JP4503325B2 - Operation method of sulfuric acid alkylation equipment - Google Patents

Operation method of sulfuric acid alkylation equipment Download PDF

Info

Publication number
JP4503325B2
JP4503325B2 JP2004088995A JP2004088995A JP4503325B2 JP 4503325 B2 JP4503325 B2 JP 4503325B2 JP 2004088995 A JP2004088995 A JP 2004088995A JP 2004088995 A JP2004088995 A JP 2004088995A JP 4503325 B2 JP4503325 B2 JP 4503325B2
Authority
JP
Japan
Prior art keywords
sulfuric acid
reactor
alkylate
reactors
separation tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004088995A
Other languages
Japanese (ja)
Other versions
JP2005272684A (en
Inventor
博城 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP2004088995A priority Critical patent/JP4503325B2/en
Publication of JP2005272684A publication Critical patent/JP2005272684A/en
Application granted granted Critical
Publication of JP4503325B2 publication Critical patent/JP4503325B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

本発明は、炭化水素原料に硫酸を触媒として反応させてアルキレートを製造する硫酸式アルキレーション装置の運転方法に関するものである。   The present invention relates to a method for operating a sulfuric acid alkylation apparatus in which an alkylate is produced by reacting a hydrocarbon raw material with sulfuric acid as a catalyst.

硫酸式アルキレーション装置(以下、アルキレーション装置という)は、炭化水素(流動接触分解装置の不飽和ブタンを含むブタン(ノルマルブテン、イソブテン、ノルマルブタン、イソブタン等)と、常圧蒸留装置からの飽和ブタン(ノルマルブタン、イソブタン))を原料にして、硫酸を触媒としてノルマルブテンとイソブタンを反応させてアルキレートを製造する装置である。
従来より、炭化水素原料に硫酸を触媒として反応させてアルキレートを生成するアルキレーション装置として、例えば、特許文献1に記載されたものが知られている。
このアルキレーション装置は、冷凍系から脱プロパン系へ供給される冷媒中および反応系から蒸留系へ供給される留出油中に同伴される微量の硫酸および硫酸エステルなどの酸性成分を、苛性ソーダ溶液を使用して中和している。そして、苛性ソーダ溶液を先ず冷凍系から脱プロパン塔へ供給される冷媒中の酸性成分の中和用に連続的に送液し、使用した後、反応系から脱イソブタン塔へ供給される留出油中の酸性成分の中和に連続的に送液、使用することにより、苛性ソーダ溶液の使用量を減少させ、かつ装置の運転に変動を与えないようにしたアルキレーション装置を提供している。
Sulfuric acid alkylation equipment (hereinafter referred to as “alkylation equipment”) is a hydrocarbon (butane containing unsaturated butane (normal butene, isobutene, normal butane, isobutane, etc.) of fluid catalytic cracking equipment, and saturation from atmospheric distillation equipment. This is an apparatus for producing alkylate by reacting normal butene and isobutane using butane (normal butane, isobutane)) as a raw material and using sulfuric acid as a catalyst.
Conventionally, for example, an apparatus described in Patent Document 1 is known as an alkylation apparatus for producing an alkylate by reacting a hydrocarbon raw material with sulfuric acid as a catalyst.
This alkylation device is used to remove a small amount of acidic components such as sulfuric acid and sulfuric acid ester contained in a refrigerant supplied from a refrigeration system to a depropanization system and a distillate supplied from a reaction system to a distillation system. Use neutralization. The caustic soda solution is first fed continuously for neutralization of acidic components in the refrigerant supplied from the refrigeration system to the depropanizer tower, and after use, the distillate oil supplied from the reaction system to the deisobutane tower is used. The present invention provides an alkylation device in which the amount of caustic soda solution used is reduced and the operation of the device is not varied by continuously feeding and using the solution for neutralizing acidic components therein.

また、従来のアルキレーション装置の例として図3を参照して説明する。図3において、10は廃硫酸再生装置、12は第1反応器、14は第2反応器、16は第3反応器、18は第1硫酸分離槽、20は第2硫酸分離槽、22は第3硫酸分離槽、24は廃硫酸分離槽、26は留出油分離槽、28は冷凍系(冷凍圧縮機)、30は脱プロパン塔、32は脱イソブタン塔、34は脱ブタン塔であり、反応器は通常、2基以上の複数基設置されている。   An example of a conventional alkylation apparatus will be described with reference to FIG. In FIG. 3, 10 is a waste sulfuric acid regenerator, 12 is a first reactor, 14 is a second reactor, 16 is a third reactor, 18 is a first sulfuric acid separation tank, 20 is a second sulfuric acid separation tank, and 22 is The third sulfuric acid separation tank, 24 is a waste sulfuric acid separation tank, 26 is a distillate oil separation tank, 28 is a refrigeration system (refrigeration compressor), 30 is a depropanizer tower, 32 is a deisobutane tower, and 34 is a debutane tower. In general, two or more reactors are installed.

特開平7−144930号公報JP-A-7-144930

上述の従来のアルキレーション装置の反応器の構成を模式図で示すと図4のようになり、このアルキレーション装置においては、反応器に供給される硫酸は直列に供給されている。詳細に説明すると、硫酸再生装置(図示せず)より濃度約98%の高濃度硫酸が第1反応器12に送られ、硫酸を触媒としてイソブタンとノルマルブテンが反応してアルキレートを生成し、その後、第1反応器12で使用された硫酸が濃度約95%になって第2反応器14に入り込む。第2反応器14で使用された硫酸は濃度が約93%まで下がり第3反応器16に送られた後、濃度が約90%となって廃硫酸再生装置に送られている。   A schematic diagram of the structure of the reactor of the above-mentioned conventional alkylation apparatus is as shown in FIG. 4. In this alkylation apparatus, sulfuric acid supplied to the reactor is supplied in series. More specifically, high-concentration sulfuric acid having a concentration of about 98% is sent to the first reactor 12 from a sulfuric acid regenerator (not shown), and isobutane and normal butene react with sulfuric acid as a catalyst to produce alkylate, Thereafter, the sulfuric acid used in the first reactor 12 reaches a concentration of about 95% and enters the second reactor 14. The sulfuric acid used in the second reactor 14 dropped to a concentration of about 93% and was sent to the third reactor 16, and then the concentration was about 90% and was sent to the waste sulfuric acid regenerator.

アルキレーション装置においては、触媒である硫酸濃度が93%前後の濃度で反応させた場合、オクタン価の高いアルキレートが生成されることが一般的に知られており、従来のように直列で硫酸を供給した場合では、反応器に応じて硫酸濃度が順次低下していくため、オクタン価を高めるための最適な硫酸濃度を保つことが難しい場合があった。又、従来のように直列に硫酸が供給される反応器においては、一部の反応器のみを運転中に休止させることが難しく、アルキレート生産量に応じて、反応器の運転基数を変更することが可能となれば、エネルギー効率の高い運転が可能となり、その方法が望まれていた。更に、運転中に一部の反応器を休止させることが可能ならば運転中でも反応器のメンテナンスを行うことができ、フレキシビリティーのある運転が可能となる。   In an alkylation apparatus, it is generally known that an alkylate having a high octane number is produced when the catalyst is reacted at a concentration of about 93% sulfuric acid. In the case of feeding, since the sulfuric acid concentration gradually decreases depending on the reactor, it may be difficult to maintain the optimum sulfuric acid concentration for increasing the octane number. In addition, in a conventional reactor in which sulfuric acid is supplied in series, it is difficult to pause only some of the reactors during operation, and the number of operating reactors is changed according to the amount of alkylate produced. If this is possible, energy-efficient operation is possible, and a method for this is desired. Furthermore, if some of the reactors can be stopped during operation, the reactor can be maintained even during operation, and flexible operation is possible.

そこで、発明者は、アルキレーション装置における反応器への硫酸の供給方法を見直し、アルキレーション装置における最適な運転方法を鋭意検討した。
本発明は、上述した要望にこたえるべくなされたものであり、アルキレーション装置の反応器の運転方法を変更してオクタン価の高いアルキレートを効率良く生産できるとともにアルキレート生産量に見合った最適なエネルギー効率が得られるアルキレーション装置の運転方法を提供するものである。
Accordingly, the inventor has reviewed the method of supplying sulfuric acid to the reactor in the alkylation apparatus, and intensively studied the optimum operation method in the alkylation apparatus.
The present invention has been made to meet the above-mentioned demands. By changing the operation method of the reactor of the alkylation apparatus, it is possible to efficiently produce an alkylate having a high octane number, and at the same time, an optimum energy suitable for the amount of alkylate produced. The present invention provides a method of operating an alkylation device that can achieve efficiency.

本発明にかかるアルキレーション装置の運転方法は、炭化水素原料に硫酸を触媒として反応させてアルキレートを生成する反応器を備えたアルキレーション装置の運転方法であって、該反応器を少なくとも3つ有し、該炭化水素原料を該反応器のそれぞれに供給し、少なくとも2つ以上の反応器を管路で並列に接続し、前記管路にて新鮮な濃硫酸を直接導入して反応させ、各反応器で独立に生成したアルキレートを含むエマルジョンを硫酸分離槽にて硫酸を相分離し、得られたアルキレートを含む炭化水素にてアルキレートを生成した同一の反応器を冷却し、続いて該アルキレートを含む炭化水素からアルキレートを分離すると共に、前記相分離した硫酸を前記同一の反応器に戻すと共にその硫酸の一部を該同一の反応器とは別な、濃硫酸が供給されない反応器に供給することを特徴とするアルキレーション装置の運転方法である。 An operation method of an alkylation apparatus according to the present invention is an operation method of an alkylation apparatus provided with a reactor for producing an alkylate by reacting a hydrocarbon raw material with sulfuric acid as a catalyst, and comprising at least three reactors. And supplying the hydrocarbon feedstock to each of the reactors, connecting at least two or more reactors in parallel in a pipeline, and directly introducing fresh concentrated sulfuric acid in the pipeline to cause a reaction; The emulsion containing the alkylate produced independently in each reactor was phase-separated in sulfuric acid separation tank , and the same reactor that produced the alkylate with the hydrocarbon containing the obtained alkylate was cooled, and then converting mechanism to separate the alkylate from the hydrocarbon containing the alkylate, distinguish it from of identity one reactor a portion of the sulfuric acid with returning the phase separated sulfuric acid to the same reactor, the concentrated sulfuric acid It is an operating method of the alkylation unit and supplying to the reactor which is not fed.

本発明にかかるアルキレーション装置の運転方法によれば、オクタン価の高いアルキレートを効率良く生産でき、また、アルキレーション装置の運転中に複数の反応器のうち、一部の反応器を休止させることができるため、需給バランスに応じてエネルギー効率の高い運転が可能となる。また、アルキレーション装置の運転中に、一部の反応器を休止させることができるため、アルキレートを生産しながら、一部の反応器の保守・点検ができることから、フレキシビリティーのあるアルキレーション装置の運転が可能となる。   According to the operation method of the alkylation apparatus according to the present invention, it is possible to efficiently produce an alkylate having a high octane number, and to pause some of the plurality of reactors during the operation of the alkylation apparatus. Therefore, it is possible to operate with high energy efficiency according to the supply and demand balance. In addition, since some reactors can be stopped during the operation of the alkylation equipment, maintenance and inspection of some reactors can be performed while producing alkylates, so flexible alkylation is possible. The device can be operated.

以下、本発明を実施するための最良の形態について図面を参照して説明する。
図1は本発明にかかるアルキレーション装置の要部の説明図である。この装置は、硫酸を供給する廃硫酸再生装置10、第1反応器12、第2反応器14、第3反応器16、第1硫酸分離槽18、第2硫酸分離槽20、第3硫酸分離槽22、廃硫酸分離槽24、留出油分離槽26、冷凍圧縮機28、脱プロパン塔30、脱イソブタン塔32、脱ブタン塔34を主な構成としている。
The best mode for carrying out the present invention will be described below with reference to the drawings.
FIG. 1 is an explanatory view of a main part of an alkylation device according to the present invention. This apparatus includes a waste sulfuric acid regeneration apparatus 10 for supplying sulfuric acid, a first reactor 12, a second reactor 14, a third reactor 16, a first sulfuric acid separation tank 18, a second sulfuric acid separation tank 20, and a third sulfuric acid separation. The tank 22, the waste sulfuric acid separation tank 24, the distillate oil separation tank 26, the refrigeration compressor 28, the depropanizer tower 30, the deisobutane tower 32, and the debutane tower 34 are the main components.

ノルマルブテンを供給する管路A1は、その上流側において、流動接触分解装置(図示せず)と接続されており、この流動接触分解装置で生成されたノルマルブテンが管路A1に供給されている。また、イソブタンを供給する管路A2は、その上流側において、常圧蒸留装置(図示せず)と接続されており、この常圧蒸留装置で生成されたプロパン、ブタン等の液化石油ガス(以下、LPGという)は、脱イソブタン塔32でイソブタンを分離し、管路A2に供給されている。イソブタンが供給されている管路A2は下流側で、管路A1と接続されており、ノルマルブテンとイソブタンが混合して管路A3に供給され、この混合した炭化水素原料は更に下流側で、第1反応器12、第2反応器14、第3反応器16のそれぞれに管路A4、A5、A6を経由して供給されている。   Pipe line A1 for supplying normal butene is connected to a fluid catalytic cracker (not shown) on the upstream side thereof, and normal butene generated by the fluid catalytic cracker is supplied to pipe A1. . Further, the pipe A2 for supplying isobutane is connected to an atmospheric distillation apparatus (not shown) on the upstream side thereof, and liquefied petroleum gas (hereinafter referred to as propane, butane, etc.) produced by the atmospheric distillation apparatus , LPG) is separated from the isobutane by the deisobutane tower 32 and supplied to the line A2. The pipe A2 to which isobutane is supplied is connected to the pipe A1 on the downstream side, and normal butene and isobutane are mixed and supplied to the pipe A3, and the mixed hydrocarbon raw material is further downstream. The first reactor 12, the second reactor 14, and the third reactor 16 are supplied via the pipelines A4, A5, and A6, respectively.

一方、触媒となる硫酸は、廃硫酸再生装置14により高濃度、例えば硫酸濃度が凡そ98%まで高められた濃硫酸が管路B1に供給され、更に下流側で管路B2、B3に分岐して第1反応器12、第2反応器14にそれぞれ供給される。尚、このアルキレーション装置では、いずれの管路においても、図示はしないがバルブやポンプ等が設けられており、これらのバルブやポンプにより、流路や流量が制御可能な構成となっている。
第1、第2、第3反応器12、14、16はいずれも横型圧力容器で、詳細は省略するが、シェル、チューブバンドル、混合インペラ、循環チューブ等が設けられている。
On the other hand, sulfuric acid as a catalyst is supplied to the pipe B1 by concentrated sulfuric acid whose concentration is increased to, for example, about 98% by the waste sulfuric acid regenerator 14, and further branched to the pipes B2 and B3 on the downstream side. Are supplied to the first reactor 12 and the second reactor 14, respectively. In this alkylation device, although not shown, a valve, a pump, and the like are provided in any pipeline, and the flow path and the flow rate can be controlled by these valves and the pump.
The first, second, and third reactors 12, 14, and 16 are all horizontal pressure vessels, and although details are omitted, a shell, a tube bundle, a mixing impeller, a circulation tube, and the like are provided.

ここで第1反応器12、第2反応器14についてアルキレート生成までを説明する。
炭化水素原料であるノルマルブテンとイソブタンは触媒である硫酸とともに第1反応器12及び第2反応器14の混合インペラの吸引側に供給され、この混合インペラにより硫酸とイソブタンとノルマルブテンが急速に分散しエマルジョンを形成する。このエマルジョンは第1反応器12、第2反応器14内を高速で循環することで反応が促進され、アルキレートが生成される。硫酸及び生成したアルキレートと未反応のLPGは、第1、第2反応器12、14の上方にある第1硫酸分離槽18、第2硫酸分離槽20に管路C1、C2を経由してそれぞれ送られる。
Here, the first reactor 12 and the second reactor 14 will be described until alkylate generation.
The hydrocarbon raw materials normal butene and isobutane are supplied to the suction side of the mixed impeller of the first reactor 12 and the second reactor 14 together with sulfuric acid as the catalyst. The mixed impeller rapidly disperses the sulfuric acid, isobutane and normal butene. To form an emulsion. The emulsion circulates in the first reactor 12 and the second reactor 14 at a high speed, thereby promoting the reaction and generating alkylate. The unreacted LPG with sulfuric acid and the generated alkylate is sent to the first sulfuric acid separation tank 18 and the second sulfuric acid separation tank 20 above the first and second reactors 12 and 14 via lines C1 and C2. Each is sent.

第1、第2硫酸分離槽18、20では硫酸が相分離されて、この相分離された硫酸の一部は管路D1、D2を経由して第1、第2反応器12、14にそれぞれ戻される。また、第1硫酸分離槽18で相分離された硫酸の残りは管路E1を経由して管路D2に接続されており、この管路D2は第2硫酸分離槽20から第2反応器14にむかう管路となっている。さらに、管路E1は、途中で分岐して管路E3に接続されており、この管路E3は管路D3と接続されており、この管路D3は第3硫酸分離槽22から第3反応器16にむかう管路となっている。また、第2硫酸分離槽20では、この相分離された硫酸の残りは管路E2を経由して管路E3に接続されている。   In the first and second sulfuric acid separation tanks 18 and 20, sulfuric acid is phase-separated, and a part of the phase-separated sulfuric acid is supplied to the first and second reactors 12 and 14 via the pipes D1 and D2, respectively. Returned. The remainder of the sulfuric acid phase-separated in the first sulfuric acid separation tank 18 is connected to the pipe line D2 via the pipe line E1, and the pipe line D2 is connected from the second sulfuric acid separation tank 20 to the second reactor 14. It is a pipeline that goes to. Further, the pipeline E1 is branched in the middle and connected to the pipeline E3. This pipeline E3 is connected to the pipeline D3, and this pipeline D3 is connected to the third reaction from the third sulfuric acid separation tank 22. It becomes a pipe line leading to the vessel 16. Moreover, in the 2nd sulfuric acid separation tank 20, the remainder of this phase-separated sulfuric acid is connected to the pipe line E3 via the pipe line E2.

一方、生成されたアルキレートと未反応のLPGは第1、第2硫酸分離槽18、20から第1、第2反応器12、14のチューブ側に管路F1、F2を経由してそれぞれ供給される。これらの管路F1、F2の途中には、減圧弁がそれぞれ設けられ(図示せず)、これらの減圧弁によりLPG中の軽質留分が気化し、アルキレート等の流体は約−1℃程度まで冷却される。気液二相流となった流体は、第1、第2反応器12、14のチューブ側でアルキレーション反応の生成熱を除去し、軽質留分は更に気化される。生成熱を除去したアルキレートとLPGは、反応器12、14のチューブ出口から管路G1、G2を経由して送り出され、これらの管路G1、G2は留出油分離槽26に向かう管路G4と接続されている。アルキレートとLPGは、これらの管路G1、G2、G4を経由して留出油分離槽26に送られる。留出油分離槽26では、冷凍系を通じてプロパンを分離し、アルキレート及びブタンは脱イソブタン塔32、脱ブタン塔34を経由して製品アルキレートが生成される。   On the other hand, the generated alkylate and unreacted LPG are respectively supplied from the first and second sulfuric acid separation tanks 18 and 20 to the tube sides of the first and second reactors 12 and 14 via lines F1 and F2, respectively. Is done. In the middle of these pipelines F1 and F2, pressure reducing valves are respectively provided (not shown). Light pressure fractions in LPG are vaporized by these pressure reducing valves, and the fluid such as alkylate is about -1 ° C. Until cooled. The fluid that has become a gas-liquid two-phase flow removes the heat generated by the alkylation reaction on the tube side of the first and second reactors 12 and 14, and the light fraction is further vaporized. The alkylate and LPG from which the generated heat has been removed are sent out from the tube outlets of the reactors 12 and 14 via the lines G1 and G2, and these lines G1 and G2 are the lines toward the distillate oil separation tank 26. Connected to G4. The alkylate and LPG are sent to the distillate oil separation tank 26 via these pipelines G1, G2, and G4. In the distillate oil separation tank 26, propane is separated through a refrigeration system, and the alkylate and butane are produced through the deisobutane tower 32 and the debutane tower 34 to produce product alkylate.

次に第3反応器16についてアルキレート生成を説明する。
炭化水素原料であるノルマルブテンとイソブタンとの混合物が管路A6を経由して第3反応器16に供給される。また、第1硫酸分離槽18と第2硫酸分離槽20から送り出された硫酸が管路D3を経由して第3反応器16に供給される。第3反応器16内でノルマルブテンとイソブタンが硫酸を触媒として反応し、アルキレートが生成される。生成されたアルキレートと未反応のLPGは硫酸とともに第3硫酸分離槽22に管路C3を経由して供給され、硫酸が相分離される。相分離された硫酸は一部は管路D3を経由して第3反応器16にもどされるとともに、残りの硫酸は管路E4を経由して廃硫酸分離槽24に送れられる。
Next, the alkylate generation in the third reactor 16 will be described.
A mixture of normal butene and isobutane, which are hydrocarbon raw materials, is supplied to the third reactor 16 via line A6. Further, the sulfuric acid sent out from the first sulfuric acid separation tank 18 and the second sulfuric acid separation tank 20 is supplied to the third reactor 16 through the pipe line D3. In the third reactor 16, normal butene and isobutane react with sulfuric acid as a catalyst to produce alkylate. The produced alkylate and unreacted LPG are supplied together with sulfuric acid to the third sulfuric acid separation tank 22 via the line C3, and the sulfuric acid is phase-separated. Part of the phase-separated sulfuric acid is returned to the third reactor 16 via the line D3, and the remaining sulfuric acid is sent to the waste sulfuric acid separation tank 24 via the line E4.

廃硫酸分離槽24では、硫酸に含有しているLPGと硫酸との分離が行われ、分離された硫酸は管路B4を経由して廃硫酸再生装置10に供給される。一方、廃硫酸分離槽24で分離されたLPGは管路H1を経由して第3硫酸分離槽22に還流される。第3硫酸分離槽22で分離されたアルキレートとLPGは管路F3を経由して、この管路F3の途中に設けられた減圧弁(図示せず)により気化・冷却されて第3反応器16のチューブ側に供給される。生成熱を除去したアルキレートとLPGは管路G4を経由して留出油分離槽26に送られ、冷凍系を通じてプロパンを分離し、アルキレート及びブタンは脱イソブタン塔32、脱ブタン塔34を経由して製品アルキレートが生成される。   In the waste sulfuric acid separation tank 24, LPG and sulfuric acid contained in the sulfuric acid are separated, and the separated sulfuric acid is supplied to the waste sulfuric acid regenerator 10 via the pipe B4. On the other hand, LPG separated in the waste sulfuric acid separation tank 24 is refluxed to the third sulfuric acid separation tank 22 via the pipe line H1. The alkylate and LPG separated in the third sulfuric acid separation tank 22 are vaporized and cooled by a pressure reducing valve (not shown) provided in the middle of the pipe F3 via the pipe F3, and then the third reactor. 16 tubes are supplied. The alkylate and LPG from which the generated heat has been removed are sent to a distillate oil separation tank 26 via a line G4, and propane is separated through a refrigeration system. The alkylate and butane are passed through a deisobutane tower 32 and a debutane tower 34, respectively. A product alkylate is generated via.

次に本実施形態のアルキレーション装置の運転方法における硫酸濃度について説明する。図2は本実施形態の第1、第2、第3反応器への炭化水素原料と硫酸の供給経路を示す模式図である。この図において、各管路の符号は、図1に示す管路と同様であり、ここではその説明は省略する。第1、第2反応器12、14はそれぞれ約98%の濃度を有する硫酸が供給され、この硫酸を触媒としてイソブタンとノルマルブテンが反応し、オクタン価の高い製品アルキレートを生成する。   Next, the sulfuric acid concentration in the operation method of the alkylation apparatus of this embodiment will be described. FIG. 2 is a schematic diagram showing a supply path of hydrocarbon raw material and sulfuric acid to the first, second, and third reactors of this embodiment. In this figure, the reference numerals of the pipelines are the same as those in the pipeline shown in FIG. 1, and the description thereof is omitted here. The first and second reactors 12 and 14 are each supplied with sulfuric acid having a concentration of about 98%, and isobutane and normal butene react with this sulfuric acid as a catalyst to produce a product alkylate having a high octane number.

第1、第2反応器12、14で利用した硫酸の濃度は約93%になり、第3反応器16に供給され、イソブタン、ノルマルブテンと反応して製品アルキレートを生成し、第3反応器16で利用された硫酸は濃度が約90%となって、廃硫酸再生装置10に送られる。   The concentration of sulfuric acid used in the first and second reactors 12 and 14 is about 93% and is supplied to the third reactor 16 to react with isobutane and normal butene to produce a product alkylate. The sulfuric acid used in the vessel 16 has a concentration of about 90% and is sent to the waste sulfuric acid regenerator 10.

一般に、アルキレーション装置においては、触媒である硫酸濃度が93%前後の濃度で反応させた場合、オクタン価の高いアルキレートが生成される。本実施形態では、第1、第2反応器12、14では、濃度が約98%〜93%の硫酸を使用できるため、オクタン価の高いアルキレートを効率良く生産できるのである。また、第1、第2反応器12、14のそれぞれには、高い濃度の硫酸を独立して送り込むことができるため、例えば、第1反応器12を休止させてながら、第2反応器14を稼動させてアルキレートを生成できるので、アルキレートの生産量の調整を行うことができる。更に、上述の例の場合、第1反応器12を休止させて、第1反応器12の保守、点検を行いながら、第2反応器14でアルキレートを生成することもできる。   Generally, in an alkylation apparatus, when a sulfuric acid concentration as a catalyst is reacted at a concentration of about 93%, an alkylate having a high octane number is generated. In the present embodiment, sulfuric acid having a concentration of about 98% to 93% can be used in the first and second reactors 12 and 14, and thus an alkylate having a high octane number can be efficiently produced. In addition, since each of the first and second reactors 12 and 14 can be fed with high-concentration sulfuric acid independently, for example, while the first reactor 12 is stopped, the second reactor 14 is Since the alkylate can be generated by operating, the production amount of the alkylate can be adjusted. Furthermore, in the case of the above-described example, the first reactor 12 can be stopped and the alkylate can be generated in the second reactor 14 while maintaining and checking the first reactor 12.

図5には本発明に係る別な実施形態が示しており、4つの反応器を使用したアルキレーション装置が示されている。この例の場合、第1反応器12と第3反応器16が直列に接続され、第2反応器14と第4反応器17が直列に接続されている。濃度約98%の硫酸は第1、第2反応器12、14にそれぞれ送られ、炭化水素原料であるイソブタンとノルマルブテンと反応してアルキレートを生成し、その後、濃度約93%の硫酸が第3、第4反応器16、17にそれぞれ供給され、反応した後、廃硫酸再生装置に送られる。この実施形態では、硫酸の流路(管路)を基準にすると、第1、第2反応器12、14が並列に配列され、かつ、第1と第3反応器12、16及び第2と第4反応器14、17が直列に配列した4つの反応器が設けられているが、本発明の構成を備える限りにおいては、反応器の数や、反応器の配列形態には上記実施形態に限定されない。   FIG. 5 shows another embodiment according to the present invention, which shows an alkylation apparatus using four reactors. In this example, the first reactor 12 and the third reactor 16 are connected in series, and the second reactor 14 and the fourth reactor 17 are connected in series. Sulfuric acid having a concentration of about 98% is sent to the first and second reactors 12 and 14, respectively, and reacts with isobutane and normal butene, which are hydrocarbon raw materials, to produce alkylate. After being supplied to the third and fourth reactors 16 and 17 and reacted, they are sent to a waste sulfuric acid regenerator. In this embodiment, the first and second reactors 12 and 14 are arranged in parallel, and the first and third reactors 12 and 16 and the second Four reactors in which the fourth reactors 14 and 17 are arranged in series are provided. However, as long as the configuration of the present invention is provided, the number of reactors and the arrangement form of the reactors are the same as those in the above embodiment. It is not limited.

図1は、本発明にかかるアルキレーション装置の要部の説明図である。FIG. 1 is an explanatory diagram of a main part of an alkylation device according to the present invention. 図2は、本実施形態の反応器への炭化水素原料と硫酸の供給経路を示す模式図である。FIG. 2 is a schematic diagram showing a supply path of hydrocarbon raw material and sulfuric acid to the reactor of the present embodiment. 図3は、従来のアルキレーション装置の説明図である。FIG. 3 is an explanatory diagram of a conventional alkylation device. 図4は、従来の反応器への炭化水素原料と硫酸の供給経路を示す模式図である。FIG. 4 is a schematic diagram showing a supply path of hydrocarbon raw material and sulfuric acid to a conventional reactor. 図5は、本発明に係る別な実施形態を示す模式図である。FIG. 5 is a schematic view showing another embodiment according to the present invention.

符号の説明Explanation of symbols

10 廃硫酸再生装置
12 第1反応器
14 第2反応器
16 第3反応器
18 第1硫酸分離槽
20 第2硫酸分離槽
22 第3硫酸分離槽
24 廃硫酸分離槽
26 留出油分離槽
B1、B2、B3 濃硫酸管路
DESCRIPTION OF SYMBOLS 10 Waste sulfuric acid reproduction | regeneration apparatus 12 1st reactor 14 2nd reactor 16 3rd reactor 18 1st sulfuric acid separation tank 20 2nd sulfuric acid separation tank 22 3rd sulfuric acid separation tank 24 Waste sulfuric acid separation tank 26 Distilled oil separation tank B1 , B2, B3 Concentrated sulfuric acid pipeline

Claims (1)

炭化水素原料に硫酸を触媒として反応させてアルキレートを生成する反応器を備えたアルキレーション装置の運転方法であって、該反応器を少なくとも3つ有し、該炭化水素原料を該反応器のそれぞれに供給し、少なくとも2つ以上の反応器を管路で並列に接続し、前記管路にて新鮮な濃硫酸を直接導入して反応させ、各反応器で独立に生成したアルキレートを含むエマルジョンを硫酸分離槽にて硫酸を相分離し、得られたアルキレートを含む炭化水素にてアルキレートを生成した同一の反応器を冷却し、続いて該アルキレートを含む炭化水素からアルキレートを分離すると共に、前記相分離した硫酸を前記同一の反応器に戻すと共にその硫酸の一部を該同一の反応器とは別な、濃硫酸が供給されない反応器に供給することを特徴とするアルキレーション装置の運転方法。 An operation method of an alkylation apparatus comprising a reactor for reacting a hydrocarbon raw material with sulfuric acid as a catalyst to produce an alkylate, comprising at least three reactors , wherein the hydrocarbon raw material is fed to the reactor Supplying to each of them, connecting at least two reactors in parallel in a pipeline, reacting by directly introducing fresh concentrated sulfuric acid in the pipeline, and containing alkylate generated independently in each reactor The emulsion was phase-separated with sulfuric acid in a sulfuric acid separation tank, and the same reactor in which the alkylate was produced with the resulting hydrocarbon containing the alkylate was cooled, and then the alkylate was removed from the hydrocarbon containing the alkylate. with separated, and supplying a portion of the sulfuric acid with returning the phase separated sulfuric acid into the same reactor as separate from of identity one reactor, the reactor concentrated sulfuric acid is not supplied al Operating method of configuration devices.
JP2004088995A 2004-03-25 2004-03-25 Operation method of sulfuric acid alkylation equipment Expired - Lifetime JP4503325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004088995A JP4503325B2 (en) 2004-03-25 2004-03-25 Operation method of sulfuric acid alkylation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004088995A JP4503325B2 (en) 2004-03-25 2004-03-25 Operation method of sulfuric acid alkylation equipment

Publications (2)

Publication Number Publication Date
JP2005272684A JP2005272684A (en) 2005-10-06
JP4503325B2 true JP4503325B2 (en) 2010-07-14

Family

ID=35172694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004088995A Expired - Lifetime JP4503325B2 (en) 2004-03-25 2004-03-25 Operation method of sulfuric acid alkylation equipment

Country Status (1)

Country Link
JP (1) JP4503325B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019213063A1 (en) * 2018-05-04 2019-11-07 Lummus Technology, Llc Reverse acid and hydrocarbon cascading in alkylation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4826702A (en) * 1971-08-05 1973-04-09

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928722B1 (en) * 1970-10-29 1974-07-29

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4826702A (en) * 1971-08-05 1973-04-09

Also Published As

Publication number Publication date
JP2005272684A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
US11505514B2 (en) Oxidative coupling of methane for olefin production
US11008265B2 (en) Reactors and systems for oxidative coupling of methane
US20200354287A1 (en) Natural gas processing and systems
RU2764097C2 (en) Integration of oxidative combination into methane plants
CN104411625A (en) Process for reforming hydrocarbons
US20170226029A1 (en) Methods of producing ethylene and synthesis gas by combining the oxidative coupling of methane and dry reforming of methane reactions
WO2012064844A3 (en) Single loop multistage fuel production
JPS6366287A (en) Continuous catalytic method for converting oxygen-containing compound to heavy liquid hydrocarbon and control system
US20080237090A1 (en) Process and system for redcuing the olefin content of a hydrocarbon feed gas and production of a hydrogen-enriched gas therefrom
CN107941047A (en) A kind of heat exchanger, the four Hydrogenation iso-butane device and method of mixing carbon using the heat exchanger
JP4503325B2 (en) Operation method of sulfuric acid alkylation equipment
CN105018134A (en) Static tube type alkylation reaction device and alkylation reaction method for liquid acid catalysis
US9433917B2 (en) Alkylation unit and process
RU2435827C1 (en) Procedure for processing hydrocarbon gases of oil or gas-condensate deposits and installation for its implementation
US10329215B2 (en) Process for converting a natural gas feedstock with inert content to chemical intermediates
CN109665933B (en) Carbon four full-hydrogenation device and full-hydrogenation method
JP4588345B2 (en) Cleaning method for sulfuric acid alkylation equipment
RU2702540C1 (en) Gas chemical complex
US11773037B2 (en) Distribution hub for C4 conversion to ethane/propane feedstock network
CN111876190B (en) Multi-chain apparatus and process for producing olefins from oxygenates
EP4305130A1 (en) Separation processes for pyrolysis products of annular jet vortex chamber reactor
WO2021250493A1 (en) Forming acetic acid by the selective oxidation of methane
Bulkatov Analysis of the technical level of pyrolysis processes for the production of ethylene and propylene
JP5014891B2 (en) Mutual use of hydrogen-containing gas

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060801

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100224

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100421

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4503325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250