator of the flow regulator side solenoid valve 19a. A bypass refrigerant circuit is formed by connecting to the connection end on the connection pipe C side and the connection end on the second connection pipe D side of the heat exchanger side solenoid valve 19b.
[0028]
Next, in step S24, between the heat source unit A and the indoor unit B, between the indoor unit B and the remote control, and the electromagnetic valves 10a to 10d of the cleaning device and the electromagnetic valves 19a to 19c of the bypass passage F are driven. A transmission wiring is connected between the heat source device A and the cleaning device E and between the indoor unit B and the bypass path F as a supply power source and control signal means.
Further, as a switching switch for the cleaning operation, and in order to immediately grasp the test operation status of the cleaning operation and the refrigeration cycle apparatus, it is connected to a personal computer (hereinafter referred to as PC). An example of the wiring connection is shown in FIG.
Since the heat source machine A is preliminarily filled with a new refrigerant, the indoor unit B, the first connection pipe C, and the second operation valve are kept closed in step S25 while the first operation valve 4 and the second operation valve 5 are closed. The connection pipe D, the third connection pipe CC, the fourth connection pipe DD, the cleaning device E and the bypass path F are evacuated in a connected state, and then the first operation valve 4 and the second operation valve 5 are opened. Implement additional filling of valves and new refrigerant. Thereafter, in step S26, the PC is operated to energize each solenoid valve, the third and fourth operation valves 9a and 9b are closed, the solenoid valves 10a to 10d of the cleaning device are opened, and the flow regulator side electromagnetics are opened. The valve 19a and the heat exchanger side electromagnetic valve 19b are closed, and the bypass electromagnetic valve 19c is opened to perform a cleaning operation for a predetermined time.
[0029]
Hereinafter, the cleaning operation will be described with reference to FIG. In the figure, solid arrows indicate the flow of the cooling cleaning operation, and broken arrows indicate the flow of the heating cleaning operation.
First, the cooling cleaning operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1 together with the refrigerating machine oil for the new refrigerant, and flows into the heat source machine side heat exchanger 3 through the four-way valve 2, where air, water, etc. The heat source medium passes through the first operation valve 4, the electromagnetic valve 10 a of the cleaning device, and the check valve 11 a of the first switching valve 11 and flows into the oil separator 12. Here, the refrigerating machine oil for the new refrigerant is completely separated, and only the gas refrigerant flows into the cooling device 13, where it condenses and liquefies and is slightly depressurized by the first flow rate adjusting device 14 to obtain a gas-liquid two-phase state. Become. The gas-liquid two-phase refrigerant flows into the first connection pipe C through the second switching valve 15 and the electromagnetic valve 10b.
[0030]
When the new refrigerant in the gas-liquid two-phase state flows through the first connection pipe C, the old refrigerant, mineral oil, and mineral oil degradation product (hereinafter referred to as residual foreign matter) remaining in the first connection pipe C is gas-liquid two-phase. Since it is in a state, it is cleaned relatively quickly, flows along with the new gas-liquid two-phase refrigerant, flows into the second connection pipe D together with the remaining foreign matter in the first connection pipe C via the bypass solenoid valve 19c. The residual foreign matter remaining in the second connection pipe D is a gas-liquid two-phase state, and the flow rate is high, and the residual foreign matter is washed together with the liquid refrigerant and washed at a relatively high speed. . After that, the refrigerant in the gas-liquid two-phase state passes through the electromagnetic valve 10d and the second switching valve 15 together with the residual foreign matter in the first connection pipe C and the residual foreign matter in the second connection pipe D, and the second flow rate adjusting device. The pressure is reduced to a low pressure at 16 and flows into the heating device 17 where it is evaporated and gasified and flows into the foreign matter trapping device 18.
[0031]
Residual foreign matter has different phases depending on the boiling point, and is classified into three types: solid foreign matter, liquid foreign matter, and gaseous foreign matter. In the foreign matter trapping device 18, the solid foreign matter and the liquid foreign matter are completely separated and trapped by the gas refrigerant. Part of the gaseous foreign matter is captured, and part is not captured. Thereafter, the gas refrigerant is compressed through the check valve 11 d of the first switching valve 11, the electromagnetic valve 10 c, the second operation valve 5, the four-way valve 2, and the accumulator 6 together with the gas foreign matter not captured by the foreign matter capturing device 18. Return to Machine 1. The new refrigerant refrigerating machine oil completely separated from the gas refrigerant by the oil separator 12 passes through the bypass 12a and joins the main stream downstream of the foreign matter trapping device 18 and returns to the compressor 1, so that the first connection The solid refrigerant and the liquid foreign matter remaining in the pipe C and the second connection pipe D are not mixed, the new refrigerant refrigerating machine oil is not incompatible with the new refrigerant, and the new refrigerant refrigerating machine oil is It does not deteriorate due to solid or liquid foreign matter.
[0032]
In addition, the new refrigerant circulates through the refrigerant circuit for one cycle, and only a part of the gaseous foreign matter is trapped while it passes through the foreign matter catching device 18 once. The deterioration of refrigeration oil for new refrigerants does not progress rapidly due to chemical reactions.
An example of the deterioration is shown in FIG. FIG. 5 is a graph showing the time change of deterioration when chlorine is mixed in the refrigerant oil for new refrigerant (175 ° C.), the horizontal axis is time (hr), and the vertical axis is the total acid value (mgKOH / g). Indicates. Since the gaseous foreign matter that could not be captured during one pass through the foreign matter catching device 18 passes through the foreign matter catching device 18 several times as the new refrigerant circulates, it is caught by the foreign matter catching device 18 earlier than the refrigeration oil for the new refrigerant deteriorates. do it.
[0033]
Next, the flow of the heating and washing operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1 together with the refrigerating machine oil for new refrigerant, and the four-way valve 2, the second operation valve 5, the electromagnetic valve 10c, and the first switching valve 11 are non-returned. It flows into the oil separator 12 through the valve 11b. Here, the refrigerating machine oil for the new refrigerant is completely separated, and only the gas refrigerant flows into the cooling device 13, where it condenses and liquefies, and is decompressed slightly by the first flow rate adjusting device 14, and is in a gas-liquid two-phase state. It becomes. The gas-liquid two-phase refrigerant flows into the second connection pipe D through the second switching valve 15 and the electromagnetic valve 10d. The residual foreign matter remaining in the second connection pipe D is a gas-liquid two-phase state, and the flow rate is high, and the residual foreign matter is washed together with the liquid refrigerant and washed at a relatively high speed. . Thereafter, the refrigerant in the gas-liquid two-phase state flows into the first connection pipe C through the bypass electromagnetic valve 19c together with the remaining foreign matter in the second connection pipe D. Here, because of the gas-liquid two-phase state, the flow rate is high, and the remaining foreign matter is washed together with the liquid refrigerant, and is washed at a relatively fast rate. The refrigerant in the gas-liquid two-phase state together with the remaining foreign matter in the second connection pipe D and the first connection pipe C passes through the electromagnetic valve 10b and the second switching valve 15, and reaches the low pressure by the second flow rate adjustment device 16. The pressure is reduced and flows into the heating device 17, where it is evaporated and gasified and flows into the foreign matter capturing device 18.
[0034]
Residual foreign matter has different phases depending on the boiling point, and is classified into three types: solid foreign matter, liquid foreign matter, and gaseous foreign matter. In the foreign matter trapping device 18, the solid foreign matter and the liquid foreign matter are completely separated and trapped by the gas refrigerant. Part of the gaseous foreign matter is captured, and part is not captured. Thereafter, the gas refrigerant flows into the heat source device side heat exchanger 3 through the check valve 11c and the electromagnetic valve 10a of the first switching valve 11 together with the gaseous foreign matter not captured by the foreign matter capturing device 18, and exchanges heat. And pass through the accumulator 6 and return to the compressor 1.
The new refrigerant refrigerating machine oil completely separated from the gas refrigerant by the oil separator 12 passes through the bypass 12a and joins the main stream downstream of the foreign matter trapping device 18 and returns to the compressor 1, so that the first connection The solid refrigerant and the liquid foreign matter remaining in the pipe C and the second connection pipe D are not mixed, the new refrigerant refrigerating machine oil is not incompatible with the new refrigerant, and the new refrigerant refrigerating machine oil is It does not deteriorate due to solid or liquid foreign matter.
In addition, the new refrigerant circulates through the refrigerant circuit for one cycle, and only a part of the gaseous foreign matter is trapped while it passes through the foreign matter catching device 18 once. The deterioration of refrigeration oil for new refrigerants does not progress rapidly due to chemical reactions.
An example of the deterioration is shown in FIG. 5 as in the case of the cooling cleaning operation. Since the gaseous foreign matter that could not be captured during one pass through the foreign matter catching device 18 passes through the foreign matter catching device 18 as the new refrigerant circulates, the foreign matter catching device 18 catches it earlier than the new refrigerant refrigeration oil deteriorates. do it.
[0035]
Thereafter, in step S27, the solenoid valves are deenergized to open the third and fourth operation valves 9a and 9b, and the solenoid valves 10a to 10d of the cleaning device E are closed. The side solenoid valve 19a and the heat exchanger side solenoid valve 19b are opened, the bypass solenoid valve 19c is closed, and the refrigeration cycle apparatus is operated with a new refrigerant.
Hereinafter, the test operation and the normal air conditioning operation will be described with reference to FIG.
First, the cooling trial operation and the air conditioning operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1 together with the refrigerating machine oil for new refrigerant, and flows into the heat source unit side heat exchanger 3 through the four-way valve 2 where air, water, etc. Heat-exchanged with the heat source medium and condensed into liquid. The condensed and liquefied refrigerant flows into the flow rate regulator 7 via the first operation valve 4, the third operation valve 9a, the third and first connection pipes CC and C, and the flow rate regulator side electromagnetic valve 19a. Here, the pressure is reduced to a low pressure to form a low pressure two-phase state, and the use side heat exchanger 8 exchanges heat with a use side medium such as air to evaporate and gasify. The evaporated and gasified refrigerant passes through the heat exchanger side electromagnetic valve 19b, the second and fourth connection pipes D and DD, the fourth operation valve 9b, the second operation valve 5, the four-way valve 2, and the accumulator 6. Return to the compressor 1.
Further, since the electromagnetic valves 10a to 10d are closed and the foreign matter capturing device 18 is isolated as a closed space, the residual foreign matter captured during the cleaning operation does not return to the refrigerant circuit again, and the refrigerant Since it does not go through the foreign matter catching device 18, the suction pressure loss of the compressor 1 is small, and the reduction in capacity is small.
[0036]
Next, heating trial operation and air conditioning operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1 together with the refrigerating machine oil for new refrigerant, flows into the second operation valve 5 through the four-way valve 2, and the fourth operation valve 9b, fourth And it flows in into the utilization side heat exchanger 8 through 2nd connection piping DD and D and the heat exchanger side solenoid valve 19b, and heat-exchanges with utilization side media, such as air here, and is condensed and liquefied.
The condensed and liquefied refrigerant flows into the flow rate regulator 7, where the refrigerant is reduced to a low pressure to be in a low pressure two-phase state, and the flow rate regulator side electromagnetic valve 19a, the first and third connection pipes C, CC, the third The operation valve 9a, the first operation valve 4, and the heat source machine side heat exchanger 3 flow into the heat source side medium such as air and water, where they evaporate and gasify. The evaporated and gasified refrigerant returns to the compressor 1 through the four-way valve 2 and the accumulator 6.
[0037]
Further, since the electromagnetic valves 10a to 10d are closed and the foreign matter trapping device 18 is isolated as a closed space, the residual foreign matter captured during the cleaning operation does not return to the refrigerant circuit again, and the refrigerant is not Since it does not go through the foreign matter catching device 18, the suction pressure loss of the compressor 1 is small, and the reduction in capacity is small. Further, since the refrigerant does not flow to the cooling device 13, there is no loss of heating capacity.
The third and fourth operation valves 9a and 9b, the flow regulator side solenoid valve 19a and the heat exchanger side solenoid valve 19b are solenoid valves that are closed by an electrical signal. Not energized during air conditioning operation. Further, since the bypass solenoid valve 19c is an electromagnetic valve that is opened by an electric signal, it is sufficient to energize only during the cleaning operation, so that the switching of the valve is minimized.
In addition, by connecting to a PC, it is possible to easily grasp whether there is any abnormality in the cooling / heating operation state.
[0038]
Next, in step S28 in FIG. 2, the refrigerant in the cleaning device E is recovered, the cleaning device E is removed from the refrigerant circuit at the solenoid valve portion, and the residual foreign matter in the foreign matter catching device 18 is discharged, thereby removing the cleaning device E. Reuse. Then, the connection ends of the electromagnetic valves 10a to 10d are capped to prevent foreign matter from flowing in. Further, the power supply (transmission wiring) of the heat source device A and the cleaning device E is also removed and reused. The bypass path F remains connected to the refrigeration cycle apparatus. Thereafter, after about one week of normal air-conditioning operation, a small amount of new refrigerant refrigerating machine oil is sampled from the heat source unit A in step S29, the contamination status of the new refrigerant refrigerating machine oil is measured, and exceeds a predetermined reference value. If necessary, add or replace new refrigerating machine oil. The deterioration of the refrigerant oil for new refrigerant is a chemical reaction, and the reaction can be suppressed by diluting.
[0039]
In the first embodiment, as described above, the oil separator 12 and the foreign matter catching device 18 are built in the cleaning device E, whereby only the heat source device A and the indoor unit B are newly exchanged, and the first connection pipe Without replacing C and the second connection pipe D, the refrigeration cycle apparatus using the old refrigerant that has deteriorated can be replaced with the refrigeration cycle apparatus using the new refrigerant.
In this embodiment, unlike the conventional cleaning method 1, the existing piping is reused by using a cleaning device (HCFC 141b or HCFC 225) and not cleaning the ozone layer. There is no fear, there is no flammability and toxicity, there is no concern about residual cleaning liquid, and there is no need to recover the cleaning liquid.
Also, unlike the conventional cleaning method 2, it is not necessary to replace the new refrigerant and the new refrigerant refrigerating machine oil by repeating the washing operation three times. The above is also advantageous. Further, management of replacement refrigeration oil is unnecessary, and there is no risk of excess or shortage of refrigeration oil. Moreover, there is no fear of incompatibility of the new refrigerant refrigerating machine oil or deterioration of the refrigerating machine oil.
[0040]
Further, since the solenoid valves 10a to 10d are provided at the refrigerant inflow portion and the outflow portion of the cleaning device E, the electromagnetic valve passes through the foreign matter capturing device 18 during the cleaning operation to obtain the above-described cleaning effect, and during the test operation after the cleaning operation, the electromagnetic valve Since 10a to 10d are closed and the foreign material capturing device 18 is isolated as a closed space, the foreign material captured during the cleaning operation does not return to the refrigerant circuit again.
Further, since the solenoid valves 10a to 10d provided at the inflow portion and the outflow portion of the cleaning device are electrically opened and closed, the refrigerant circuit can be automatically switched from the cleaning operation to the trial operation. Further, since the refrigerant does not pass through the foreign matter trapping device 18, the suction pressure loss of the compressor 1 is small, and the capacity reduction is also small.
Further, by providing the cleaning device E with the cooling device 13, the heating device 17, and the first and second switching valves 11 and 15, the first connection pipe C and the second connection port 2 during the cleaning operation regardless of cooling or heating. Since the gas-liquid two-phase refrigerant or the liquid refrigerant can be caused to flow through the connecting pipe D, the cleaning effect of residual foreign matter is high, and the cleaning time can be shortened.
[0041]
Further, since the heat exchange amount can be controlled by the cooling device 13 and the heating device 17, almost the same cleaning operation can be performed under any condition regardless of the outside air temperature and the load in the room, and the effects and labor are made constant.
In addition, since the first flow rate adjusting device 14 and the second flow rate adjusting device 16 are provided, the refrigerant flowing through the first connection pipe C and the second connection pipe D can always be in a gas-liquid two-phase state. Furthermore, the cleaning effect is high for cleaning residual foreign matters, and the cleaning time can be shortened. In addition, since the pressure and dryness of the gas-liquid two-phase refrigerant flowing through the first connection pipe C and the second connection pipe D can be controlled, almost the same cleaning operation can be performed under arbitrary conditions. Becomes constant.
[0042]
In addition, since the bypass path F is provided, the flow regulator side solenoid valve 19a and the heat exchanger side solenoid valve 19b are closed when energized, and the bypass solenoid valve 19c is opened when energized, it is energized only during the cleaning operation. In addition to minimizing the valve switching, the state of the refrigerant flowing through the first connection pipe C and the second connection pipe D can be made substantially the same, and a uniform cleaning operation can be performed. Is possible, and the effect and effort are made constant. Moreover, since the residual foreign material does not flow into the new indoor unit B, contamination of the indoor unit B can be prevented.
[0043]
In addition, the oil separator 12, the bypass 12a, the cooling device 13, the heating device 17, the foreign matter capturing device 18, the first switching valve 11, the second switching valve 15, the first flow rate adjusting device 14, and the second flow rate adjustment. Since the apparatus 16 is built in the cleaning apparatus E, the heat source unit A can be reduced in size and cost. Further, the heat source machine A can be a common heat source machine even when the first connection pipe C and the second connection pipe D are newly laid.
Further, since the cleaning device E is detachable from the refrigeration cycle device at the portions of the electromagnetic valves 10a to 10d, after the cleaning operation, these electromagnetic valves are closed and then the refrigerant inside the cleaning device E is recovered and the refrigeration cycle. It can be removed from the apparatus and attached to another similar refrigeration cycle apparatus for repeated washing operations. Since these solenoid valves can be automatically opened and closed, there is less chance of switching errors between the cleaning operation and the trial operation, and labor can be saved.
[0044]
In the above-described first embodiment, an example in which one indoor unit B is connected has been described, but it goes without saying that the same effect can be achieved with a refrigeration cycle apparatus in which a plurality of indoor units B are connected in parallel or in series. Yes. Further, it is obvious that the same effect can be obtained even if an ice heat storage tank or a water heat storage tank (including hot water) is installed in series or in parallel with the heat source device side heat exchanger 3.
Moreover, the same effect can be expected in a refrigeration cycle apparatus in which a plurality of heat source devices A are connected in parallel. Furthermore, this embodiment is a vapor compression type refrigeration cycle application product in which a unit having a built-in heat source side heat exchanger and a unit having a built-in side heat exchanger are installed separately. The same effect can be expected.
Further, in this embodiment, the case where only one cleaning device E is installed in one refrigeration cycle device is shown, but it is obvious that the same effect can be obtained even if a plurality of cleaning devices are installed.
[0045]
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described with reference to the drawings.
FIG. 6 is a refrigerant circuit diagram showing the configuration of the second embodiment, and shows a state where a cleaning device is connected. In this figure, the same or corresponding parts as in FIG. The difference from FIG. 1 is that gas-liquid separators are provided at both ends of the indoor unit B at the connection part of the bypass path F, and the flow regulator side solenoid valve and the heat exchanger side solenoid valve are omitted. . That is, in FIG. 6, 20a is the first gas-liquid separator provided at the connection portion of the first connection pipe C, the flow regulator 7 and the bypass, and 20b is the second connection pipe D and the use side. FIG. 7 shows an example of the configuration of the second gas-liquid separation device provided at the connection portion between the heat exchanger 8 and the bypass.
[0046]
That is, 21 is a connection part for connection pipe connected to the first connection pipe C or the second connection pipe D, 22 is a large-diameter cylindrical main body part having one end connected to the connection part 21 for connection pipe, and 23 is A heat exchanger connection portion provided in the vicinity of the other end portion of the main body portion 22 and communicated with the inside of the main body portion. The trap portion 23a rising upward and a connection end 23b connected to the flow rate regulator 7 or the use side heat exchanger 8 And have. Reference numeral 24 denotes a bypass connecting portion provided at an intermediate portion of the main body portion 22 and communicated with the inside of the main body. The connecting end 24a is connected to the bypass electromagnetic valve 19c.
[0047]
In such a configuration, when the cleaning operation of the refrigeration cycle apparatus is performed, the flow rate regulator 7 is fully closed.
During the cooling and washing operation, as described with reference to FIG. 1, the new refrigerant in the gas-liquid two-phase state flows into the first connection pipe C through the third operation valve 9a. The first connection pipe C is cleaned relatively quickly with a gas-liquid two-phase refrigerant having a high flow velocity, and is transferred from the connection pipe connection portion 21 of the first gas-liquid separation device 20a to the main body portion 22 together with the remaining foreign matter in the pipe. Inflow.
Since the main body portion 22 has a larger diameter than the first connection pipe C, the flow mode of the refrigerant transitions to lamellar sulfur, the gas is upward due to the influence of gravity, and the liquid is a residual foreign substance as indicated by W in FIG. The gas is separated into a liquid and liquid separated.
[0048]
Since the flow regulator 7 is in the fully closed state, residual foreign matter does not flow into the indoor unit B, but a trap portion 23a is provided in the heat exchanger connection 23 so that the residual foreign matter flows transiently into the indoor unit B. It also prevents you from doing it.
The liquid and the remaining foreign matter separated below the main body 22 flow into the bypass electromagnetic valve 19c from the bypass connecting portion 24, and pass through the main body 22 from the bypass connecting portion 24 of the second gas-liquid separator 20b. The residual foreign matter flows into the connection pipe D and is captured in the cleaning device E as described above.
[0049]
Next, the flow at the time of heating and washing operation will be described. A new refrigerant in a gas-liquid two-phase state flows into the second connection pipe D through the fourth operation valve 9b, and the inside of the pipe is cleaned relatively quickly by the gas-liquid two-phase refrigerant having a high flow velocity. It flows into the main body part 22 from the connection pipe connection part 21 of the gas-liquid separator 20b. In the main body 22, gas-liquid separation is performed in the same manner as in the above-described cooling cleaning operation, and residual foreign matter does not flow into the indoor unit B, but passes through the bypass connection portion 24 and passes through the bypass electromagnetic valve 19 c to the first gas-liquid separation device 20 a. Then, it flows into the first connection pipe C through the bypass connection portion 24 and the main body portion 22 and is captured in the cleaning device E through the electromagnetic valve 10b.
Since the second embodiment is configured as described above, the flow regulator-side solenoid valve 19a and the heat exchanger-side solenoid valve 19b in the first embodiment can be omitted, and the number of parts can be reduced. In addition, it is possible to prevent problems due to switching errors of the solenoid valve, and to improve reliability.
[0050]
Embodiment 3 FIG.
Next, a third embodiment of the present invention will be described. In this embodiment, the cleaning operation is only either cooling or heating.
By doing so, one of the first and second gas-liquid separators 20a and 20b is to be omitted. That is, when only the cooling cleaning operation is performed, the second gas-liquid separation device 20b can be omitted, and when only the heating cleaning operation is performed, the first gas-liquid separation device 20a can be omitted. Compared to the second embodiment, the number of parts can be further reduced.
[0051]
Embodiment 4 FIG.
Next, a fourth embodiment of the present invention will be described. As in the third embodiment, when only the cooling operation or the heating operation is performed, the refrigerant flowing into the bypass electromagnetic valve 19c of the bypass passage F is only in one direction, and thus the bypass electromagnetic valve 19c. The structure can be simplified as a one-way solenoid valve having a function of closing the valve by reverse pressure. 8 and 9 show an example of the configuration of the one-way solenoid valve. FIG. 8 shows an open circuit state, and FIG. 9 shows a closed circuit state.
[0052]
In these drawings, 31 is an inlet pipe, 32 is an outlet pipe, 33 is a main body, 34 is a main valve (an example of a valve body), 35 is a sub-body, 36 is a sub-valve made of balls, 37 is a plunger, 38 is Head, 39, coil, 40, spring, 41, O-ring, 42, valve chamber, 43, outflow chamber, 44, back chamber of main valve 34, 45, pilot inflow pipe, 46, pilot valve chamber, 47, pilot port 48 is a first pilot outflow pipe, 49 is a pilot outflow chamber, 50 is a second pilot outflow pipe, and 50A is a pilot outflow section. 51 is a sliding side surface of the main valve 34, 52 is a non-sliding side surface below the sliding side surface 51 of the main valve 34, 53 is a valve seat surface of the main valve 34 processed into a tapered shape, and 54 is the main valve 33. A body seat surface 55 is a main port.
[0053]
56 is a female screw provided on the sub-body 35, 57 is a sub-metal touch surface provided on the sub-body 35, 58 is provided on the main body 33, and is in metal contact with the sub-metal touch surface 57 so that the internal space and the outside of the solenoid valve A main metal touch surface 59 for blocking air circulation and securing airtightness is provided on the main body 33, and is a male screw for screwing the sub body 35 into the main body 33 in a pair with the female screw 56.
Since the outer diameter of the non-sliding surface 52 of the main valve 34 is slightly smaller than that of the sliding surface 51, the valve chamber 42 has a horizontal hole (in this embodiment, one end of the valve chamber 42 of the inflow piping). However, since no catching occurs, no malfunction occurs.
[0054]
That is, this solenoid valve is provided at the boundary between the inlet pipe 31 and the outflow chamber 43 provided in the main body 33 and through the inlet pipe 31 through which the refrigerant flows in, the outflow chamber 43 provided in the main body 33 through which the refrigerant flows out. The main port 55, the valve chamber 42 formed by branching from the inlet pipe 31 before the main port 55, the main valve 34 that slides in the valve chamber 42 to open and close the main port 55, and the valve chamber 42, a sub-body 35 that is attached to the metal touch surface 58 and shuts off the valve chamber 42 from the outside, a pilot valve chamber 46 that communicates with the valve chamber 42 via a pilot inflow pipe 45, a pilot valve chamber 46, and an outflow chamber 43 And a pilot valve 36 that opens and closes the pilot outflow portion 50A by sliding in the pilot valve chamber 46 by electromagnetic drive by the coil 39. It has become and, to open or close the main port 55 by driving the main valve 34 by the pressure difference between the pressure in the space of the pilot inlet pipe 45 side of the pressure and the valve chamber 42 in the inlet pipe 31.
[0055]
In particular, this solenoid valve includes a pilot valve chamber 46 and a pilot inflow pipe 45 formed in the sub body 35, a pilot port 47 formed in the sub body 35, a first pilot outflow pipe 48, and a pilot outflow chamber 49. A pilot outlet 50A is formed from a second pilot outlet pipe 50 formed in the main body 33 and communicating with the pilot port 47, and the pilot valve 36 slides in the pilot valve chamber 46 of the sub body 35. Thus, the pilot port 47 of the pilot outflow portion 50A is configured to open and close.
[0056]
Next, the operation of this solenoid valve will be described. First, the case where the coil 39 is not energized will be described. In general, the pressure of the inlet pipe 31 is higher than the pressure of the outlet pipe 32. The refrigerant that has entered from the inlet pipe 31 enters the valve chamber 42, and further enters the back chamber 44 through the clearance between the main body 33 and the main valve 34.
The refrigerant that has entered the back chamber 44 enters the pilot valve chamber 46 through the pilot inflow pipe 45, but the sub valve 36 is pressed by the plunger 37 and closes the pilot port 47, so that the pressure in the back chamber 44 is After 47, it does not escape to the outflow chamber 43. Further, since the back chamber 44 and the pilot outflow chamber 49 are sealed by the O-ring 41, the pressure in the back chamber 44 does not escape to the outflow chamber 43 through this path. Therefore, the main valve 34 does not lift up, the main valve 34 closes the main port 55, and the valve seat surface 53 and the body seat surface 54 come into contact with each other, so that the electromagnetic valve remains closed as shown in FIG. .
[0057]
Next, the operation when the coil 39 is energized will be described. When the coil 39 is energized, the plunger 37 is attracted and floated by the magnetic force of the head 38, the pilot port 47 is opened, and the pressure accumulated in the pilot valve chamber 49 passes through the pilot port 47 and passes through the first pilot outflow pipe 48. Through the pilot outflow chamber 49 and the second pilot outflow pipe 50, the air flows into the outflow chamber 43. As a result, the pressure in the back chamber 44 is substantially equal to the pressure in the outflow chamber 43 and is lower than the pressure in the valve chamber 42. As a result, an upward force acts on the main valve 34, and the main valve 34 is lifted upward against its own weight. As a result, the main port 55 is opened, and the electromagnetic valve is opened as shown in FIG. It becomes a state.
[0058]
Next, the operation when the coil 39 is changed from the energized state to the non-energized state will be described. When the energization of the coil 39 is turned off, the plunger 37 falls due to its own weight and the spring 37 and closes the pilot port 47. As a result, pressure is accumulated in the pilot valve chamber 46, the pilot inflow pipe 45, and the back chamber 44. For this reason, the valve chamber 42 and the back chamber 44 have the same pressure, and the main valve 34 closes the main port 55 as shown in FIG.
Since the fourth embodiment is configured as described above, the configuration of the electromagnetic valve can be simplified.
[0059]
【The invention's effect】
A refrigerant circuit switching device for a refrigeration cycle apparatus according to the present invention includes a heat source device including a compressor and a heat source device side heat exchanger, and is connected to the heat source device by a connection pipe, and includes a flow rate regulator and a use side heat exchanger. To have an indoor unit and configure a refrigerant circuit between the heat source unit, each connection pipe, and the indoor unit, and replace the refrigerant with an old refrigerant such as CFC or HCFC with a new refrigerant such as HFC to wash the refrigerant circuit In the refrigeration cycle apparatus configured to perform the above operation, a bypass passage having a bypass solenoid valve and a flow regulator side solenoid valve and a heat exchanger side solenoid valve connected to connection pipes connected to both ends of the indoor unit, respectively Connect the device to the non-indoor unit side connection end of the flow regulator side solenoid valve and heat exchanger side solenoid valve, respectively, and close the flow regulator side solenoid valve and heat exchanger side solenoid valve when energized to bypass Electromagnetic Since the solenoid valve is opened when energized, each solenoid valve need only be energized during the cleaning operation, and since it is not energized during normal air conditioning operation, the number of valve operations and the number of sounds generated by switching are reduced. Reliability is improved along with the durability of the valve.
[0060]
The refrigerant circuit switching device of the refrigeration cycle apparatus according to the present invention is also provided at both ends of the indoor unit, and has a connection part for the indoor unit, a connection part for the connection pipe, and a bypass path connection part. And a bypass passage device having a bypass solenoid valve, and the flow regulator is closed during the cleaning operation, so that it is connected to both ends of the indoor unit. The electromagnetic valve can be omitted, the number of parts can be reduced, a problem due to a switching error of the electromagnetic valve can be prevented, and the reliability can be improved.
[0061]
Furthermore, since the cleaning operation is only cooling or heating, one of the gas-liquid separation devices connected to both sides of the indoor unit can be omitted, and the reliability can be improved while reducing the number of parts. Can do.
In addition, by setting the cleaning operation to either cooling or heating, the bypass solenoid valve of the bypass path can be a one-way solenoid valve, simplifying the configuration and reducing the number of parts, and improving reliability. Can be improved.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram showing the configuration of Embodiment 1 of the present invention.
FIG. 2 is a flowchart showing a refrigerant replacement procedure in the first embodiment.
3 is a cross-sectional view showing an example of a bypass solenoid valve according to Embodiment 1. FIG.
FIG. 4 is a schematic diagram showing a state in which a PC is connected to the refrigeration cycle apparatus for switching the cleaning operation and grasping the operation state according to the first embodiment.
FIG. 5 is a characteristic diagram showing the change over time of deterioration when chlorine is mixed in the refrigerating machine oil for new refrigerant (175 ° C.).
FIG. 6 is a refrigerant circuit diagram showing a configuration of Embodiment 2 of the present invention.
7 is a schematic diagram showing a configuration of a gas-liquid separation device in Embodiment 2. FIG.
FIG. 8 is a cross-sectional view showing an example of the configuration of a bypass solenoid valve according to a fourth embodiment of the present invention, showing a closed state.
FIG. 9 is a cross-sectional view showing an example of the configuration of a bypass solenoid valve according to a fourth embodiment of the present invention and showing an open circuit state.
FIG. 10 is a refrigerant circuit diagram showing a configuration of a conventional refrigeration cycle apparatus using an old refrigerant.
FIG. 11 is a flowchart showing a refrigerant replacement procedure in a conventional refrigeration cycle apparatus.
[Explanation of symbols]
A heat source machine, B indoor unit, C first connection pipe, D second connection pipe, CC third connection pipe, DD third connection pipe, E cleaning device, F bypass path, PC personal computer, 1 compression Machine, 2 four-way valve, 3 heat source machine side heat exchanger, 7 flow regulator, 8 use side heat exchanger, 9a third operation valve, 9b fourth operation valve, 10a to 10d solenoid valve, 11 first Switching valve, 12 oil separator, 13 cooling device, 15 second switching valve, 17 heating device, 18 foreign matter trapping device, 19a flow regulator side solenoid valve, 19b heat exchanger side solenoid valve, 19c bypass solenoid valve, 20a 1st gas-liquid separator, 20b 2nd gas-liquid separator, 21 connection part for connection piping, 22 main-body part, 23 connection part for heat exchangers, 23a trap part, 23b connection end, 24 bypass connection part.

Claims (6)

圧縮機と熱源機側熱交換器とを含む熱源機及びこの熱源機と接続配管によって接続され、流量調整器と利用側熱交換器とを含む室内機を有し、上記熱源機及び各接続配管並びに室内機の間に冷媒回路を構成すると共に、上記冷媒をCFC、HCFC等の旧冷媒からHFC等の新冷媒に置換して上記冷媒回路を洗浄するための運転を行なうようにした冷凍サイクル装置において、上記室内機の両端にそれぞれ設けられ、上記室内機に対する接続部と、上記接続配管に対する接続部と、バイパス路用接続部とを有する気液分離手段及び上記各気液分離手段のバイパス路用接続部に接続され、バイパス用電磁弁を有するバイパス路装置を備え、洗浄運転時には上記流量調整器を閉止するようにしたことを特徴とする冷凍サイクル装置の冷媒回路切換装置。  A heat source machine including a compressor and a heat source machine side heat exchanger and an indoor unit connected to the heat source machine and a connection pipe and including a flow rate regulator and a use side heat exchanger, the heat source machine and each connection pipe In addition, a refrigeration cycle apparatus configured to form a refrigerant circuit between indoor units and to replace the refrigerant with a new refrigerant such as HFC from an old refrigerant such as CFC or HCFC to clean the refrigerant circuit. The gas-liquid separation means provided at both ends of the indoor unit, each having a connection part to the indoor unit, a connection part to the connection pipe, and a bypass path connection part, and bypass paths of the gas-liquid separation means The refrigerant circuit switching of the refrigeration cycle apparatus is provided with a bypass device having a solenoid valve for bypass connected to the connection portion for use, and the flow regulator is closed during the cleaning operation Location. 冷媒回路を洗浄するための運転は、冷房運転と暖房運転を行なうようにしたことを特徴とする請求項記載の冷凍サイクル装置の冷媒回路切換装置。Operation for cleaning the refrigerant circuit, the refrigerant circuit switching device of the refrigeration cycle apparatus according to claim 1, characterized in that to perform the heating operation and cooling operation. 気液分離手段は、接続配管用接続部に連なる大径筒状の本体部と、上記本体部に連通し流量調整器または利用側熱交換器に接続される熱交換器用接続部と、上記本体部に連通し、バイパス路に接続されるバイパス接続部とを有することを特徴とする請求項または請求項記載の冷凍サイクル装置の冷媒回路切換装置。The gas-liquid separation means includes a large-diameter cylindrical main body connected to the connection pipe connection, a heat exchanger connection connected to the flow controller or the use side heat exchanger, and the main body. The refrigerant circuit switching device for a refrigeration cycle apparatus according to claim 1 or 2 , further comprising a bypass connection portion connected to the bypass portion and connected to the bypass path. 熱交換器用接続部は、上方に立ち上がるトラップ部を有することを特徴とする請求項記載の冷凍サイクル装置の冷媒回路切換装置。4. The refrigerant circuit switching device for a refrigeration cycle apparatus according to claim 3 , wherein the heat exchanger connecting portion has a trap portion rising upward. 圧縮機と熱源機側熱交換器とを含む熱源機及びこの熱源機と接続配管によって接続され、流量調整器と利用側熱交換器とを含む室内機を有し、上記熱源機及び各接続配管並びに室内機の間に冷媒回路を構成すると共に、上記冷媒をCFC、HCFC等の旧冷媒からHFC等の新冷媒に置換して上記冷媒回路を洗浄するための運転を行なうようにした冷凍サイクル装置において、上記室内機の一方の端部にのみ設けられ、上記室内機に対する接続部と、上記接続配管に対する接続部と、バイパス路用接続部とを有する気液分離手段及び上記気液分離手段のバイパス路用接続部と上記室内機の他方の端部に接続され、バイパス用電磁弁を有するバイパス路装置を備え、洗浄運転は、上記流量調整器を閉止すると共に、冷房または暖房洗浄運転のいずれかのみを行なうようにしたことを特徴とする冷凍サイクル装置の冷媒回路切換装置。  A heat source machine including a compressor and a heat source machine side heat exchanger and an indoor unit connected to the heat source machine and a connection pipe and including a flow rate regulator and a use side heat exchanger, the heat source machine and each connection pipe In addition, a refrigeration cycle apparatus configured to form a refrigerant circuit between indoor units and to replace the refrigerant with a new refrigerant such as HFC from an old refrigerant such as CFC or HCFC to clean the refrigerant circuit. The gas-liquid separation means provided only at one end of the indoor unit, and having a connection part to the indoor unit, a connection part to the connection pipe, and a bypass path connection part, and the gas-liquid separation means The bypass passage device is connected to the bypass passage connecting portion and the other end of the indoor unit and has a bypass solenoid valve. The washing operation closes the flow rate regulator and performs cooling or heating washing operation. A refrigerant circuit switching device of the refrigeration cycle apparatus characterized by Leka was performed only. バイパス用電磁弁は、所定の流入方向のみを開閉する片方向流れ用の電磁弁であることを特徴とする請求項記載の冷凍サイクル装置の冷媒回路切換装置。6. The refrigerant circuit switching device for a refrigeration cycle apparatus according to claim 5 , wherein the bypass solenoid valve is a solenoid valve for one-way flow that opens and closes only a predetermined inflow direction.
JP2001060463A 2001-03-05 2001-03-05 Refrigerant circuit switching device for refrigeration cycle apparatus Expired - Fee Related JP4508446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001060463A JP4508446B2 (en) 2001-03-05 2001-03-05 Refrigerant circuit switching device for refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001060463A JP4508446B2 (en) 2001-03-05 2001-03-05 Refrigerant circuit switching device for refrigeration cycle apparatus

Publications (2)

Publication Number Publication Date
JP2002267294A JP2002267294A (en) 2002-09-18
JP4508446B2 true JP4508446B2 (en) 2010-07-21

Family

ID=18919877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001060463A Expired - Fee Related JP4508446B2 (en) 2001-03-05 2001-03-05 Refrigerant circuit switching device for refrigeration cycle apparatus

Country Status (1)

Country Link
JP (1) JP4508446B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4760119B2 (en) * 2005-05-13 2011-08-31 三菱電機株式会社 Pipe cleaning method and refrigeration cycle apparatus
JP4605784B2 (en) * 2005-11-02 2011-01-05 ヤンマー株式会社 Engine-driven heat pump having an operation mode for cleaning the connecting pipe between the outdoor unit and the indoor unit, and its operation method
JP6031931B2 (en) * 2012-10-03 2016-11-24 株式会社デンソー Refrigeration cycle equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329432A (en) * 1999-05-20 2000-11-30 Mitsubishi Electric Corp Method for operating refrigerating cycle device
JP2000346488A (en) * 1999-05-31 2000-12-15 Mitsubishi Electric Corp Air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329432A (en) * 1999-05-20 2000-11-30 Mitsubishi Electric Corp Method for operating refrigerating cycle device
JP2000346488A (en) * 1999-05-31 2000-12-15 Mitsubishi Electric Corp Air conditioner

Also Published As

Publication number Publication date
JP2002267294A (en) 2002-09-18

Similar Documents

Publication Publication Date Title
EP0887599B1 (en) Refrigeration apparatus and method of manufacturing same
EP1391667A2 (en) Converting a refrigerating system
EP1400767B1 (en) A method of changing a refrigeration cycle device
JP5762441B2 (en) Refrigeration cycle equipment
EP1016837B1 (en) Piping washing method and piping washing apparatus for refrigerating apparatuses
JP4508446B2 (en) Refrigerant circuit switching device for refrigeration cycle apparatus
JP3361771B2 (en) Operation method of refrigeration cycle device
JP4061494B2 (en) Connection pipe cleaning method, refrigerating device renewal method, and freezing device
JP4052478B2 (en) Refrigerator oil separation and recovery system and cleaning method for air conditioning system
JP4289901B2 (en) Oil recovery method for air conditioner and air conditioner
JP3361765B2 (en) Refrigeration cycle apparatus, method of forming the same, and outdoor unit of refrigeration cycle apparatus
JP4063229B2 (en) Piping cleaning method and piping cleaning device
JP2002107011A (en) Cleaning operation method of refrigerating cycle equipment
JP4375925B2 (en) Air conditioner
JP4067809B2 (en) Refrigerant replacement method for air conditioner, cleaning machine, air conditioner
JP3370959B2 (en) Renewal method and operation method of refrigeration cycle device
JP2002267293A (en) Method for replacing refrigerant of refrigeration cycle device
EP1669704B1 (en) Refrigeration cycle system, and method of operating the same
US7334426B2 (en) Refrigerating apparatus
JP2008309474A (en) Pipe cleaning device
JP4176413B2 (en) Operation method of refrigeration cycle apparatus
JPH10132432A (en) Moisture removal trial running method of refrigeration cycle device and refrigeration cycle device
JP2004085038A (en) Air conditioner and operation method for air conditioner
JP2005241165A (en) Pipe washing device and method
JP2004085037A (en) Air conditioner and operation method for air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees