JP4505432B2 - Steel plate shape correction method and shape correction device - Google Patents

Steel plate shape correction method and shape correction device Download PDF

Info

Publication number
JP4505432B2
JP4505432B2 JP2006127290A JP2006127290A JP4505432B2 JP 4505432 B2 JP4505432 B2 JP 4505432B2 JP 2006127290 A JP2006127290 A JP 2006127290A JP 2006127290 A JP2006127290 A JP 2006127290A JP 4505432 B2 JP4505432 B2 JP 4505432B2
Authority
JP
Japan
Prior art keywords
correction
plate
steel plate
thickness direction
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006127290A
Other languages
Japanese (ja)
Other versions
JP2007296559A (en
Inventor
達也 桑名
博之 田中
憲吾 野間
孝篤 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006127290A priority Critical patent/JP4505432B2/en
Publication of JP2007296559A publication Critical patent/JP2007296559A/en
Application granted granted Critical
Publication of JP4505432B2 publication Critical patent/JP4505432B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は,亜鉛等の溶融めっきラインにおける鋼板の形状矯正方法及び形状矯正装置に関する。   The present invention relates to a shape correction method and a shape correction device for a steel sheet in a hot dipping line such as zinc.

溶融めっき鋼板を製造する場合には,まず,鋼板を溶融めっき浴内で走行させ,その表裏面にめっきを付着させる。次いで,めっきの付着した鋼板を溶融めっき浴の外に退出させ,走行させながらその表裏面に向けてワイピングノズルから空気等の高圧ガスを吹付け,鋼板に付着しためっきを吹飛ばすことによって,めっきの付着量を調整する。その後,めっきの付着した鋼板に合金化処理を施すことによって,溶融めっき鋼板を製造する。   When manufacturing a hot-dip galvanized steel sheet, first, the steel sheet is run in a hot dip plating bath, and plating is attached to the front and back surfaces. Next, the steel plate with the plating adhered is moved out of the hot dipping bath, and while traveling, high pressure gas such as air is blown from the wiping nozzle toward the front and back surfaces, and the plating adhering to the steel plate is blown away. Adjust the amount of adhesion. Thereafter, a hot dip plated steel sheet is manufactured by subjecting the steel sheet to which the plating has been applied to an alloying treatment.

めっきの付着量が均一な溶融めっき鋼板を製造するためには,ワイピングノズルと鋼板の表裏面との間隔をできるだけ一定にする必要がある。このため,一般には,溶融めっき浴内の出側付近に,鋼板を板厚方向に押圧し鋼板形状を平坦化するサポートロールが設置されている。しかしながら,このサポートロールだけでは,鋼板形状を十分に矯正することができず,溶融めっき浴の外に退出した鋼板には,板幅方向の軸に対する反り(いわゆるC反り,W反り等)が生じてしまう。   In order to produce a hot-dip plated steel sheet with a uniform coating amount, it is necessary to keep the distance between the wiping nozzle and the front and back surfaces of the steel sheet as constant as possible. For this reason, generally, a support roll for pressing the steel plate in the thickness direction and flattening the shape of the steel plate is installed near the outlet side in the hot dipping bath. However, with this support roll alone, the shape of the steel sheet cannot be corrected sufficiently, and warpage with respect to the axis in the plate width direction (so-called C warpage, W warpage, etc.) occurs on the steel sheet that has exited from the hot dipping bath. End up.

従来から例えば特許文献1に示すように,このような反りを矯正するために複数の電磁石を用いた形状矯正技術が用いられている。   Conventionally, as shown in Patent Document 1, for example, a shape correction technique using a plurality of electromagnets has been used to correct such warpage.

より詳述すると,図1は,鋼板の反りを適切に矯正できない場合の一例を示す上記特許文献1の形状矯正装置100の構成図であり,図1に示すように,上記特許文献1に記載の形状矯正装置100は,図示しない溶融めっき浴から退出し,搬送方向X(図1の紙面に対して手前側から向こう側に向かう方向)に走行する鋼板Iを板厚方向Zに挟むように対向配置した電磁石101,102の組を,板幅方向Yに沿って所定間隔をあけて9組設けた構成を有する。各電磁石101,102は,鋼板Iに対向する側において板幅方向Yの中央位置に,各々センサ110が設けられている。各センサ110は,対向する鋼板Iが板幅方向Yにおける検出範囲Wにある場合に,この鋼板Iを検出し,検出した鋼板I部分(以下,被検出部と称する)120の板厚方向Zの位置を測定できるように構成されている。   More specifically, FIG. 1 is a configuration diagram of the shape correction device 100 of Patent Document 1 showing an example of a case where the warpage of the steel sheet cannot be properly corrected. As shown in FIG. The shape correction apparatus 100 is so configured as to leave a hot-dip plating bath (not shown) and sandwich the steel plate I traveling in the transport direction X (the direction from the near side to the far side with respect to the paper surface of FIG. 1) in the plate thickness direction Z. Nine pairs of electromagnets 101 and 102 arranged opposite to each other are provided along the plate width direction Y at a predetermined interval. Each of the electromagnets 101 and 102 is provided with a sensor 110 at the center position in the plate width direction Y on the side facing the steel plate I. Each sensor 110 detects the steel plate I when the opposing steel plate I is in the detection range W in the plate width direction Y, and detects the detected steel plate I portion (hereinafter referred to as a detected portion) 120 in the plate thickness direction Z. It is comprised so that the position of can be measured.

形状矯正装置100は,各センサ110が各被検出部120を検出した場合に,その板厚方向Zの位置を測定し,測定した被検出部120の板厚方向Zの位置を所定の目標矯正ラインM(図1において,対向する電磁石101,102の両方から板厚方向Zに等距離にあるセンターラインM)の方に矯正するべく電磁石101,102を励磁するように設定されている。即ち,被検出部120の板厚方向Zの位置が目標矯正ラインMから見て電磁石101側にある場合には,電磁石102を用いて被検出部120を目標矯正ラインM側(即ち,電磁石102側)に磁気吸引し,被検出部120の板厚方向Zの位置が目標矯正ラインMから見て電磁石102側にある場合には,電磁石101を用いて被検出部120を目標矯正ラインM側(即ち,電磁石101側)に磁気吸引するようになっている。しかし,後述するように,板幅が適正でなく大きな反り(いわゆるC反り,W反り)が有る鋼板がこの形状矯正装置100を通過しても十分な矯正ができなかった。従って,従来はめっきの前工程で反りを慎重に管理することが求められていた。   When each sensor 110 detects each detected part 120, the shape correcting apparatus 100 measures the position in the thickness direction Z of the detected part 120, and the measured position in the thickness direction Z of the detected part 120 is a predetermined target correction. The electromagnets 101 and 102 are set to be excited so as to be corrected toward the line M (center line M equidistant in the plate thickness direction Z from both the opposing electromagnets 101 and 102 in FIG. 1). That is, when the position of the detected portion 120 in the plate thickness direction Z is on the electromagnet 101 side when viewed from the target correction line M, the detected portion 120 is moved to the target correction line M side (that is, the electromagnet 102) using the electromagnet 102. When the position of the detected portion 120 in the plate thickness direction Z is on the electromagnet 102 side when viewed from the target correction line M, the detected portion 120 is moved to the target correction line M side using the electromagnet 101. In other words, magnetic attraction is performed on the electromagnet 101 side. However, as will be described later, even if a steel plate having a large warp (so-called C warp, W warp) is not appropriate and the plate width passes through the shape correcting device 100, sufficient correction cannot be performed. Therefore, conventionally, it has been required to carefully manage warpage in the pre-plating process.

このように,板幅が適正でなく大きな反りが有る鋼板の反りを矯正する形状矯正技術は,特許文献2及び特許文献3に開示されている。特許文献2には,ワイピングノズルの下流に配置した電磁石を用いて鋼板の反りを矯正することが記載されている。この電磁石はセンサと共に,走行する鋼板に対向して板幅方向に沿って複数配置されている。これら複数の電磁石及びセンサは,予め取得した鋼板の板幅方向の長さ情報に基づいて,通板される鋼板の最大板幅よりも大きい範囲に亘って,鋼板の板幅方向に並べて構成した電磁石をONにして,板幅方向の鋼板を引張り,鋼板の反りを矯正することが述べられている。   As described above, Patent Document 2 and Patent Document 3 disclose a shape correction technique for correcting a warp of a steel sheet having a large warp and not an appropriate plate width. Patent Document 2 describes correcting the warpage of a steel sheet using an electromagnet disposed downstream of the wiping nozzle. A plurality of electromagnets are arranged along the plate width direction so as to face the traveling steel plate together with the sensor. The plurality of electromagnets and sensors are arranged side by side in the plate width direction of the steel plate over a range larger than the maximum plate width of the steel plate to be passed based on the length information in the plate width direction of the steel plate acquired in advance. It is described that the electromagnet is turned on and the steel plate in the width direction is pulled to correct the warpage of the steel plate.

特許文献3に開示された技術においても特許文献2と同様に,ワイピングノズルの下流に複数配置した電磁石及びセンサを用いて鋼板の反りの矯正を行うようにしているが,さらに,電磁石及びセンサは板幅方向に移動可能に構成されている。また,電磁石及びセンサの下流に,鋼板の表裏面に付着しためっきの付着量を測定することが可能なX線測定装置を設けている。このX線測定装置で測定しためっきの付着量に基づいて,鋼板の板厚方向の位置を板幅方向に亘って算出し,鋼板の反り形状を求めた上で,複数の電磁石及びセンサを板幅方向に沿って移動させ,各々をより効果的な板幅方向の位置に配置した状態で鋼板の反りを矯正するようになっている。   In the technique disclosed in Patent Document 3, as in Patent Document 2, correction of the warpage of the steel sheet is performed using a plurality of electromagnets and sensors arranged downstream of the wiping nozzle. It is configured to be movable in the plate width direction. In addition, an X-ray measuring device capable of measuring the amount of plating attached to the front and back surfaces of the steel plate is provided downstream of the electromagnet and the sensor. Based on the adhesion amount of the plating measured with this X-ray measuring device, the position in the plate thickness direction of the steel plate is calculated over the plate width direction, the warp shape of the steel plate is obtained, and a plurality of electromagnets and sensors are attached to the plate. The warp of the steel sheet is corrected in a state where the steel sheet is moved along the width direction and each is disposed at a more effective position in the sheet width direction.

特開平5−246594号公報JP-A-5-246594 特開平7−256341号公報JP-A-7-256341 特開平8−199323号公報JP-A-8-199323

しかしながら,特許文献1に記載の鋼板の形状矯正技術では,例えば,鋼板の板幅方向の両端部が板幅方向においてセンサ(及び電磁石)同士の間に位置する等,矯正する鋼板の位置及び形状の条件が悪い場合には,C反り等の鋼板の反りを適切に矯正することができない。   However, in the shape correction technology of the steel sheet described in Patent Document 1, for example, the position and shape of the steel sheet to be corrected such that both ends of the steel sheet in the plate width direction are positioned between the sensors (and electromagnets) in the plate width direction. If the condition is bad, the warpage of the steel sheet such as C warp cannot be corrected appropriately.

これを具体的に説明すると,鋼板Iの板幅方向Yの両端部130は,図1に示すように,板幅方向Yにおいてセンサ110の間に位置し,両端部130とも目標矯正ラインMから見て電磁石102側に位置している。一方,各センサ110が検出し,その板厚方向Zの位置を測定する被検出部120は全て,目標矯正ラインMから見て電磁石101側にある。このため,図1に示すような状況では,上記特許文献1の形状矯正方法を用いると,図1中にON(出力小)と記載して示すように,電磁石101の出力が小さく且つ電磁石102の出力が大きくなるように設定され,鋼板I全体が電磁石102側に磁気吸引されることになる。即ち,鋼板Iの両端部130の電磁石102側に突出した形状を矯正することができない。このため,鋼板Iのめっき付着量は,板幅方向Yの両側の最端部130で不均一になり,形状矯正装置100の下流に配置した合金化炉(図示せず)で合金化する際に,合金化されない(いわゆる未アロイ)部分が生じてしまう。その上,鋼板I全体が電磁石102側に磁気吸引されて平行移動するため,突出した両端部130が,図1に点線で示したように,電磁石102又はセンサ110に擦過したり衝突したりして,鋼板端部に擦り傷状の表面欠陥を発生させたり,最悪の場合には電磁石102又はセンサ110を損傷させてしまう恐れすらある。   Specifically, both end portions 130 of the steel sheet I in the plate width direction Y are positioned between the sensors 110 in the plate width direction Y as shown in FIG. It is located on the electromagnet 102 side as seen. On the other hand, all the detected parts 120 detected by the sensors 110 and measuring the position in the thickness direction Z are on the electromagnet 101 side when viewed from the target correction line M. For this reason, in the situation shown in FIG. 1, when the shape correction method of Patent Document 1 is used, the output of the electromagnet 101 is small and the electromagnet 102 is shown as being indicated as ON (small output) in FIG. 1. Is set so as to increase, and the entire steel sheet I is magnetically attracted to the electromagnet 102 side. That is, the shape of the both ends 130 of the steel plate I protruding toward the electromagnet 102 cannot be corrected. For this reason, the plating adhesion amount of the steel sheet I becomes uneven at the extreme end portions 130 on both sides in the sheet width direction Y, and is alloyed in an alloying furnace (not shown) arranged downstream of the shape correcting device 100. In other words, parts that are not alloyed (so-called unalloyed parts) are formed. In addition, since the entire steel plate I is magnetically attracted to the electromagnet 102 side and moves in parallel, the protruding both end portions 130 may rub or collide with the electromagnet 102 or the sensor 110 as shown by the dotted lines in FIG. As a result, scratched surface defects may be generated at the ends of the steel sheet, or in the worst case, the electromagnet 102 or the sensor 110 may be damaged.

一方,特許文献2に記載の鋼板の形状矯正技術では,鋼板を板幅方向に引張る必要があり,C反りの矯正をするためには,かなり強い電磁石を用いる必要があり,例えば大型の電磁石を用意しなければならない。従って,特許文献2を適用するためには,電磁石の大幅な交換と電源の改造をしないと鋼板形状を調整するのは困難である。また,特許文献2では鋼板の板幅方向の長さに応じて矯正に必要な電磁石(及びセンサ)だけをONにしているため,鋼板の板幅方向の両端部が板幅方向においてONにした電磁石(及びセンサ)に対して条件が悪い場合(例えば,鋼板の板幅方向の最端部が板幅方向においてONにした電磁石の外側に位置している場合等)には,C反り等の鋼板の反りに応じた適切な矯正ができない。   On the other hand, in the shape correction technology of the steel sheet described in Patent Document 2, it is necessary to pull the steel sheet in the sheet width direction, and in order to correct the C warp, it is necessary to use a considerably strong electromagnet. Must be prepared. Therefore, in order to apply Patent Document 2, it is difficult to adjust the shape of the steel sheet unless the electromagnet is significantly replaced and the power source is modified. In Patent Document 2, only the electromagnet (and sensor) necessary for correction is turned on according to the length of the steel plate in the plate width direction, so both ends in the plate width direction of the steel plate are turned on in the plate width direction. When the conditions are poor with respect to the electromagnet (and sensor) (for example, when the end of the steel plate in the plate width direction is located outside the electromagnet turned on in the plate width direction, etc.) Appropriate correction according to the warpage of the steel sheet is not possible.

また,特許文献3に記載の鋼板の形状矯正技術では,電磁石及びセンサを板幅方向に移動可能に構成した形状矯正装置を用いて,鋼板の両側の最端部にも変位計と電磁石を移動させて設置するか,或いは極短い間隔で変位計と電磁石を設置するようにしているので,上述したように,鋼板の板幅方向の両側の最端部が板幅方向においてセンサ(及び電磁石)同士の間に位置してしまう事態を回避できるが,電磁石及びセンサを移動可能にするためには,設備費用がかかってしまう上に,設備構成が複雑化してしまう可能性が高い。また,設置したセンサが,鋼板の板幅方向端部付近の被検出部を適切に検出できなかった場合には,上述した特許文献2の場合の問題と同様の問題が発生する恐れがある。更に,極短い間隔で変位計と電磁石を設置すると設備費用が過大になってしまう。   Moreover, in the shape correction technology of the steel sheet described in Patent Document 3, the displacement meter and the electromagnet are moved to the extreme ends on both sides of the steel sheet using a shape correction device configured to move the electromagnet and the sensor in the plate width direction. Since the displacement meter and the electromagnet are installed at extremely short intervals, as described above, the extreme ends on both sides of the steel plate in the plate width direction are sensors (and electromagnets) in the plate width direction. Although it is possible to avoid a situation where they are positioned between each other, in order to make the electromagnet and the sensor movable, the equipment cost is high and the equipment configuration is likely to be complicated. Further, if the installed sensor cannot properly detect the detected portion near the end in the plate width direction of the steel plate, the same problem as in the case of Patent Document 2 described above may occur. Furthermore, if the displacement meter and the electromagnet are installed at extremely short intervals, the equipment cost will be excessive.

本発明は上記課題に鑑みてなされたものであり,従来の鋼板の形状矯正技術では,矯正が困難である場合にも,鋼板の反りを適切に矯正し,合金化されない部分の発生を防止することが可能な鋼板の形状矯正方法及び形状矯正装置を提供することをその目的とする。   The present invention has been made in view of the above problems, and even when it is difficult to correct with the conventional steel plate shape correction technology, the warpage of the steel plate is appropriately corrected to prevent the occurrence of non-alloyed portions. It is an object of the present invention to provide a shape correction method and a shape correction device for a steel plate that can be used.

上記課題を解決するために,本発明によれば,溶融めっき浴から退出して走行する鋼板に対向して電磁石及びセンサを板幅方向に沿って複数配置し,前記センサで測定した前記鋼板の各被検出部の板厚方向の反りに基づいて,前記電磁石で前記各被検出部を各々所定の矯正方向に磁気吸引する,鋼板の形状矯正方法が提供される。この鋼板の形状矯正方法では,まず,鋼板を検出した前記センサで各被検出部の板厚方向の位置を測定し,前記測定した板厚方向の位置に基づいて,前記各被検出部の矯正方向を決定する。次に,前記センサとは異なるセンサを用いて鋼板の板幅方向の最端部の板厚方向の位置を求め,該求めた最端部の板厚方向の位置に基づいて,最端部の各々に最近接する前記被検出部の参照用の矯正方向を決定する。そして,前記矯正方向を決定した前記各被検出部のうち,前記鋼板の板幅方向の最端部の各々に最近接する被検出部については,前記測定した板厚方向の位置に基づいて決定した矯正方向が前記参照用の矯正方向と異なる場合に,前記電磁石で前記参照用の矯正方向に磁気吸引することを特徴とする。   In order to solve the above-mentioned problems, according to the present invention, a plurality of electromagnets and sensors are arranged along the plate width direction so as to face a steel plate that runs away from a hot dipping bath, and the steel plate measured by the sensor is used. A method of correcting the shape of a steel sheet is provided, in which each detected portion is magnetically attracted in a predetermined correction direction by the electromagnet based on the warp in the thickness direction of each detected portion. In this method for correcting the shape of a steel plate, first, the position in the thickness direction of each detected portion is measured by the sensor that detects the steel plate, and the correction of each detected portion is performed based on the measured position in the thickness direction. Determine the direction. Next, the position in the thickness direction of the endmost portion in the sheet width direction of the steel sheet is obtained using a sensor different from the sensor, and the position of the endmost portion is determined based on the obtained position in the thickness direction of the endmost part. A correction direction for reference of the detected part closest to each is determined. Of the detected parts that have determined the correction direction, the detected part that is closest to each of the outermost ends in the sheet width direction of the steel sheet is determined based on the position in the measured thickness direction. When the correction direction is different from the reference correction direction, the electromagnet performs magnetic attraction in the reference correction direction.

本発明によれば,前記鋼板の板幅方向の最端部の板厚方向の位置を考慮した矯正を行うことができ,前記鋼板の板幅方向の最端部をセンサ及び電磁石で直接的に矯正することが困難である場合にも,従来よりも適切に鋼板の形状矯正を行うことができる。   According to the present invention, it is possible to perform correction in consideration of the position in the plate thickness direction of the end portion in the plate width direction of the steel plate, and the end portion in the plate width direction of the steel plate is directly adjusted with a sensor and an electromagnet. Even when it is difficult to correct, the shape of the steel sheet can be corrected more appropriately than before.

上記鋼板の形状矯正方法において,前記最近接する被検出部の板厚方向の位置が矯正を不要とする位置にあり,且つ前記鋼板の板幅方向の最端部の板厚方向の位置が矯正を必要とする位置にある場合には,前記最近接する被検出部を参照用の矯正方向に磁気吸引し,前記最近接する被検出部の板厚方向の位置が矯正を必要とする位置にあり,且つ前記鋼板の板幅方向の最端部の板厚方向の位置が矯正を不要とする位置にある場合には,前記最近接する被検出部を磁気吸引しないようにしてもよい。   In the method for correcting the shape of the steel sheet, the position in the plate thickness direction of the detected portion closest to the plate is in a position where correction is not required, and the position in the plate thickness direction of the end portion in the plate width direction of the steel plate is corrected. If it is in the required position, magnetically attract the detected portion closest to the reference in the correction direction, and the position of the closest detected portion in the thickness direction is in a position that requires correction; and When the position in the plate thickness direction of the end portion in the plate width direction of the steel plate is at a position where correction is not required, the closest detected portion may not be magnetically attracted.

上記鋼板の形状矯正方法において,鋼板に付着しためっきの付着量に基づいて,前記鋼板の板幅方向の両端部の板厚方向の位置を求めるようにしてもよい。   In the method for correcting the shape of the steel plate, the positions in the plate thickness direction of both ends of the steel plate in the plate width direction may be obtained based on the amount of plating attached to the steel plate.

上記鋼板の形状矯正方法において,前記測定した鋼板の板幅方向の最端部の板厚方向の位置に基づいて,前記最近接する被検出部を前記参照用の矯正方向に磁気吸引する力の大きさを決定するようにしてもよい。   In the method for correcting the shape of the steel sheet, the force for magnetically attracting the closest detected part in the correction direction for reference based on the measured position in the thickness direction of the endmost part in the sheet width direction of the steel sheet. It is also possible to determine the length.

上記鋼板の形状矯正方法において,前記最近接する被検出部を前記参照用の矯正方向に磁気吸引する力の大きさは,前記対向する電磁石同士から板厚方向に等距離にあるセンターラインから鋼板の板幅方向の最端部までの板厚方向の距離と,前記センターラインから前記最近接する被検出部までの板厚方向の距離との差に依存して決定するようにしてもよい。   In the method for correcting the shape of the steel sheet, the magnitude of the force for magnetically attracting the detected portion closest to the reference in the correction direction for reference is from the center line that is equidistant from the opposing electromagnets in the plate thickness direction. It may be determined depending on the difference between the distance in the plate thickness direction to the extreme end in the plate width direction and the distance in the plate thickness direction from the center line to the closest detected portion.

また,本発明によれば,鋼板の形状矯正装置は,溶融めっき浴から退出して走行する鋼板に対向するように板幅方向に沿って複数配置された電磁石と,該電磁石の各々に設けられ,対向する鋼板の各被検出部の板厚方向の位置を測定可能なセンサと,鋼板の表裏面に付着しためっき付着量を測定するめっき付着量測定装置と,前記電磁石,前記センサ及び前記めっき付着量測定装置に接続され,前記めっき付着量測定装置が測定しためっき付着量に基づいて,前記電磁石及び前記センサを個別に制御する制御装置とを有する。前記制御装置は,前記センサの測定結果に基づいて前記各被検出部の矯正方向を決定し,さらに,前記めっき付着量測定装置の測定結果に基づいて前記鋼板の板幅方向の両側の最端部に各々最近接する被検出部の参照用の矯正方向を決定する。そして,前記矯正方向を決定した前記各被検出部のうち,前記鋼板の板幅方向の両側の最端部の各々に最近接する被検出部については,前記測定した板厚方向の位置に基づいて決定した矯正方向が前記参照用の矯正方向と異なる場合に,前記参照用の矯正方向に磁気吸引されるように前記電磁石を制御することを特徴とする。   Further, according to the present invention, the shape correction device for the steel plate is provided in each of the electromagnets, a plurality of electromagnets arranged along the plate width direction so as to face the steel plate traveling out of the hot dipping bath. , A sensor capable of measuring the position in the plate thickness direction of each detected portion of the opposing steel plate, a plating adhesion measuring device for measuring the amount of plating adhesion adhering to the front and back surfaces of the steel plate, the electromagnet, the sensor, and the plating A controller connected to the adhesion amount measuring device and individually controlling the electromagnet and the sensor based on the plating adhesion amount measured by the plating adhesion amount measuring device; The control device determines the correction direction of each detected portion based on the measurement result of the sensor, and further, based on the measurement result of the plating adhesion measuring device, the extreme ends on both sides in the plate width direction of the steel plate The correction direction for reference of the detected part closest to each part is determined. Of the detected parts that have determined the correction direction, the detected part closest to each of the extreme ends on both sides of the steel sheet in the plate width direction is based on the position in the measured thickness direction. When the determined correction direction is different from the reference correction direction, the electromagnet is controlled so as to be magnetically attracted in the reference correction direction.

上記鋼板の形状矯正装置において,前記最近接する被検出部の板厚方向の位置が矯正を不要とする位置にあり,且つ前記鋼板の板幅方向の最端部の板厚方向の位置が矯正を必要とする位置にある場合には,前記最近接する被検出部を参照用の矯正方向に磁気吸引し,前記最近接する被検出部の板厚方向の位置が矯正を必要とする位置にあり,且つ前記鋼板の板幅方向の最端部の板厚方向の位置が矯正を不要とする位置にある場合には,前記最近接する被検出部を磁気吸引しないようにしてもよい。   In the steel sheet shape correction device, the position in the plate thickness direction of the detected portion closest to the steel plate is a position where correction is not required, and the position in the plate thickness direction of the plate width direction of the steel plate is corrected. If it is in the required position, magnetically attract the detected portion closest to the reference in the correction direction, and the position of the closest detected portion in the thickness direction is in a position that requires correction; and When the position in the plate thickness direction of the end portion in the plate width direction of the steel plate is at a position where correction is not required, the closest detected portion may not be magnetically attracted.

上記鋼板の形状矯正装置において,前記制御装置は,さらに,前記測定した鋼板の板幅方向の両側の最端部の板厚方向の位置に基づいて,前記最近接する被検出部を前記参照用の矯正方向に磁気吸引する力の大きさを決定するようにしてもよい。   In the steel sheet shape correction device, the control device further determines the closest detected portion for reference based on the positions in the plate thickness direction of the end portions on both sides in the plate width direction of the measured steel plate. You may make it determine the magnitude | size of the force magnetically attracted in the correction direction.

上記鋼板の形状矯正装置において,前記制御装置は,さらに,前記最近接する被検出部を前記参照用の矯正方向に磁気吸引する力の大きさを,前記対向する電磁石同士から板厚方向に等距離にあるセンターラインから鋼板の板幅方向の両端部までの板厚方向の距離と,前記センターラインから前記最近接する被検出部までの板厚方向の距離との差に依存して決定するようにしてもよい。   In the steel sheet shape correction device, the control device further determines the magnitude of the force for magnetically attracting the detected portion closest to the reference detection direction in the reference correction direction from the opposing electromagnets in the plate thickness direction. It is determined depending on the difference between the distance in the plate thickness direction from the center line to both ends in the plate width direction of the steel plate and the distance in the plate thickness direction from the center line to the closest detected portion. May be.

本発明によれば,鋼板の板幅方向の両側の最端部をセンサ及び電磁石で直接的に矯正することができない場合にも,鋼板の板幅方向の両側の最端部の板厚方向の位置の情報を参照した矯正を行うことによって,従来よりも適切に鋼板の反りを矯正することができる。これにより,鋼板の板幅方向の両側の最端部において,めっきの付着量が不均一化し,合金されない部分が発生してしまうことを防止する。また,鋼板の板幅方向の最端部が板厚方向のいずれかの側に突出している場合に,該板幅方向の最端部に発生する摺り疵を防止することができ,さらに電磁石等の設備に衝突させて破損してしまう不適切な矯正を防止できる。また,設備構成の複雑化及び設備費用の肥大化を防止することが可能である。   According to the present invention, even when the extreme ends on both sides in the plate width direction of the steel plate cannot be directly corrected by the sensor and the electromagnet, the thickness in the plate thickness direction at the extreme ends on both sides in the plate width direction of the steel plate. By performing correction with reference to the position information, the warpage of the steel sheet can be corrected more appropriately than in the past. This prevents the amount of plating deposit from becoming uneven at the extreme ends on both sides in the plate width direction of the steel plate, thereby preventing the occurrence of unalloyed portions. In addition, when the extreme end of the steel plate in the plate width direction protrudes on either side of the plate thickness direction, it is possible to prevent the occurrence of dragging at the extreme end of the plate width direction, as well as electromagnets, etc. This prevents improper correction that could cause damage to the equipment. It is also possible to prevent the equipment configuration from becoming complicated and the equipment cost from increasing.

以下,図面を参照しながら,本発明の好適な実施形態について説明をする。なお,本明細書及び図面において,実質的に同一の機能構成を有する要素については,同一の符号を付することにより重複説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the present specification and drawings, elements having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

図2は,本発明の実施の形態に係る形状矯正方法を実施するのに適した溶融めっきライン1の構成図である。図2に示すように,溶融めっきライン1は,鋼板Iが矢印方向に進行し,溶融めっき浴槽2に亜鉛等の溶融めっきを満たした溶融めっき浴3内を走行してから退出するように構成されている。溶融めっき浴3内には,軸方向を水平にして回転自在に軸止され,鋼板Iを案内するシンクロール4及びサポートロール5が設けられている。サポートロール5は,シンクロール4の上方の溶融めっき浴内の出側付近に対で設けられ,鋼板Iを板厚方向Zに押圧することによって,鋼板Iの形状を矯正するように構成されている。   FIG. 2 is a configuration diagram of a hot dipping line 1 suitable for carrying out the shape correction method according to the embodiment of the present invention. As shown in FIG. 2, the hot dipping line 1 is configured such that the steel sheet I travels in the direction of the arrow and travels through the hot dipping bath 3 filled with hot dipping such as zinc in the hot dipping bath 2 and then exits. Has been. In the hot dipping bath 3, a sink roll 4 and a support roll 5 that guide the steel plate I are provided that are rotatably supported with the axial direction horizontal. The support rolls 5 are provided in pairs near the exit side in the hot dipping bath above the sink roll 4 and are configured to correct the shape of the steel sheet I by pressing the steel sheet I in the thickness direction Z. Yes.

サポートロール5の上方の溶融めっき浴3外の出側付近には,板厚方向Zの両側から鋼板Iに空気を吹付け,鋼板Iに付着しためっきの付着量を調整する一対のガスワイピングノズル10,11が対向配置されている。ガスワイピングノズル10,11の上方には,鋼板Iの板幅方向Yの軸に対する反り(いわゆるC反り,W反り等)を矯正する本発明の実施の形態に係る鋼板Iの形状矯正装置20が設けられている。なお,溶融めっき浴3から退出した鋼板Iは,搬送方向X(即ち,鉛直方向上向き)に走行し,ガスワイピングノズル10,11及び形状矯正装置20を通過するように構成されている。本実施の形態では,図2に示すように,搬送方向X,板幅方向Y及び板厚方向Zがいずれも互いに直交するように構成されている。   A pair of gas wiping nozzles for adjusting the amount of plating adhered to the steel sheet I by blowing air to the steel sheet I from both sides in the thickness direction Z near the exit side outside the hot dipping bath 3 above the support roll 5 10 and 11 are arranged facing each other. Above the gas wiping nozzles 10, 11, a shape correction device 20 for the steel plate I according to the embodiment of the present invention for correcting warpage (so-called C warpage, W warpage, etc.) of the steel plate I with respect to the axis in the plate width direction Y is provided. Is provided. The steel sheet I that has left the hot dipping bath 3 travels in the transport direction X (that is, upward in the vertical direction) and passes through the gas wiping nozzles 10 and 11 and the shape correction device 20. In the present embodiment, as shown in FIG. 2, the transport direction X, the plate width direction Y, and the plate thickness direction Z are all orthogonal to each other.

本発明の実施の形態に係る鋼板Iの形状矯正装置20は,ガスワイピングノズル10,11から退出して搬送方向Xに走行する鋼板Iの板厚方向Zの両側に対向配置され,鋼板Iを各々磁気吸引する電磁石群22,23を有する。電磁石群22,23の上方には,走行する鋼板Iの板厚方向Zの両側に対向配置しためっき付着量測定装置24,25が設けられている。本実施の形態では,鋼板Iの表裏面に各々X線を照射し,付着しためっきから放射される蛍光X線量を測定することによって,鋼板Iの表裏面に付着しためっきの付着量を各々測定することが可能な蛍光X線装置をめっき付着量測定装置24,25として用いている。   The shape correction device 20 for the steel sheet I according to the embodiment of the present invention is disposed opposite to both sides of the sheet thickness direction Z of the steel sheet I that retreats from the gas wiping nozzles 10 and 11 and travels in the transport direction X. Each has an electromagnet group 22 and 23 for magnetic attraction. Above the electromagnet groups 22 and 23, plating adhesion amount measuring devices 24 and 25 are provided so as to face each other in the plate thickness direction Z of the traveling steel plate I. In the present embodiment, the amount of plating adhering to the front and back surfaces of the steel sheet I is measured by irradiating the front and back surfaces of the steel sheet I with X-rays and measuring the amount of fluorescent X-ray emitted from the deposited plating. The X-ray fluorescence apparatus that can do this is used as the plating adhesion amount measuring devices 24 and 25.

めっき付着量測定装置24,25及び電磁石群22,23は,制御装置30に接続されている。制御装置30は,めっき付着量測定装置24,25から入力された鋼板Iの表裏面のめっきの付着量の測定結果の情報から,予め保持する経験的な相関データに基づいて鋼板Iの板幅方向Yに沿った各被検出部の板厚方向Zの位置を算出し,算出した各被検出部の板厚方向Zの位置に基づいて,電磁石群22,23を制御し,鋼板Iを形状矯正するように構成されている。   The plating adhesion amount measuring devices 24 and 25 and the electromagnet groups 22 and 23 are connected to the control device 30. The control device 30 calculates the plate width of the steel plate I based on the empirical correlation data held in advance from the information on the measurement results of the coating amount of the front and back surfaces of the steel plate I input from the plating adhesion amount measuring devices 24 and 25. The position in the plate thickness direction Z of each detected portion along the direction Y is calculated, and the electromagnet groups 22 and 23 are controlled based on the calculated position in the plate thickness direction Z of each detected portion, and the steel plate I is shaped. It is configured to correct.

図3は,図2のP−P矢視図である。図3に示すように,電磁石群22は,板幅方向Yに沿って所定間隔で配置した9個の電磁石40〜48を有し,電磁石群23は,板幅方向Yに沿って所定間隔で配置した9個の電磁石50〜58を有する。電磁石群22の電磁石40と電磁石群23の電磁石50は,搬送方向Xに走行する鋼板Iを板厚方向Zに挟むように対向配置されている。同様に,電磁石群22の残りの各電磁石41〜48と電磁石群23の残りの各電磁石51〜58も各々,1対1で対向配置されている。本実施の形態では,電磁石群22と電磁石群23は,板厚方向Zに距離2Lだけ離間している。なお,図3に示すように,電磁石群22及び電磁石群23から板厚方向Zに等距離Lにある中間位置を示すセンターラインを目標矯正ラインMとする。なお,本明細書中では,説明の簡略化を目的として,目標矯正ラインMがセンターラインであるものとして説明するが,めっきの付着量を均一化するように,ワイピングノズル10の部分で鋼板Iがフラットになるように制御し,電磁石群22,23の部分では,敢えて少量の反りが出るように目標矯正ラインMを設定してもよい。   FIG. 3 is a view taken along the line PP in FIG. As shown in FIG. 3, the electromagnet group 22 has nine electromagnets 40 to 48 arranged at predetermined intervals along the plate width direction Y, and the electromagnet group 23 is arranged at predetermined intervals along the plate width direction Y. It has nine electromagnets 50 to 58 arranged. The electromagnet 40 of the electromagnet group 22 and the electromagnet 50 of the electromagnet group 23 are arranged to face each other so as to sandwich the steel plate I traveling in the transport direction X in the plate thickness direction Z. Similarly, the remaining electromagnets 41 to 48 of the electromagnet group 22 and the remaining electromagnets 51 to 58 of the electromagnet group 23 are arranged to face each other in a one-to-one relationship. In the present embodiment, the electromagnet group 22 and the electromagnet group 23 are separated by a distance 2L in the thickness direction Z. As shown in FIG. 3, a center line indicating an intermediate position at an equal distance L in the plate thickness direction Z from the electromagnet group 22 and the electromagnet group 23 is defined as a target correction line M. In the present specification, for the purpose of simplifying the description, the target correction line M is described as being a center line. However, the steel plate I is formed at the portion of the wiping nozzle 10 so as to uniformize the coating amount. The target correction line M may be set so that a small amount of warpage is generated in the portions of the electromagnet groups 22 and 23.

電磁石群22の各電磁石40〜48及び電磁石群23の各電磁石50〜58は,各々,鋼板Iと対向する側の中央に,鋼板Iを検出し,鋼板Iの対向する部分(以下,被検出部と称する)60〜66の板厚方向Zの位置を測定可能なセンサ70を備えている。本実施の形態では,センサ70として,鋼板Iに発生した渦電流によるセンサコイルのインピーダンス変化に基づいて,鋼板I(被検出部)の板厚方向Zの位置を測定する渦流式変位計を用いている。   The electromagnets 40 to 48 of the electromagnet group 22 and the electromagnets 50 to 58 of the electromagnet group 23 detect the steel plate I in the center on the side facing the steel plate I, respectively. A sensor 70 capable of measuring positions in the thickness direction Z of 60 to 66. In the present embodiment, as the sensor 70, an eddy current displacement meter that measures the position of the steel sheet I (detected part) in the thickness direction Z based on the impedance change of the sensor coil due to the eddy current generated in the steel sheet I is used. ing.

図4及び図5は,電磁石群22の電磁石42及びそのセンサ70を拡大した図である。図4は,電磁石42のセンサ70が対向する鋼板Iの被検出部61を検出できる場合を示している。図4に示すように,電磁石42のセンサ70は,対向する鋼板Iがセンサ70の板幅方向Yの中心から両側に距離W/2までの検出範囲W全域に亘って存在する場合に,対向する鋼板Iの被検出部61を検出し,その板厚方向Zの位置を測定することが可能である。これに対して,図5に示すように,鋼板Iの板幅方向Yの最端部75が検出範囲W内に存在し,センサ70に対向する鋼板Iが検出範囲W全域に亘って存在しない場合には,電磁石42のセンサ70は,対向する鋼板I(被検出部61)を検出できない。なお,本実施の形態では,電磁石42のセンサ70の検出範囲Wは,電磁石42の板幅方向Yの長さHよりも大きな値に設定されている。   4 and 5 are enlarged views of the electromagnet 42 of the electromagnet group 22 and its sensor 70. FIG. FIG. 4 shows a case where the detected part 61 of the steel plate I can be detected by the sensor 70 of the electromagnet 42. As shown in FIG. 4, the sensor 70 of the electromagnet 42 is opposed when the opposing steel plate I exists over the entire detection range W from the center in the plate width direction Y of the sensor 70 to the distance W / 2 on both sides. It is possible to detect the detected portion 61 of the steel plate I to be measured and measure the position in the thickness direction Z thereof. On the other hand, as shown in FIG. 5, the outermost end 75 in the sheet width direction Y of the steel plate I exists in the detection range W, and the steel plate I facing the sensor 70 does not exist over the entire detection range W. In this case, the sensor 70 of the electromagnet 42 cannot detect the opposing steel plate I (detected portion 61). In the present embodiment, the detection range W of the sensor 70 of the electromagnet 42 is set to a value larger than the length H of the electromagnet 42 in the plate width direction Y.

上記では電磁石42のセンサ70について説明したが,電磁石群22,23のその他の各電磁石40,41,43〜48,50〜58の各センサ70についても同様である。また,各センサ70は,後述する制御装置30によって起動及び停止を個別に設定可能である。本実施の形態では,後述する制御装置30が,搬送方向Xに走行する鋼板Iの板幅方向Yの長さの情報を予め取得し,この長さ情報に基づいて,複数のセンサ70のうち,鋼板Iが検出範囲Wを通過する(即ち,鋼板Iと対向する)センサ70だけが予め起動されるようになっている。   Although the sensor 70 of the electromagnet 42 has been described above, the same applies to the sensors 70 of the other electromagnets 40, 41, 43 to 48, and 50 to 58 of the electromagnet groups 22 and 23. Each sensor 70 can be individually set to start and stop by a control device 30 described later. In the present embodiment, the control device 30 to be described later acquires in advance information on the length in the plate width direction Y of the steel plate I traveling in the transport direction X, and based on this length information, among the plurality of sensors 70. Only the sensor 70 in which the steel plate I passes the detection range W (that is, faces the steel plate I) is activated in advance.

既述したように1対1で対向配置された電磁石群22の各電磁石40〜48及び電磁石群23の各電磁石50〜58は,各々が備えるセンサ70が鋼板Iを検出した場合に,同じ幅方向Yの位置で互いに対向する電磁石の各対のいずれか一方側に鋼板Iを磁気吸引するように設定されている。本実施の形態では,図3に示すように,同じ板幅方向Yの位置の電磁石の対42,52が各々備えるセンサ70によって対向する鋼板Iを検出すると,これらの電磁石の対42,52のうちで,対向する鋼板Iからより遠い側にある電磁石52の出力が,より近い側にある電磁石42の出力よりも大きくなるように設定され,検出した鋼板Iを目標矯正ラインMの方に磁気吸引し,目標矯正ラインMの方に矯正するように設定されている。なお,電磁石の対42,52が対向する鋼板Iから等距離にある場合(即ち,目標矯正ラインM上にある場合)には,検出した鋼板Iを矯正する必要がないため,電磁石42,52の出力が等しくなるように設定される。   As described above, the electromagnets 40 to 48 of the electromagnet group 22 and the electromagnets 50 to 58 of the electromagnet group 23 facing each other in a one-to-one manner have the same width when the sensor 70 included therein detects the steel plate I. The steel plate I is set to be magnetically attracted to one side of each pair of electromagnets facing each other at the position in the direction Y. In the present embodiment, as shown in FIG. 3, when the opposing steel plates I are detected by the sensors 70 included in the electromagnet pairs 42 and 52 in the same plate width direction Y, the electromagnet pairs 42 and 52 Among them, the output of the electromagnet 52 on the far side from the opposing steel plate I is set to be larger than the output of the electromagnet 42 on the closer side, and the detected steel plate I is magnetized toward the target correction line M. The suction is set to correct toward the target correction line M. When the electromagnet pairs 42 and 52 are equidistant from the opposing steel plates I (that is, on the target correction line M), the detected steel plates I do not need to be corrected, so the electromagnets 42 and 52 Are set to be equal.

上述した制御を行うように,各センサ70は,測定した各被検出部(図3の場合,60〜66)の板厚方向Zの位置の情報を制御装置30に入力するように構成されている。また,制御装置30は,電磁石群22,23の各センサ70から入力された各被検出部(図3の場合,60〜66)の板厚方向Zの位置の情報と,既述しためっき付着量測定装置24,25から入力された鋼板Iの表裏面のめっきの付着量の測定結果の情報とに基づいて,対向する各被検出部(図3の場合,60〜66)を検出した2つの電磁石(図3の場合,41と51,42と52,・・・,47と57)の出力の大小を調整するように設定されている。各被検出部(図3の場合,60〜66)は,各々,より出力が大きい方の電磁石(図3の場合,41,47,52〜56)の側に,板厚方向Zに平行に磁気吸引される。ただし,各被検出部の両側の電磁石の出力が等しい場合には,鋼板Iはいずれの方向にも磁気吸引されず,不動の状態になる。なお,本明細書中では,各被検出部が各々磁気吸引される方向(図3に実線矢印で示す各方向)を各々の「矯正方向」と称する。   As described above, each sensor 70 is configured to input information on the position of each detected portion (60 to 66 in the case of FIG. 3) in the plate thickness direction Z to the control device 30. Yes. Further, the control device 30 receives information on the position in the plate thickness direction Z of each detected portion (60 to 66 in the case of FIG. 3) input from the sensors 70 of the electromagnet groups 22 and 23 and the plating adhesion described above. Based on the information on the measurement results of the adhesion amount of the plating on the front and back surfaces of the steel sheet I input from the quantity measuring devices 24, 25, the respective detected parts (60 to 66 in the case of FIG. 3) are detected 2 It is set to adjust the output level of two electromagnets (in the case of FIG. 3, 41 and 51, 42 and 52,..., 47 and 57). Each detected part (in the case of FIG. 3, 60 to 66) is parallel to the plate thickness direction Z on the side of the electromagnet (41, 47, 52 to 56 in the case of FIG. 3) having a larger output. Magnetic attraction. However, when the outputs of the electromagnets on both sides of each detected part are equal, the steel plate I is not magnetically attracted in any direction and is in a stationary state. In the present specification, directions in which each detected portion is magnetically attracted (directions indicated by solid arrows in FIG. 3) are referred to as “correction directions”.

形状矯正装置20は以上のように構成されており,次にこの形状矯正装置20を用いて実施する実施の形態に係る形状矯正方法を図2及び図3を用いて説明する。   The shape correction apparatus 20 is configured as described above. Next, a shape correction method according to an embodiment performed using the shape correction apparatus 20 will be described with reference to FIGS. 2 and 3.

まず,溶融めっきライン1上で鋼板Iを走行させる手順について説明する。図2に示すように,溶融めっきライン1上において,鋼板Iを矢印方向に走行させ,溶融めっき浴3内に上方から下方に所定の傾斜角度で進入させる。進入させた鋼板Iを溶融めっき浴3内で走行させることによって,溶融めっきをその表裏面に付着させる。溶融めっき浴3内を進行させる鋼板Iは,シンクロール4及びサポートロール5を介して,溶融めっき浴3外から鉛直方向上向きの搬送方向Xに退出させる。退出させた鋼板Iを,搬送方向Xに沿って走行させ,対向配置したガスワイピングノズル10,11の間を進行させる。この際に,走行する鋼板Iの板厚方向Zの両側にあるガスワイピングノズル10,11から空気を吹付け,鋼板Iの両面に付着しためっきを吹飛ばし,めっきの付着量を調整する。   First, the procedure for running the steel sheet I on the hot dipping line 1 will be described. As shown in FIG. 2, on the hot dipping line 1, the steel plate I is caused to travel in the direction of the arrow and enters the hot dipping bath 3 from the upper side to the lower side at a predetermined inclination angle. By causing the steel sheet I that has entered to run in the hot dipping bath 3, hot dipping is adhered to the front and back surfaces. The steel plate I traveling in the hot dipping bath 3 is withdrawn from the hot dipping bath 3 in the vertically upward conveying direction X through the sink roll 4 and the support roll 5. The retreated steel plate I is made to travel along the conveying direction X, and is advanced between the gas wiping nozzles 10 and 11 that are arranged to face each other. At this time, air is blown from the gas wiping nozzles 10 and 11 on both sides in the plate thickness direction Z of the traveling steel plate I, and the plating adhering to both surfaces of the steel plate I is blown off to adjust the amount of plating.

ガスワイピングノズル10,11から退出させた鋼板Iを搬送方向Xに沿って走行させ,形状矯正装置20の電磁石群22,23,めっき付着量測定装置24,25の間を順に進行させ,さらに下流に配置した合金化炉(図示せず)で合金化処理を施す。   The steel sheet I withdrawn from the gas wiping nozzles 10 and 11 is caused to travel along the transport direction X, and sequentially advances between the electromagnet groups 22 and 23 of the shape correction device 20 and the plating adhesion amount measuring devices 24 and 25, and further downstream. The alloying treatment is performed in an alloying furnace (not shown) arranged in (1).

次に,上述のように溶融めっきライン1上を走行する鋼板Iに対して,実施の形態に係る形状矯正方法を実施する際の手順の一例を図6及び図7を用いて説明する。図6は,鋼板Iの形状矯正手順を示す図2のP−P矢視図である。図7は,本発明の実施の形態に係る鋼板Iの形状矯正方法の手順を示すフロー図である。   Next, an example of the procedure when the shape correction method according to the embodiment is performed on the steel sheet I traveling on the hot dipping line 1 as described above will be described with reference to FIGS. 6 and 7. FIG. 6 is a P-P arrow view of FIG. FIG. 7 is a flowchart showing the procedure of the method for correcting the shape of the steel sheet I according to the embodiment of the present invention.

鋼板Iの形状矯正方法を開始(ステップ0)すると,制御装置30は,図示しない上位の制御装置から溶融めっきライン1上を走行する鋼板Iの板幅方向Yの長さを取得する。制御装置30は,取得した鋼板Iの板幅方向Yの長さの情報に基づいて,形状矯正装置20の全てのセンサ70のうち,鋼板Iと対向するセンサ70だけを起動し,鋼板Iと対向しないセンサ70は停止させておくように制御する。図6に示すように,本実施の形態では,電磁石群22,23の各センサ70のうち,図6中に網掛けで示すように,鋼板Iと対向する電磁石41〜47,51〜57に設けた各センサ70だけが制御装置30によって起動され,鋼板Iと対向しない両端の電磁石40,48,50,58に設けた各センサ70は起動されない(図6中で示すOFF)。なお,図6において,電磁石41〜47,51〜57中に表示したON(出力小),ON(出力大)は,各電磁石41〜47,51〜57が起動された状態であることを,各々の出力の大きさの情報と共に示したものである。また,各センサ70については,網掛けのあるものがON状態,網掛けのないものがOFF状態を各々示している。   When the shape correction method for the steel plate I is started (step 0), the control device 30 acquires the length in the plate width direction Y of the steel plate I traveling on the hot dipping line 1 from a host control device (not shown). The control device 30 activates only the sensor 70 facing the steel plate I among all the sensors 70 of the shape correction device 20 based on the acquired information on the length in the plate width direction Y of the steel plate I. Control is performed so that the non-opposing sensors 70 are stopped. As shown in FIG. 6, in the present embodiment, among the sensors 70 of the electromagnet groups 22 and 23, the electromagnets 41 to 47 and 51 to 57 facing the steel plate I are shown as shaded in FIG. 6. Only the provided sensors 70 are activated by the control device 30, and the sensors 70 provided on the electromagnets 40, 48, 50, 58 at both ends not facing the steel plate I are not activated (OFF shown in FIG. 6). In FIG. 6, ON (small output) and ON (large output) displayed in the electromagnets 41 to 47 and 51 to 57 indicate that the electromagnets 41 to 47 and 51 to 57 are activated. It is shown together with information on the size of each output. As for each sensor 70, the shaded one indicates the ON state, and the one not shaded indicates the OFF state.

ガスワイピングノズル10,11を退出し,形状矯正装置20の電磁石群22,23の間を進行する鋼板Iを,起動させた電磁石41〜47,51〜57の各センサ70で検出し(ステップ1),各々が対向する各被検出部60〜66の板厚方向Zの位置を各々測定する(ステップ2)。例えば,図6に示すように,電磁石42に設けたセンサ70の場合には,センサ70と対向する被検出部61との板厚方向Zの距離がJであると測定する。測定された各被検出部60〜66の板厚方向Zの位置の情報は,各センサ70から制御装置30に入力される。   The gas wiping nozzles 10 and 11 are withdrawn, and the steel plate I traveling between the electromagnet groups 22 and 23 of the shape correction device 20 is detected by the sensors 70 of the activated electromagnets 41 to 47 and 51 to 57 (step 1). ), The positions in the plate thickness direction Z of the respective detected portions 60 to 66 facing each other are measured (step 2). For example, as shown in FIG. 6, in the case of the sensor 70 provided on the electromagnet 42, the distance in the plate thickness direction Z between the sensor 70 and the detected portion 61 facing the sensor 70 is measured as J. Information on the measured positions of the detected portions 60 to 66 in the thickness direction Z is input from the sensors 70 to the control device 30.

制御装置30は,入力された各被検出部60〜66の板厚方向Zの位置に基づいて,鋼板Iの各被検出部60〜66の矯正方向αを各々決定する(ステップ3)。本実施の形態では,各被検出部60〜66の矯正方向αを,各被検出部60〜66の板厚方向Zの位置を目標矯正ラインMに近付ける向きで且つ板厚方向Zに平行な方向として決定する。図6の場合には,各被検出部60〜66の板厚方向Zの位置が,いずれも目標矯正ラインMに対して電磁石群22側に位置しているので,各被検出部60〜66の矯正方向αは全て,図6の点線矢印及び実線矢印で示すように,電磁石群22から目標矯正ラインMに向かう向きで且つ板厚方向Zに平行な方向として決定される。なお,上記では,各被検出部60〜66の板厚方向Zの位置が目標矯正ラインM上になく,各被検出部60〜66を矯正する必要がある場合について説明したが,各被検出部60〜66の板厚方向Zの位置が目標矯正ラインM上にある場合には,各被検出部60〜66を矯正する必要がないため,矯正方向αは,例外的な選択肢として,鋼板Iをいずれの方向にも矯正しない「方向なし」と決定される。   The control device 30 determines the correction direction α of each of the detected portions 60 to 66 of the steel sheet I based on the input position of the detected portions 60 to 66 in the plate thickness direction Z (step 3). In the present embodiment, the correction direction α of each of the detected parts 60 to 66 is set so that the position in the plate thickness direction Z of each of the detected parts 60 to 66 is close to the target correction line M and is parallel to the plate thickness direction Z. Determine as direction. In the case of FIG. 6, since the positions of the detected parts 60 to 66 in the plate thickness direction Z are all located on the electromagnet group 22 side with respect to the target correction line M, the detected parts 60 to 66 are included. 6 is determined as a direction from the electromagnet group 22 toward the target correction line M and parallel to the plate thickness direction Z, as indicated by the dotted and solid arrows in FIG. In the above description, the case where the positions of the detected parts 60 to 66 in the thickness direction Z are not on the target correction line M and the detected parts 60 to 66 need to be corrected has been described. When the positions of the portions 60 to 66 in the thickness direction Z are on the target correction line M, it is not necessary to correct the detected portions 60 to 66, so the correction direction α is a steel plate as an exceptional option. It is determined that “no direction” that does not correct I in any direction.

形状矯正装置20の電磁石群22,23を退出し,めっき付着量測定装置24,25の間を進行する鋼板Iの表裏面に,めっき付着量測定装置24,25から各々X線を照射し,鋼板Iの表裏面に付着しためっきの付着量を測定する(ステップ4)。測定した鋼板Iのめっきの付着量の測定結果の情報は,めっき付着量測定装置24,25から制御装置30に入力される。   The electromagnet groups 22 and 23 of the shape correction device 20 are withdrawn, and the front and back surfaces of the steel sheet I traveling between the plating adhesion measuring devices 24 and 25 are irradiated with X-rays from the plating adhesion measuring devices 24 and 25, respectively. The amount of plating adhered to the front and back surfaces of the steel sheet I is measured (step 4). Information of the measurement result of the measured adhesion amount of the steel sheet I is input from the plating adhesion amount measuring devices 24 and 25 to the control device 30.

制御装置30は,入力された鋼板Iのめっき付着量の測定結果の情報に基づいて,鋼板Iの板幅方向Yの両側の最端部75,76の板厚方向Zの位置を各々算出する(ステップ5)。本実施の形態では,制御装置30は,鋼板Iに付着しためっき付着量と,鋼板Iの反り量(即ち,鋼板Iの板厚方向Zの位置)とに関する経験的な相関データ(又は近似式)を予め保持し,この相関データを参照する(又は近似式に基づいて計算する)ことによって,入力された鋼板Iのめっき付着量の測定結果の情報に基づいて,鋼板Iの板幅方向Yの両側の最端部75,76の板厚方向Zの位置を各々算出する。   The control device 30 calculates the positions in the plate thickness direction Z of the extreme end portions 75 and 76 on both sides of the plate width direction Y of the steel plate I based on the input information of the measurement result of the coating amount of the steel plate I. (Step 5). In the present embodiment, the controller 30 empirically correlates data (or approximate expression) regarding the amount of plating attached to the steel plate I and the amount of warpage of the steel plate I (that is, the position in the thickness direction Z of the steel plate I). ) In advance and referring to this correlation data (or calculating based on the approximate expression), based on the input information of the measurement result of the coating amount of the steel sheet I, the sheet width direction Y of the steel sheet I The positions in the plate thickness direction Z of the extreme end portions 75 and 76 on both sides are calculated.

次いで,制御装置30は,上記ステップ3で矯正方向αを決定した手順と同様にして,算出した鋼板Iの板幅方向Yの両側の最端部75,76の板厚方向Zの位置に基づいて,鋼板Iの板幅方向Yの両側の最端部75,76の参照用の矯正方向βを各々決定する(ステップ6)。図6の場合には,鋼板Iの板幅方向Yの両側の最端部75,76の板幅方向Zの位置は,いずれも目標矯正ラインMに対して電磁石群23側に位置しているので,鋼板Iの板幅方向Yの両側の最端部75,76の参照用の矯正方向βはいずれも,図6の点線矢印で示すように,電磁石群23から目標矯正ラインMに向かう向きで且つ板厚方向Zに平行な方向として決定される。なお,上記では,鋼板Iの板幅方向Yの両側の最端部75,76の板厚方向Zの位置が目標矯正ラインM上になく,最端部75,76を矯正する必要がある場合について説明したが,最端部75,76の板厚方向Zの位置が目標矯正ラインM上にある場合には,最端部75,76を矯正する必要がないため,矯正方向βは,例外的な選択肢として,鋼板Iをいずれの方向にも矯正しない「方向なし」と決定される。   Next, the control device 30 is based on the calculated positions in the plate thickness direction Z of the extreme end portions 75 and 76 on both sides of the plate width direction Y of the steel plate I in the same manner as the procedure for determining the correction direction α in step 3 above. The correction direction β for reference of the extreme end portions 75 and 76 on both sides of the steel plate I in the plate width direction Y is determined (step 6). In the case of FIG. 6, the positions in the plate width direction Z of the extreme ends 75 and 76 on both sides in the plate width direction Y of the steel plate I are both positioned on the electromagnet group 23 side with respect to the target correction line M. Therefore, the reference correction directions β of the extreme ends 75 and 76 on both sides in the sheet width direction Y of the steel plate I are all directed from the electromagnet group 23 toward the target correction line M as indicated by the dotted arrows in FIG. And a direction parallel to the plate thickness direction Z. In the above description, the positions of the end portions 75 and 76 on both sides of the steel sheet I in the plate width direction Y are not on the target correction line M, and the end portions 75 and 76 need to be corrected. However, when the positions of the extreme end portions 75 and 76 in the thickness direction Z are on the target correction line M, the correction direction β is an exception because it is not necessary to correct the extreme end portions 75 and 76. As a typical option, it is determined that “the direction is not present” in which the steel sheet I is not corrected in any direction.

次いで,制御装置30は,鋼板Iの板幅方向Yの両側の最端部75,76に最近接する被検出部60,66以外の被検出部61〜65について,最終的な矯正方向を各矯正方向αに各々決定する(ステップ7)。一方,鋼板Iの板幅方向Yの両側の最端部75,76に最近接する被検出部60,66については,これら被検出部60,66の各矯正方向αを,各々が最近接する両側の最端部75,76の参照用の矯正方向βと比較する。そして,被検出部60,66の各矯正方向αが,対応する参照用の矯正方向βと同じ場合には,その最終的な矯正方向を矯正方向αに設定し,被検出部60,66の各矯正方向αが,対応する参照用の矯正方向βと異なる場合には,その最終的な矯正方向を矯正方向βに設定する(ステップ8)。   Next, the control device 30 corrects the final correction directions of the detected portions 61 to 65 other than the detected portions 60 and 66 closest to the extreme ends 75 and 76 on both sides in the plate width direction Y of the steel plate I. Each direction is determined (step 7). On the other hand, for the detected portions 60 and 66 closest to the extreme end portions 75 and 76 on both sides in the plate width direction Y of the steel plate I, the correction directions α of the detected portions 60 and 66 are set on the both sides closest to each other. Compared with the correction direction β for reference of the extreme end portions 75 and 76. If each correction direction α of the detected parts 60 and 66 is the same as the corresponding correction direction β for reference, the final correction direction is set to the correction direction α. If each correction direction α is different from the corresponding reference correction direction β, the final correction direction is set to the correction direction β (step 8).

なお,被検出部60,66の各矯正方向αが既述した「方向なし」と決定され,且つ参照用の矯正方向βが「方向なし」以外に決定されている場合には,被検出部60,66の最終的な矯正方向としては参照用の矯正方向βが設定される(即ち,磁気吸引による矯正が行われる)。これに対し,被検出部60,66の各矯正方向αが「方向なし」以外に決定され,且つ参照用の矯正方向βが「方向なし」に決定されている場合には,被検出部60,66の最終的な矯正方向としては参照用の矯正方向βと同じ「方向なし」が設定される(即ち,磁気吸引による矯正が行われない)。ここで,「方向なし」を方向の1つとみなしてしまえば,被検出部60,66の各矯正方向αが参照用の矯正方向βが異なる場合に,被検出部60,66の最終的な矯正方向に参照用の矯正方向βを設定するという手順をそのまま適用することも可能である。   In addition, when each correction direction α of the detected units 60 and 66 is determined as “no direction” as described above and the reference correction direction β is determined other than “no direction”, the detected unit As a final correction direction 60, 66, a reference correction direction β is set (that is, correction by magnetic attraction is performed). On the other hand, when each correction direction α of the detected parts 60 and 66 is determined to be other than “no direction” and the reference correction direction β is determined to be “no direction”, the detected part 60 66, the same “no direction” as the reference correction direction β is set (that is, correction by magnetic attraction is not performed). Here, if “no direction” is regarded as one of the directions, when each correction direction α of the detected portions 60 and 66 is different from the reference correction direction β, the final detection of the detected portions 60 and 66 is performed. It is also possible to apply the procedure of setting the reference correction direction β in the correction direction as it is.

図6の場合には,被検出部60の矯正方向αは,鋼板Iの板幅方向Yの最端部75の参照用の矯正方向βと反対向きで方向が異なるので,被検出部60の最終的な矯正方向は,最端部75の参照用の矯正方向βに設定される。同様に,被検出部66の矯正方向αは,鋼板Iの板幅方向Yの最端部76の参照用の矯正方向βと反対向きで方向が異なるので,鋼板66の最終的な矯正方向は,最端部76の参照用の矯正方向βに設定される。   In the case of FIG. 6, the correction direction α of the detected part 60 is opposite to the reference correction direction β of the endmost part 75 in the sheet width direction Y of the steel plate I, and the direction is different. The final correction direction is set to the reference correction direction β at the end 75. Similarly, since the correction direction α of the detected portion 66 is opposite to the reference correction direction β of the outermost portion 76 in the plate width direction Y of the steel plate I, and the direction is different, the final correction direction of the steel plate 66 is , The correction direction β for reference at the end 76 is set.

次いで,制御装置30は,対向する電磁石群22,23が各々有する磁石40〜48,50〜58のうちで,各被検出部60〜66を上述のように設定した最終的な矯正方向に磁気吸引できる各電磁石41,47,52〜56を各々励磁し,各被検出部60〜66を図6の実線矢印で示すように,最終的な矯正方向に磁気吸引する(ステップ9)。本実施の形態では,電磁石41,47,52〜56を用いて,各被検出部60〜66を磁気吸引する際の吸引力の強さは,目標矯正ラインMから各被検出部60〜66の板厚方向Zの位置までの距離が大きくなるにつれ,強くなるように設定されている。また,上記ステップ8において,被検出部60(66)の最終的な矯正方向を矯正方向αではなく矯正方向βに設定する場合には,被検出部60(66)を磁気吸引する際の吸引力の強さは,目標矯正ラインMから鋼板Iの両端部75(76)までの板厚方向Zの距離A(B)から,各々,目標矯正ラインMから被検出部60(66)までの板厚方向Zの距離a(b)を減じた値A−a(B−b)に依存するように設定されている。   Next, the control device 30 magnetically magnetizes the detected portions 60 to 66 in the final correction direction set as described above, among the magnets 40 to 48 and 50 to 58 included in the opposing electromagnet groups 22 and 23, respectively. Each of the electromagnets 41, 47, 52 to 56 that can be attracted is excited, and each detected portion 60 to 66 is magnetically attracted in the final correction direction as indicated by the solid line arrows in FIG. 6 (step 9). In the present embodiment, the strength of the attraction force when magnetically attracting the detected parts 60 to 66 using the electromagnets 41, 47, 52 to 56 is determined from the target correction line M to the detected parts 60 to 66. It is set to become stronger as the distance to the position in the plate thickness direction Z increases. Further, when the final correction direction of the detected part 60 (66) is set to the correction direction β instead of the correction direction α in step 8, the suction when the detected part 60 (66) is magnetically attracted. The strength of the force is determined from the distance A (B) in the thickness direction Z from the target correction line M to both ends 75 (76) of the steel sheet I, and from the target correction line M to the detected portion 60 (66), respectively. It is set to depend on a value Aa (Bb) obtained by subtracting the distance a (b) in the plate thickness direction Z.

以上の手順により,鋼板Iは,形状矯正装置20の電磁石群22,23の電磁石40〜48,50〜58の一部又は全部によって最終的な矯正方向に磁気吸引され,実線で示す矯正前の位置Oから点線で示す矯正後の位置Qに矯正される。これにより本発明の実施の形態に係る形状矯正方法の手順が終了する(ステップ10)。   According to the above procedure, the steel sheet I is magnetically attracted in the final correction direction by some or all of the electromagnets 40 to 48 and 50 to 58 of the electromagnet groups 22 and 23 of the shape correction device 20, and before the correction shown by the solid line. The position is corrected to a corrected position Q indicated by a dotted line from the position O. Thereby, the procedure of the shape correction method according to the embodiment of the present invention is completed (step 10).

以上の実施の形態によれば,鋼板Iの板幅方向Yの両側の最端部75,76に最近接する被検出部60,66の矯正を行う際に,該被検出部60,66の矯正方向αを,鋼板Iの両側の最端部75,76の板厚方向Zの位置の情報から決定される参照用の矯正方向βと各々一致させるように,被検出部60,66の最終的な矯正方向を決定するようにしたことによって,鋼板Iの板幅方向Yの両側の最端部75,76付近での反りの度合いが大きい,両側の最端部75,76付近のセンサ70が故障している等の種々の要因から,鋼板Iの板幅方向Yの両側の最端部75,76の反りを適切に検出できない場合に,設備構成を複雑化させたり,設備費用を肥大化させることなく,鋼板Iの形状を適切に矯正することが可能になる。また,鋼板Iの板幅方向Yの両側の最端部75,76が各センサ70の検出範囲Wから外れた位置にあって,従来の形状矯正技術では適切な矯正が困難である場合についても,鋼板Iの形状を適切に矯正することが可能になる。さらに,鋼板Iの板幅方向Yの両側の最端部75,76が形状矯正装置20の電磁石40〜48,50〜58又はセンサ70に擦過したり,衝突したりして形状矯正装置20を損傷させてしまうことを防止できる。   According to the above embodiment, when the detected portions 60 and 66 closest to the extreme end portions 75 and 76 on both sides in the sheet width direction Y of the steel plate I are corrected, the detected portions 60 and 66 are corrected. The final direction of the detected parts 60 and 66 is made to match the direction α with the reference correction direction β determined from the information of the position in the plate thickness direction Z of the extreme end portions 75 and 76 on both sides of the steel plate I. By determining the correct correction direction, the sensor 70 near the extreme end portions 75, 76 on both sides has a large degree of warpage in the vicinity of the extreme end portions 75, 76 on both sides in the plate width direction Y of the steel plate I. Due to various factors such as failure, when the curvature of the extreme ends 75 and 76 on both sides in the sheet width direction Y of the steel sheet I cannot be detected properly, the equipment configuration becomes complicated and the equipment costs increase. Without making it possible, the shape of the steel sheet I can be appropriately corrected. Further, when the extreme ends 75 and 76 on both sides of the steel sheet I in the width direction Y are out of the detection range W of each sensor 70 and proper correction is difficult with the conventional shape correction technique. The shape of the steel plate I can be corrected appropriately. Further, the endmost portions 75 and 76 on both sides in the plate width direction Y of the steel plate I are abraded or collide with the electromagnets 40 to 48, 50 to 58 or the sensor 70 of the shape correcting device 20 to form the shape correcting device 20. It can be prevented from being damaged.

以上のように説明した本発明の実施の形態に係る形状矯正方法について,いくつか具体例を挙げて,その作用を説明する。図8〜12は,鋼板Iの板幅方向Yの最端部75側の形状が種々の反り形状である場合に,本発明の形状矯正方法を適用した場合の説明図である。図8〜12では,矯正前の鋼板Iの形状を実線で示し,電磁石による磁気吸引によって矯正された後の鋼板Iの形状を点線で示した。   The operation of the shape correction method according to the embodiment of the present invention described above will be described with some specific examples. FIGS. 8-12 is explanatory drawing at the time of applying the shape correction method of this invention when the shape of the end part 75 side of the sheet width direction Y of the steel plate I is various curvature shape. 8-12, the shape of the steel plate I before correction is shown by a solid line, and the shape of the steel plate I after correction by magnetic attraction by an electromagnet is shown by a dotted line.

図8に示す鋼板Iの矯正前の形状の場合には,図6に示した場合と同様に,鋼板Iの板幅方向Yの最端部75が,目標矯正ラインMの一方の側(−側)に配置され,この最端部75に最近接する被検出部60が,目標矯正ラインMの他方の側(+側)に各々配置されている。即ち,被検出部60の矯正方向α(+側から−側に向かう向き)が,最端部75の板厚方向Zの位置に基づく上向きの参照用の矯正方向β(−側から+側に向かう向き)と異なるため,既述したように,被検出部60の最終的な矯正方向は,図8の上向き実線矢印で示すように,参照用の矯正方向βに設定される。被検出部61の矯正方向は+側から−側に向かう向きであり,鋼板Iは矯正後,図8の点線に示す形状になる。   In the case of the shape before correction of the steel plate I shown in FIG. 8, as in the case shown in FIG. 6, the outermost end 75 in the plate width direction Y of the steel plate I is on one side of the target correction line M (− The detected part 60 closest to the outermost end 75 is arranged on the other side (+ side) of the target correction line M. That is, the correction direction α (the direction from the + side to the − side) of the detected portion 60 is the upward reference correction direction β (from the − side to the + side) based on the position in the thickness direction Z of the outermost end 75. Therefore, as described above, the final correction direction of the detected portion 60 is set to the reference correction direction β as indicated by the upward solid arrow in FIG. The correction direction of the detected portion 61 is a direction from the + side to the − side, and the steel plate I has a shape shown by a dotted line in FIG. 8 after correction.

図9に示す鋼板Iの矯正前の形状の場合には,鋼板Iの板幅方向Yの最端部75が,目標矯正ラインMの一方の側(−側)に配置され,被検出部60が目標矯正ラインM上に配置されている。即ち,被検出部60の矯正方向αは「方向なし」であり,参照用の矯正方向β(−側から+側に向かう向き)と異なるため,被検出部60の最終的な矯正方法は,図9の上向き実線矢印で示すように,参照用の矯正方向βに設定される。被検出部61も目標矯正ラインM上にあるため,その矯正方向が「方向なし」であり,鋼板Iは矯正後,図9の点線に示す形状になる。   In the case of the shape before correction of the steel plate I shown in FIG. 9, the outermost end portion 75 in the plate width direction Y of the steel plate I is disposed on one side (− side) of the target correction line M, and the detected portion 60 Is arranged on the target correction line M. That is, since the correction direction α of the detected part 60 is “no direction” and is different from the reference correction direction β (direction from the − side to the + side), the final correction method of the detected part 60 is: As shown by the upward solid arrow in FIG. 9, the reference correction direction β is set. Since the detected portion 61 is also on the target correction line M, the correction direction is “no direction”, and the steel plate I has the shape shown by the dotted line in FIG. 9 after correction.

図10に示す鋼板Iの矯正前の形状の場合には,鋼板Iの板幅方向Yの最端部75と,この最端部75に最近接する被検出部60とが,目標矯正ラインMの同じ側(−側)に配置されている。即ち,被検出部60の矯正方向αと最端部75に基づく参照用の矯正方向βが同じ(−側から+側に向かう向き)であるため,被検出部60の最終的な矯正方向は,図9の上向き実線矢印で示すように,矯正方向αに設定される。被検出部61は目標矯正ラインM上にあるため,その矯正方向が「方向なし」であり,鋼板Iは矯正後,図10の点線に示す形状になる。矯正後のこの形状は,図9に示す矯正前の形状と同じであるので,その後,図9について上記で説明した矯正がなされる。   In the case of the shape before correction of the steel plate I shown in FIG. 10, the outermost end portion 75 of the steel plate I in the plate width direction Y and the detected portion 60 closest to the outermost end portion 75 are in the target correction line M. Arranged on the same side (-side). That is, since the correction direction α of the detected part 60 and the reference correction direction β based on the endmost part 75 are the same (direction from the − side to the + side), the final correction direction of the detected part 60 is , The correction direction α is set as indicated by the upward solid arrow in FIG. Since the detected portion 61 is on the target correction line M, the correction direction is “no direction”, and the steel plate I has a shape shown by a dotted line in FIG. 10 after correction. Since this shape after correction is the same as the shape before correction shown in FIG. 9, the correction described above with reference to FIG. 9 is performed thereafter.

図11に示す鋼板Iの矯正前の形状の場合には,図8及び図9の矯正後の形状と同じ形状になっている。即ち,図11は,図8及び9の矯正が行われた後の鋼板Iに対してなされる矯正を示している。図811に示す矯正前の鋼板Iの板幅方向Yの最端部75は,目標矯正ラインM上に配置されている。また,最端部75に最近接する被検出部60が,目標矯正ラインMの一方の側(+側)に配置されている。従って,被検出部60の矯正方向α(+側から−側に向かう向き)は,「方向なし」である参照用の矯正方向βと異なるため,被検出部60の最終的な矯正方向は,「方向なし」に設定される。被検出部61の矯正方向も「方向なし」であるので,被検出部60及び61は矯正されず,鋼板Iの形状がそのまま保持される。   In the case of the shape before correction of the steel plate I shown in FIG. 11, the shape is the same as the shape after correction in FIGS. That is, FIG. 11 shows the correction performed on the steel sheet I after the correction of FIGS. 8 and 9 is performed. The most end portion 75 in the plate width direction Y of the steel plate I before correction shown in FIG. 811 is arranged on the target correction line M. In addition, the detected portion 60 that is closest to the outermost end 75 is disposed on one side (+ side) of the target correction line M. Therefore, since the correction direction α (the direction from the + side toward the − side) of the detected unit 60 is different from the reference correction direction β of “no direction”, the final correction direction of the detected unit 60 is Set to “No Direction”. Since the correction direction of the detected portion 61 is also “no direction”, the detected portions 60 and 61 are not corrected and the shape of the steel sheet I is maintained as it is.

図12に示す鋼板Iの矯正前の形状の場合には,図11に示す鋼板Iの形状が変化した形状と同じ形状になっている。図12に示す鋼板Iの板幅方向Yの最端部75と,この最端部75に最近接する被検出部60とは,目標矯正ラインMの同じ側(+側)に配置されている。即ち,被検出部60の矯正方向αが,最端部75に基づく参照用の矯正方向βと同じ(+側から−側に向かう向き)であるため,被検出部60の最終的な矯正方向は,図12の下向き実線矢印で示すように,矯正方向αに設定される。被検出部61の矯正方向は「方向なし」であり,鋼板Iは矯正後,図11の点線に示す形状になる。矯正後のこの形状は,図9に示す矯正前の形状と同じであるので,その後,図9について上記で説明した矯正がなされる。   In the case of the shape before correction of the steel plate I shown in FIG. 12, the shape is the same as the shape of the steel plate I shown in FIG. The most end portion 75 in the sheet width direction Y of the steel plate I shown in FIG. 12 and the detected portion 60 closest to the most end portion 75 are arranged on the same side (+ side) of the target correction line M. That is, since the correction direction α of the detected part 60 is the same as the reference correction direction β based on the endmost part 75 (the direction from the + side to the − side), the final correction direction of the detected part 60 Is set in the correction direction α as shown by the downward solid arrow in FIG. The correction direction of the detected portion 61 is “no direction”, and the steel plate I has a shape shown by a dotted line in FIG. 11 after correction. Since this shape after correction is the same as the shape before correction shown in FIG. 9, the correction described above with reference to FIG. 9 is performed thereafter.

以上,図8〜12を用いて鋼板Iの板幅方向Yの最端部75が種々の反り形状である場合について,本発明の実施の形態に係る鋼板の形状矯正方法を説明したが,鋼板Iの形状を矯正する際には,鋼板Iの形状に対応した矯正が周期的に繰返され,振動が発生してしまう恐れがあるため,このような事態を防止するため,鋼板Iの形状矯正の制御に関する時定数及び制御定数を適正に設定する必要がある。この時定数及び制御定数は,操業に先駆けて適切に設定し,操業中も適宜調整する必要がある。   As described above, the method of correcting the shape of the steel sheet according to the embodiment of the present invention has been described with reference to FIGS. 8 to 12 in the case where the outermost end 75 in the sheet width direction Y of the steel sheet I has various warp shapes. When correcting the shape of I, the correction corresponding to the shape of the steel plate I is periodically repeated, and there is a possibility that vibrations may occur. Therefore, in order to prevent such a situation, the shape correction of the steel plate I is performed. It is necessary to appropriately set the time constant and control constant related to the control of the above. These time constants and control constants need to be set appropriately prior to operation and adjusted appropriately during operation.

なお,上述した実施形態では,鋼板Iの板幅方向Yの両側の最端部75,76の反りを適切に検出できない場合について説明したが,鋼板Iの板幅方向Yの両側の最端部75,76の反りを適切に検出できる場合についても,本発明の実施の形態に係る形状矯正方法によって,従来公知の形状矯正方法と同様に鋼板Iの形状を適切に矯正することが可能である。   In the above-described embodiment, the case where the warpage of the extreme end portions 75 and 76 on both sides of the steel plate I in the plate width direction Y cannot be properly detected has been described, but the extreme end portions on both sides of the steel plate I in the plate width direction Y are described. Even in the case where the warpage of 75 and 76 can be detected appropriately, the shape correction method according to the embodiment of the present invention can appropriately correct the shape of the steel sheet I as in the conventionally known shape correction method. .

以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本発明は係る例に限定されない。当業者であれば,特許請求の範囲に記載された技術的思想の範疇内において,各種の変更例又は修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, this invention is not limited to the example which concerns. It is obvious for those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims. It is understood that it belongs to.

上述した実施形態においては,溶融めっきライン1上に,鋼板Iの搬送方向Xに沿って,ガスワイピングノズル10,11,形状矯正装置20の電磁石群22,23,めっき付着量測定装置24,25が順に配置されている場合について説明したが,溶融めっきライン1は,その他の配置構成であってもよい。   In the above-described embodiment, the gas wiping nozzles 10 and 11, the electromagnet groups 22 and 23 of the shape correcting device 20, and the plating adhesion amount measuring devices 24 and 25 are arranged on the hot dipping line 1 along the conveying direction X of the steel plate I. However, the hot dipping line 1 may have other arrangement configurations.

上述した実施形態においては,電磁石群22,23が各々9個の電磁石40〜48,50〜58で構成される場合について説明したが,電磁石群22,23を構成する電磁石の個数は9以外であってもよい。   In the above-described embodiment, the case where the electromagnet groups 22 and 23 are each composed of nine electromagnets 40 to 48 and 50 to 58 has been described. However, the number of electromagnets constituting the electromagnet groups 22 and 23 is other than nine. There may be.

上述した実施形態においては,被検出部60〜66の板厚方向Zの位置を測定するセンサ70として渦流式センサを用いる場合について説明したが,その他のセンサが用いられてもよい。   In the above-described embodiment, the case where the eddy current sensor is used as the sensor 70 for measuring the position of the detected portions 60 to 66 in the plate thickness direction Z has been described, but other sensors may be used.

上述した実施形態においては,センサ70が,電磁石群22及び電磁石群23の両方の各電磁石40〜48,50〜58の鋼板Iと対向する側において板幅方向Yの中央位置に各々設けられている場合について説明したが,センサ70は,その他の位置に設けられていてもよい。また,センサ70は,電磁石群22の各電磁石40〜48又は電磁石群23の各電磁石50〜58のいずれか一方だけに設けられていてもよい。   In the embodiment described above, the sensor 70 is provided at the center position in the plate width direction Y on the side facing the steel plate I of each of the electromagnets 40 to 48 and 50 to 58 of both the electromagnet group 22 and the electromagnet group 23. However, the sensor 70 may be provided at other positions. Further, the sensor 70 may be provided only in any one of the electromagnets 40 to 48 of the electromagnet group 22 or the electromagnets 50 to 58 of the electromagnet group 23.

上述した実施形態においては,めっき付着量測定装置24,25として蛍光X線装置を用いる場合について説明したが,β線又はγ線を用いてめっき付着量を測定する測定装置等,その他のめっき付着量測定装置が用いられてもよい。   In the above-described embodiment, the case where a fluorescent X-ray apparatus is used as the plating adhesion amount measuring devices 24 and 25 has been described. However, other plating adhesions such as a measuring device for measuring the plating adhesion amount using β rays or γ rays. A quantity measuring device may be used.

本発明は,例えば溶融めっき鋼板を製造する溶融めっきラインに特に有用である。   The present invention is particularly useful for a hot dipping line for producing hot dipped steel sheets, for example.

鋼板の反りを適切に矯正できない場合の一例を示す従来公知の形状矯正装置100の構成図である。It is a block diagram of the conventionally well-known shape correction apparatus 100 which shows an example when the curvature of a steel plate cannot be corrected appropriately. 本発明の実施の形態に係る形状矯正方法を実施するのに適した溶融めっきライン1の構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of the hot dipping line 1 suitable for implementing the shape correction method which concerns on embodiment of this invention. 図2のP−P矢視図である。It is a PP arrow line view of FIG. 電磁石42のセンサ70が対向する鋼板Iの被検出部61を検出できる場合における,電磁石群22の電磁石42及びそのセンサ70の拡大図である。It is an enlarged view of the electromagnet 42 of the electromagnet group 22 and its sensor 70 when the sensor 70 of the electromagnet 42 can detect the to-be-detected part 61 of the steel plate I which opposes. 電磁石42のセンサ70が対向する鋼板Iの被検出部61を検出できない場合における,電磁石群22の電磁石42及びそのセンサ70の拡大図である。It is an enlarged view of the electromagnet 42 of the electromagnet group 22 and its sensor 70 when the sensor 70 of the electromagnet 42 cannot detect the to-be-detected part 61 of the steel plate I which opposes. 鋼板Iの形状矯正手順を示す図2のP−P矢視図である。It is a PP arrow line view of Drawing 2 showing the shape correction procedure of steel plate I. 本発明の実施の形態に係る鋼板Iの形状矯正方法の手順を示すフロー図である。It is a flowchart which shows the procedure of the shape correction method of the steel plate I which concerns on embodiment of this invention. 種々の形状の鋼板Iに対して本発明の実施の形態に係る鋼板の形状矯正方法を適用した場合の一例を示す説明図である。It is explanatory drawing which shows an example at the time of applying the shape correction method of the steel plate which concerns on embodiment of this invention with respect to the steel plate I of various shapes. 種々の形状の鋼板Iに対して本発明の実施の形態に係る鋼板の形状矯正方法を適用した場合の一例を示す説明図である。It is explanatory drawing which shows an example at the time of applying the shape correction method of the steel plate which concerns on embodiment of this invention with respect to the steel plate I of various shapes. 種々の形状の鋼板Iに対して本発明の実施の形態に係る鋼板の形状矯正方法を適用した場合の一例を示す説明図である。It is explanatory drawing which shows an example at the time of applying the shape correction method of the steel plate which concerns on embodiment of this invention with respect to the steel plate I of various shapes. 種々の形状の鋼板Iに対して本発明の実施の形態に係る鋼板の形状矯正方法を適用した場合の一例を示す説明図である。It is explanatory drawing which shows an example at the time of applying the shape correction method of the steel plate which concerns on embodiment of this invention with respect to the steel plate I of various shapes. 種々の形状の鋼板Iに対して本発明の実施の形態に係る鋼板の形状矯正方法を適用した場合の一例を示す説明図である。It is explanatory drawing which shows an example at the time of applying the shape correction method of the steel plate which concerns on embodiment of this invention with respect to the steel plate I of various shapes.

符号の説明Explanation of symbols

1 溶融めっきライン
2 溶融めっき浴槽
3 溶融めっき浴
4 シンクロール
5 サポートロール
10,11 ガスワイピングノズル
20,100 形状矯正装置
22,23 電磁石群
24,25 めっき付着量測定装置
30 制御装置
40〜48,50〜58,101,102 電磁石
60〜68,120 被検出部
70,110 センサ
75,76,130 鋼板の板幅方向の両端部
A,B 鋼板の板幅方向の両端部の板厚方向の位置
a,b 鋼板の板幅方向の両端部に最近接する被検出部の板厚方向の位置
H 電磁石の板幅方向の長さ
I 鋼板
J センサと被検出部との板厚方向の距離(の一例)
L 電磁石群22(23)とセンターラインMとの距離
M センターライン(目標矯正ライン)
W 検出範囲(距離)
X 搬送方向
Y 板幅方向
Z 板厚方向
α 被検出部の矯正方向
β 被検出部の板幅方向の両端部の参照用の矯正方向
+,− 目標矯正ラインの両側
DESCRIPTION OF SYMBOLS 1 Hot dipping line 2 Hot dipping bath 3 Hot dipping bath 4 Sink roll 5 Support roll 10,11 Gas wiping nozzle 20,100 Shape correction device 22,23 Electromagnet group 24,25 Plating adhesion amount measuring device 30 Control device 40-48, 50 to 58, 101, 102 Electromagnet 60 to 68, 120 Detected part 70, 110 Sensor 75, 76, 130 Both ends in the plate width direction of the steel plate A, B Position in the plate thickness direction of both ends in the plate width direction of the steel plate a, b Thickness position of the detected portion closest to both ends of the steel plate in the plate width direction H Length of the electromagnet in the plate width direction I Steel plate J Distance in the plate thickness direction between the sensor and the detected portion (an example) )
L Distance between electromagnet group 22 (23) and center line M M Center line (target correction line)
W Detection range (distance)
X Conveyance direction Y Plate width direction Z Plate thickness direction α Correction direction of the detected part β Correction direction for reference at both ends of the plate width direction of the detected part +, − Both sides of the target correction line

Claims (9)

溶融めっき浴から退出して走行する鋼板に対向する電磁石及びセンサを板幅方向に沿って複数配置し,前記センサで測定した前記鋼板の各被検出部の板厚方向の反りに基づいて,前記電磁石で前記各被検出部を各々所定の矯正方向に磁気吸引する,鋼板の形状矯正方法であって,
まず,鋼板を検出した前記センサで各被検出部の板厚方向の位置を測定し,前記測定した板厚方向の位置に基づいて,前記各被検出部の矯正方向を決定し,
一方,前記センサとは異なるセンサを用いて鋼板の板幅方向の最端部の板厚方向の位置を求め,該求めた最端部の板厚方向の位置に基づいて,最端部の各々に最近接する前記被検出部の参照用の矯正方向を決定し,
次に,前記矯正方向を決定した前記各被検出部のうち,前記鋼板の板幅方向の最端部の各々に最近接する被検出部については,前記測定した板厚方向の位置に基づいて決定した矯正方向が前記参照用の矯正方向と異なる場合に,前記電磁石で前記参照用の矯正方向に磁気吸引することを特徴とする,鋼板の形状矯正方法。
A plurality of electromagnets and sensors facing the steel plate traveling out of the hot dipping bath are disposed along the plate width direction, based on the warpage in the plate thickness direction of each detected portion of the steel plate measured by the sensor, A method of correcting the shape of a steel sheet, wherein each detected portion is magnetically attracted in a predetermined correction direction by an electromagnet,
First, the position of each detected portion is measured by the sensor that detects the steel plate, and the correction direction of each detected portion is determined based on the measured position of the thickness direction,
On the other hand, the position in the plate thickness direction of the plate width direction of the steel plate is obtained using a sensor different from the sensor, and each of the extreme end portions is determined based on the obtained position of the extreme end portion in the plate thickness direction. Determining a correction direction for reference of the detected part closest to
Next, among the detected parts for which the correction direction has been determined, the detected part closest to each of the outermost ends in the sheet width direction of the steel sheet is determined based on the position in the measured thickness direction. A method of correcting the shape of a steel sheet, wherein the electromagnet is magnetically attracted in the reference correction direction when the corrected correction direction is different from the reference correction direction.
前記最近接する被検出部の板厚方向の位置が矯正を不要とする位置にあり,且つ前記鋼板の板幅方向の最端部の板厚方向の位置が矯正を必要とする位置にある場合には,前記最近接する被検出部を参照用の矯正方向に磁気吸引し,
前記最近接する被検出部の板厚方向の位置が矯正を必要とする位置にあり,且つ前記鋼板の板幅方向の最端部の板厚方向の位置が矯正を不要とする位置にある場合には,前記最近接する被検出部を磁気吸引しないことを特徴とする,請求項1に記載の鋼板の形状矯正方法。
When the position in the plate thickness direction of the detected portion closest to the plate is in a position that does not require correction, and the position in the plate thickness direction of the plate width direction of the steel plate is in a position that requires correction Is magnetically attracting the closest detected part in the reference correction direction,
When the position in the plate thickness direction of the detected portion closest to the plate is in a position that requires correction, and the position in the plate thickness direction of the end portion in the plate width direction of the steel plate is in a position that does not require correction 2. The method of correcting a shape of a steel sheet according to claim 1, wherein the detected part that is closest is not magnetically attracted.
鋼板に付着しためっきの付着量に基づいて,前記鋼板の板幅方向の最端部の板厚方向の位置を求めることを特徴とする,請求項1又は2に記載の鋼板の形状矯正方法。 The shape correction method for a steel sheet according to claim 1 or 2, wherein a position in the plate thickness direction of an end portion in the plate width direction of the steel plate is obtained based on an adhesion amount of the plating attached to the steel plate. 前記測定した鋼板の板幅方向の最端部の板厚方向の位置に基づいて,前記最近接する被検出部を前記参照用の矯正方向に磁気吸引する力の大きさを決定することを特徴とする,請求項1〜3のいずれかに記載の鋼板の形状矯正方法。 Based on the measured position in the plate thickness direction of the endmost portion in the plate width direction of the steel plate, the magnitude of the force that magnetically attracts the closest detected portion in the reference correction direction is determined. The method for correcting the shape of a steel sheet according to any one of claims 1 to 3. 前記最近接する被検出部を前記参照用の矯正方向に磁気吸引する力の大きさは,前記対向する電磁石同士から板厚方向に等距離にあるセンターラインから鋼板の板幅方向の最端部までの板厚方向の距離と,前記センターラインから前記最近接する被検出部までの板厚方向の距離との差に依存して決定することを特徴とする,請求項4に記載の鋼板の形状矯正方法。 The magnitude of the force that magnetically attracts the closest detected portion in the reference correction direction is from the center line that is equidistant from the opposing electromagnets in the plate thickness direction to the extreme end in the plate width direction of the steel plate. 5. The shape correction of a steel sheet according to claim 4, wherein the correction is made depending on a difference between a distance in the thickness direction of the sheet and a distance in the thickness direction from the center line to the closest detected portion. Method. 溶融めっき浴から退出して走行する鋼板に対向するように板幅方向に沿って複数配置された電磁石と,
該電磁石の各々に設けられ,対向する鋼板の各被検出部の板厚方向の位置を測定可能なセンサと,
鋼板の表裏面に付着しためっき付着量を測定するめっき付着量測定装置と,
前記電磁石,前記センサ及び前記めっき付着量測定装置に接続され,前記めっき付着量測定装置が測定しためっき付着量に基づいて,前記電磁石及び前記センサを個別に制御する制御装置とを有し,
前記制御装置は,前記センサの測定結果に基づいて前記各被検出部の矯正方向を決定し,さらに,前記めっき付着量測定装置の測定結果に基づいて前記鋼板の板幅方向の両側の最端部に各々最近接する被検出部の参照用の矯正方向を決定し,前記矯正方向を決定した前記各被検出部のうち,前記鋼板の板幅方向の両側の最端部の各々に最近接する被検出部については,前記測定した板厚方向の位置に基づいて決定した矯正方向が前記参照用の矯正方向と異なる場合に,前記参照用の矯正方向に磁気吸引されるように前記電磁石を制御することを特徴とする,鋼板の形状矯正装置。
A plurality of electromagnets arranged along the plate width direction so as to face the steel plate traveling out of the hot dipping bath;
A sensor provided in each of the electromagnets and capable of measuring the position in the plate thickness direction of each detected portion of the opposing steel plate;
A plating adhesion measuring device for measuring the amount of plating adhered to the front and back surfaces of the steel sheet;
A control device connected to the electromagnet, the sensor, and the plating adhesion amount measuring device, and individually controlling the electromagnet and the sensor based on the plating adhesion amount measured by the plating adhesion amount measuring device;
The control device determines the correction direction of each detected portion based on the measurement result of the sensor, and further, based on the measurement result of the plating adhesion measuring device, the extreme ends on both sides in the plate width direction of the steel plate The correction direction for reference of the detected part closest to each part is determined, and among the detected parts for which the correction direction has been determined, the target closest to each of the extreme end parts on both sides in the plate width direction of the steel sheet. The detection unit controls the electromagnet so as to be magnetically attracted in the reference correction direction when the correction direction determined based on the measured position in the plate thickness direction is different from the reference correction direction. A steel sheet shape straightening device.
前記最近接する被検出部の板厚方向の位置が矯正を不要とする位置にあり,且つ前記鋼板の板幅方向の最端部の板厚方向の位置が矯正を必要とする位置にある場合には,前記最近接する被検出部を参照用の矯正方向に磁気吸引し,
前記最近接する被検出部の板厚方向の位置が矯正を必要とする位置にあり,且つ前記鋼板の板幅方向の最端部の板厚方向の位置が矯正を不要とする位置にある場合には,前記最近接する被検出部を磁気吸引しないことを特徴とする,請求項6に記載の鋼板の形状矯正装置。
When the position in the plate thickness direction of the detected portion closest to the plate is in a position that does not require correction, and the position in the plate thickness direction of the plate width direction of the steel plate is in a position that requires correction Is magnetically attracting the closest detected part in the reference correction direction,
When the position in the plate thickness direction of the detected portion closest to the plate is in a position that requires correction, and the position in the plate thickness direction of the end portion in the plate width direction of the steel plate is in a position that does not require correction 7. The steel sheet shape correction device according to claim 6, wherein the detected portion that is closest is not magnetically attracted.
前記制御装置は,さらに,前記測定した鋼板の板幅方向の両側の最端部の板厚方向の位置に基づいて,前記最近接する被検出部を前記参照用の矯正方向に磁気吸引する力の大きさを決定することを特徴とする,請求項6又は7に記載の鋼板の形状矯正装置。 The control device further includes a force for magnetically attracting the closest detected part in the reference correction direction based on the positions in the plate thickness direction of the extreme ends on both sides in the plate width direction of the measured steel plate. The shape correction device for a steel sheet according to claim 6 or 7, wherein the size is determined. 前記制御装置は,さらに,前記最近接する被検出部を前記参照用の矯正方向に磁気吸引する力の大きさを,前記対向する電磁石同士から板厚方向に等距離にあるセンターラインから鋼板の板幅方向の最端部までの板厚方向の距離と,前記センターラインから前記最近接する被検出部までの板厚方向の距離との差に依存して決定することを特徴とする,請求項6〜8のいずれかに記載の鋼板の形状矯正装置。 The control device is further configured to set the magnitude of the force for magnetically attracting the closest detected portion in the reference correction direction from a center line that is equidistant from the opposing electromagnets in the plate thickness direction. The thickness is determined depending on a difference between a distance in the thickness direction to the extreme end in the width direction and a distance in the thickness direction from the center line to the closest detected portion. The shape correction apparatus of the steel plate in any one of -8.
JP2006127290A 2006-05-01 2006-05-01 Steel plate shape correction method and shape correction device Active JP4505432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006127290A JP4505432B2 (en) 2006-05-01 2006-05-01 Steel plate shape correction method and shape correction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006127290A JP4505432B2 (en) 2006-05-01 2006-05-01 Steel plate shape correction method and shape correction device

Publications (2)

Publication Number Publication Date
JP2007296559A JP2007296559A (en) 2007-11-15
JP4505432B2 true JP4505432B2 (en) 2010-07-21

Family

ID=38766487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006127290A Active JP4505432B2 (en) 2006-05-01 2006-05-01 Steel plate shape correction method and shape correction device

Country Status (1)

Country Link
JP (1) JP4505432B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5444706B2 (en) * 2008-12-18 2014-03-19 Jfeスチール株式会社 Metal strip control method and hot dipped metal strip manufacturing method
EP2848711B1 (en) * 2012-05-10 2017-02-08 Nippon Steel & Sumitomo Metal Corporation Steel sheet shape control method and steel sheet shape control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3025404B2 (en) * 1994-03-23 2000-03-27 新日本製鐵株式会社 Non-contact strip straightening apparatus and straightening method
JP3574204B2 (en) * 1995-01-24 2004-10-06 新日本製鐵株式会社 Apparatus and method for controlling coating weight of hot-dip coated steel sheet

Also Published As

Publication number Publication date
JP2007296559A (en) 2007-11-15

Similar Documents

Publication Publication Date Title
JP5440745B1 (en) Steel plate shape control method and steel plate shape control device
US8062711B2 (en) Device and a method for stabilizing a steel sheet
KR101130483B1 (en) Method and equipment for the continuous deposition of a coating on a strip type substrate
US20200047234A1 (en) Crossbow correction device, molten metal plating facility, and crossbow correction method
US9080232B2 (en) Electromagnetic vibration suppression device and electromagnetic vibration suppression control program
US20200346264A1 (en) Shape measurement apparatus, warpage correction apparatus, and continuous plating facility for metal strip, and warpage correction method for metal strip
JP4505432B2 (en) Steel plate shape correction method and shape correction device
JP2004027315A (en) Method and apparatus for manufacturing hot dip metal-coated steel plate
AU2015348886A1 (en) Method and device for coating a metal strip
JP5842558B2 (en) Vertical looper equipment and method for correcting meandering thereof
JPH08199323A (en) Control of coating weight of hot dip metal steel sheet and device therefor
CN110809633B (en) Hot dip coating apparatus and hot dip coating method
JP2009202217A (en) Method and device for straightening meandering of belt-like body
JPH11100651A (en) Continuous hot dip metal coating device
EP4176104A1 (en) Correction apparatus for correcting the planarity of a metal strip and related correction method
JP2014201798A (en) Method for manufacturing galvanized steel strip
JP2008280584A (en) Method for controlling shape of steel strip in continuous hot dip plating line, and control device therefor
JP5169089B2 (en) Continuous molten metal plating method
JP5644141B2 (en) Metal band damping and position correcting apparatus, and hot-dip plated metal band manufacturing method using the apparatus
JP6112040B2 (en) Non-contact control device for metal strip and method of manufacturing hot-dip metal strip
JP2021050397A (en) Manufacturing method of hot dip plated steel plate and manufacturing apparatus
JP6089798B2 (en) Steel plate continuous straightening method and apparatus
JP6959582B2 (en) Meander control method for strip-shaped base material in non-contact transfer device
WO2020121646A1 (en) Method for manufacturing hot-dip metal-plated steel sheet, and apparatus for manufacturing hot-dip metal-plated steel sheet
JP2002038247A (en) Hot-dip plating method and equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

R151 Written notification of patent or utility model registration

Ref document number: 4505432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350