JP4506307B2 - Manufacturing method of grid polarizer - Google Patents

Manufacturing method of grid polarizer Download PDF

Info

Publication number
JP4506307B2
JP4506307B2 JP2004193737A JP2004193737A JP4506307B2 JP 4506307 B2 JP4506307 B2 JP 4506307B2 JP 2004193737 A JP2004193737 A JP 2004193737A JP 2004193737 A JP2004193737 A JP 2004193737A JP 4506307 B2 JP4506307 B2 JP 4506307B2
Authority
JP
Japan
Prior art keywords
tool
fine
grid
less
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004193737A
Other languages
Japanese (ja)
Other versions
JP2006017879A (en
Inventor
昌彦 林
仁志 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Priority to JP2004193737A priority Critical patent/JP4506307B2/en
Priority to EP05765218A priority patent/EP1767965A4/en
Priority to US11/631,298 priority patent/US20080117509A1/en
Priority to KR1020077002257A priority patent/KR20070041540A/en
Priority to PCT/JP2005/012111 priority patent/WO2006004010A1/en
Publication of JP2006017879A publication Critical patent/JP2006017879A/en
Application granted granted Critical
Publication of JP4506307B2 publication Critical patent/JP4506307B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、グリッド偏光子の製造方法に関する。さらに詳しくは、本発明は、サブミクロンオーダーの格子形状を有するグリッド偏光子を、精密微細加工及び蒸着により大面積で経済的に製造することができるグリッド偏光子の製造方法に関する。   The present invention relates to a method for manufacturing a grid polarizer. More specifically, the present invention relates to a method of manufacturing a grid polarizer that can economically manufacture a grid polarizer having a lattice shape on the order of submicrons on a large area by precision microfabrication and vapor deposition.

グリッド偏光子は、導体細線を対象光の波長以下のピッチでグリッド状に平行に配列させた偏光子である。導体グリッドと平行な方向に振動している光の電界成分はグリッド偏光子により反射され、導体グリッドと垂直な方向に振動している光の電界成分はグリッド偏光子を透過する。図7は、グリッド偏光子の概念的説明図である。グリッド偏光子の偏光特性は、導体グリッド10の幅wとピッチpに影響され、ピッチpが小さいほど偏光特性がよくなり、w/pは0.5〜0.7がよいとされている。このために、優れた偏光特性を有するグリッド偏光子を経済的に製造する方法の開発が進められている。
例えば、赤外域の光に対して透過率及び偏光特性のよいグリッド偏光子として、測定光に対して吸収の少ない基板を光学研磨し、同基板上に反射防止膜を積層し、その反射防止膜上に導体の高密度な平行線パターンを形成したグリッド偏光子が提案され、グリッド基板上のフォトレジストに、ホログラフィック露光法による二光束干渉縞を焼き付ける方法が例示されている(特許文献1)。また、プレーナプロセスで金属グリッド型偏光素子を製造する量産性に適した方法として、電子ビームの量を場所によって変化させて露光したポリメチルメタクリレート膜を現像することにより、鋸歯状の断面を持ったストライプ状パターンを基盤の上に作成し、これから金属のスタンパーを作成し、スタンパーから多数のレプリカを作成し、斜め方向から蒸着を行い、透明保護膜をコーティングする方法が提案されている(特許文献2)。さらに、比較的簡単な工程で、安価な材料からワイヤーグリット型の偏光子を製造する方法として、特定の波長範囲にある光を透過させない基板の表裏両面にホトレジスト層を設け、該光を用いて、光の干渉によって複数の平行線パターンを基板の両面に露光させて現像し、基板の両面に複数の凹凸による平行線パターンを形成させ、該平行線パターンの凸部頂上及びその近傍にのみ金属を蒸着させるワイヤーグリット型偏光子の製造方法が提案されている(特許文献3)。
しかし、フォトレジスト層やポリメチルメタクリレート膜を現像する方法では、現像後のグリッド側面部の平滑性が悪いために偏光子の光学特性が落ち、また、大型のグリッド偏光子を製造することは容易ではなかった。
特開平2−228608号公報(第1−2頁、第1図) 特開平7−294730号公報(第2頁、図1) 特開2001−330728号公報(第2頁、図1)
The grid polarizer is a polarizer in which conductor thin wires are arranged in parallel in a grid at a pitch equal to or less than the wavelength of the target light. The electric field component of light oscillating in a direction parallel to the conductor grid is reflected by the grid polarizer, and the electric field component of light oscillating in the direction perpendicular to the conductor grid is transmitted through the grid polarizer. FIG. 7 is a conceptual explanatory diagram of a grid polarizer. The polarization characteristics of the grid polarizer are affected by the width w and pitch p of the conductor grid 10, and the smaller the pitch p, the better the polarization characteristics, and w / p is preferably 0.5 to 0.7. For this reason, development of a method for economically producing a grid polarizer having excellent polarization characteristics has been advanced.
For example, as a grid polarizer that has good transmittance and polarization characteristics for infrared light, a substrate that absorbs less measurement light is optically polished, and an antireflection film is laminated on the substrate, and the antireflection film A grid polarizer in which a high-density parallel line pattern of conductors is formed has been proposed, and a method of baking two-beam interference fringes on a photoresist on a grid substrate by a holographic exposure method is exemplified (Patent Document 1). . In addition, as a method suitable for mass production of a metal grid type polarizing element by a planar process, the exposed polymethylmethacrylate film is developed by changing the amount of electron beam depending on the location, thereby having a sawtooth cross section. A method has been proposed in which a striped pattern is created on a substrate, a metal stamper is created from this, a large number of replicas are created from the stamper, vapor deposition is performed from an oblique direction, and a transparent protective film is coated (Patent Document) 2). Furthermore, as a method of manufacturing a wire grit type polarizer from an inexpensive material by a relatively simple process, a photoresist layer is provided on both front and back surfaces of a substrate that does not transmit light in a specific wavelength range, and the light is used. A plurality of parallel line patterns are exposed and developed on both sides of the substrate by light interference, and a parallel line pattern is formed on both sides of the substrate by a plurality of projections and depressions. A method for manufacturing a wire grit-type polarizer in which is vapor-deposited has been proposed (Patent Document 3).
However, in the method of developing a photoresist layer or a polymethylmethacrylate film, the optical properties of the polarizer are degraded due to poor smoothness of the grid side surface after development, and it is easy to produce a large grid polarizer It wasn't.
JP-A-2-228608 (page 1-2, FIG. 1) JP-A-7-294730 (second page, FIG. 1) JP 2001-330728 A (2nd page, FIG. 1)

本発明は、サブミクロンオーダーの格子形状を有するグリッド偏光子を、精密微細加工及び蒸着により大面積で経済的に製造することができるグリッド偏光子の製造方法を提供することを目的としてなされたものである。   The present invention was made for the purpose of providing a grid polarizer manufacturing method capable of economically manufacturing a grid polarizer having a submicron-order lattice shape with a large area by precision microfabrication and vapor deposition. It is.

本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、モース硬度9以上の材料から高エネルギー線を用いて工具を作製し、該工具を使用して金型部材上にサブミクロンオーダーの微細格子形状を形成し、該金型部材の微細格子形状を透明樹脂成形体に転写し、該微細格子形状が転写された透明樹脂成形体に導電性反射体を蒸着することにより、微細格子形状を有するグリッド偏光子を大面積で経済的に製造し得ることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)(A)モース硬度9以上の材料を高エネルギー線を用いて加工し、先端に幅600nm以下の突起を形成してなる工具を作製し、(B )該工具を使用して金型部材上に、幅50〜600nm、ピッチ50〜1,000nm、高さ50〜800nmの微細格子形状を形成し、(C)該金型部材の微細格子形状を透明樹脂成形体に転写し、(D)該微細格子形状が転写された透明樹脂成形体に導電性反射体を蒸着することを特徴とするグリッド偏光子の製造方法、
(2)(A)モース硬度9以上の材料を高エネルギー線を用いて加工し、先端に幅600nm以下の突起を形成してなる工具を作製し、(B)該工具を使用して金型部材上に、幅50〜600nm、ピッチ50〜1,000nm、高さ50〜800nmの微細格子形状を形成し、(C)該金型部材の微細格子形状を金属版に転写し、(D)該金属版の微細格子形状を透明樹脂成形体に転写し、(E)該微細格子形状が転写された透明樹脂成形体に導電性反射体を蒸着することを特徴とするグリッド偏光子の製造方法、
(3)工具に形成された突起が複数である(1)又は(2)に記載のグリッド偏光子の製造方法、
(4)(B)工程が、工具を使用して微細格子形状を切削加工して形成する工程である(1)、(2)又は(3)に記載のグリッド偏光子の製造方法。
(5)金型部材が、ベースとなる金型用鋼材上に、ビッカース硬度が40〜350の金属を材料とする金属層を設けた部材である(1)ないし(4)のいずれか1項に記載のグリッド偏光子の製造方法。
(6)X、Y、Z移動軸の精度が100nm以下の精密微細加工機と、表面算術平均粗さ(Ra)10nm以下の工具を用い、温度±0.5℃以下に管理され、0.5Hz以上の振動の変位が50μm以下に管理された恒温低振動室内で、微細格子形状を金型部材上に形成する(1)ないし(5)のいずれか1項に記載のグリッド偏光子の製造方法。
(7)透明樹脂成形体が、吸水率0.3重量%以下である(1)ないし(6)のいずれか1項に記載のグリッド偏光子の製造方法。
As a result of intensive research to solve the above problems, the present inventors have produced a tool using a high energy beam from a material having a Mohs hardness of 9 or more, and used the tool to form a sub tool on the mold member. By forming a fine grid shape of micron order, transferring the fine grid shape of the mold member to a transparent resin molded body, and depositing a conductive reflector on the transparent resin molded body to which the fine grid shape is transferred, It has been found that a grid polarizer having a fine lattice shape can be produced economically in a large area, and the present invention has been completed based on this finding.
That is, the present invention
(1) (A) A material having a Mohs hardness of 9 or higher is processed using a high-energy beam to produce a tool having a protrusion having a width of 600 nm or less at the tip, and (B) a mold using the tool. On the member, a fine lattice shape having a width of 50 to 600 nm, a pitch of 50 to 1,000 nm, and a height of 50 to 800 nm is formed, and (C) the fine lattice shape of the mold member is transferred to a transparent resin molded body. D) A method for producing a grid polarizer, comprising depositing a conductive reflector on the transparent resin molded body to which the fine lattice shape is transferred,
(2) (A) A material having a Mohs hardness of 9 or higher is processed using a high-energy beam to produce a tool having a protrusion having a width of 600 nm or less at the tip, and (B) a mold using the tool. On the member, a fine lattice shape having a width of 50 to 600 nm, a pitch of 50 to 1,000 nm, and a height of 50 to 800 nm is formed. (C) The fine lattice shape of the mold member is transferred to a metal plate, (D) A method for producing a grid polarizer, comprising: transferring a fine grid shape of the metal plate to a transparent resin molded body; and (E) depositing a conductive reflector on the transparent resin molded body to which the fine grid shape is transferred. ,
(3) projection formed on the engineering tool is plural (1) or a method of manufacturing a grid polarizer according to (2),
(4) The method for manufacturing a grid polarizer according to (1), (2) or (3), wherein the step (B) is a step of forming a fine lattice shape by cutting using a tool.
(5) Any one of (1) to (4), wherein the mold member is a member in which a metal layer made of a metal having a Vickers hardness of 40 to 350 is provided on a mold steel material serving as a base. The manufacturing method of the grid polarizer of description.
(6) The precision of the X, Y, and Z movement axes is controlled to a temperature of ± 0.5 ° C. or less using a precision micro-machining machine having a precision of 100 nm or less and a tool having a surface arithmetic average roughness (Ra) of 10 nm or less. The manufacturing of the grid polarizer according to any one of (1) to (5), wherein a fine lattice shape is formed on a mold member in a constant temperature and low vibration chamber in which a displacement of vibration of 5 Hz or more is controlled to 50 μm or less. Method.
(7) The method for producing a grid polarizer according to any one of (1) to (6), wherein the transparent resin molded body has a water absorption rate of 0.3% by weight or less.

本発明のグリッド偏光子の製造方法によれば、サブミクロンオーダーの微細な格子形状を有するグリッド偏光子を、精密微細加工及び蒸着により大面積で経済的に製造することができる。   According to the method for manufacturing a grid polarizer of the present invention, a grid polarizer having a fine lattice shape on the order of submicrons can be economically manufactured in a large area by precision microfabrication and vapor deposition.

本発明のグリッド偏光子の製造方法の第一の態様においては、(A)モース硬度9以上の材料を高エネルギー線を用いて加工し、先端に幅600nm以下の突起を形成してなる工具を作製し、(B)該工具を使用して金型部材上に、幅50〜600nm、ピッチ50〜1,000nm、高さ50〜800nmの微細格子形状を形成し、(C)該金型部材の微細格子形状を透明樹脂成形体に転写し、(D)該微細格子形状が転写された透明樹脂成形体に導電性反射体を蒸着する。
本発明のグリッド偏光子の製造方法の第二の態様においては、(A)モース硬度9以上の材料を高エネルギー線を用いて加工し、先端に幅600nm以下の突起を形成してなる工具を作製し、(B)該工具を使用して金型部材上に、幅50〜600nm、ピッチ50〜1,000nm、高さ50〜800nmの微細格子形状を形成し、(C)該金型部材の微細格子形状を金属版に転写し、(D)該金属版の微細格子形状を透明樹脂成形体に転写し、(E)該微細格子形状が転写された透明樹脂成形体に導電性反射体を蒸着する。
図1は、本発明方法における工具の作製法の一態様の説明図である。モース硬度9以上の材料1を、高エネルギー線2を用いて加工し、先端の面を溝状に彫り込むことにより、先端に幅が600nm以下の直線状の突起3を形成する。図1では、直線状突起が平行に複数本並んでいる。本発明方法に用いるモース硬度9以上の材料としては、ダイヤモンド、立方晶窒化ホウ素、コランダムなどを挙げることができる。これらの材料は、単結晶又は焼結体として用いることができる。単結晶として用いることが、加工精度と工具寿命の面で好ましく、単結晶ダイヤモンド又は立方晶窒化ホウ素が硬度が高いためにより好ましく、単結晶ダイヤモンドが特に好ましい。焼結体としては、例えば、コバルト、スチール、タングステン、ニッケル、ブロンズなどを焼結剤とするメタルボンド、長石、可溶性粘土、耐火粘土、フリットなどを焼結剤とするビトリファイドボンドなどを挙げることができる。これらの中で、ダイヤモンドメタルボンドを好適に用いることができる。
In the first aspect of the method for producing a grid polarizer of the present invention, (A) a tool formed by processing a material having a Mohs hardness of 9 or more using a high energy beam and forming a protrusion having a width of 600 nm or less at the tip. (B) forming a fine lattice shape having a width of 50 to 600 nm, a pitch of 50 to 1,000 nm, and a height of 50 to 800 nm on the mold member using the tool, and (C) the mold member The fine grid shape is transferred to a transparent resin molded body, and (D) a conductive reflector is deposited on the transparent resin molded body to which the fine grid shape is transferred.
In the second aspect of the method for producing a grid polarizer of the present invention, (A) a tool formed by processing a material having a Mohs hardness of 9 or higher using a high energy beam and forming a protrusion having a width of 600 nm or less at the tip. (B) forming a fine lattice shape having a width of 50 to 600 nm, a pitch of 50 to 1,000 nm, and a height of 50 to 800 nm on the mold member using the tool, and (C) the mold member (D) the fine grid shape of the metal plate is transferred to a transparent resin molded body, and (E) the conductive reflector is transferred to the transparent resin molded body to which the fine grid shape is transferred. Is vapor-deposited.
FIG. 1 is an explanatory view of an embodiment of a method for producing a tool in the method of the present invention. The material 1 having a Mohs hardness of 9 or more is processed using the high energy beam 2 and the tip surface is engraved into a groove shape to form a linear protrusion 3 having a width of 600 nm or less at the tip. In FIG. 1, a plurality of linear protrusions are arranged in parallel. Examples of the material having a Mohs hardness of 9 or more used in the method of the present invention include diamond, cubic boron nitride, and corundum. These materials can be used as single crystals or sintered bodies. Use as a single crystal is preferable in terms of processing accuracy and tool life, and single crystal diamond or cubic boron nitride is more preferable because of its high hardness, and single crystal diamond is particularly preferable. Examples of the sintered body include metal bonds using cobalt, steel, tungsten, nickel, bronze, etc. as a sintering agent, vitrified bonds using feldspar, soluble clay, refractory clay, frit, etc. as a sintering agent. it can. Among these, diamond metal bonds can be preferably used.

本発明方法に用いる高エネルギー線としては、例えば、レーザビーム、イオンビーム、電子ビームなどを挙げることができる。これらの中で、イオンビームと電子ビームを好適に用いることができる。イオンビームによる加工は、材料の表面にフロン、塩素などの活性ガスを吹き付けながらイオンビームを照射するイオンビーム援用化学加工を行うことが好ましい。電子ビームによる加工は、材料の表面に酸素ガスなどの活性ガスを吹き付けながら電子ビームを照射する電子ビーム援用化学加工を行うことが好ましい。ビーム援用化学加工を行うことにより、エッチング速度を速め、スパッタされた物質の再付着を防ぎ、サブミクロンオーダーの精度の高い極微細加工を効率よく行うことができる。
本発明方法において、工具の先端の突起の幅は600nm以下であり、より好ましくは300nm以下である。突起の幅は、その加工方向に垂直な断面形状の先端部分を計測した値である。突起の幅が600nmを超えると、グリッド偏光子のピッチが大きくなりすぎて、可視光に対して良好な偏光特性が得られないおそれがある。また、突起の断面の形状は、根元に近い部分の幅も600nm以下であるものが好ましい。本発明方法において、突起の形状に特に制限はなく、例えば、突起の加工方向と垂直な平面で切断した断面が長方形、三角形、半円形、台形など、又は、これらを若干変形させた形状などを挙げることができる。これらの中で、断面が長方形の形状は、この形状を転写して得られる透明樹脂成形体に導電性反射体を蒸着するとき、非蒸着部分を容易に残すことができるので、好適に用いることができる。また、断面が三角形の形状は、蒸着の方向を工夫することにより、非蒸着部分を容易に残すことができるので、好適に用いることができる。
Examples of the high energy beam used in the method of the present invention include a laser beam, an ion beam, and an electron beam. Among these, an ion beam and an electron beam can be preferably used. The ion beam processing is preferably performed using ion beam-assisted chemical processing in which an ion beam is irradiated while blowing an active gas such as chlorofluorocarbon or chlorine onto the surface of the material. The electron beam processing is preferably performed by electron beam assisted chemical processing in which an electron beam is irradiated while an active gas such as oxygen gas is blown onto the surface of the material. By performing beam-assisted chemical processing, it is possible to increase the etching rate, prevent re-deposition of the sputtered material, and efficiently perform submicron-order highly accurate ultrafine processing.
In the method of the present invention, the width of the protrusion at the tip of the tool is 600 nm or less, more preferably 300 nm or less. The width of the protrusion is a value obtained by measuring a tip portion having a cross-sectional shape perpendicular to the processing direction. If the width of the protrusion exceeds 600 nm, the pitch of the grid polarizer becomes too large, and there is a possibility that good polarization characteristics cannot be obtained for visible light. Further, the shape of the cross section of the protrusion is preferably such that the width of the portion close to the root is 600 nm or less. In the method of the present invention, the shape of the protrusion is not particularly limited, and for example, a cross section cut along a plane perpendicular to the processing direction of the protrusion is a rectangle, a triangle, a semicircle, a trapezoid, or a shape obtained by slightly deforming these. Can be mentioned. Among these, the shape having a rectangular cross section is preferably used because a non-deposition portion can be easily left when a conductive reflector is deposited on a transparent resin molding obtained by transferring this shape. Can do. In addition, a triangular cross section can be preferably used because the non-deposition portion can be easily left by devising the direction of vapor deposition.

本発明方法において、工具の突起の数に特に制限はなく、1又は複数とすることができる。工具の突起の数は、5以上であることが好ましく、10以上であることがより好ましく、20以上であることがさらに好ましい。一つの工具の突起の数を複数とすることにより、工具の一回の加工で金型部材に複数本の格子形状を形成し、金型部材を効率的に加工することができ、また、不規則性が生じやすい隣接する加工箇所の数を減少することができる。
図2は、本発明方法における金型部材の加工方法の一態様の説明図である。先端に直線状の突起を有する工具4を使用して、金型部材5上に幅50〜600nm、ピッチ50〜1,000nm、高さ50〜800nmの微細格子形状を形成する。幅50nm未満、ピッチ50nm未満又は高さ50nm未満の突起の加工による形成は、極めて困難となるおそれがある。突起の幅が600nm、ピッチが1,000nmを超えると、グリッド偏光子の偏光特性が低下するおそれがあり、高さが800nmを超えると、透明樹脂成形体への転写時に正確に形状を転写することが困難となるおそれがある。
In the method of the present invention, the number of protrusions on the tool is not particularly limited, and can be one or more. The number of protrusions of the tool is preferably 5 or more, more preferably 10 or more, and further preferably 20 or more. By making the number of protrusions of one tool plural, it is possible to form a plurality of lattice shapes on the mold member by one machining of the tool, and to efficiently process the mold member. It is possible to reduce the number of adjacent machining points where regularity is likely to occur.
FIG. 2 is an explanatory view of one embodiment of a method for processing a mold member in the method of the present invention. Using the tool 4 having a linear protrusion at the tip, a fine lattice shape having a width of 50 to 600 nm, a pitch of 50 to 1,000 nm, and a height of 50 to 800 nm is formed on the mold member 5. Formation of protrusions having a width of less than 50 nm, a pitch of less than 50 nm, or a height of less than 50 nm may be extremely difficult. If the width of the protrusion is 600 nm and the pitch exceeds 1,000 nm, the polarization characteristics of the grid polarizer may be deteriorated. If the height exceeds 800 nm, the shape is accurately transferred when transferring to the transparent resin molding. May be difficult.

本発明方法において、加工は研削又は切削のどちらでもよいが、工具の微細形状を正確に転写できるので、切削の方が好ましい。工具の突起の全体又は先端の一部が金型部材の窪みとなり、工具の窪みの全体又は窪みの底面と反対側の一部が金型部材の突起となる。したがって、図3に示す断面が長方形の格子では、工具の突起の幅をw1、ピッチをp1、高さをh1とし、金型部材の微細格子形状の突起の幅をw2、ピッチをp2、高さをh2とすると、次の関係式がほぼ成り立つ。
2=p1−w1、 p2=p1、 h2≦h1
また、図4又は図5に示す断面が三角形の連続するプリズム形状の格子では、工具の突起の根元の幅をw1、ピッチをp1、高さをh1とし、金型部材の微細格子形状の突起の幅をw2、ピッチをp2、高さをh2とすると、次の関係式がほぼ成り立つ。
2=w1=p2=p1、 h2≦h1
これらの関係式に基づいて、金型部材上に形成する微細格子形状に対応する工具の形状を決めることができる。
本発明方法において、工具の両側端の突起の幅eは、w1−25<e<w1+25(nm)又はe=0であることが好ましい。0<e<w1−25(nm)又はe>w1+25(nm)であると、繰り返される加工の継ぎ目部分のピッチが設定どおりでなくなるおそれがある。
図2に示すように、精密微細加工機(図示しない)に取り付けた工具4に対して、金型部材5を移動させて微細格子形状を形成する。金型部材の相対する2辺間の加工を終えたのち、金型部材を横にずらせて隣接する未加工部分に同様にして微細格子形状を形成する加工を繰り返し、金型部材の全面に微細格子形状を形成する。また、金型部材を固定して、工具を移動して微細格子形状を形成することもできる。本発明方法に用いる金型部材は、ベースとなる金型用鋼材6に微細格子形状を形成するための適当な硬度のある電着又は無電解メッキによる金属層7を設けた材料であることが好ましい。金型用鋼材としては、例えば、ピンホール、地傷、偏析などがない真空溶解、真空鋳造などにより製造されたプリハードン鋼、析出硬化鋼、ステンレス鋼、銅などを挙げることができる。電着又は無電解メッキによる金属層は、ビッカース硬度が40〜350であることが好ましく、200〜300であることがより好ましい。ビッカース硬度が40〜350の金属としては、例えば、銅、ニッケル、ニッケル−リン合金、パラジウムなどを挙げることができ、ビッカース硬度が200〜300の金属としては、銅、ニッケル、ニッケル−リン合金を挙げることができる。
In the method of the present invention, the processing may be either grinding or cutting, but cutting is preferable because the fine shape of the tool can be accurately transferred. The entire tool protrusion or a part of the tip is a recess of the mold member, and the entire tool recess or a part of the recess opposite to the bottom surface is the protrusion of the mold member. Therefore, in the lattice having a rectangular cross section shown in FIG. 3, the width of the protrusion of the tool is w 1 , the pitch is p 1 , the height is h 1, and the width of the protrusion of the fine lattice shape of the mold member is w 2 , the pitch. Is p 2 and the height is h 2 , the following relational expression is substantially established.
w 2 = p 1 −w 1 , p 2 = p 1 , h 2 ≦ h 1
4 or 5, the width of the base of the projection of the tool is w 1 , the pitch is p 1 , the height is h 1, and the fine grating of the mold member is used. When the width of the shape protrusion is w 2 , the pitch is p 2 , and the height is h 2 , the following relational expression is substantially established.
w 2 = w 1 = p 2 = p 1 , h 2 ≦ h 1
Based on these relational expressions, the shape of the tool corresponding to the fine grid shape formed on the mold member can be determined.
In the method of the present invention, the width e of the protrusions on both side ends of the tool is preferably w 1 −25 <e <w 1 +25 (nm) or e = 0. If 0 <e <w 1 −25 (nm) or e> w 1 +25 (nm), the pitch of the seam portion of the repeated processing may not be as set.
As shown in FIG. 2, a mold member 5 is moved with respect to a tool 4 attached to a precision micromachining machine (not shown) to form a fine lattice shape. After finishing the processing between the two opposite sides of the mold member, repeat the process of forming the fine lattice shape in the same way on the adjacent unprocessed parts by shifting the mold member sideways, A lattice shape is formed. Further, the mold member can be fixed and the tool can be moved to form a fine lattice shape. The mold member used in the method of the present invention is a material provided with a metal layer 7 by electrodeposition or electroless plating with appropriate hardness for forming a fine lattice shape on the mold steel material 6 as a base. preferable. Examples of the steel material for the mold include pre-hardened steel, precipitation hardened steel, stainless steel, and copper manufactured by vacuum melting, vacuum casting and the like free from pinholes, scratches, and segregation. The metal layer formed by electrodeposition or electroless plating preferably has a Vickers hardness of 40 to 350, more preferably 200 to 300. Examples of the metal having a Vickers hardness of 40 to 350 include copper, nickel, a nickel-phosphorus alloy, and palladium. Examples of the metal having a Vickers hardness of 200 to 300 include copper, nickel, and a nickel-phosphorus alloy. Can be mentioned.

本発明方法に用いる工具は、加工に用いる面の表面算術平均粗さ(Ra)が10nm以下であることが好ましく、3nm以下であることがより好ましい。表面算術平均粗さ(Ra)が10nmを超えると、幅50〜600nm、ピッチ50〜1,000nm、高さ50〜800nmのような微細な形状を正確に加工することが困難となるおそれがある。
本発明方法において、金型部材への微細格子形状の形成は、精密微細加工機を用いて加工することが好ましい。精密微細加工機のX、Y、Z移動軸の精度は、100nm以下であることが好ましく、50nm以下であることがより好ましく、10nm以下であることがさらに好ましい。精密微細加工機のX、Y、Z移動軸の精度が100nmを超えると、微細格子形状のピッチ又は高さが設計値から外れ、グリッド偏光子の性能が低下するおそれがある。
本発明方法において、金型部材への微細格子形状の形成は、温度±0.5℃以下に管理された恒温室内で行うことが好ましく、温度±0.3℃以下に管理された恒温室内で行うことがより好ましく、温度±0.2℃以下に管理された恒温室内で行うことがさらに好ましい。恒温室の温度管理幅が±0.5℃を超えると、工具と金型部材の熱膨張のために、微細な形状の正確性が損なわれるおそれがある。
本発明方法において、金型部材への微細格子形状の形成は、0.5Hz以上の振動の変位が50μm以下に管理された低振動室内で行うことが好ましく、0.5Hz以上の振動の変位が10μm以下に管理された低振動室内で行うことがより好ましい。0.5Hz以上の振動の変位が50μmを超えると、振動のために微細な形状を正確に加工することが困難となるおそれがある。
In the tool used in the method of the present invention, the surface arithmetic average roughness (Ra) of the surface used for processing is preferably 10 nm or less, and more preferably 3 nm or less. If the surface arithmetic average roughness (Ra) exceeds 10 nm, it may be difficult to accurately process a fine shape such as a width of 50 to 600 nm, a pitch of 50 to 1,000 nm, and a height of 50 to 800 nm. .
In the method of the present invention, the formation of the fine lattice shape on the mold member is preferably performed using a precision fine processing machine. The precision of the X, Y, and Z movement axes of the precision fine processing machine is preferably 100 nm or less, more preferably 50 nm or less, and even more preferably 10 nm or less. If the precision of the X, Y, and Z movement axes of the precision micromachining machine exceeds 100 nm, the pitch or height of the fine grid shape may deviate from the design value, and the performance of the grid polarizer may be degraded.
In the method of the present invention, the formation of the fine lattice shape on the mold member is preferably performed in a temperature-controlled room controlled at a temperature of ± 0.5 ° C. or lower, and in a temperature-controlled room controlled at a temperature of ± 0.3 ° C. or lower. More preferably, it is more preferably performed in a temperature-controlled room controlled at a temperature of ± 0.2 ° C. or lower. If the temperature control width of the temperature-controlled room exceeds ± 0.5 ° C., the accuracy of the fine shape may be impaired due to thermal expansion of the tool and the mold member.
In the method of the present invention, the formation of the fine lattice shape on the mold member is preferably performed in a low vibration chamber in which the vibration displacement of 0.5 Hz or more is controlled to 50 μm or less, and the vibration displacement of 0.5 Hz or more is performed. More preferably, it is performed in a low vibration chamber controlled to 10 μm or less. If the vibration displacement of 0.5 Hz or more exceeds 50 μm, it may be difficult to accurately process a fine shape due to vibration.

本発明における金型部材とは、射出成形用の金型、圧縮成形用の金型、フィルム表面に賦形するためのロール等を言い、フィルム上へ連続的に形状の賦与を行うことができ、経済的なロールが好ましい。
また、本発明方法においては、微細格子形状を形成した金型部材の上に金属版を作製し、前記金属版を金型部材から引き剥がし、金属版に形成された微細格子形状を透明樹脂成形体に転写することもできる。この場合、微細格子形状を形成した金型部材を母材として保存することができるので、経済的である。
前記金属版の作製は、電鋳によることが好ましい。電鋳材質としては、ビッカース硬度が40〜550のものが好ましく、150〜450のものがさらに好ましい。ビッカース硬度が40〜550の電鋳材質としては、銅、ニッケル、ニッケル−リン合金、ニッケル−鉄合金、ニッケル−コバルト合金、パラジウムが挙げられ、150〜450のものとしては、銅、ニッケル、ニッケル−リン合金、ニッケル−鉄合金、パラジウムが挙げられる。
本発明方法においては、金型部材に形成した幅50〜600nm、ピッチ50〜1,000nm、高さ50〜800nmの微細格子形状を、透明樹脂成形体に転写する。微細格子形状を透明樹脂成形体に転写する方法に特に制限はなく、例えば、微細格子形状を形成した円筒状金型部材を感光性透明樹脂層に押しあて露光し成形することができ、微細格子形状を形成した金型部材を射出成形金型に組み込んで透明樹脂を射出成形することができ、微細格子形状を形成した金型部材を圧縮成形金型に組み込んで透明樹脂フィルム又はシートを加熱加圧することもでき、あるいは、微細格子形状を形成した金型部材を用いて透明樹脂溶液をキャスティング成形することもできる。透明樹脂成形体のレターデーションは、波長550nmで50nm以下であることが好ましく、10nm以下であることがより好ましい。透明樹脂成形体のレターデーションが50nmを超えると、透過又は反射した直線偏光成分がレターデーションにより偏光状態が変化するおそれがある。
本発明方法に用いる透明樹脂に特に制限はなく、例えば、脂環式構造を有する樹脂、紫外線硬化性樹脂、メタクリル樹脂、ポリカーボネート、ポリスチレン、アクリロニトリル−スチレン共重合体、メタクリル酸メチル−スチレン共重合体、ポリエーテルスルホン、ポリエチレンテレフタレートなどを挙げることができ、これらを組み合わせて使用してもよい。本発明方法に用いる透明樹脂成形体は、吸水率0.3重量%以下であることが好ましく、吸水率0.1重量%以下であることがより好ましい。透明樹脂成形体の吸水率が0.3重量%を超えると、吸水による寸法変化のために、微細格子形状の正確性が損なわれるおそれがある。
The mold member in the present invention refers to a mold for injection molding, a mold for compression molding, a roll for shaping on the film surface, and the like, and it can continuously give a shape on the film. An economical roll is preferred.
In the method of the present invention, a metal plate is produced on a mold member having a fine lattice shape, the metal plate is peeled off from the mold member, and the fine lattice shape formed on the metal plate is formed by transparent resin molding. It can also be transferred to the body. In this case, a mold member having a fine lattice shape can be stored as a base material, which is economical.
The metal plate is preferably produced by electroforming. The electroforming material preferably has a Vickers hardness of 40 to 550, more preferably 150 to 450. Examples of the electroformed material having a Vickers hardness of 40 to 550 include copper, nickel, nickel-phosphorus alloy, nickel-iron alloy, nickel-cobalt alloy, and palladium. Examples of 150 to 450 include copper, nickel, and nickel. -Phosphorus alloys, nickel-iron alloys, palladium.
In the method of the present invention, a fine lattice shape having a width of 50 to 600 nm, a pitch of 50 to 1,000 nm, and a height of 50 to 800 nm formed on the mold member is transferred to a transparent resin molded body. There is no particular limitation on the method for transferring the fine grid shape to the transparent resin molded body. For example, a cylindrical mold member having a fine grid shape can be pressed against the photosensitive transparent resin layer for exposure and molding. The molded mold member can be incorporated into an injection mold and transparent resin can be injection-molded. The fine lattice-shaped mold member can be incorporated into a compression mold and the transparent resin film or sheet can be heated. The transparent resin solution can be cast using a mold member having a fine lattice shape. The retardation of the transparent resin molded product is preferably 50 nm or less at a wavelength of 550 nm, and more preferably 10 nm or less. If the retardation of the transparent resin molding exceeds 50 nm, the polarization state of the transmitted or reflected linearly polarized light component may change due to retardation.
The transparent resin used in the method of the present invention is not particularly limited. For example, a resin having an alicyclic structure, an ultraviolet curable resin, a methacrylic resin, a polycarbonate, polystyrene, an acrylonitrile-styrene copolymer, and a methyl methacrylate-styrene copolymer. , Polyethersulfone, polyethylene terephthalate, and the like, and combinations thereof may be used. The transparent resin molded product used in the method of the present invention preferably has a water absorption of 0.3% by weight or less, and more preferably has a water absorption of 0.1% by weight or less. If the water absorption rate of the transparent resin molding exceeds 0.3% by weight, the accuracy of the fine lattice shape may be impaired due to dimensional changes due to water absorption.

本発明方法においては、微細格子形状の転写が正確かつ容易であることから、透明樹脂成形体として紫外線硬化性樹脂を好適に用いることができる。また、本発明方法においては、透明樹脂成形体として、脂環式構造を有する樹脂の成形体を特に好適に用いることができる。脂環式構造を有する樹脂は、溶融樹脂の流動性が良好なので、射出成形により微細格子形状を正確に転写することができる。また、吸水率が極めて小さいので、寸法安定性に優れる。脂環式構造を有する樹脂としては、例えば、ノルボルネン系単量体の開環重合体若しくは開環共重合体又はそれらの水素添加物、ノルボルネン系単量体の付加重合体若しくは付加共重合体又はそれらの水素添加物、単環の環状オレフィン系単量体の重合体又はその水素添加物、環状共役ジエン系単量体の重合体又はその水素添加物、ビニル脂環式炭化水素系単量体の重合体若しくは共重合体又はそれらの水素添加物、ビニル芳香族炭化水素系単量体の重合体又は共重合体の芳香環を含む不飽和結合部分の水素添加物などを挙げることができる。これらの中で、ノルボルネン系単量体の重合体の水素添加物及びビニル芳香族炭化水素系単量体の重合体の芳香環を含む不飽和結合部分の水素添加物は、機械的強度と耐熱性に優れるので、特に好適に用いることができる。   In the method of the present invention, since the transfer of the fine lattice shape is accurate and easy, an ultraviolet curable resin can be suitably used as the transparent resin molding. In the method of the present invention, a resin molded body having an alicyclic structure can be particularly suitably used as the transparent resin molded body. Since the resin having an alicyclic structure has good flowability of the molten resin, the fine lattice shape can be accurately transferred by injection molding. Further, since the water absorption is extremely small, the dimensional stability is excellent. Examples of the resin having an alicyclic structure include a ring-opening polymer or a ring-opening copolymer of a norbornene monomer or a hydrogenated product thereof, an addition polymer or an addition copolymer of a norbornene monomer, or Those hydrogenated products, polymers of monocyclic olefin monomers or hydrogenated products thereof, polymers of cyclic conjugated diene monomers or hydrogenated products thereof, vinyl alicyclic hydrocarbon monomers Or a hydrogenated product thereof, a polymer of a vinyl aromatic hydrocarbon monomer, or a hydrogenated product of an unsaturated bond part containing an aromatic ring of the copolymer. Among these, hydrogenated products of norbornene-based monomer polymers and hydrogenated products of unsaturated bonds containing aromatic rings of vinyl aromatic hydrocarbon-based monomer polymers have mechanical strength and heat resistance. Since it is excellent in property, it can be used especially suitably.

本発明方法においては、微細格子形状が転写された透明樹脂成形体に、導電性反射体を蒸着する。蒸着する導電性反射体は、温度25℃、波長550nmにおける屈折率0.04以上4.0未満、消光係数0.70以上であることが好ましく、屈折率0.04以上3.0未満、消光係数1.0以上であることがより好ましい。このような導電性反射体としては、例えば、銀、アルミニウム、銅などを挙げることができる。導電性反射体の温度25℃、波長550nmにおける屈折率が0.04未満若しくは4.0以上又は消光係数が0.70未満であると、導電性反射体の表面反射率が不足するおそれがある。
本発明方法において、微細格子形状が転写された透明樹脂成形体に導電性反射体を蒸着するときは、微細格子形状の断面形状により蒸着方向を工夫することにより、微細格子形状に導電性反射体が蒸着されない部分を残して、s偏光成分を透過させる構造とする。図6は、蒸着の一態様の説明図である。長さ方向に垂直な平面で切断した断面が正方形である突起を有する微細格子形状が転写された透明樹脂成形体8を、蒸着源9の中心に向けた方向に対して角度を45度傾けて設置し、導電性反射体の蒸着を行うと、図中に二重線で示す突起の上面と一側面とが蒸着され、窪みの面と他の側面が蒸着されずに残ったグリッド偏光子が得られる。さらに、必要な場合には図とは逆の方向に45度傾けて蒸着を行うと、他の側面が蒸着され、窪みの面のみが蒸着されずに残ったグリッド偏光子が得られる。本発明方法において、透明樹脂成形体の蒸着源に対する傾きθに特に制限はないが、10〜90度であることが好ましい。グリッド偏光子を適用する光の波長などに応じて、突起の形状及び透明樹脂成形体の蒸着源の方向に対する傾きを選ぶことにより、微細格子形状が転写された透明樹脂成形体の蒸着される部分を調整することができる。図6と同様の断面形状を有する微細格子形状が転写された透明樹脂成形体を、蒸着源9の中心に対する角度を90度に設置して導電性反射体の蒸着を行うと、突起の上面と窪みの面が蒸着され、他の二側面が蒸着されずに残ったグリッド偏光子が得られる。本発明方法においては、導電性反射体を蒸着した上に、無機層又は有機層からなる腐食防止層を設けることができる。
In the method of the present invention, a conductive reflector is vapor-deposited on the transparent resin molded body to which the fine lattice shape is transferred. The conductive reflector to be deposited preferably has a refractive index of 0.04 or more and less than 4.0 at a temperature of 25 ° C. and a wavelength of 550 nm, an extinction coefficient of 0.70 or more, and a refractive index of 0.04 or more and less than 3.0. More preferably, the coefficient is 1.0 or more. Examples of such conductive reflectors include silver, aluminum, and copper. If the refractive index of the conductive reflector at a temperature of 25 ° C. and a wavelength of 550 nm is less than 0.04 or 4.0 or more, or the extinction coefficient is less than 0.70, the surface reflectance of the conductive reflector may be insufficient. .
In the method of the present invention, when a conductive reflector is vapor-deposited on a transparent resin molded body to which a fine grid shape is transferred, the conductive reflector has a fine grid shape by devising the vapor deposition direction based on the cross-sectional shape of the fine grid shape. The structure in which the s-polarized light component is transmitted leaving a portion where no vapor is deposited. FIG. 6 is an explanatory diagram of one mode of vapor deposition. The transparent resin molded body 8 to which the fine lattice shape having protrusions having a square section cut by a plane perpendicular to the length direction is transferred is inclined 45 degrees with respect to the direction toward the center of the vapor deposition source 9. When installed and the conductive reflector is vapor deposited, the upper surface and one side surface of the projection indicated by the double line in the figure are vapor-deposited, and the grid polarizer remaining without the vapor deposition surface and the other side surface being vapor-deposited can get. Furthermore, if necessary, if vapor deposition is performed with an inclination of 45 degrees in the opposite direction to the figure, the other side surfaces are vapor-deposited, and a grid polarizer is obtained in which only the concave surfaces are not vapor-deposited. In the method of the present invention, the inclination θ of the transparent resin molded product with respect to the vapor deposition source is not particularly limited, but is preferably 10 to 90 degrees. Depending on the wavelength of light to which the grid polarizer is applied, by selecting the shape of the protrusion and the inclination of the transparent resin molded body with respect to the direction of the vapor deposition source, the portion of the transparent resin molded body to which the fine grid shape is transferred is deposited Can be adjusted. When the transparent resin molded body having the same cross-sectional shape as that of FIG. 6 is transferred and the conductive reflector is vapor-deposited by setting the angle with respect to the center of the vapor deposition source 9 to 90 degrees, The surface of the dent is vapor-deposited, and a grid polarizer remaining without vaporizing the other two side surfaces is obtained. In the method of the present invention, after depositing a conductive reflector, a corrosion prevention layer comprising an inorganic layer or an organic layer can be provided.

以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
実施例1
8mm×8mm×60mmのSUS製シャンクにろう付けされた寸法0.2mm×1mm×1mmの直方体の単結晶ダイヤモンドの0.2mm×1mmの面に、集束イオンビーム加工装置[セイコーインスツルメンツ(株)、SMI3050]を用いてアルゴンイオンビームを用いた集束イオンビーム加工を行って、長さ1mmの辺に平行な幅0.1μm、深さ0.1μmの溝をピッチ0.2μmで彫り込み、幅0.1μm、高さ0.1μmの直線状の突起1,000本をピッチ0.2μmで形成してなる切削工具を作製した。
寸法152.4mm×203.2mm、厚さ10.0mmのステンレス鋼SUS430の152.4mm×203.2mmの一面に、厚さ100μmのニッケル−リン無電解メッキを施し、精密微細加工機[(株)ナガセインテグレックス、超2精密微細加工機NIC200]と上記の切削工具を用いて、ニッケル−リン無電解メッキ面に、長さ203.2mmの辺に平行な幅0.1μm、高さ0.1μm、ピッチ0.2μmの直線状の突起を切削加工した。
なお、集束イオンビーム加工による切削工具の作製と、ニツケル−リン無電解メッキ面の切削加工は、温度20.0±0.2℃に管理され、振動制御システム[(株)昭和サイエンス]により0.5Hz以上の振動の変位が10μm以下に管理された恒温低振動室内で行った。
切削加工されたニッケル−リン無電解メッキ面のあるステンレス鋼部材を射出成形金型に組み込み、射出成形機[(株)日本製鋼所、JSW−ELIII、型締力2MN]を用いて、脂環式構造を有する樹脂[日本ゼオン(株)、ゼオノア1060R]から、樹脂温度310℃、金型温度100℃の条件で、寸法152.4mm×203.2mm、厚さ1.0mmのグリッド偏光子用平板を射出成形した。
この射出成形板を、蒸着源に対して45度の傾きになるように設置してアルミニウムを蒸着し、直線状の突起の上面と一側面にアルミニウムを蒸着し、直線状の突起の間の窪みの面と一側面が蒸着されていない状態として、グリッド偏光子を完成した。
得られたグリッド偏光子について、瞬間マルチ測光システム[大塚電子(株)、MCPD−3000]を用いて、波長550nmにおけるs偏光透過率とp偏光透過率を測定した。s偏光透過率は60.9%、p偏光透過率は0.1%であり、偏光透過率差は60.8%であった。
実施例2
直径200.0mmで高さ155.0mmの円筒形状のステンレス鋼SUS430の曲面全面に、厚さ100μmのニッケル−リン無電解メッキを施し、次いで、実施例1と同様に直線状突起を形成した工具と、精密円筒研削盤[スチューダ社、精密円筒研削機S30−1]を用いて、ニッケル−リン無電解メッキ面に、円筒の円周端面に平行に幅0.1μm、高さ0.1μm、ピッチ0.2μmの直線状の突起を切削加工した。
押出成形により得られた厚さ100μmの脂環式構造を有する樹脂[日本ゼオン(株)、ゼオノア1420R]の155.0mm幅のフィルム上へ、100nm厚みで紫外線硬化性アクリル樹脂を塗布し、切削加工されたニッケル−リン無電解メッキ面のある円筒へ密着させて、フィルム裏側から高圧水銀灯で紫外線を照射し、微細な直線状の突起の格子形状をフィルムへ転写した。
フィルムから微細格子形状が転写された寸法152.4mm×203.2mmの部分を切り出し、実施例1と同様にして、突起の上面及び一側面にアルミニウムを蒸着してグリッド偏光子を完成し、偏光透過率を測定した。
s偏光透過率は61.3%、p偏光透過率は0.1%であり、偏光透過率差は61.2%であった。
実施例3
実施例1で作製した切削加工されたニッケル−リン無電解メッキ面上に、スルファミン酸ニッケル水溶液を用いた電鋳によりニッケルを300μmの厚さに形成し、前記無電解メッキ面から引き剥がして、直線状の突起を有する金属版を得た。この金属版を射出成形金型に組み込み、実施例1と同様にしてグリッド偏光子を完成し、偏光透過率を測定した。
s偏光透過率は61.2%、p偏光透過率は0.1%であり、偏光透過率差は61.1%であった。
比較例1
寸法30.0mm×30.0mm、厚さ1.0mmのガラス基板上にアルミニウムを厚さ0.1μmに蒸着し、電子線レジスト[日本ゼオン(株)、ZEP520]を塗布し、電子線ビームにより幅0.1μm、ピッチ0.2μmの平行線を、長さ30.0mmの辺に平行に描画した。次いで、専用現像液で現像し、プラズマエッチング装置[オックスフォード・インストゥルメンツ(株)、Plasmalab System 100ICP180]を用いてエッチングすることにより、グリッド偏光子を完成し、偏光透過率を測定した。
s偏光透過率は57.0%、p偏光透過率は0.5%であり、偏光透過率差は56.5%であった。
実施例1〜3及び比較例1の結果を、第1表に示す。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Example 1
A focused ion beam processing apparatus [Seiko Instruments Co., Ltd., on the surface of 0.2 mm × 1 mm of a rectangular single crystal diamond of 0.2 mm × 1 mm × 1 mm brazed to a SUS shank of 8 mm × 8 mm × 60 mm SMI3050] is used to perform focused ion beam processing using an argon ion beam, and a groove having a width of 0.1 μm and a depth of 0.1 μm parallel to a side having a length of 1 mm is carved at a pitch of 0.2 μm and a width of 0.1 μm. A cutting tool was prepared by forming 1,000 linear protrusions with a pitch of 0.2 μm and a thickness of 1 μm and a height of 0.1 μm.
One surface of 152.4 mm x 203.2 mm of stainless steel SUS430 with dimensions 152.4 mm x 203.2 mm and thickness 10.0 mm was subjected to nickel-phosphorus electroless plating with a thickness of 100 µm, and a precision micro-machining machine [ ) Nagase Integrex, Ultra- 2 precision micromachining machine NIC200] and the above cutting tool, the nickel-phosphorus electroless plating surface is parallel to the side of 203.2 mm in length, 0.1 μm in width and 0.1 μm in height. A linear protrusion having a pitch of 0.2 μm was cut.
The production of the cutting tool by focused ion beam machining and the cutting of the nickel-phosphorus electroless plating surface are controlled at a temperature of 20.0 ± 0.2 ° C., and 0 by the vibration control system [Showa Science Co., Ltd.]. The measurement was performed in a constant-temperature low-vibration chamber in which the displacement of vibration of .5 Hz or more was controlled to 10 μm or less.
A stainless steel member with a nickel-phosphorous electroless plating surface that has been machined is incorporated into an injection mold, and an alicyclic ring is formed using an injection molding machine [Nippon Steel Works, JSW-ELIII, clamping force 2MN]. For a grid polarizer having dimensions of 152.4 mm × 203.2 mm and a thickness of 1.0 mm under the conditions of a resin temperature of 310 ° C. and a mold temperature of 100 ° C. A flat plate was injection molded.
This injection-molded plate is placed so as to be inclined at 45 degrees with respect to the vapor deposition source, and aluminum is vapor-deposited. Aluminum is vapor-deposited on the upper surface and one side surface of the linear protrusion, and a recess between the linear protrusions. The grid polarizer was completed with no surface and one side deposited.
The obtained grid polarizer was measured for s-polarized light transmittance and p-polarized light transmittance at a wavelength of 550 nm using an instantaneous multi-photometric system [Otsuka Electronics Co., Ltd., MCPD-3000]. The s-polarized light transmittance was 60.9%, the p-polarized light transmittance was 0.1%, and the polarized light transmittance difference was 60.8%.
Example 2
A tool in which nickel-phosphorus electroless plating with a thickness of 100 μm was applied to the entire curved surface of a cylindrical stainless steel SUS430 having a diameter of 200.0 mm and a height of 155.0 mm, and then linear protrusions were formed in the same manner as in Example 1. Then, using a precision cylindrical grinder [Studar, Precision Cylindrical Grinding Machine S30-1], the nickel-phosphorous electroless plating surface is parallel to the circumferential end surface of the cylinder, the width is 0.1 μm, the height is 0.1 μm, A linear protrusion having a pitch of 0.2 μm was cut.
An ultraviolet curable acrylic resin having a thickness of 100 nm is applied to a 155.0 mm wide film of a resin having a cycloaliphatic structure of 100 μm thickness obtained by extrusion molding (Nippon ZEON Co., Ltd., ZEONOR 1420R), and cutting The processed nickel-phosphorous electroless plating surface was brought into close contact, and ultraviolet rays were irradiated from the back side of the film with a high-pressure mercury lamp, and the lattice shape of fine linear protrusions was transferred to the film.
A portion having a size of 152.4 mm × 203.2 mm onto which the fine lattice shape was transferred from the film was cut out, and in the same manner as in Example 1, aluminum was deposited on the upper surface and one side surface of the protrusion to complete a grid polarizer. The transmittance was measured.
The s-polarized light transmittance was 61.3%, the p-polarized light transmittance was 0.1%, and the difference in polarized light transmittance was 61.2%.
Example 3
On the cut nickel-phosphorus electroless plating surface prepared in Example 1, nickel was formed to a thickness of 300 μm by electroforming using a nickel sulfamate aqueous solution, and peeled off from the electroless plating surface, A metal plate having straight protrusions was obtained. This metal plate was incorporated into an injection mold, and a grid polarizer was completed in the same manner as in Example 1 and the polarization transmittance was measured.
The s-polarized light transmittance was 61.2%, the p-polarized light transmittance was 0.1%, and the polarized light transmittance difference was 61.1%.
Comparative Example 1
Aluminum is vapor-deposited to a thickness of 0.1 μm on a glass substrate having dimensions of 30.0 mm × 30.0 mm and a thickness of 1.0 mm, an electron beam resist [Nippon Zeon Co., Ltd., ZEP520] is applied, and an electron beam is used. A parallel line having a width of 0.1 μm and a pitch of 0.2 μm was drawn in parallel to a side having a length of 30.0 mm. Next, development was performed with a dedicated developer, and etching was performed using a plasma etching apparatus [Oxford Instruments Co., Ltd., Plasmalab System 100ICP180], thereby completing a grid polarizer and measuring polarization transmittance.
The s-polarized light transmittance was 57.0%, the p-polarized light transmittance was 0.5%, and the polarized light transmittance difference was 56.5%.
The results of Examples 1 to 3 and Comparative Example 1 are shown in Table 1.

第1表に見られるように、ガラス基板上にアルミニウムを蒸着し、レジストを塗布して電子線により描画し、現像、エッチングすることにより得られた比較例1のグリッド偏光子に比べて、ダイヤモンド工具材料を集束イオンビームで加工した切削工具を用いて、ニッケル−リンを無電解メッキしたステンレス鋼に微細格子形状を形成し、このニッケル−リン無電解メッキ面を利用して、微細格子形状を直接又は金属版を経由して、透明樹脂成形体に転写し、アルミニウムを蒸着して得られた実施例1〜3のグリッド偏光子は、s偏光透過率が大きく、偏光透過率差が大きく、本発明方法により優れた偏光特性を有するグリッド偏光子を製造し得ることが分かる。   As can be seen in Table 1, diamond is compared to the grid polarizer of Comparative Example 1 obtained by evaporating aluminum on a glass substrate, applying a resist, drawing with an electron beam, developing, and etching. Using a cutting tool in which the tool material is processed with a focused ion beam, a fine grid shape is formed on stainless steel that has been electrolessly plated with nickel-phosphorus. The grid polarizers of Examples 1 to 3 obtained directly or via a metal plate and transferred to a transparent resin molded body and vapor-deposited aluminum have a large s-polarized light transmittance and a large difference in polarized light transmittance. It turns out that the grid polarizer which has the outstanding polarization characteristic can be manufactured by the method of the present invention.

本発明方法によれば、サブミクロンオーダーの格子形状を有し、偏光特性に優れた大面積のグリッド偏光子を、精密微細加工及び蒸着により経済的に製造することができる。   According to the method of the present invention, a large area grid polarizer having a submicron-order lattice shape and excellent polarization characteristics can be economically manufactured by precision microfabrication and vapor deposition.

本発明方法における工具の作製法の一態様の説明図である。It is explanatory drawing of the one aspect | mode of the manufacturing method of the tool in this invention method. 本発明方法における金型部材の加工方法の一態様の説明図である。It is explanatory drawing of the one aspect | mode of the processing method of the metal mold | die member in this invention method. 金型部材の微細格子形状の説明図である。It is explanatory drawing of the fine lattice shape of a metal mold | die member. 金型部材の微細格子形状の説明図である。It is explanatory drawing of the fine lattice shape of a metal mold | die member. 金型部材の微細格子形状の説明図である。It is explanatory drawing of the fine lattice shape of a metal mold | die member. 蒸着の一態様の説明図である。It is explanatory drawing of the one aspect | mode of vapor deposition. グリッド偏光子の概念的説明図である。It is a conceptual explanatory drawing of a grid polarizer.

符号の説明Explanation of symbols

1 材料
2 高エネルギー線
3 直線状の突起
4 研削工具
5 金型部材
6 金型用鋼材
7 金属層
8 透明樹脂成形体
9 蒸着源
10 導体グリッド
DESCRIPTION OF SYMBOLS 1 Material 2 High energy line 3 Linear protrusion 4 Grinding tool 5 Mold member 6 Steel material for metal molds 7 Metal layer 8 Transparent resin molding 9 Deposition source 10 Conductor grid

Claims (7)

(A)ダイヤモンド、立方晶窒化ホウ素及びコランダムを含む群から選ばれるいずれか1つのモース硬度9以上である材料を高エネルギー線を用いて加工し、先端に幅600nm以下の突起を形成してなる工具を作製し、(B)該工具を使用して金型部材上に、幅50〜600nm、ピッチ50〜1,000nm、高さ50〜800nmの微細格子形状を形成し、(C)該金型部材の微細格子形状を透明樹脂成形体に転写し、(D)該微細格子形状が転写された透明樹脂成形体に導電性反射体を蒸着することを特徴とするグリッド偏光子の製造方法。 (A) diamond, and processed using high-energy radiation the material is either one of Mohs hardness of 9 or more selected from the group comprising cubic boron nitride and corundum, by forming a protrusion width of less than 600nm in the tip A tool is prepared, and (B) a fine lattice shape having a width of 50 to 600 nm, a pitch of 50 to 1,000 nm, and a height of 50 to 800 nm is formed on the mold member by using the tool. A method for producing a grid polarizer, comprising: transferring a fine grid shape of a mold member to a transparent resin molded body; and (D) depositing a conductive reflector on the transparent resin molded body to which the fine grid shape is transferred. (A)ダイヤモンド、立方晶窒化ホウ素及びコランダムを含む群から選ばれるいずれか1つのモース硬度9以上である材料を高エネルギー線を用いて加工し、先端に幅600nm以下の突起を形成してなる工具を作製し、(B)該工具を使用して金型部材上に、幅50〜600nm、ピッチ50〜1,000nm、高さ50〜800nmの微細格子形状を形成し、(C)該金型部材の微細格子形状を金属版に転写し、(D)該金属版の微細格子形状を透明樹脂成形体に転写し、(E)該微細格子形状が転写された透明樹脂成形体に導電性反射体を蒸着することを特徴とするグリッド偏光子の製造方法。 (A) diamond, and processed using high-energy radiation the material is either one of Mohs hardness of 9 or more selected from the group comprising cubic boron nitride and corundum, by forming a protrusion width of less than 600nm in the tip A tool is prepared, and (B) a fine lattice shape having a width of 50 to 600 nm, a pitch of 50 to 1,000 nm, and a height of 50 to 800 nm is formed on the mold member by using the tool. The fine grid shape of the mold member is transferred to the metal plate, (D) the fine grid shape of the metal plate is transferred to the transparent resin molded body, and (E) the transparent resin molded body to which the fine grid shape is transferred is electrically conductive. A method of manufacturing a grid polarizer, comprising depositing a reflector. 前記工具に形成された突起が複数である請求項1又は請求項2に記載のグリッド偏光子の製造方法。 The method for manufacturing a grid polarizer according to claim 1, wherein a plurality of protrusions are formed on the tool. 前記(B)工程が、前記工具を使用して微細格子形状を切削加工して形成する工程である請求項1、請求項2又は請求項3に記載のグリッド偏光子の製造方法。The method of manufacturing a grid polarizer according to claim 1, wherein the step (B) is a step of cutting and forming a fine lattice shape using the tool. 前記金型部材が、ベースとなる金型用鋼材上に、ビッカース硬度が40〜350の金属を材料とする金属層を設けた部材である請求項1ないし請求項4のいずれか1項に記載のグリッド偏光子の製造方法。5. The member according to claim 1, wherein the mold member is a member in which a metal layer made of a metal having a Vickers hardness of 40 to 350 is provided on a mold steel material serving as a base. Manufacturing method for grid polarizers. X、Y、Z移動軸の精度が100nm以下の精密微細加工機と、表面算術平均粗さ(Ra)10nm以下の工具を用い、温度±0.5℃以下に管理され、0.5Hz以上の振動の変位が50μm以下に管理された恒温低振動室内で、微細格子形状を金型部材上に形成する請求項1ないし請求項5のいずれか1項に記載のグリッド偏光子の製造方法。The precision of the X, Y, and Z movement axes is controlled to a temperature of ± 0.5 ° C. or less using a precision micro-machining machine with a precision of 100 nm or less and a tool with a surface arithmetic average roughness (Ra) of 10 nm or less, and 0.5 Hz or more. The method for manufacturing a grid polarizer according to any one of claims 1 to 5, wherein a fine lattice shape is formed on a mold member in a constant temperature and low vibration chamber in which a displacement of vibration is controlled to 50 µm or less. 透明樹脂成形体が、吸水率0.3重量%以下である請求項1ないし請求項6のいずれか1項に記載のグリッド偏光子の製造方法。The method for producing a grid polarizer according to any one of claims 1 to 6, wherein the transparent resin molding has a water absorption of 0.3% by weight or less.
JP2004193737A 2004-06-30 2004-06-30 Manufacturing method of grid polarizer Expired - Fee Related JP4506307B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004193737A JP4506307B2 (en) 2004-06-30 2004-06-30 Manufacturing method of grid polarizer
EP05765218A EP1767965A4 (en) 2004-06-30 2005-06-30 Electromagnetic wave shielding grid polarizer and its manufacturing method and grid polarizer manufacturing method
US11/631,298 US20080117509A1 (en) 2004-06-30 2005-06-30 Electromagnetic Wave Shielding Grid Polarizer and Its Manufacturing Method and Grid Polarizer Manufacturing Method
KR1020077002257A KR20070041540A (en) 2004-06-30 2005-06-30 Electromagnetic wave shielding grid polarizer and its manufacturing method and grid polarizer manufacturing method
PCT/JP2005/012111 WO2006004010A1 (en) 2004-06-30 2005-06-30 Electromagnetic wave shielding grid polarizer and its manufacturing method and grid polarizer manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004193737A JP4506307B2 (en) 2004-06-30 2004-06-30 Manufacturing method of grid polarizer

Publications (2)

Publication Number Publication Date
JP2006017879A JP2006017879A (en) 2006-01-19
JP4506307B2 true JP4506307B2 (en) 2010-07-21

Family

ID=35792241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004193737A Expired - Fee Related JP4506307B2 (en) 2004-06-30 2004-06-30 Manufacturing method of grid polarizer

Country Status (1)

Country Link
JP (1) JP4506307B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101266880B1 (en) 2006-06-08 2013-05-24 삼성디스플레이 주식회사 Method for manufacturing polarizer and laser processing system
KR20090123865A (en) 2007-02-27 2009-12-02 니폰 제온 가부시키가이샤 Grid polarizer
JP5067071B2 (en) * 2007-08-21 2012-11-07 日本ゼオン株式会社 Grid polarizer and manufacturing method thereof
JP5245366B2 (en) * 2007-11-14 2013-07-24 王子ホールディングス株式会社 Polarizing plate and manufacturing method thereof
JP2010188704A (en) * 2009-02-20 2010-09-02 Nippon Zeon Co Ltd Method of manufacturing mold, molding and optical member
JP5359541B2 (en) * 2009-05-12 2013-12-04 王子ホールディングス株式会社 Manufacturing method of metal fine wire sheet having uneven shape, and metal thin wire sheet having uneven shape
JP6661164B2 (en) * 2014-12-04 2020-03-11 澤村 一実 Mold having fine grooves formed therein and method of manufacturing the same
JP7083982B2 (en) * 2016-09-26 2022-06-14 国立大学法人東京農工大学 Microfabrication method using ultrashort pulse laser, derivation device, machining device and workpiece

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294730A (en) * 1994-04-27 1995-11-10 Kyocera Corp Production of polarizing element
JP2002357716A (en) * 2001-05-31 2002-12-13 Mitsubishi Chemicals Corp Polarizing plate and reflective liquid crystal display device
JP2003104736A (en) * 2001-09-28 2003-04-09 Konica Corp Forming mold for forming mold for forming optical element, forming mold for forming optical element, optical element and method for manufacturing forming mold for forming optical element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294730A (en) * 1994-04-27 1995-11-10 Kyocera Corp Production of polarizing element
JP2002357716A (en) * 2001-05-31 2002-12-13 Mitsubishi Chemicals Corp Polarizing plate and reflective liquid crystal display device
JP2003104736A (en) * 2001-09-28 2003-04-09 Konica Corp Forming mold for forming mold for forming optical element, forming mold for forming optical element, optical element and method for manufacturing forming mold for forming optical element

Also Published As

Publication number Publication date
JP2006017879A (en) 2006-01-19

Similar Documents

Publication Publication Date Title
US20080117509A1 (en) Electromagnetic Wave Shielding Grid Polarizer and Its Manufacturing Method and Grid Polarizer Manufacturing Method
US6010609A (en) Method of making a microprism master mold
JP4396459B2 (en) Electromagnetic wave shielding grid polarizer and manufacturing method thereof
JP4110506B2 (en) Mold for optical element molding
KR101085095B1 (en) Retroreflector with controlled divergence made by the method of localized substrate stress
WO2005010572A1 (en) Reflection preventing molding and method of manufacturing the same
JP4506307B2 (en) Manufacturing method of grid polarizer
JP2006330521A (en) Grid polarizing film, method for manufacturing grid polarizing film, optical laminate, method for manufacturing optical laminate, and liquid crystal display apparatus
JP5067071B2 (en) Grid polarizer and manufacturing method thereof
WO2007020967A1 (en) Mold for microlens and process for producing the same
CN110927873A (en) Method and equipment for batch production of AR diffraction optical waveguides
JP2018513401A (en) Partial retroreflector tool and sheet forming method and apparatus
KR100717851B1 (en) Microlens Array Sheet using MEMS and Manufacturing Method thereof
JP2016107484A (en) Die on which fine grooves are formed, and method for manufacturing the same
JP2006171229A (en) Nonreflective structure and optical element with nonreflective structure, and manufacturing method thereof and mask used for same
JP5595397B2 (en) Method and apparatus for making structured objects and for structured objects
KR100495230B1 (en) Manufacturing method of a core of a die for light guide pannel with a prism pattern
JP2002326232A (en) Mold for molding optical surface, optical element, lens and master mold
JP3596733B2 (en) Flat plate for forming optical element and method for manufacturing optical element matrix using the same
JP2009083052A (en) Manufacturing method of machining tool and manufacturing method of optical element
JP2010179586A (en) Material for forming mold, mold material, molding mold, and method for manufacturing optical lens element
KR20050005555A (en) Methods of making a master and replicas thereof
JP2010188704A (en) Method of manufacturing mold, molding and optical member
JP5579605B2 (en) Mold and mold manufacturing method
WO2019223109A1 (en) Flexible nanoimprint template and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070315

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090605

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees