JP4507487B2 - Sealed alkaline storage battery - Google Patents

Sealed alkaline storage battery Download PDF

Info

Publication number
JP4507487B2
JP4507487B2 JP2002258337A JP2002258337A JP4507487B2 JP 4507487 B2 JP4507487 B2 JP 4507487B2 JP 2002258337 A JP2002258337 A JP 2002258337A JP 2002258337 A JP2002258337 A JP 2002258337A JP 4507487 B2 JP4507487 B2 JP 4507487B2
Authority
JP
Japan
Prior art keywords
storage battery
power generation
battery
alkaline storage
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002258337A
Other languages
Japanese (ja)
Other versions
JP2003178796A (en
Inventor
伸治 村重
哲郎 南野
陽一 和泉
宗久 生駒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002258337A priority Critical patent/JP4507487B2/en
Publication of JP2003178796A publication Critical patent/JP2003178796A/en
Application granted granted Critical
Publication of JP4507487B2 publication Critical patent/JP4507487B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、単電池では起電力が低いニッケル−水素蓄電池等のアルカリ蓄電池の出力電圧を汎用性の高い電圧が得られるように構成した密閉型アルカリ蓄電池に関するものである。
【0002】
【従来の技術】
本願の対象とする密閉型アルカリ蓄電池は、携帯電話機や携帯用パーソナルコンピュータ等の携帯電子機器、コードレス電話機等のワイヤレス機器などの電源として用いられる比較的小型の二次電池であって、ニッケル−水素蓄電池、ニッケル−カドミウム蓄電池を主対象とする。
【0003】
例えば、ニッケル−水素蓄電池は、高容量、高エネルギー密度、コストパフォーマンスの3要素のバランスに優れているので、携帯機器や電動機器などの電池電源として有効である。しかし、起電力(公称電圧=1.2V)が低いため、単電池では電池を電源とする機器が要求する動作電圧を満たすことができない場合が少なくない。多くの場合は複数の単電池を直列に接続して所要の出力電圧を得ている。複数の単電池を直列に接続して機器が要求する出力電圧を得るための形態は、組電池や電池パック等に構成される。
【0004】
組電池は、複数の単電池を直列あるいは直並列に接続して熱収縮チューブ等により複数の単電池を一体化するものである。例えば、図8に示すように、4個の円筒形単電池30の正極及び負極を接続板32により直列に接続し、直列回路にサーマルプロテクタ33を挿入し、両端の単電池30にそれぞれ正極端子34、負極端子35を取り付けた後、正極端子34及び負極端子35を外部に出して熱収縮チューブ31で全体を一体に結束した構成が広く用いられている。
【0005】
また、特開平13−126690号公報に開示された組電池は、図9に示すように、角形の単電池200を枠体101内に複数(ここでは3個)収容し、各単電池200を直列に接続した構成が示されている。
【0006】
また、電気自動車やハイブリッド車などの大きな電力が要求される場合に対応する蓄電池としては、本願出願人らが提案し、特開2001−57199号公報等に開示されたものが知られている。図10に示すように、発電要素を収容する複数(ここでは6個)の電槽53を一体に連結して一体電槽52に形成し、複数の蓄電池を一体化した集合電池に構成したものである。この集合電池は、複数の蓄電池をその電槽53の隣り合う間を共通化することにより一体的に連結すると共に各発電要素を直列接続したもので、更に、集合電池をその短手方向に連結できるように構成され、連結間に冷却用の空気流路と放熱突起とが形成されている。一体電槽52の上部開口端は蓋体54で閉じられるが、各電槽53に対応する仕切りで内部空間が区切られ、接続手段により隣り合う発電要素が直列接続され、長手方向の両端に取り付けられた入出力端子55に接続されている。
【0007】
【発明が解決しようとする課題】
ニッケル−水素蓄電池のように起電力が低い電池を機器が要求する動作電圧に対応できるようにするために、前述のように複数の単電池を直列接続して電池パックや組電池に構成することになる。電池パックや組電池は電池以外の構成部材が必要であり、コストアップや体積増加を伴う問題があった。
【0008】
また、複数の単電池を直列接続する場合、図8及び図9に示した構成のように、隣り合う単電池の上下が交互に逆向きになるようにして接続を容易にしているが、この状態では封口部側が下向きになる単電池が常に生じることになる。封口部側は極板群と封口板との間に空間が形成されており、封口部側が下向きになる状態が継続されると、電解液が空間に流れ出すなどの好ましくない状態が発生する。
【0009】
また、複数の単電池をパックケースや熱収縮チューブなどの結束手段により一体化したものでは、機械的強度の低下は否めず、携帯機器や電動工具などでは強度低下を補う構造を設ける必要がある。
【0010】
本発明が目的とするところは、起電力が低いアルカリ蓄電池を電池パックや組電池に構成することなく、機器の動作に対応させやすい出力電圧が得られるように構成することにある。
【0011】
【課題を解決するための手段】
上記目的を達成するための本願第1発明に係る密閉型アルカリ蓄電池は、絶縁性の液絡防止体にそれぞれ収容された複数の発電要素が金属製の電池缶内に収容され、複数の発電要素が直列及び/又は並列に電気的接続されて前記電池缶を閉じる封口板から外部露出する正極端子及び負極端子に接続されるとともに、各発電要素に共通の空間が設けられ、封口板に空間内の異常内圧を外部に排出する排気弁が設けられ、複数の発電要素を電気的接続する接続部材に、その両端の接続部が露出するように樹脂成形板にインサートして液絡防止手段が形成され、発電要素を構成する電解液は、ゲル状電解液に形成されてなることを特徴とするものである。
【0012】
上記第1発明に係る密閉型アルカリ蓄電池によれば、電池缶内に液絡防止体に収容した複数の発電要素が収納され、複数の発電要素を直列に接続すると、ニッケル−水素蓄電池のように単電池では起電力が小さい電池であっても汎用性の高い出力電圧が得られる密閉型アルカリ蓄電池に構成することができる。また、複数の発電要素を直並列に接続すれば、出力電圧と同時に放電容量の増大化を図ることができる。これらの目的を従来は組電池や電池パックなどに構成することにより達成していたが、本発明の密閉型アルカリ蓄電池は電池自体で目的を達成しているので、組電池や電池パックを構成するための部材や工数を排除することができる。また、各発電要素に共通の空間を設け、封口板に空間内の異常内圧を外部に放出する排気弁を設けることにより、異常使用により発電要素からガスが発生し、密閉された電池缶内の圧力が異常上昇すると破裂の恐れがあるが、各発電要素に共通の空間につながる排気弁が異常上昇した内圧を外部に放出するので、異常使用に伴う電池の破裂は防止される。さらに、複数の発電要素を電気的接続する接続部材に、その両端の接続部が露出するように樹脂成形板にインサートすることにより、複数の発電要素の間で液絡が発生することを確実に防止でき、発電要素を構成する電解液をゲル状電解液で形成することにより、電解液の流動を抑えて複数の発電要素間の液絡の発生をより確実に防止することができる。
【0013】
また、本願第2発明に係る密閉型アルカリ蓄電池は、絶縁性の液絡防止体にそれぞれ収容された複数の発電要素が金属製の電池缶内に収容され、この電池缶の開口部が封口板により封口され、複数の発電要素が直列及び/又は並列に電気的接続されて封口板の外面側に配設された複数の構成要素に接続され、複数の構成要素の導体面を正極端子及び負極端子として封口板の外面側を閉じる絶縁板に設けられた開口部からそれぞれ外部露出させるとともに、各発電要素に共通の空間が設けられ、封口板に空間内の異常内圧を外部に排出する排気弁が設けられ、複数の発電要素を電気的接続する接続部材に、その両端の接続部が露出するように樹脂成形板にインサートして液絡防止手段が形成され、発電要素を構成する電解液は、ゲル状電解液に形成されてなることを特徴とするものである。
【0014】
上記第2発明に係る密閉型アルカリ蓄電池によれば、電池缶内に液絡防止体に収容して複数の発電要素を収納して、組電池や電池パックの構成によることなく出力電圧や電池容量の増加を図ることができる。また、電池缶を封口する封口板上は絶縁板によって閉じられるので、封口板の外面側には端子部材や安全弁、保護素子等を配設することができる。それら構成部材の導体面を正極端子及び負極端子として絶縁板の開口部から外部露出させることにより高出力と同時に安全機能を備えた密閉型アルカリ蓄電池が構成される。また、各発電要素に共通の空間を設け、封口板に空間内の異常内圧を外部に放出する排気弁を設けることにより、異常使用により発電要素からガスが発生し、密閉された電池缶内の圧力が異常上昇すると破裂の恐れがあるが、各発電要素に共通の空間につながる排気弁が異常上昇した内圧を外部に放出するので、異常使用に伴う電池の破裂は防止される。さらに、複数の発電要素を電気的接続する接続部材に、その両端の接続部が露出するように樹脂成形板にインサートすることにより、複数の発電要素の間で液絡が発生することを確実に防止でき、発電要素を構成する電解液をゲル状電解液で形成することにより、電解液の流動を抑えて複数の発電要素間の液絡の発生をより確実に防止することができる。
【0017】
また、正極接続回路又は負極接続回路と直列に過電流・過熱保護素子を配設することにより、当該蓄電池が接続された機器の故障や正極端子と負極端子との間が短絡状態になったとき、過電流・過熱保護素子は短絡電流によりトリップ状態になって抵抗値を急増させるので短絡電流は規制され、短絡による蓄電池の損傷が防止できる。
【0018】
また、封口板の外面側に配設された過電流・過熱保護素子の電極板、あるいは排出弁を構成する金属部材を正極端子又は負極端子の用に供することにより、端子を形成するための部材を設ける必要がなく、小型化やコストダウンを図ることができる。
【0019】
また、発電要素を構成する極板群は、複数枚の正極板と負極板とをセパレータを介して積層した積層構造、あるいは、正極板と負極板とをセパレータを介して巻回した巻回構造に構成することができる。
【0021】
また、液絡防止体は、有底筒状体の内部を各発電要素を収容する複数の収容室に仕切体により仕切って形成することができ、複数の液絡防止体を一体化して構成部材数を削減することができる。
【0022】
また、正極端子及び/又は負極端子に金メッキを施すことが有効であり、当該電池を機器に接続するときの接触抵抗の低減や磨耗強度の向上が図られるばかりでなく、耐腐食性を向上させることができる。この金メッキを施すとき、正極端子及び/又は負極端子の外部露出部分にのみ施すだけでも、前記効果を得ることができる。
【0023】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施形態について説明し、本発明の理解に供する。尚、以下に示す実施形態は本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。まず、本発明の参考例を説明する。
【0024】
参考例に係る密閉型アルカリ蓄電池は、正極端子−負極端子間からの出力電圧が3.6Vのニッケル−水素蓄電池に構成した例を示すもので、図1にその基本的構造である構成を断面図として示す。
【0025】
図1において、電池缶45内に、仕切り46a、46aにより3つの独立した発電要素収容室に形成された中にそれぞれ極板群41a、41b、41cを収容した絶縁性の液絡防止袋(液絡防止体)46が配設され、極板群41a、41b、41cは図示するように、それぞれの正極板及び負極板から引き出された正極リード及び負極リードを接続して直列に接続されている。この電池缶45の開口部は、各極板群41a、41b、41cに対応する注液口48、48、49を設けた封口板42によって封口される。この封口後に、各注液口48、48、49から仕切り46aにより分割された3つの発電要素収容室に電解液が注入される。注液後は注液口48、48については、それぞれ封栓43、43が挿入されることにより閉じられ、注液口49については、ガスケット47を介して封栓44により閉じられる。各極板群41a、41b、41cを直列接続した正極側は図示するように封栓44に接続され、負極側は封口板42に接続される。従って、封栓44を正極端子、封口板42もしくは電池缶45を負極端子として外部接続の用に供することができる。
【0026】
この参考例の構成により、電池缶45内に起電力が1.2Vの3つの発電要素を収容し、それらを直列に接続した出力電圧が3.6Vの密閉型アルカリ蓄電池が組電池や電池パックを構成することなく形成される。このように電池内部で複数の発電要素を接続するとき、電位差によって電解液が接続リードを伝って隣り合う発電要素に流れる液絡が生じる恐れがある。これを防止するために、図示するように、隣り合う発電要素にまたがる接続リードに絶縁被覆を施す液絡防止手段50を設けるのが有効である。
【0027】
次に、上記参考例による構成を発展させ、より実用性を向上させた第の実施形態の構成について説明する。
【0028】
の実施形態に係る密閉型アルカリ蓄電池は、図2に示すように、扁平な直方体の角形電池に構成され、その頂面に正極端子(+)及び負極端子(−)が設けられている。この形状寸法及び出力電圧は、角形のリチウムイオン二次電池とほぼ同一の値であり、リチウムイオン二次電池に代えてニッケル−水素蓄電池の使用が可能である。
【0029】
図3は、上記密閉型アルカリ蓄電池の内部構成を、図2のX−X線矢視断面で示すもので、ニッケルメッキ鋼板をプレス成形して有底角筒に形成した電池缶5内に、ポリプロピレン製の液絡防止袋6に収容された第1、第2、第3の各発電要素A,B,Cが収容されている。発電要素A,B,Cは周知のように正極板及び負極板、セパレータからなる極板群と電解液とにより構成されるもので、ここでは複数の正極板と負極板とをセパレータを介して積層した積層構造の第1、第2、第3の各極板群1a,1b,1cとアルカリ性電解液が液絡防止袋6にそれぞれ収容され、それぞれ独立したニッケル−水素蓄電池の機能を有している。尚、上記液絡防止袋6は、ポリプロピレン等のポリオレフィン樹脂の他、ふっ素樹脂、ポリフェニレンスルフィド等を適用することができる。また、各発電要素A,B,C毎に独立した袋体を用いることなく、図1に示した第1の実施形態の構成のように、仕切りによって複数の発電要素収容室を形成したものを適用することもできる。いずれの形態の場合も樹脂成形によって容易に製作することができる。
【0030】
図4は、発電要素A(発電要素B,Cも同一構造)の構造を示すもので、封筒状のセパレータ22に収容された複数の正極板20と複数の負極板21とを交互に重ね合わせて極板群1aが構成され、液絡防止袋6内に収納されている。各正極板20には引出リードが設けられており、それらは束ねられて正極リード10aの一端と共に溶接接合される。また、各負極板21についても同様に各負極板21に設けられた引出リードは束ねられて負極リード11aに一端と共に溶接接合される。
【0031】
この正極板20及び負極板21、セパレータ22によって構成された極板群1aと共に液絡防止袋6内にアルカリ電解液が注入される。アルカリ電解液は液絡防止袋6の上部が開放されているので、ゲル化したものを用いるのがより好ましい。アルカリ電解液のゲル化は、ゲル化剤を主体とする化合物を混合してゲル化したものをセパレータ中に塗着するか、あるいはセパレータにゲル化剤を主体とする化合物を含浸させておき、極板群1aを液絡防止袋6内に収納した後に、液絡防止袋6内に電解液単体を注入してアルカリ電解液をゲル化する方法を採用することができる。このとき、電解液の粘度を上昇させるための有機化合物の重量は電解液の1〜15%が望ましい。この範囲よりも有機化合物重量が少なくなるとアルカリ液の粘度の上昇量が少なくなり、アルカリ液の移動を抑制することが困難になる。また、有機化合物重量が電解液重量の15%を越えると、電池内での有機化合物量の占有体積が無視し得なくなり、電池の体積エネルギー密度が低下してしまう上に、極板のガス透過性が悪化し、充電時に電池内圧が極端に上昇してしまうため好ましくない。
【0032】
アルカリ電解液をゲル化するためのゲル化剤として、親水性基を側鎖に有するポリマーを特に限定することなく用いることができる。例えば、ポリアクリル酸、ポリメタクリル酸、アクリル酸/メタクリル酸共重合体、イソブチレン/マレイン酸共重合体、ポリ(2−アクリルアミド−2−メチルプロパンスルホン酸)、ポリアクリロキシプロパンスルホン酸、ポリビニルスルホン酸などのアルカリ金属塩が挙げられる。但し、必ずしも全ての酸性基がアルカリ金属塩になっている必要はない。これらは単独で用いても、2種類以上を組み合わせて用いてもよい。これらのうち、ポリアクリル酸カリウム、ポリアクリル酸ナトリウム、ポリメタクリル酸カリウム、ポリメタクリル酸ナトリウムが特に好ましい。また、ゲル化剤は架橋ポリマーであることが好ましい。架橋は、例えばポリアクリル酸、ポリメタクリル酸、アクリル酸/メタクリル酸共重合体などの重合体を調整する際にジビニルベンゼンなどの架橋剤を添加するばよい。
【0033】
上記のように構成された第1〜第3の各極板群1a,1b,1cを収容した各液絡防止袋6を電池缶5内に収納し、第1〜第3の各極板群1a,1b,1cそれぞれから引き出されている正極リード10a,10b,10c及び負極リード11a,11b,11cの所定位置への接続がなされる。
【0034】
電池缶5を封口する封口板2は、その缶内側に樹脂成形板3が接合されている。この封口板2及び樹脂成形板3には、第1〜第3の各極板群1a,1b,1cそれぞれに対応して貫通穴が形成され、各液絡防止袋6内に電解液を注入する用に供される。第1の極板群1aの上方の貫通穴にはガスケット17で封口板2と絶縁して中空のリベット4がワッシャ8を固着して取り付けられる。
【0035】
前記樹脂成形板3には2か所に接続板12a,12bが電池缶5内に露出面を設けてインサートされており、第1〜第3の各極板群1a,1b,1cを直列接続する用に供される。第1の極板群1aから引き出された正極リード10aは前記ワッシャ8に接合され、負極リード11aは接続板12aの一方露出面に接合される。また、第2の極板群1bから引き出された正極リード10bは接続板12aの他方の露出面に接合され、負極リード11bは接続板12bの一方の露出面に接合される。更に、第3の極板群1cから引き出された正極リード10cは接続板12bの他方の露出面に接合され、負極リード11cは樹脂成形板3に形成された開口部18を通して封口板2に接合される。この接続構成によってワッシャ8を正極側とし、封口板2を負極側とする間に、第1〜第3の各極板群1a,1b,1cが直列接続された状態が得られる。この直列接続は、樹脂成形板3にインサートされた接続板12a,12bを介してなされるため、接続板12a,12bの樹脂成形板3に埋設された部分が液絡防止の作用をなし、隣り合う発電要素間の電位差により正極リード10b,10c,負極リード11a,11bを電解液が伝う液絡が確実に防止できる。
【0036】
第1〜第3の各極板群1a,1b,1cとの接続がなされた後、封口板2は電池缶5の開口端にレーザー溶接され、電池缶5内が封口される。この後、封口板2に取り付けられたリベット4の中空部から第1の極板群1aを収容した液絡防止袋6内にアルカリ電解液が注入され、第2の極板群1b及び第3の極板群1cの上方に設けられた貫通穴からは、それぞれ第1の極板群1b及び第2の極板群1cを収容する液絡防止袋6内に電解液が注入され、注液後は図2に示すように封栓13によって貫通穴は封止される。
【0037】
前記リベット4の中空部は、その上にゴム弁体14が配置され、ゴム弁体14を包み込んで正極キャップ7がリベット4上に接合されることにより閉じられる。この正極キャップ7の上面は封口板2上に配設された構成要素を覆う樹脂カバー9に開口する正極開口部16aから外部露出して、当該電池の正極端子(+)の用に供される。また、ゴム弁体14は、電池の異常使用等の原因によって電池缶5内の圧力が異常上昇したとき、異常内圧を外部に排出する安全弁の作用をなす。正極キャップ7の側面には複数の排気穴7aが形成されており、平常状態では排気穴7aはゴム弁体14によって閉じられているが、電池缶5内の圧力が異常上昇したとき、その圧力によってゴム弁体14が圧縮されると、ゴム弁体14によって塞がれていた排気穴7aが開口し、内圧は排気穴7aから外部に放出される。この安全弁構造が設けられていることにより、異常使用等の原因によりガスが発生し、内圧が上昇して電池が破裂する事態に陥ることが防止できる。
【0038】
封口板2の上面側には、下電極15bの延出部を封口板2に接合してPTC素子(過電流・過熱保護素子)15が取り付けられ、その上電極15aは封口板2上の構成物を覆う樹脂カバー9に開口する負極開口部16bから外部露出して、当該電池の負極端子(−)の用に供される。
【0039】
前記PTC素子15は、正の温度係数を持つサーミスタで、素子温度が所定温度以上になると抵抗値が急増するデバイスである。正極端子(+)と負極端子(−)との間が何らかの原因によって短絡状態になったとき、充放電回路と直列に接続されたPTC素子15には短絡電流が流れるので、PTC素子15の阻止内部の温度が上昇し、その温度が所定温度以上になると抵抗値が急増して高抵抗状態となるトリップが生じて短絡電流を制限する。従って、短絡により当該蓄電池が損傷を受けることが防止される。また、PTC素子15は、過電流による発熱だけでなく、周囲温度の影響を受けて温度上昇すると抵抗値が増加するので、当該蓄電池が温度上昇した状態で使用されることが防止できる。例えば、真夏の炎天下に駐車したクルマの車内に当該蓄電池又はそれが装着された機器が放置されていたような場合に、電池温度は80℃を超えるまでになることがある。このようなときにPTC素子15はトリップ状態になって抵抗値が増大しているために当該蓄電池の使用は不可となり、異常温度状態で使用されることが防止される。PTC素子15は温度が下がると抵抗値は低い状態に戻るので、正常な使用可能状態に復帰する。
【0040】
前記樹脂カバー9を電池缶5及び封口板2に接合することにより、図2に示すように、頂面に正極端子(+)及び負極端子(−)を外部露出させたニッケル−水素蓄電池が構成される。この蓄電池は熱収縮シート等により外装を施し、それに製品表示、規格表示、注意書き等を記すことができる。
【0041】
上記構成において、正極端子(+)及び/又は負極端子(−)の少なくとも外部に露出する部分に金メッキを施すことが有効である。正極端子(+)及び負極端子(−)には、当該電池を接続する機器に設けられた接触端子(プローブ等)が接触接続されるので、接触抵抗を低くすることが要求される。金は酸化皮膜が形成され難く、それ自体の固有抵抗も小さいので、外部露出部分即ち接触接続部分に金メッキを施すことにより、接触抵抗の低減を図ることができる。また、金は耐腐食性にも優れているので、接触面が腐食することによる接触抵抗の増加や接触不良を無くすことができる。
【0042】
上記実施形態においては、正極キャップ7の上面が正極端子(+)に形成され、PTC素子15の上電極15aが負極端子(−)に形成されているので、金メッキは正極キャップ7及びPTC素子15の上電極15aの外部露出部分に部分的に施すのが好適である。また、正極キャップ7及びPTC素子15の上電極15aがパーツとして在る状態で全体に金メッキを施すようにしてもよい。
【0043】
上記構成は、図5に回路図として示すように、正極端子(+)と負極端子(−)との間に3個の発電要素A,B,Cが直列に接続され、外部短絡等に対処するためのPTC素子15を直列接続して、出力電圧が3.6Vのニッケル−水素蓄電池が構成されている。
【0044】
以上説明した構成は、出力電圧が3.6Vのニッケル−水素蓄電池に構成した例を示したが、組み合わせる発電要素の数は任意に選択し、これを直列及び/又は並列して所要の出力電圧と放電容量をもつ密閉型アルカリ蓄電池に構成することができる。
【0045】
図6は、10個の発電要素A〜Jを電池缶25内に収納して出力電圧が12Vのニッケル−水素蓄電池に構成した第の実施形態の構成を示すもので、発電要素A〜Jの数を増加させたのに対応させて電池缶25等を形成した他は、前述の3.6Vニッケル−水素蓄電池と同様に構成することができる。図7は、この12Vニッケル−水素蓄電池の回路図を示すもので、10個の発電要素A〜Jを直列接続して12Vの出力電圧を得ると共に、PTC素子15を直列に接続して短絡等からの保護が図られている。
【0046】
また、以上説明した構成では、発電要素A〜Jを構成する極板群1a〜1cとして積層構造のものを用いた例を示したが、帯状の正極板と負極板とをセパレータを介して扁平に巻回した巻回構造の極板群を適用することもできる。
【0047】
【発明の効果】
以上の説明のように本発明に係る密閉型アルカリ蓄電池によれば、電池缶内に複数の発電要素が収納され、複数の発電要素を直列に接続すると、ニッケル−水素蓄電池のように単電池では起電力が小さい電池であっても汎用性の高い出力電圧が得られる密閉型アルカリ蓄電池に構成することができる。また、複数の発電要素を直並列に接続すれば、出力電圧と同時に放電容量の増大化を図ることができる。また、安全機能や保護機能を小型の電池内に組み込むことができる。これらの目的を従来は組電池や電池パックなどに構成することにより達成していたが、本発明の密閉型アルカリ蓄電池は電池自体で目的を達成しているので、組電池や電池パックを構成するための部材や工数を排除することができる。
【図面の簡単な説明】
【図1】第1の実施形態に係る密閉型アルカリ蓄電池の構成を示す断面図。
【図2】第2の実施形態に係る3.6Vニッケル−水素蓄電池の外観を示す斜視図。
【図3】同上蓄電池の構成を示す断面図。
【図4】同上蓄電池を構成する発電要素の斜視図。
【図5】同上蓄電池の構成を示す回路図。
【図6】第3の実施形態に係る12Vニッケル−水素蓄電池の構成を示す斜視図。
【図7】同上蓄電池の構成を示す回路図。
【図8】従来の円筒形電池を用いた組電池の構成を示す斜視図。
【図9】従来の角形電池を用いた組電池の構成を示す斜視図。
【図10】従来の据置型集合電池の構成を示す斜視図。
【符号の説明】
A〜J 発電要素
1a,1b,1c,41a,41b,41c 極板群
2,42 封口板
3 樹脂成形板
5,25,45 電池缶
6,46 液絡防止袋(液絡防止体)
12a,12b 接続板
14 ゴム弁体(排気弁)
15 PTC素子(過電流・過熱保護素子)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sealed alkaline storage battery configured such that a highly versatile voltage can be obtained from an output voltage of an alkaline storage battery such as a nickel-hydrogen storage battery having a low electromotive force in a single battery.
[0002]
[Prior art]
The sealed alkaline storage battery targeted by the present application is a relatively small secondary battery used as a power source for portable electronic devices such as mobile phones and portable personal computers, wireless devices such as cordless phones, and the like. Mainly used for storage batteries and nickel-cadmium storage batteries.
[0003]
For example, a nickel-hydrogen storage battery is effective as a battery power source for portable devices and electric devices because it has a good balance of three elements of high capacity, high energy density, and cost performance. However, since the electromotive force (nominal voltage = 1.2 V) is low, there are many cases where a single cell cannot satisfy the operating voltage required by a device that uses a battery as a power source. In many cases, a plurality of single cells are connected in series to obtain a required output voltage. A configuration for connecting a plurality of single cells in series to obtain an output voltage required by the device is configured in an assembled battery, a battery pack, or the like.
[0004]
The assembled battery is a battery in which a plurality of single cells are connected in series or series-parallel, and the plurality of single cells are integrated by a heat shrinkable tube or the like. For example, as shown in FIG. 8, the positive and negative electrodes of four cylindrical unit cells 30 are connected in series by a connection plate 32, a thermal protector 33 is inserted into the series circuit, and the positive terminals are connected to the unit cells 30 at both ends. 34, after attaching the negative electrode terminal 35, the structure which took out the positive electrode terminal 34 and the negative electrode terminal 35 outside, and united the whole with the heat contraction tube 31 is used widely.
[0005]
Moreover, as shown in FIG. 9, the assembled battery disclosed in Japanese Patent Application Laid-Open No. 13-126690 includes a plurality (three in this case) of rectangular unit cells 200 in a frame body 101, and each unit cell 200 is accommodated. A configuration connected in series is shown.
[0006]
Moreover, as a storage battery corresponding to a case where large electric power such as an electric vehicle or a hybrid vehicle is required, one proposed by the applicants of the present application and disclosed in Japanese Patent Laid-Open No. 2001-57199 is known. As shown in FIG. 10, a plurality of (six in this case) battery cases 53 that house power generation elements are integrally connected to form an integrated battery case 52, and a plurality of storage batteries are integrated into a collective battery. It is. In this assembled battery, a plurality of storage batteries are integrally connected by sharing the adjacent ones of the battery case 53 and the power generation elements are connected in series. Further, the assembled battery is connected in the short direction. The cooling air flow path and the heat radiation protrusion are formed between the connections. The upper open end of the integrated battery case 52 is closed by a lid 54, but the internal space is partitioned by a partition corresponding to each battery case 53, adjacent power generation elements are connected in series by connecting means, and are attached to both ends in the longitudinal direction. Connected to the input / output terminal 55.
[0007]
[Problems to be solved by the invention]
In order to be able to cope with the operating voltage required by the equipment such as nickel-hydrogen storage battery with low electromotive force, a plurality of single cells are connected in series as described above to form a battery pack or an assembled battery. become. The battery pack and the assembled battery require components other than the battery, and there are problems associated with an increase in cost and an increase in volume.
[0008]
Further, when connecting a plurality of unit cells in series, as shown in FIGS. 8 and 9, the connection is facilitated by alternately turning the adjacent unit cells upside down. In the state, a single cell with the sealing portion facing downward always occurs. On the sealing portion side, a space is formed between the electrode plate group and the sealing plate. If the state where the sealing portion side faces downward is continued, an undesirable state such as the electrolyte flowing into the space occurs.
[0009]
Moreover, in the case where a plurality of single cells are integrated by a bundling means such as a pack case or a heat-shrinkable tube, the mechanical strength is inevitably lowered, and it is necessary to provide a structure for compensating for the strength reduction in portable devices and electric tools .
[0010]
An object of the present invention is to configure an alkaline storage battery having a low electromotive force so as to obtain an output voltage that can easily correspond to the operation of the device without configuring the battery pack or the assembled battery.
[0011]
[Means for Solving the Problems]
  In order to achieve the above object, a sealed alkaline storage battery according to the first invention of the present application includes a plurality of power generation elements housed in a metal battery can, each of which is housed in an insulating liquid junction prevention body. Are electrically connected in series and / or in parallel to be connected to the positive terminal and the negative terminal exposed from the sealing plate that closes the battery can.In addition, a common space is provided for each power generation element, an exhaust valve for exhausting abnormal internal pressure in the space to the outside is provided on the sealing plate, and a connection member that electrically connects a plurality of power generation elements is connected to both ends thereof A liquid junction prevention means is formed by inserting into the resin molding plate so that the portion is exposed, and the electrolyte solution constituting the power generation element is formed in a gel electrolyte solutionIt is characterized by.
[0012]
  According to the sealed alkaline storage battery according to the first aspect of the present invention, when a plurality of power generation elements housed in the liquid junction prevention body are housed in the battery can and the plurality of power generation elements are connected in series, like a nickel-hydrogen storage battery. A single battery can be configured as a sealed alkaline storage battery capable of obtaining a highly versatile output voltage even with a low electromotive force. Further, if a plurality of power generation elements are connected in series and parallel, the discharge capacity can be increased simultaneously with the output voltage. Conventionally, these objects have been achieved by configuring a battery pack or a battery pack. However, the sealed alkaline storage battery of the present invention achieves the object with the battery itself. Therefore, it is possible to eliminate members and man-hours.In addition, by providing a common space for each power generation element, and providing an exhaust valve for releasing the abnormal internal pressure in the space to the outside on the sealing plate, gas is generated from the power generation element due to abnormal use, and the inside of the sealed battery can If the pressure rises abnormally, there is a risk of rupture, but the exhaust valve connected to the space common to each power generation element releases the abnormally raised internal pressure to the outside, so that the battery rupture due to abnormal use is prevented. Furthermore, it is ensured that a liquid junction is generated between the plurality of power generation elements by inserting the connection member that electrically connects the plurality of power generation elements into the resin molding plate so that the connection portions at both ends thereof are exposed. By forming the electrolytic solution constituting the power generation element with a gel electrolyte, it is possible to suppress the flow of the electrolytic solution and more reliably prevent the occurrence of a liquid junction between the plurality of power generation elements.
[0013]
  Further, in the sealed alkaline storage battery according to the second invention of the present application, a plurality of power generation elements respectively accommodated in an insulating liquid junction prevention body are accommodated in a metal battery can, and the opening of the battery can is a sealing plate. The plurality of power generation elements are electrically connected in series and / or in parallel and connected to the plurality of components disposed on the outer surface side of the sealing plate, and the conductor surfaces of the plurality of components are connected to the positive terminal and the negative electrode. As a terminal, each is exposed to the outside through an opening provided in an insulating plate that closes the outer surface of the sealing plate.In addition, a common space is provided for each power generation element, an exhaust valve for exhausting abnormal internal pressure in the space to the outside is provided on the sealing plate, and a connection member that electrically connects a plurality of power generation elements is connected to both ends thereof A liquid junction prevention means is formed by inserting into the resin molding plate so that the portion is exposed, and the electrolyte solution constituting the power generation element is formed in a gel electrolyte solutionIt is characterized by.
[0014]
  According to the sealed alkaline storage battery according to the second aspect of the present invention, a plurality of power generation elements are housed in a liquid junction prevention body in a battery can, and the output voltage and battery capacity are not affected by the configuration of the assembled battery or battery pack. Can be increased. Further, since the sealing plate that seals the battery can is closed by the insulating plate, a terminal member, a safety valve, a protective element, and the like can be disposed on the outer surface side of the sealing plate. A sealed alkaline storage battery having a high output and a safety function is formed by exposing the conductor surfaces of these constituent members to the positive electrode terminal and the negative electrode terminal from the opening of the insulating plate.In addition, by providing a common space for each power generation element, and providing an exhaust valve for releasing the abnormal internal pressure in the space to the outside on the sealing plate, gas is generated from the power generation element due to abnormal use, and the inside of the sealed battery can If the pressure rises abnormally, there is a risk of rupture, but the exhaust valve connected to the space common to each power generation element releases the abnormally raised internal pressure to the outside, so that the battery rupture due to abnormal use is prevented. Furthermore, it is ensured that a liquid junction is generated between the plurality of power generation elements by inserting the connection member that electrically connects the plurality of power generation elements into the resin molding plate so that the connection portions at both ends thereof are exposed. By forming the electrolytic solution constituting the power generation element with a gel electrolyte, it is possible to suppress the flow of the electrolytic solution and more reliably prevent the occurrence of a liquid junction between the plurality of power generation elements.
[0017]
In addition, when an overcurrent / overheat protection element is provided in series with the positive electrode connection circuit or the negative electrode connection circuit, the device to which the storage battery is connected fails or the positive electrode terminal and the negative electrode terminal are short-circuited. The overcurrent / overheat protection element is tripped by the short-circuit current, and the resistance value is rapidly increased. Therefore, the short-circuit current is regulated, and the storage battery can be prevented from being damaged by the short-circuit.
[0018]
In addition, a member for forming a terminal by providing an electrode plate of an overcurrent / overheat protection element disposed on the outer surface side of the sealing plate or a metal member constituting a discharge valve for a positive electrode terminal or a negative electrode terminal Therefore, it is possible to reduce the size and cost.
[0019]
In addition, the electrode plate group constituting the power generation element has a laminated structure in which a plurality of positive plates and negative plates are stacked via a separator, or a winding structure in which positive plates and negative plates are wound via a separator. Can be configured.
[0021]
Further, the liquid junction prevention body can be formed by partitioning the inside of the bottomed cylindrical body into a plurality of storage chambers that accommodate the respective power generation elements by a partition body, and the plurality of liquid junction prevention bodies are integrated into a constituent member. The number can be reduced.
[0022]
In addition, it is effective to apply gold plating to the positive electrode terminal and / or the negative electrode terminal, which not only reduces contact resistance and improves wear strength when connecting the battery to equipment, but also improves corrosion resistance. be able to. When the gold plating is performed, the above-described effect can be obtained only by applying only to the externally exposed portion of the positive electrode terminal and / or the negative electrode terminal.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.First, a reference example of the present invention will be described.
[0024]
  BookReference exampleThe sealed alkaline storage battery according to FIG. 1 shows an example in which the output voltage from the positive electrode terminal to the negative electrode terminal is a nickel-hydrogen storage battery with a voltage of 3.6 V. FIG. Show.
[0025]
In FIG. 1, insulative liquid junction prevention bags (solutions) containing electrode plate groups 41a, 41b, and 41c in battery cans 45 formed in three independent power generation element storage chambers by partitions 46a and 46a, respectively. An anti-tangle body) 46 is disposed, and the electrode plate groups 41a, 41b, 41c are connected in series by connecting the positive electrode lead and the negative electrode lead drawn from the respective positive electrode plate and negative electrode plate, as shown in the figure. . The opening of the battery can 45 is sealed by a sealing plate 42 provided with liquid injection ports 48, 48, 49 corresponding to the electrode plate groups 41a, 41b, 41c. After the sealing, the electrolyte is injected from the liquid injection ports 48, 48, 49 into the three power generation element accommodation chambers divided by the partition 46a. After the injection, the injection ports 48 and 48 are closed by inserting the plugs 43 and 43, respectively, and the injection port 49 is closed by the plug 44 through the gasket 47. The positive electrode side in which the electrode plate groups 41a, 41b, 41c are connected in series is connected to a sealing plug 44 as shown in the figure, and the negative electrode side is connected to a sealing plate 42. Therefore, the plug 44 can be used for external connection with the positive electrode terminal and the sealing plate 42 or the battery can 45 as the negative electrode terminal.
[0026]
  thisReference exampleWith this configuration, three power generation elements having an electromotive force of 1.2V are accommodated in the battery can 45, and a sealed alkaline storage battery having an output voltage of 3.6V, which is connected in series, constitutes an assembled battery or a battery pack. Formed without. As described above, when a plurality of power generation elements are connected inside the battery, a liquid junction may flow due to a potential difference and the electrolyte flows through the connection leads to the adjacent power generation elements. In order to prevent this, as shown in the figure, it is effective to provide a liquid junction prevention means 50 for applying an insulating coating to the connection leads straddling adjacent power generation elements.
[0027]
  Next, the aboveAccording to reference examplesThe development of the structure and more practicality1The configuration of the embodiment will be described.
[0028]
  First1As shown in FIG. 2, the sealed alkaline storage battery according to the embodiment is configured as a flat rectangular prismatic battery, and a positive electrode terminal (+) and a negative electrode terminal (−) are provided on the top surface thereof. The shape and the output voltage are almost the same as those of the rectangular lithium ion secondary battery, and a nickel-hydrogen storage battery can be used instead of the lithium ion secondary battery.
[0029]
FIG. 3 shows the internal configuration of the sealed alkaline storage battery in a cross section taken along the line XX of FIG. 2. In the battery can 5 formed by pressing a nickel-plated steel plate into a bottomed rectangular tube, The first, second, and third power generation elements A, B, and C housed in the liquid junction prevention bag 6 made of polypropylene are housed. As is well known, the power generation elements A, B, and C are composed of a positive electrode plate, a negative electrode plate, an electrode plate group consisting of separators, and an electrolyte solution. Here, a plurality of positive electrode plates and negative electrode plates are connected via separators. Each of the first, second, and third electrode plate groups 1a, 1b, and 1c having a laminated structure and an alkaline electrolyte are accommodated in the liquid junction prevention bag 6 and have independent nickel-hydrogen storage battery functions. ing. The liquid junction prevention bag 6 may be made of a fluorine resin, a polyphenylene sulfide, or the like in addition to a polyolefin resin such as polypropylene. Further, without using a separate bag for each power generation element A, B, C, a configuration in which a plurality of power generation element accommodation chambers are formed by partitions as in the configuration of the first embodiment shown in FIG. It can also be applied. In any case, it can be easily manufactured by resin molding.
[0030]
FIG. 4 shows the structure of the power generation element A (the power generation elements B and C have the same structure), in which a plurality of positive plates 20 and a plurality of negative plates 21 accommodated in an envelope separator 22 are alternately stacked. The electrode plate group 1a is configured and stored in the liquid junction prevention bag 6. Each positive electrode plate 20 is provided with a lead lead, which are bundled and welded together with one end of the positive electrode lead 10a. Similarly, with respect to each negative electrode plate 21, the lead leads provided on each negative electrode plate 21 are bundled and welded together with one end to the negative electrode lead 11a.
[0031]
An alkaline electrolyte is injected into the liquid junction prevention bag 6 together with the electrode plate group 1 a constituted by the positive electrode plate 20, the negative electrode plate 21, and the separator 22. Since the upper part of the liquid junction prevention bag 6 is opened, it is more preferable to use a gelled alkaline electrolyte. The gelation of the alkaline electrolyte is performed by mixing a gelled compound containing a gelling agent as a main component, or applying the gelled material to the separator, or impregnating the separator with a compound mainly containing a gelling agent, After the electrode plate group 1a is accommodated in the liquid junction prevention bag 6, a method of injecting a single electrolyte into the liquid junction prevention bag 6 to gel the alkaline electrolyte can be employed. At this time, the weight of the organic compound for increasing the viscosity of the electrolytic solution is preferably 1 to 15% of the electrolytic solution. If the weight of the organic compound is less than this range, the amount of increase in the viscosity of the alkaline liquid is reduced, and it becomes difficult to suppress the movement of the alkaline liquid. If the weight of the organic compound exceeds 15% of the weight of the electrolyte, the occupied volume of the amount of the organic compound in the battery cannot be ignored, the battery's volumetric energy density is lowered, and the gas permeation of the electrode plate is reduced. This is not preferable because the battery internal pressure is extremely increased during charging.
[0032]
As a gelling agent for gelling the alkaline electrolyte, a polymer having a hydrophilic group in the side chain can be used without any particular limitation. For example, polyacrylic acid, polymethacrylic acid, acrylic acid / methacrylic acid copolymer, isobutylene / maleic acid copolymer, poly (2-acrylamido-2-methylpropanesulfonic acid), polyacryloxypropanesulfonic acid, polyvinylsulfone Examples include alkali metal salts such as acids. However, it is not always necessary that all acidic groups are alkali metal salts. These may be used alone or in combination of two or more. Of these, potassium polyacrylate, sodium polyacrylate, polypotassium methacrylate, and polysodium methacrylate are particularly preferable. The gelling agent is preferably a crosslinked polymer. For crosslinking, for example, when a polymer such as polyacrylic acid, polymethacrylic acid, or acrylic acid / methacrylic acid copolymer is prepared, a crosslinking agent such as divinylbenzene may be added.
[0033]
Each liquid junction prevention bag 6 containing the first to third electrode plate groups 1a, 1b, and 1c configured as described above is housed in the battery can 5, and the first to third electrode plate groups. The positive leads 10a, 10b, and 10c and the negative leads 11a, 11b, and 11c drawn from the respective 1a, 1b, and 1c are connected to predetermined positions.
[0034]
The sealing plate 2 for sealing the battery can 5 has a resin molded plate 3 bonded to the inside of the can. Through holes are formed in the sealing plate 2 and the resin molding plate 3 corresponding to the first to third electrode plate groups 1a, 1b, and 1c, respectively, and an electrolytic solution is injected into each liquid junction prevention bag 6. Served to do. A hollow rivet 4 is attached to a through hole above the first electrode plate group 1a with a gasket 17 so as to be insulated from the sealing plate 2 with a washer 8 fixed thereto.
[0035]
Connection plates 12a and 12b are inserted into the resin can 3 at two locations with exposed surfaces in the battery can 5, and the first to third electrode plate groups 1a, 1b and 1c are connected in series. Served to do. The positive electrode lead 10a drawn from the first electrode plate group 1a is bonded to the washer 8, and the negative electrode lead 11a is bonded to one exposed surface of the connection plate 12a. Further, the positive electrode lead 10b drawn out from the second electrode plate group 1b is joined to the other exposed surface of the connection plate 12a, and the negative electrode lead 11b is joined to one exposed surface of the connection plate 12b. Further, the positive electrode lead 10 c drawn from the third electrode plate group 1 c is bonded to the other exposed surface of the connection plate 12 b, and the negative electrode lead 11 c is bonded to the sealing plate 2 through the opening 18 formed in the resin molding plate 3. Is done. With this connection configuration, the first to third electrode plate groups 1a, 1b, and 1c are connected in series while the washer 8 is on the positive electrode side and the sealing plate 2 is on the negative electrode side. Since this series connection is made via the connection plates 12a and 12b inserted in the resin molding plate 3, the portions embedded in the resin molding plate 3 of the connection plates 12a and 12b serve to prevent liquid junctions and are adjacent to each other. Due to the potential difference between the matching power generation elements, it is possible to reliably prevent a liquid junction from passing through the electrolyte through the positive leads 10b and 10c and the negative leads 11a and 11b.
[0036]
After the connection with the first to third electrode plate groups 1a, 1b, and 1c, the sealing plate 2 is laser-welded to the open end of the battery can 5, and the inside of the battery can 5 is sealed. Thereafter, an alkaline electrolyte is injected from the hollow portion of the rivet 4 attached to the sealing plate 2 into the liquid junction prevention bag 6 containing the first electrode plate group 1a, and the second electrode plate group 1b and the third electrode plate 3b. From the through hole provided above the electrode plate group 1c, an electrolyte is injected into the liquid junction prevention bag 6 that accommodates the first electrode plate group 1b and the second electrode plate group 1c, respectively. After that, as shown in FIG.
[0037]
The hollow portion of the rivet 4 is closed when a rubber valve body 14 is disposed thereon and the positive electrode cap 7 is joined onto the rivet 4 by enclosing the rubber valve body 14. The upper surface of the positive electrode cap 7 is externally exposed from the positive electrode opening 16a that opens to the resin cover 9 that covers the components disposed on the sealing plate 2, and is used for the positive electrode terminal (+) of the battery. . Further, the rubber valve element 14 functions as a safety valve that discharges the abnormal internal pressure to the outside when the pressure in the battery can 5 rises abnormally due to abnormal use of the battery or the like. A plurality of exhaust holes 7a are formed on the side surface of the positive electrode cap 7, and the exhaust holes 7a are closed by the rubber valve element 14 in a normal state. However, when the pressure in the battery can 5 rises abnormally, the pressure is increased. When the rubber valve body 14 is compressed by this, the exhaust hole 7a closed by the rubber valve body 14 is opened, and the internal pressure is released to the outside from the exhaust hole 7a. By providing this safety valve structure, it is possible to prevent a situation in which gas is generated due to abnormal use or the like, the internal pressure increases, and the battery ruptures.
[0038]
The PTC element (overcurrent / overheat protection element) 15 is attached to the upper surface side of the sealing plate 2 by joining the extended portion of the lower electrode 15 b to the sealing plate 2, and the upper electrode 15 a is configured on the sealing plate 2. It is exposed to the outside from the negative electrode opening 16b opened in the resin cover 9 covering the object, and is used for the negative electrode terminal (-) of the battery.
[0039]
The PTC element 15 is a thermistor having a positive temperature coefficient, and the resistance value rapidly increases when the element temperature exceeds a predetermined temperature. When a short circuit occurs between the positive electrode terminal (+) and the negative electrode terminal (−) for some reason, a short circuit current flows through the PTC element 15 connected in series with the charge / discharge circuit. When the internal temperature rises and the temperature rises above a predetermined temperature, the resistance value increases rapidly, causing a trip to a high resistance state and limiting the short circuit current. Therefore, the storage battery is prevented from being damaged by the short circuit. Moreover, since the resistance value of the PTC element 15 increases as the temperature rises due to the influence of the ambient temperature as well as the heat generation due to the overcurrent, it can be prevented that the storage battery is used in a state where the temperature has risen. For example, when the storage battery or a device equipped with the storage battery is left in a car parked under a hot summer sun, the battery temperature may exceed 80 ° C. In such a case, since the PTC element 15 is in a trip state and the resistance value is increased, the storage battery cannot be used, and is prevented from being used in an abnormal temperature state. Since the resistance value of the PTC element 15 returns to a low state when the temperature decreases, the PTC element 15 returns to a normal usable state.
[0040]
By joining the resin cover 9 to the battery can 5 and the sealing plate 2, as shown in FIG. 2, a nickel-hydrogen storage battery having a positive electrode terminal (+) and a negative electrode terminal (-) exposed to the top is formed. Is done. This storage battery is covered with a heat shrink sheet or the like, and can be marked with product display, standard display, cautionary notes, and the like.
[0041]
In the above configuration, it is effective to apply gold plating to at least a portion exposed to the outside of the positive electrode terminal (+) and / or the negative electrode terminal (−). Since the contact terminal (probe etc.) provided in the apparatus which connects the said battery is contact-connected to a positive electrode terminal (+) and a negative electrode terminal (-), it is requested | required that contact resistance should be made low. Since gold is difficult to form an oxide film and its own specific resistance is small, contact resistance can be reduced by applying gold plating to an externally exposed portion, that is, a contact connection portion. Further, since gold is excellent in corrosion resistance, it is possible to eliminate an increase in contact resistance and contact failure due to corrosion of the contact surface.
[0042]
In the above embodiment, since the upper surface of the positive electrode cap 7 is formed on the positive electrode terminal (+) and the upper electrode 15a of the PTC element 15 is formed on the negative electrode terminal (−), the gold plating is performed on the positive electrode cap 7 and the PTC element 15. It is preferable to partially apply to the externally exposed portion of the upper electrode 15a. Alternatively, the entire surface may be plated with gold in a state where the positive electrode cap 7 and the upper electrode 15a of the PTC element 15 are present as parts.
[0043]
In the above configuration, as shown in FIG. 5 as a circuit diagram, three power generating elements A, B, and C are connected in series between the positive terminal (+) and the negative terminal (−) to cope with an external short circuit or the like. Therefore, a nickel-hydrogen storage battery having an output voltage of 3.6 V is configured by connecting PTC elements 15 in series.
[0044]
The configuration described above shows an example in which a nickel-hydrogen storage battery having an output voltage of 3.6 V is shown. However, the number of power generation elements to be combined is arbitrarily selected, and the required output voltage is obtained in series and / or parallel. And a sealed alkaline storage battery having a discharge capacity.
[0045]
  FIG. 6 shows a configuration in which ten power generation elements A to J are accommodated in a battery can 25 and configured as a nickel-hydrogen storage battery having an output voltage of 12V.2This embodiment is configured in the same manner as the 3.6 V nickel-hydrogen storage battery described above except that the battery can 25 and the like are formed corresponding to the increase in the number of power generation elements A to J. be able to. FIG. 7 shows a circuit diagram of the 12V nickel-hydrogen storage battery. Ten power generation elements A to J are connected in series to obtain an output voltage of 12V, and a PTC element 15 is connected in series to short-circuit the circuit. Protected from.
[0046]
Moreover, although the example which used the thing of a laminated structure was shown as the electrode group 1a-1c which comprises electric power generation element AJ in the structure demonstrated above, a strip | belt-shaped positive electrode plate and a negative electrode plate are flattened through the separator. It is also possible to apply an electrode plate group having a wound structure wound around.
[0047]
【The invention's effect】
As described above, according to the sealed alkaline storage battery according to the present invention, when a plurality of power generation elements are housed in a battery can and connected in series, a single battery such as a nickel-hydrogen storage battery is used. Even a battery having a small electromotive force can be configured as a sealed alkaline storage battery capable of obtaining a highly versatile output voltage. Further, if a plurality of power generation elements are connected in series and parallel, the discharge capacity can be increased simultaneously with the output voltage. In addition, a safety function and a protection function can be incorporated in a small battery. Conventionally, these objects have been achieved by configuring a battery pack or a battery pack. However, the sealed alkaline storage battery of the present invention achieves the object with the battery itself. Therefore, it is possible to eliminate members and man-hours.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a configuration of a sealed alkaline storage battery according to a first embodiment.
FIG. 2 is a perspective view showing an appearance of a 3.6V nickel-hydrogen storage battery according to a second embodiment.
FIG. 3 is a cross-sectional view showing the configuration of the storage battery.
FIG. 4 is a perspective view of a power generation element constituting the storage battery.
FIG. 5 is a circuit diagram showing the configuration of the storage battery.
FIG. 6 is a perspective view showing a configuration of a 12V nickel-hydrogen storage battery according to a third embodiment.
FIG. 7 is a circuit diagram showing the configuration of the storage battery.
FIG. 8 is a perspective view showing a configuration of a battery pack using a conventional cylindrical battery.
FIG. 9 is a perspective view showing a configuration of a battery pack using a conventional square battery.
FIG. 10 is a perspective view showing a configuration of a conventional stationary assembled battery.
[Explanation of symbols]
A to J Power generation element
1a, 1b, 1c, 41a, 41b, 41c
2,42 Sealing plate
3 Resin molding plate
5, 25, 45 Battery can
6,46 Liquid junction prevention bag (liquid junction prevention body)
12a, 12b connecting plate
14 Rubber valve (exhaust valve)
15 PTC element (overcurrent / overheat protection element)

Claims (10)

絶縁性の液絡防止体にそれぞれ収容された複数の発電要素が金属製の電池缶内に収容され、複数の発電要素が直列及び/又は並列に電気的接続されて前記電池缶を閉じる封口板から外部露出する正極端子及び負極端子に接続されるとともに、
各発電要素に共通の空間が設けられ、封口板に空間内の異常内圧を外部に排出する排気弁が設けられ、
複数の発電要素を電気的接続する接続部材に、その両端の接続部が露出するように樹脂成形板にインサートして液絡防止手段が形成され、
発電要素を構成する電解液は、ゲル状電解液に形成されてなることを特徴とする密閉型アルカリ蓄電池。
A plurality of power generation elements respectively housed in an insulating liquid junction prevention body are housed in a metal battery can, and the plurality of power generation elements are electrically connected in series and / or in parallel to close the battery can is connected to the positive and negative terminals for external exposure from Rutotomoni,
A common space is provided for each power generation element, and an exhaust valve for discharging the abnormal internal pressure in the space to the outside is provided on the sealing plate.
A connection member that electrically connects a plurality of power generation elements is inserted into the resin molding plate so that the connection portions at both ends thereof are exposed, and a liquid junction prevention means is formed,
Electrolyte constituting the power generating element is sealed alkaline storage battery characterized by comprising formed into a gel electrolyte.
絶縁性の液絡防止体にそれぞれ収容された複数の発電要素が金属製の電池缶内に収容され、この電池缶の開口部が封口板により封口され、複数の発電要素が直列及び/又は並列に電気的接続されて封口板の外面側に配設された複数の構成要素に接続され、複数の構成要素の導体面を正極端子及び負極端子として封口板の外面側を閉じる絶縁板に設けられた開口部からそれぞれ外部露出させるとともに、
各発電要素に共通の空間が設けられ、封口板に空間内の異常内圧を外部に排出する排気弁が設けられ、
複数の発電要素を電気的接続する接続部材に、その両端の接続部が露出するように樹脂成形板にインサートして液絡防止手段が形成され、
発電要素を構成する電解液は、ゲル状電解液に形成されてなることを特徴とする密閉型アルカリ蓄電池。
A plurality of power generation elements respectively accommodated in the insulating liquid junction prevention body are accommodated in a metal battery can, the opening of the battery can is sealed by a sealing plate, and the plurality of power generation elements are connected in series and / or in parallel. Connected to a plurality of components disposed on the outer surface side of the sealing plate and provided on an insulating plate that closes the outer surface side of the sealing plate with the conductor surfaces of the plurality of components as positive and negative terminals. was Rutotomoni is externally exposed respectively from the opening,
A common space is provided for each power generation element, and an exhaust valve for discharging the abnormal internal pressure in the space to the outside is provided on the sealing plate.
A connection member that electrically connects a plurality of power generation elements is inserted into the resin molding plate so that the connection portions at both ends thereof are exposed, and a liquid junction prevention means is formed,
Electrolyte constituting the power generating element is sealed alkaline storage battery characterized by comprising formed into a gel electrolyte.
正極接続回路又は負極接続回路と直列に過電流・過熱保護素子が配設されてなる請求項1又は2に記載の密閉型アルカリ蓄電池。The positive electrode connection circuit or sealed alkaline storage battery according to claim 1 or 2 overcurrent and overheat protection elements arranged therein the negative electrode connection circuit in series. 封口板の外面側に配設された過電流・過熱保護素子の電極板が正極端子又は負極端子に形成されてなる請求項2又は3に記載の密閉型アルカリ蓄電池。The sealed alkaline storage battery according to claim 2 or 3 , wherein an electrode plate of an overcurrent / overheat protection element disposed on an outer surface side of the sealing plate is formed on a positive electrode terminal or a negative electrode terminal. 排出弁を構成する金属部材が正極端子又は負極端子に形成されてなる請求項2又は3に記載の密閉型アルカリ蓄電池。The sealed alkaline storage battery according to claim 2 or 3 , wherein the metal member constituting the discharge valve is formed on the positive electrode terminal or the negative electrode terminal. 発電要素は、複数枚の正極板と負極板とをセパレータを介して積層した積層構造の極板群を備えてなる請求項1〜いずれか一項に記載の密閉型アルカリ蓄電池。Power generating element, a plurality of sealed alkaline storage battery according to claim 1 to 5 any one of the positive electrode plate and the negative electrode plate comprising comprises a electrode plate group of a laminated structure formed by laminating with a separator. 発電要素は、正極板と負極板とをセパレータを介して巻回した巻回構造の極板群を備えてなる請求項1〜いずれか一項に記載の密閉型アルカリ蓄電池。Power generating element sealed alkaline storage battery according to claim 1 to 5 any one consisting includes a electrode plate group of winding structure by winding via a separator and a positive electrode plate and the negative electrode plate. 液絡防止体は、有底筒状体の内部が各発電要素を収容する複数の収容室に仕切体により仕切られてなる請求項1〜いずれか一項に記載の密閉型アルカリ蓄電池。The sealed alkaline storage battery according to any one of claims 1 to 7 , wherein the liquid junction prevention body is partitioned by a partitioning body into a plurality of storage chambers in which the inside of the bottomed cylindrical body stores each power generation element. 正極端子及び/又は負極端子に金メッキが施されてなる請求項2、いずれか一項に記載の密閉型アルカリ蓄電池。Positive terminal and / or gold-plated to the negative terminal is being subjected claim 2, 4, 5 sealed alkaline storage battery according to any one. 金メッキは、正極端子及び/又は負極端子の外部露出部分にのみ施されてなる請求項に記載の密閉型アルカリ蓄電池。The sealed alkaline storage battery according to claim 9 , wherein the gold plating is performed only on an externally exposed portion of the positive electrode terminal and / or the negative electrode terminal.
JP2002258337A 2001-10-01 2002-09-04 Sealed alkaline storage battery Expired - Fee Related JP4507487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002258337A JP4507487B2 (en) 2001-10-01 2002-09-04 Sealed alkaline storage battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001304953 2001-10-01
JP2001-304953 2001-10-01
JP2002258337A JP4507487B2 (en) 2001-10-01 2002-09-04 Sealed alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2003178796A JP2003178796A (en) 2003-06-27
JP4507487B2 true JP4507487B2 (en) 2010-07-21

Family

ID=26623516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002258337A Expired - Fee Related JP4507487B2 (en) 2001-10-01 2002-09-04 Sealed alkaline storage battery

Country Status (1)

Country Link
JP (1) JP4507487B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5368964B2 (en) * 2009-12-17 2013-12-18 Udトラックス株式会社 Power storage module
US9543562B2 (en) * 2010-11-01 2017-01-10 Samsung Sdi Co., Ltd. Secondary battery
DE102011112634A1 (en) * 2011-09-05 2013-03-07 Audi Ag Method for manufacturing a high-voltage battery and battery arrangement
US10096865B2 (en) 2013-12-13 2018-10-09 Hitachi Automotive Systems, Ltd. Secondary cell module
CN106684465A (en) * 2016-12-23 2017-05-17 东莞威胜储能技术有限公司 Liquid metal battery
WO2023105987A1 (en) * 2021-12-09 2023-06-15 株式会社Gsユアサ Power storage element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55114173U (en) * 1979-02-06 1980-08-12
JPS5912574A (en) * 1982-07-09 1984-01-23 Japan Storage Battery Co Ltd Sealed type multiple alkaline battery
JPH09219187A (en) * 1996-02-08 1997-08-19 Matsushita Electric Ind Co Ltd Sealed storage battery
JPH09298067A (en) * 1996-03-08 1997-11-18 Hitachi Maxell Ltd Nickel-hydrogen layered assembly battery
JP2001196048A (en) * 2000-01-07 2001-07-19 Matsushita Electric Ind Co Ltd Secondary battery with battery protection circuit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646362A (en) * 1987-06-29 1989-01-10 Matsushita Electric Ind Co Ltd Enclosed type lead storage battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55114173U (en) * 1979-02-06 1980-08-12
JPS5912574A (en) * 1982-07-09 1984-01-23 Japan Storage Battery Co Ltd Sealed type multiple alkaline battery
JPH09219187A (en) * 1996-02-08 1997-08-19 Matsushita Electric Ind Co Ltd Sealed storage battery
JPH09298067A (en) * 1996-03-08 1997-11-18 Hitachi Maxell Ltd Nickel-hydrogen layered assembly battery
JP2001196048A (en) * 2000-01-07 2001-07-19 Matsushita Electric Ind Co Ltd Secondary battery with battery protection circuit

Also Published As

Publication number Publication date
JP2003178796A (en) 2003-06-27

Similar Documents

Publication Publication Date Title
JP4579880B2 (en) Secondary battery
KR101252981B1 (en) Pouch of improved safety for secondary battery and secondary battery, battery pack using the same
KR101029837B1 (en) Novel battery module and medium and large battery packs comprising the same
US8029926B2 (en) Rechargeable battery with PTC device
KR101155889B1 (en) Rechargeable battery
CN101478033B (en) Squeeze pin and secondary battery using the same
KR100823510B1 (en) Battery module and method for manufacturing the same
US8936860B2 (en) Battery pack with reinforcing member
KR100869803B1 (en) Battery module
US20060099501A1 (en) Secondary battery
KR100814853B1 (en) Battery module
KR100867922B1 (en) Battery pack
US7294433B2 (en) Closed alkaline storage battery
EP2058875A2 (en) Secondary battery with protection circuit module
KR101146465B1 (en) Pouch type secondary battery and the fabrication method thereof
KR101367751B1 (en) secondary battery and manufacturing method thereof
KR20180095982A (en) Secondary Battery with improved Stability having Heat Expandable layer and Method thereof
KR20060059699A (en) Pouch type lithium secondary battery and method of using the same
EP1146579B1 (en) Non-aqueous electrolyte rechargeable battery
KR100516772B1 (en) Secondary Battery having a Tap in Short Part of Can
US9059456B2 (en) Rechargeable battery and battery module
JP4507487B2 (en) Sealed alkaline storage battery
KR102179687B1 (en) Battery pack and method for manufacturing the same
KR20140091222A (en) Pouch type secondary battery and battery pack including the same
KR101655275B1 (en) Secondary battery including layered welding zone having PTC-characteristics and Manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090518

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091026

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091228

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20100120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees