JP4502622B2 - Thermal spraying method - Google Patents

Thermal spraying method Download PDF

Info

Publication number
JP4502622B2
JP4502622B2 JP2003362212A JP2003362212A JP4502622B2 JP 4502622 B2 JP4502622 B2 JP 4502622B2 JP 2003362212 A JP2003362212 A JP 2003362212A JP 2003362212 A JP2003362212 A JP 2003362212A JP 4502622 B2 JP4502622 B2 JP 4502622B2
Authority
JP
Japan
Prior art keywords
spraying
thermal
sprayed
plasma
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003362212A
Other languages
Japanese (ja)
Other versions
JP2005126750A (en
Inventor
幸男 今泉
宏樹 鎌倉
敏生 桜田
謙一 山田
勝彦 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Original Assignee
Kyushu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc filed Critical Kyushu Electric Power Co Inc
Priority to JP2003362212A priority Critical patent/JP4502622B2/en
Priority to CNB2004800305019A priority patent/CN100569989C/en
Priority to PCT/JP2004/015257 priority patent/WO2005040446A1/en
Priority to EP04792474A priority patent/EP1679388A4/en
Priority to KR1020067006647A priority patent/KR101088005B1/en
Priority to TW093131838A priority patent/TW200514869A/en
Publication of JP2005126750A publication Critical patent/JP2005126750A/en
Application granted granted Critical
Publication of JP4502622B2 publication Critical patent/JP4502622B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Bridges Or Land Bridges (AREA)
  • Plasma Technology (AREA)

Description

本発明は、金属体の表面に防食用の金属溶射皮膜を形成する溶射方法、とくに鋼構造物などの現地補修に好適な溶射方法に関する。   The present invention relates to a thermal spraying method for forming a metal spray coating for corrosion protection on the surface of a metal body, and particularly to a thermal spraying method suitable for on-site repair of a steel structure or the like.

鉄塔、橋梁、高架施設、タンクなどの鋼構造物の防食対策として従来一般に塗装工法が用いられている。しかしこの塗装工法は、塗装コストが高いうえに耐用年数に限りがあり、そのうえ、定期的な塗り替えが必要であることから補修コストも高いという問題がある。そこで、塗装工法に代わる防食対策として、鋼材表面に溶射皮膜を形成する工法が提案されている。たとえば、鋼構造物の劣悪環境部位には溶射を行い、劣悪環境部位以外の部分に耐候性鋼を用いる鋼構造物の防食構造が特許文献1に記載されている。この防食構造によれば、鋼構造物全体の耐食性が向上し、建設コストや補修コストを低減することができるとされている。   Conventionally, the painting method is generally used as an anti-corrosion measure for steel structures such as steel towers, bridges, elevated facilities, and tanks. However, this painting method has a problem that the coating cost is high, the service life is limited, and the repair cost is high because it requires periodic repainting. Therefore, a method of forming a sprayed coating on the steel surface has been proposed as an anti-corrosion measure to replace the painting method. For example, Patent Document 1 discloses an anticorrosion structure for a steel structure in which a thermal environment is sprayed on a poor environment portion of the steel structure, and a weather resistant steel is used for a portion other than the poor environment portion. According to this anti-corrosion structure, it is said that the corrosion resistance of the entire steel structure is improved, and the construction cost and the repair cost can be reduced.

また、厳しい腐食環境に長期間曝される海洋構造物では、従来樹脂ライニング皮膜を形成する工法が用いられており、このライニング皮膜の損傷箇所を現地で補修する方法として溶射工法が提案されている。たとえば、ライニング皮膜に発生した欠陥部を粗面化するような下地処理をした後、この欠陥部を所要の温度に予熱し、その後この欠陥部に高分子化合物の粉体を溶射して補修皮膜を形成させる防食用ライニング皮膜の補修方法が特許文献2に記載されている。この補修方法によれば、常温硬化タイプの塗料で補修する従来の方法に比して、寿命が長くかつ信頼性の高い現地での補修が可能になるとされている。   For offshore structures that have been exposed to severe corrosive environments for a long time, a conventional method of forming a resin lining film has been used, and a thermal spraying method has been proposed as a method for repairing damaged parts of this lining film on site. . For example, after a ground treatment is performed to roughen the defective part generated in the lining film, the defective part is preheated to a required temperature, and then a polymer compound powder is sprayed onto the defective part to repair the defective film. Patent Document 2 describes a method for repairing an anticorrosion lining film that forms a film. According to this repair method, it is said that it is possible to perform on-site repair with a long life and high reliability as compared to the conventional method of repairing with a room temperature curing type paint.

溶射皮膜は耐食性、耐熱性、耐摩耗性などの優れた特性を有しており、溶射は鋼構造物の部材である鋼材に限らず、各種素材および製品の表面改質技術として広い分野で利用されている。溶射は、溶融あるいは半溶融状態に加熱した溶射材料を被溶射体に吹き付けて溶射皮膜を形成するものであり、主な溶射方法として、ガスフレーム溶射法とプラズマ溶射法とがある。   Thermal spray coating has excellent properties such as corrosion resistance, heat resistance, and wear resistance, and thermal spraying is not limited to steel materials that are members of steel structures, but is used in a wide range of fields as a surface modification technology for various materials and products. Has been. Thermal spraying involves spraying a thermal spray material heated to a molten or semi-molten state onto a sprayed body to form a thermal spray coating, and there are a gas flame spraying method and a plasma spraying method as main thermal spraying methods.

ガスフレーム溶射法は、酸素と可燃性ガスとの燃焼炎を用いて線状、棒状または粉末状の溶射材料を加熱し、溶融またはそれに近い状態にして被溶射体に吹き付けて皮膜を形成する溶射法である。このガスフレーム溶射法は操作が簡単で、設備費、運転費が低廉であるので最も普及している。   Gas flame spraying uses a flame of oxygen and combustible gas to heat a thermal spray material in the form of a wire, rod, or powder, and melts it or sprays it to the sprayed body to form a coating. Is the law. This gas flame spraying method is most popular because it is easy to operate and has low equipment and operating costs.

またプラズマ溶射法は、プラズマジェットを用いて溶射材料を加熱、加速し、溶融またはそれに近い状態にして被溶射体に吹き付けて皮膜を形成する溶射法である。このプラズマ溶射法は、溶射材料として高融点のセラミックから、金属、プラスチックまで使用でき、大気雰囲気、不活性雰囲気あるいは減圧雰囲気での溶射が可能である。プラズマ溶射の溶射材料は主として粉末状であるが、近年、線状または棒状の溶射材料を用いたプラズマアークトーチが特許文献3〜5で提案されている。   The plasma spraying method is a spraying method in which a thermal spray material is heated and accelerated using a plasma jet, and is melted or sprayed onto a thermal sprayed body to form a coating. In this plasma spraying method, a high melting point ceramic, a metal, and a plastic can be used as a spraying material, and spraying in an air atmosphere, an inert atmosphere, or a reduced pressure atmosphere is possible. Although the thermal spray material of plasma spraying is mainly powdery, in recent years, plasma arc torches using linear or rod-like thermal spray materials have been proposed in Patent Documents 3 to 5.

特開2001−89880号公報JP 2001-89880 A 特開2002−69604号公報JP 2002-69604 A 特公平5−80273号公報Japanese Patent Publication No. 5-80273 特公平6−39682号公報Japanese Patent Publication No. 6-39682 特許第3261518号公報Japanese Patent No. 3261518

ところで、溶射を行うにあたっては、被溶射体に対する前処理として、被溶射体表面の塗料やメッキ皮膜、酸化物などを除去するとともに表面を粗面化する工程が必要である。被溶射体表面を粗面化することにより、溶射粒子が粗面化された表面の凹凸に機械的にかみ合って溶射皮膜と被溶射体との密着度が向上する、いわゆるアンカー効果が生じる。この粗面化は通常ブラスト処理といわれる方法によって行われている。ブラスト処理にはいくつかの方式があるが、一般的に行われているのは、圧縮空気を利用して天然鉱物、人造鉱物、金属グリット、非金属グリット、カットワイヤなどを被溶射体に投射して、表面に素地を露出させるとともに、表面に不規則な微小凹凸を形成する方法である。   By the way, when performing thermal spraying, as a pretreatment for the thermal sprayed object, a process of removing the paint, plating film, oxide, etc. on the surface of the thermal sprayed object and roughening the surface is required. By roughening the surface of the object to be sprayed, a so-called anchor effect is produced in which the thermal spray particles mechanically mesh with the irregularities on the roughened surface and the adhesion between the sprayed coating and the object to be sprayed is improved. This roughening is usually performed by a method called blasting. There are several methods for blasting, but the most common method is to project natural minerals, artificial minerals, metallic grit, non-metallic grit, cut wire, etc. onto the sprayed object using compressed air. Thus, the substrate is exposed on the surface, and irregular minute irregularities are formed on the surface.

このブラスト処理を行うには、ブラスト材用のホッパ、タンク、空気圧縮装置、圧縮空気配管、ブラスト材供給管、トーチ、ブラスト材回収装置、集塵装置など大がかりな装置が必要である。鋼構造物などの材料加工工場にこれらの装置を設置し、材料加工段階でブラスト処理を行い、ブラスト処理後に溶射を施した材料を建設現場に運んで鋼構造物などを組み立てる建設工程の場合は、ブラスト処理の実施にさしたる問題はない。しかしながら、現地補修の場合は、コスト面、作業面および環境面からみて問題が大きく、実施には大きな困難が伴う。補修現場でブラスト処理を行うために、上記の装置一式を補修現場に揃えることは困難である。また、大型構造物の現地補修の場合は高所作業になることが多く、必要な装置を高所に設置することも困難である。さらに、処理時のブラスト材の回収や発生する粉塵の集塵が困難で、飛散するブラスト材や粉塵により作業環境が悪化し、環境を汚染するという問題がある。   In order to perform this blasting process, large-scale devices such as a blast material hopper, a tank, an air compression device, a compressed air pipe, a blast material supply tube, a torch, a blast material recovery device, and a dust collecting device are required. In the case of a construction process where these devices are installed in a material processing plant for steel structures, etc., blasting is performed at the material processing stage, and the thermally sprayed material is transported to the construction site after blasting to assemble steel structures etc. There is no problem as compared with the implementation of blasting. However, in the case of on-site repairs, there are major problems in terms of cost, work and environment, and implementation is very difficult. In order to perform the blasting process at the repair site, it is difficult to arrange the above-described apparatus set at the repair site. Moreover, in the case of on-site repairs of large structures, the work is often performed at high places, and it is difficult to install necessary equipment at high places. Further, it is difficult to collect the blast material during processing and to collect the generated dust, and there is a problem that the working environment is deteriorated by the scattered blast material and dust and the environment is contaminated.

したがって、現地補修で溶射を行う場合は、実際上ブラスト処理を行うことができないので、ブラスト処理に代わる粗面化方法を講じる必要がある。また、材料加工工場でブラスト処理を行う場合でも作業環境の悪化は免れないので、ブラスト処理に代わる粗面化方法が適用できればこれに越したことはない。   Therefore, when spraying in the field repair, blasting cannot actually be performed, so it is necessary to take a roughening method instead of blasting. Even when blasting is performed at a material processing plant, the working environment is inevitably deteriorated. Therefore, if a roughening method can be applied instead of blasting, there is no surpassing this.

本発明が解決すべき課題は、金属体に対して金属溶射材料を溶射して防食用溶射皮膜を形成するに際し、実用上十分な溶射皮膜と被溶射体との密着力が得られる被溶射体の粗面化条件と溶射条件とを解明して、防食効果を維持したうえで粗面化工程の作業性の向上と溶射コストの低減をはかることにある。   The problem to be solved by the present invention is that a thermal sprayed body that provides a practically sufficient adhesion between the thermal sprayed coating and the thermal sprayed body when a thermal sprayed coating for corrosion protection is formed by spraying a metal thermal spray material on the metal body. It is intended to improve the workability of the surface roughening process and reduce the thermal spraying cost while elucidating the surface roughening conditions and thermal spraying conditions and maintaining the anticorrosion effect.

本発明者らは、溶射の前処理としての被溶射体の粗面化条件と溶射条件とが溶射皮膜と被溶射体との密着力に及ぼす影響について鋭意検討し、比較的簡単な工具を用いて粗面化した被溶射体であっても、特定の溶射条件で溶射することにより、実用上十分な溶射皮膜の密着力を得ることができるとの知見を得て、本発明を完成するに至った。   The present inventors have intensively studied the influence of the roughening condition and spraying condition of the sprayed body as a pretreatment for spraying on the adhesion between the sprayed coating and the sprayed object, and used a relatively simple tool. In order to complete the present invention, it has been found that even a thermal sprayed surface to be roughened can obtain a practically sufficient adhesion of a thermal spray coating by spraying under specific thermal spraying conditions. It came.

すなわち本発明に係る溶射方法は、金属体に対して金属溶射材料を溶射、特にプラズマ溶射法により溶射して防食用溶射皮膜を形成する溶射方法であって、研削工具を用いて被溶射体の表面の平均粗さRaが2〜10μmの範囲となるように粗面化処理を行う工程と、溶射材料の溶融粒子が被溶射体の表面に付着したときの前記溶融粒子の1粒当たりの平均面積が10000〜100000μm2となる条件で溶射を行う工程とを含むことを特徴とする。 That is, the thermal spraying method according to the present invention is a thermal spraying method in which a metal thermal spray material is sprayed on a metal body, in particular, a thermal spraying method by plasma spraying to form an anticorrosive thermal spraying coating, and a thermal spraying method is applied by using a grinding tool A step of performing a surface roughening treatment so that the average roughness Ra of the surface is in a range of 2 to 10 μm, and an average of the molten particles per particle when the molten particles of the thermal spray material adhere to the surface of the sprayed body And a step of performing thermal spraying on the condition that the area becomes 10,000 to 100,000 μm 2 .

ここで、プラズマ溶射装置として線状または棒状の金属溶射材料を用いる溶射装置を使用することが望ましく、また前記金属溶射材料としてアルミニウム合金、さらに好ましくはアルミニウム−マグネシウム合金を用いることが望ましい。また、溶射後の被膜に封孔処理を行う工程を含ませることもできる。   Here, it is desirable to use a thermal spraying apparatus using a linear or rod-shaped metal spraying material as the plasma spraying apparatus, and it is desirable to use an aluminum alloy, more preferably an aluminum-magnesium alloy as the metal spraying material. Moreover, the process of performing a sealing process can also be included in the film after thermal spraying.

溶融粒子が被溶射体表面に付着したときの1粒当たりの平均面積が所定の範囲となる条件でプラズマ溶射を行うことにより、被溶射体表面の温度が上昇して被溶射体表面に対する溶滴の濡れ性が向上する。これにより、ブラスト処理の場合よりも粗面化程度が低くなる研削工具による粗面化であっても、ブラスト処理とガスフレーム溶射の組み合わせの場合と同程度の溶射皮膜の密着力を得ることができる。研削工具による粗面化では、ブラスト処理の場合のような大がかりな装置を必要とせず、携帯可能な小型の工具であれば現地補修での高所作業にも使用することができ、研削粉の飛散も僅かで環境汚染のおそれも少ない。また、プラズマ溶射法に代えてアーク溶射法を用いて溶融粒子の1粒当たりの平均面積が10000〜100000μm2となる条件で溶射を行うことができれば、上記と同様の作用、効果を得ることができる。 By performing plasma spraying under the condition that the average area per grain when the molten particles adhere to the surface of the sprayed body is within a predetermined range, the temperature of the surface of the sprayed body rises and the droplets on the surface of the sprayed body Improves wettability. As a result, even when the surface is roughened by a grinding tool, the degree of surface roughening is lower than in the case of blasting, it is possible to obtain the adhesion strength of the thermal spray coating that is the same as that in the case of a combination of blasting and gas flame spraying. it can. Roughening with a grinding tool does not require a large-scale device as in the case of blasting, and it can be used for high-level work in on-site repairs if it is a small portable tool. There is little scattering and less risk of environmental pollution. Further, if the average area per grain of plasma spraying in place of the arc spraying method a molten particles using performs spraying under the condition that the 10000~100000Myuemu 2, effects similar to the above, has the advantages it can.

本発明で溶射の対象とするのは金属体である。溶射そのものは非金属体にも適用されるものであるが、本発明ではプラズマ溶射を前提とし、金属構造物の防食機能の強化と補修コストの低減を目的として、金属構造物あるいはその部材に対して金属溶射皮膜を形成する溶射方法を採用する。   The object of thermal spraying in the present invention is a metal body. Although thermal spraying itself can be applied to non-metallic bodies, the present invention is premised on plasma spraying, and for the purpose of strengthening the anti-corrosion function of metal structures and reducing repair costs, the metal structure or its members are applied. A thermal spraying method for forming a metal spray coating is adopted.

本発明において、溶射の前処理としての粗面化処理は、研削工具を使用して行う。ここでいう研削工具とは、ディスク状やベルト状の基材に砥粒を固着した電動工具、ホイールの外周面にフラップやワイヤを植設した電動工具などを指し、これらの工具類は手持ち作業が可能な小型のものもあるので、とくに現地補修の際には好適に使用することができる。このような研削工具を使用して被溶射体の表面を研削すると、表面に多数の平行な線状痕が生じる。研削工具を一定方向に移動させると線状痕は一定方向になり、移動方向を交差させると線状痕も交差する。ブラスト処理の場合のような多数の凹凸を形成させるには、研削工具の移動方向を交差させる方が好ましいが、本発明の粗面化処理は一定方向の線状痕でも十分な密着力を得ることができる。なお、線状痕を交差させる場合の交差角度は何度でもよいが、好ましくは交差角度は60〜90度とする。   In the present invention, the roughening treatment as a pretreatment for thermal spraying is performed using a grinding tool. The grinding tool here refers to a power tool in which abrasive grains are fixed to a disk-shaped or belt-shaped base material, a power tool in which a flap or wire is implanted on the outer peripheral surface of the wheel, etc. These tools are hand-held work There is also a small one that can be used, so it can be suitably used especially for on-site repairs. When the surface of the sprayed object is ground using such a grinding tool, a large number of parallel line marks are generated on the surface. When the grinding tool is moved in a certain direction, the linear trace becomes a constant direction, and when the moving direction is crossed, the linear trace also intersects. In order to form a large number of irregularities as in the case of blasting, it is preferable to cross the moving direction of the grinding tool, but the roughening treatment of the present invention provides sufficient adhesion even with linear traces in a certain direction. be able to. In addition, although the intersection angle in the case of making a linear trace cross | intersect may be many times, Preferably an intersection angle shall be 60-90 degree | times.

この粗面化処理によって得られる表面粗さは、平均粗さRaが2〜10μm、より望ましくは5〜8μmの範囲が最適である。また、最大粗さRzが20〜100μm、粗さのピークカウント値RPcが30〜100の範囲であることが好ましい。表面粗さが上記の範囲であると、溶射の際に溶融粒子が粗面に衝突したときに表面に隙間なく広がり、粗面にかみ込むアンカー効果が強くなる。   The surface roughness obtained by this roughening treatment is optimal when the average roughness Ra is 2 to 10 μm, more desirably 5 to 8 μm. Moreover, it is preferable that the maximum roughness Rz is 20 to 100 μm and the roughness peak count value RPc is 30 to 100. When the surface roughness is in the above range, when the molten particles collide with the rough surface during spraying, the surface spreads without gaps and the anchor effect of biting into the rough surface becomes strong.

表面粗さの平均粗さRaが2μmより小さいと十分なアンカー効果が得られず、溶射皮膜の密着力が低くなる。平均粗さRaが10μmより大きい場合は、溶射皮膜の密着力の点ではむしろ好ましいが、このような粗面を生じさせるには研削工具に用いる砥粒の粒径を大きくする必要があり、研削抵抗が大きくなって研削工具を操作する作業者の負担が大きくなり実際的でない。また、表面粗さが極端に大きくなると、溶融金属が粗面表面を十分に扁平して広がりきれず、表面と溶融粒子の間で隙間が発生して逆に溶射皮膜の密着力が低下する。   If the average roughness Ra of the surface roughness is less than 2 μm, a sufficient anchor effect cannot be obtained and the adhesion of the sprayed coating is lowered. When the average roughness Ra is larger than 10 μm, it is rather preferable in terms of the adhesion force of the sprayed coating. However, in order to generate such a rough surface, it is necessary to increase the grain size of the abrasive grains used in the grinding tool. The resistance increases and the burden on the operator operating the grinding tool increases, which is not practical. Further, when the surface roughness becomes extremely large, the molten metal cannot be sufficiently flattened and spread over the rough surface, and a gap is generated between the surface and the molten particles, and conversely the adhesion of the sprayed coating is reduced.

最大粗さRzが20μmより小さいと、適切な平均粗さを得るうえで均質な表面粗さとする必要があり、上記のような研削工具を使用しての粗面化処理が困難となる。最大粗さRzが100μmより大きいと、研削粒子径の大きな研削工具が必要となるが、大きな研削粒子は消耗が早いため、均質な施工を行うのが困難であり、作業性が低下する。粗さのピークカウント値RPcが30より少ないと、凹凸の数が少なく小さな平滑部分が多く存在していることになり、溶融粒子の密着力が低下する。逆にピークカウント値RPcが100より大きいと、凹凸の間隔が小さくなりすぎ、溶融粒子が表面に十分隙間なく馴染まずに、隙間を生じて溶融粒子の密着力が低下する。   When the maximum roughness Rz is smaller than 20 μm, it is necessary to obtain a uniform surface roughness in order to obtain an appropriate average roughness, and it becomes difficult to perform the roughening process using the grinding tool as described above. When the maximum roughness Rz is larger than 100 μm, a grinding tool having a large grinding particle diameter is required. However, since the large grinding particles are consumed quickly, it is difficult to perform uniform construction and workability is lowered. When the roughness peak count value RPc is less than 30, the number of irregularities is small and there are many small smooth portions, and the adhesion of molten particles is reduced. On the contrary, if the peak count value RPc is larger than 100, the interval between the concaves and convexes becomes too small, and the molten particles do not become sufficiently familiar with the surface without any gaps, and gaps are formed and the adhesion of the molten particles is reduced.

本発明においては、溶射装置としてプラズマ溶射装置、望ましくは線状または棒状の金属溶射材料を用いる溶射装置を使用する。このような溶射装置自体は特許文献3〜5に記載されているように公知であり、本発明においても公知の溶射装置を利用することができる。本発明では、このようなプラズマ溶射装置を使用して、溶射材料の溶融粒子が被溶射体の表面に付着したときの溶融粒子1粒当たりの平均面積が10000〜100000μm2となるように溶射を行うことを条件とする。 In the present invention, a plasma spraying apparatus, preferably a thermal spraying apparatus using a linear or rod-shaped metal spraying material is used as the spraying apparatus. Such a thermal spraying device itself is known as described in Patent Documents 3 to 5, and a known thermal spraying device can also be used in the present invention. In the present invention, using such a plasma spraying apparatus, spraying is performed so that the average area per one molten particle when the molten particle of the sprayed material adheres to the surface of the sprayed body is 10,000 to 100,000 μm 2. On condition that this is done.

線状または棒状の金属溶射材料を用いるプラズマ溶射装置での溶射の場合、図1の(a)に示すように、溶融粒子は被溶射体Sの表面に衝突し扁平して積層するが、複雑な形状で積層されるために、個々の溶射被膜mどうしの密着力が高くなり、全体としての溶射被膜Mの密着力も高くなる。また、溶射材料の溶融粒子が被溶射体の表面に付着したときの溶融粒子1粒当たりの平均面積が10000〜100000μm2となるように溶射を行うことによって、被溶射体表面の温度が上昇して被溶射体表面に対する溶滴の濡れ性が向上する。 In the case of thermal spraying with a plasma spraying apparatus using a linear or rod-like metal spray material, as shown in FIG. 1A, the molten particles collide with the surface of the sprayed body S and are flattened and laminated. Therefore, the adhesion between the individual sprayed coatings m increases, and the adhesion of the sprayed coating M as a whole also increases. Further, by performing the thermal spraying so that the average area per molten particle when the molten particles of the thermal spray material adhere to the surface of the thermal sprayed object becomes 10,000 to 100,000 μm 2 , the temperature of the surface of the thermal sprayed object increases. This improves the wettability of the droplets against the surface of the sprayed body.

一方、ガスフレーム溶射装置での溶射の場合は、図1の(b)に示すように、初期の溶融粒子が被溶射体Sの表面の凹部を埋めたかたちになり、個々の溶射被膜mは薄い鱗状片になるため被膜面は平滑になり、その上に積層される被膜との密着力が低くなり、全体として溶射被膜Mの密着力が低くなるという問題がある。このためガスフレーム溶射装置での溶射の場合は、ブラスト処理による粗面化の場合と同程度の粗さの表面凹凸が必要となる。表面粗さが大きい場合は、同図(c)に示すように、薄い鱗状片の個々の溶射被膜mは、被溶射体Sの表面の凹凸面に沿って形成され、順次積層される溶射被膜mどうしの密着力の低下が抑えられるので、全体としての溶射被膜Mの密着力は十分なものとなる。   On the other hand, in the case of thermal spraying with a gas flame spraying apparatus, as shown in FIG. 1 (b), the initial molten particles fill the recesses on the surface of the sprayed body S, and each sprayed coating m is Since it becomes a thin scaly piece, the coating surface becomes smooth, and the adhesion with the coating laminated thereon is lowered, and there is a problem that the adhesion with the thermal spray coating M is lowered as a whole. For this reason, in the case of thermal spraying with a gas flame spraying apparatus, surface irregularities having the same degree of roughness as in the case of roughening by blasting are required. When the surface roughness is large, the individual sprayed coatings m of the thin scaly pieces are formed along the concavo-convex surface of the surface of the sprayed body S and are sequentially laminated as shown in FIG. Since the decrease in the adhesion force between the m is suppressed, the adhesion force of the sprayed coating M as a whole is sufficient.

本発明においては、前処理によって平均粗さRaを2〜10μmとした被溶射体表面に対してプラズマ溶射を行うのであるが、このときの溶射材料の溶融粒子が被溶射体表面に付着したときの溶融粒子1粒当たりの平均面積が10000〜100000μm2となる条件で溶射を行うことにより、図1の(a)に示したような個々の溶射被膜の積層が得られ、全体として高い溶射被膜の密着力が得られる。溶融粒子1粒当たりの平均面積が上記範囲より小さすぎても大きすぎても、個々の溶射被膜の間に隙間が生じて被溶射体表面の温度を十分に上昇させることができず、十分な溶射被膜の密着力が得られなくなる。ガスフレーム溶射の場合の溶融粒子1粒当たりの平均面積は数百〜数千μm2であり、アーク溶射被膜では溶融粒子1粒当たりの平均面積は数百〜数千μm2であってガスフレーム溶射の場合より少し大きめの溶融粒子を含んでいるが、被溶射体表面の平均粗さRaが2〜10μm程度では十分な溶射被膜の密着力が得られない。 In the present invention, plasma spraying is performed on the surface of the thermal sprayed body having an average roughness Ra of 2 to 10 μm by pretreatment. When the molten particles of the sprayed material adhere to the surface of the thermal sprayed body at this time By spraying under the condition that the average area per molten particle of 10000 to 100000 μm 2 is obtained, a laminate of individual sprayed coatings as shown in FIG. Can be obtained. Even if the average area per one molten particle is too small or too large than the above range, gaps are generated between the individual sprayed coatings, and the temperature of the sprayed body surface cannot be sufficiently raised, and sufficient The adhesion of the thermal spray coating cannot be obtained. In the case of gas flame spraying, the average area per one molten particle is several hundred to several thousand μm 2 , and in the arc spray coating, the average area per one molten particle is several hundred to several thousand μm 2. Although molten particles slightly larger than those in the case of thermal spraying are included, if the average roughness Ra of the surface of the sprayed body is about 2 to 10 μm, sufficient adhesion of the thermal spray coating cannot be obtained.

上記の粗面化処理と表面粗さおよび溶射条件以外はとくに限定する要件はない。溶射皮膜の厚さは、要求される防食性能に応じて50〜200μmの範囲で適宜の膜厚を選定すればよい。溶射材料としての金属は、従来公知のアルミニウム、亜鉛、銅、コバルト、チタンなど、およびこれらの合金など各種の金属を用いることができる。これらのなかで、犠牲陽極作用を十分発揮するという点からは、アルミニウムまたはアルミニウム−マグネシウム合金や亜鉛アルミニウム合金等のアルミニウム合金がとくに適している。また、溶射被膜形成後は、封孔処理を行ってもよい。とくに現地補修の場合は、溶射後できるだけ速やかに封孔処理を行うのがよい。封孔材としては従来公知の樹脂類や有機薬品類を用いることができる。   There are no special requirements other than the above roughening treatment, surface roughness and thermal spraying conditions. What is necessary is just to select an appropriate film thickness in the range of 50-200 micrometers according to the anticorrosion performance requested | required as the thickness of a sprayed coating. Various metals such as conventionally known aluminum, zinc, copper, cobalt, titanium, and alloys thereof can be used as the metal as the thermal spray material. Among these, aluminum or an aluminum alloy such as an aluminum-magnesium alloy or zinc-aluminum alloy is particularly suitable from the viewpoint of sufficiently exhibiting the sacrificial anodic action. Moreover, you may perform a sealing process after sprayed coating formation. In particular, in the case of on-site repairs, it is better to perform the sealing process as soon as possible after spraying. Conventionally known resins and organic chemicals can be used as the sealing material.

以下、本発明の溶射方法を鋼構造物の現地補修に適用した実施例について、主たる工程の順に説明する。ここでは、既設の鋼構造物は亜鉛メッキ鋼材の上に塗装が施された構造物であり、局部的に塗装が剥離し、亜鉛メッキが腐蝕した部分を溶射により補修する場合を例にとって説明する。   Hereinafter, an example in which the thermal spraying method of the present invention is applied to on-site repair of a steel structure will be described in the order of main steps. Here, an existing steel structure is a structure in which a coating is applied on a galvanized steel material, and the case where the coating is peeled off locally and the galvanized corrosion portion is repaired by thermal spraying will be described as an example. .

〔粗面化処理工程〕
図2は本実施例において使用した研削工具の一例を示す斜視図である。
この研削工具1は研削ローラ式サンダといわれる電動式の研削工具であり、ローラ2にサンドペーパ3を取り付け、その回転により鋼材の損傷部位の表面研削を行うものである。サンドペーパ3には粒度番号#20〜#40(平均粒径1000〜425μm)の炭化けい素やアルミナ等の砥粒が樹脂結合材により固着されている。この研削工具1により鋼材表面を研削することによって、塗装とメッキの損傷部分が研削され、鋼材表面は平均粗さRaが5〜8μm程度の粗面となる。なお、研削工具としては研削ローラ式サンダ以外にも、ベルトサンダやディスクサンダ、フラップホイール、回転ブラシなどを適宜使用することができる。
[Roughening treatment process]
FIG. 2 is a perspective view showing an example of a grinding tool used in this embodiment.
The grinding tool 1 is an electric grinding tool called a grinding roller type sander, and a sandpaper 3 is attached to the roller 2 and the surface of the damaged portion of the steel material is ground by rotating the sanding tool 3. Abrasive grains such as silicon carbide and alumina having a grain size number # 20 to # 40 (average grain size 1000 to 425 μm) are fixed to the sandpaper 3 with a resin binder. By grinding the steel surface with this grinding tool 1, the damaged portion of the coating and plating is ground, and the steel surface becomes a rough surface with an average roughness Ra of about 5 to 8 μm. In addition to the grinding roller type sander, a belt sander, a disk sander, a flap wheel, a rotating brush, or the like can be appropriately used as the grinding tool.

〔溶射装置〕
図3は本実施例において使用したプラズマ溶射装置の要部の構造を溶射状態のもとで示す図である。
プラズマ溶射装置6のプラズマトーチ(本体部の内部構造は省略している)7の電極8は、ノズル9の絶縁性を有する後壁部10から先側に突出して設けられている。ノズル9は、後壁部10に接続された円筒状の周壁11と、周壁11の先側に設けられ、先側に向かって断面外形が急激に縮小する円錐状の先細筒部12とを有している。周壁11には、ノズル9内にプラズマガスを周方向に沿って流入させる流入口13が複数箇所に形成されている。プラズマガスは、窒素、アルゴン、ヘリウムなどの不活性ガスを単体で、または混合したものを使用することができる。
[Spraying equipment]
FIG. 3 is a view showing the structure of the main part of the plasma spraying apparatus used in the present embodiment under the thermal spraying condition.
An electrode 8 of a plasma torch (the internal structure of the main body portion is omitted) 7 of the plasma spraying device 6 is provided so as to protrude forward from the rear wall portion 10 having insulation properties of the nozzle 9. The nozzle 9 has a cylindrical peripheral wall 11 connected to the rear wall portion 10 and a conical tapered tube portion 12 provided on the front side of the peripheral wall 11 and whose cross-sectional outer shape is rapidly reduced toward the front side. is doing. In the peripheral wall 11, inlets 13 through which plasma gas flows into the nozzle 9 along the circumferential direction are formed at a plurality of locations. As the plasma gas, an inert gas such as nitrogen, argon, or helium can be used alone or in combination.

ノズル9の先細筒部12の外周部には、外周面に沿ってノズル9の中心線の先側にガスを噴出する外周ノズル19が設けられている。ガスとしては、空気、窒素、アルゴン、ヘリウムなどが用いられる。また、外周ノズル19の外側には、ノズル9の中心線の先側であってガスの噴出部よりも基側に、溶射材料としてのAl−Mg合金のワイヤ14を送り出す供給装置15が設けられている。供給装置15は、ガイド部材16および押し出しローラ17を備えている。   An outer peripheral nozzle 19 is provided on the outer peripheral portion of the tapered tube portion 12 of the nozzle 9 to eject gas to the tip side of the center line of the nozzle 9 along the outer peripheral surface. As the gas, air, nitrogen, argon, helium, or the like is used. Further, on the outer side of the outer peripheral nozzle 19, a supply device 15 that sends out an Al—Mg alloy wire 14 as a thermal spray material is provided on the front side of the center line of the nozzle 9 and on the base side of the gas ejection portion. ing. The supply device 15 includes a guide member 16 and an extrusion roller 17.

電極8は直流電源装置18のマイナス極に接続され、ワイヤ14は直流電源装置18のプラス極に接続されている。直流電源装置18は、30〜200V程度の直流電圧および50〜500A程度の直流電流を供給することができる。また、直流電源装置18は、短時間に約3000Vの高電圧を加えることが可能である。   The electrode 8 is connected to the negative pole of the DC power supply device 18, and the wire 14 is connected to the positive pole of the DC power supply device 18. The DC power supply device 18 can supply a DC voltage of about 30 to 200 V and a DC current of about 50 to 500 A. The DC power supply 18 can apply a high voltage of about 3000 V in a short time.

〔溶射工程〕
プラズマ溶射装置6のノズル9の中心線が被溶射体である鋼材4の表面に対して垂直になるようにプラズマ溶射装置6を配置する。
プラズマ溶射装置6の流入口13からプラズマガスを流入させると、プラズマガスが周壁11に沿って旋回流を発生させる。この状態で、直流電源装置18により3000V電圧を加えると、電極8とワイヤ14との間にスパーク放電が発生する。プラズマガスは旋回して中心部分の圧力が低下しており、スパーク放電によって、この中心部分のプラズマガスを優先的に放電する。スパーク放電が発生すると、電極8とワイヤ14との間のプラズマガスがイオン化して電離状態を作り、直流電流が流れるようになる。プラズマガス中を直流電流が流れることによりさらにガスのプラズマ化が進み、プラズマアーク流が形成される。プラズマアーク流は、旋回流により減圧されているプラズマガスの中心部分に沿って流れ、プラズマガスは、このプラズマアーク流によって加熱され、ノズル9の出口20からプラズマフレームとして勢いよく吹き出される。
[Spraying process]
The plasma spraying device 6 is arranged so that the center line of the nozzle 9 of the plasma spraying device 6 is perpendicular to the surface of the steel material 4 that is the sprayed body.
When plasma gas is introduced from the inlet 13 of the plasma spraying device 6, the plasma gas generates a swirling flow along the peripheral wall 11. In this state, when a voltage of 3000 V is applied by the DC power supply device 18, a spark discharge is generated between the electrode 8 and the wire 14. The plasma gas swirls and the pressure in the central portion decreases, and the plasma gas in the central portion is preferentially discharged by spark discharge. When the spark discharge occurs, the plasma gas between the electrode 8 and the wire 14 is ionized to create an ionization state, and a direct current flows. When a direct current flows in the plasma gas, the gas is further converted into plasma, and a plasma arc flow is formed. The plasma arc flow flows along the central portion of the plasma gas decompressed by the swirling flow, and the plasma gas is heated by the plasma arc flow and is blown out vigorously as a plasma flame from the outlet 20 of the nozzle 9.

ワイヤ14の先端部は、プラズマアーク流によって急激に加熱され溶融する。溶融したワイヤ14は、溶融粒子21となり、プラズマフレームによって、鋼材4側に吹き飛ばされる。プラズマガスは、不活性ガスを用いているので、溶融粒子21に触れる酸素の量が少なくなり、形成される溶射皮膜5の酸化が防止される。また、先端部が溶融して無くなったワイヤ14は、先端がノズル9の中心線と一致するように押し出しローラ17により先側に移動される。外周ノズル19は、圧縮したガスを後方から流入させ、前方から円錐状に噴出する。ガスを溶融粒子21に外周側から吹き付けることにより、溶融粒子21が微細化され、溶射皮膜5の形成に最適なサイズとなる。微細化された溶融粒子21は、鋼材4の表面に衝突して扁平になり、この溶融粒子21が多数積層、結合して冷却されることにより溶射皮膜5が形成される。   The tip of the wire 14 is rapidly heated and melted by the plasma arc flow. The melted wire 14 becomes molten particles 21 and is blown off to the steel material 4 side by the plasma frame. Since the plasma gas uses an inert gas, the amount of oxygen in contact with the molten particles 21 is reduced, and oxidation of the formed thermal spray coating 5 is prevented. Further, the wire 14 whose tip has been melted and lost is moved to the front side by the extrusion roller 17 so that the tip coincides with the center line of the nozzle 9. The outer peripheral nozzle 19 allows the compressed gas to flow from the rear and ejects it from the front in a conical shape. By blowing the gas to the molten particles 21 from the outer peripheral side, the molten particles 21 are miniaturized and become an optimum size for forming the thermal spray coating 5. The refined molten particles 21 collide with the surface of the steel material 4 and become flat. A large number of the molten particles 21 are stacked, bonded, and cooled to form the sprayed coating 5.

〔密着力測定結果〕
本発明の溶射方法による効果を確認するために、被溶射体表面の粗面化をブラスト処理で行った場合と研削処理で行った場合について、公知のガスフレーム溶射装置と図3に示したプラズマ溶射装置とでそれぞれ溶射を行ったときの、粗面化処理後の表面粗さおよび溶射皮膜の密着力を測定した。測定結果を表1に示す。なお、ISO(International organization for standardization;国際標準化機構)2063の解説においては、実用上十分な密着力とは、4.5N/mm2以上であることとされている。本実施例ではこの数値を採用し、密着力の必要値とした。
[Adhesion strength measurement results]
In order to confirm the effect of the thermal spraying method of the present invention, a known gas flame spraying apparatus and the plasma shown in FIG. 3 are used when the surface of the sprayed body is roughened by blasting and grinding. The surface roughness after the surface roughening treatment and the adhesion of the thermal spray coating were measured when each thermal spraying was performed with a thermal spraying apparatus. The measurement results are shown in Table 1. In the description of ISO (International Organization for Standardization) 2063, the practically sufficient adhesion is 4.5 N / mm 2 or more. In this embodiment, this numerical value is adopted as a necessary value for the adhesion.

Figure 0004502622
注)密着力の測定は、JIS H8661に準拠したエルコメータを用いて行った。
Figure 0004502622
Note) The adhesion was measured using an elcometer in accordance with JIS H8661.

表1からわかるように、ガスフレーム溶射の場合は、粗面化処理としてブラスト処理を行って表面粗さRaが20μm程度であれば溶射皮膜の密着力は6〜7N/mm2程度となり、十分な密着力が得られるが、研削処理により表面粗さRaが15μm未満の粗さしか得られないときは、溶射皮膜の密着力が4N/mm2以下となり、実用的な密着力が得られない。通常、ブラスト処理の場合の表面粗さRaは15〜40μm程度であり、ガスフレーム溶射では6〜7N/mm2程度の密着力が得られている。これに対しプラズマ溶射の場合は、研削処理による表面粗さRaが2〜10μmの範囲であっても、溶射皮膜の密着力は6〜7N/mm2となり、十分な密着力が得られる。ただし、表面粗さRaが2μm未満であると、密着力が低くなるので実用的に望ましくない。 As can be seen from Table 1, in the case of gas flame spraying, if the surface roughness Ra is about 20 μm by performing blasting as the roughening process, the adhesion of the sprayed coating is about 6-7 N / mm 2, which is sufficient Can be obtained, but when the surface roughness Ra is less than 15 μm by grinding, the adhesion of the sprayed coating is 4 N / mm 2 or less, and practical adhesion cannot be obtained. . Usually, the surface roughness Ra in the case of blasting is about 15 to 40 μm, and an adhesion force of about 6 to 7 N / mm 2 is obtained by gas flame spraying. On the other hand, in the case of plasma spraying, even if the surface roughness Ra by grinding is in the range of 2 to 10 μm, the adhesion of the sprayed coating is 6 to 7 N / mm 2 , and sufficient adhesion can be obtained. However, if the surface roughness Ra is less than 2 μm, the adhesion is reduced, which is not practically desirable.

以上、本発明の溶射方法を金属体として鋼構造物を例にとって説明したが、本発明の溶射方法は鋼構造物を含む各種の金属構造物およびその部材の防食に適用することができる。また金属溶射材料の材質や溶射条件を適宜に選定することにより、金属体以外の構造物や部材にも応用が可能である。   As described above, the thermal spraying method of the present invention has been described by taking a steel structure as an example of a metal body. However, the thermal spraying method of the present invention can be applied to various metal structures including a steel structure and corrosion protection of members thereof. Moreover, it can be applied to structures and members other than metal bodies by appropriately selecting the material and spraying conditions of the metal spray material.

溶射被膜の積層状態を模式的に示す図である。It is a figure which shows typically the lamination | stacking state of a thermal spray coating. 実施例において使用した研削工具の一例を示す斜視図である。It is a perspective view which shows an example of the grinding tool used in the Example. 実施例において使用したプラズマ溶射装置の要部の構造を溶射状態のもとで示す図である。It is a figure which shows the structure of the principal part of the plasma spraying apparatus used in the Example under a thermal spraying state.

符号の説明Explanation of symbols

1 研削工具
2 ローラ
3 サンドペーパ
4 鋼材
5 溶射皮膜
6 プラズマ溶射装置
7 プラズマトーチ
8 電極
9 ノズル
10 後壁部
11 周壁
12 先細筒部
13 流入口
14 ワイヤ
15 供給装置
16 ガイド部材
17 押し出しローラ
18 直流電源装置
19 外周ノズル
20 出口
21 溶融粒子
DESCRIPTION OF SYMBOLS 1 Grinding tool 2 Roller 3 Sand paper 4 Steel 5 Thermal spray coating 6 Plasma spray apparatus 7 Plasma torch 8 Electrode 9 Nozzle 10 Rear wall part 11 Peripheral wall 12 Tapered cylinder part 13 Inlet 14 Wire 15 Supply apparatus 16 Guide member 17 Extrusion roller 18 DC power supply Device 19 Outer peripheral nozzle 20 Outlet 21 Molten particles

Claims (3)

金属体に対して金属溶射材料を溶射して防食用溶射皮膜を形成する溶射方法であって、
研削工具を用いて被溶射体の表面を研削して線状痕を生じさせ、被溶射体の表面の平均粗さRaが2〜10μmの範囲となるように粗面化処理を行う工程と、
この粗面化処理後の被溶射体の表面に、線状または棒状の金属溶射材料を用いるプラズマ溶射装置を使用して、溶射材料の溶融粒子が被溶射体の表面に付着したときの前記溶融粒子の1粒当たりの平均面積が10000〜100000μmとなるようにプラズマ溶射を行う工程と
を含む溶射方法。
A thermal spraying method for forming a thermal spray coating for corrosion protection by spraying a metal thermal spray material on a metal body,
Grinding the surface of the object to be sprayed using a grinding tool to produce linear marks, and performing a surface roughening treatment so that the average roughness Ra of the surface of the object to be sprayed is in the range of 2 to 10 μm;
Using the plasma spraying apparatus using a linear or rod-shaped metal sprayed material on the surface of the thermal sprayed surface after the roughening treatment, the melting when the molten particles of the thermal sprayed material adhere to the surface of the thermal sprayed material And a step of performing plasma spraying so that an average area per particle becomes 10,000 to 100,000 μm 2 .
前記金属溶射材料としてアルミニウムアルミニウム−マグネシウム合金または亜鉛アルミニウム合金を用いる請求項記載の溶射方法。 Aluminum as the metal spraying material of aluminum - spraying method according to claim 1, wherein the use of magnesium alloy or zinc aluminum alloy. 溶射被膜形成後に封孔処理を行う工程を含む請求項1または2に記載の溶射方法。 The thermal spraying method of Claim 1 or 2 including the process of performing a sealing process after spraying coating formation.
JP2003362212A 2003-10-22 2003-10-22 Thermal spraying method Expired - Lifetime JP4502622B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003362212A JP4502622B2 (en) 2003-10-22 2003-10-22 Thermal spraying method
CNB2004800305019A CN100569989C (en) 2003-10-22 2004-10-15 Method of spray plating
PCT/JP2004/015257 WO2005040446A1 (en) 2003-10-22 2004-10-15 Method of thermal spraying
EP04792474A EP1679388A4 (en) 2003-10-22 2004-10-15 Method of thermal spraying
KR1020067006647A KR101088005B1 (en) 2003-10-22 2004-10-15 Method of thermal spraying
TW093131838A TW200514869A (en) 2003-10-22 2004-10-20 Method of thermal spraying

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003362212A JP4502622B2 (en) 2003-10-22 2003-10-22 Thermal spraying method

Publications (2)

Publication Number Publication Date
JP2005126750A JP2005126750A (en) 2005-05-19
JP4502622B2 true JP4502622B2 (en) 2010-07-14

Family

ID=34509977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003362212A Expired - Lifetime JP4502622B2 (en) 2003-10-22 2003-10-22 Thermal spraying method

Country Status (6)

Country Link
EP (1) EP1679388A4 (en)
JP (1) JP4502622B2 (en)
KR (1) KR101088005B1 (en)
CN (1) CN100569989C (en)
TW (1) TW200514869A (en)
WO (1) WO2005040446A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4507786B2 (en) * 2004-09-17 2010-07-21 日産自動車株式会社 Thermal spray pretreatment method
JP4796362B2 (en) * 2005-09-13 2011-10-19 株式会社神戸製鋼所 Heat transfer tube for LNG vaporizer and method for manufacturing the same
JP4742986B2 (en) * 2006-05-24 2011-08-10 トヨタ自動車株式会社 Masking jig for thermal spraying
JP4602998B2 (en) * 2007-01-18 2010-12-22 トーカロ株式会社 Thermal spray coating formation method
JP2009061465A (en) * 2007-09-05 2009-03-26 Daido Steel Co Ltd Metallic mold for cold forging and its manufacturing method
JP4920560B2 (en) * 2007-11-15 2012-04-18 新日本製鐵株式会社 High-strength bolt friction joint structure and method for forming a metal sprayed layer in high-strength bolt friction joint structure
DE102008019933A1 (en) 2008-04-21 2009-10-22 Ford Global Technologies, LLC, Dearborn Apparatus and method for preparing a metal surface for applying a thermally sprayed layer
JP5262369B2 (en) * 2008-07-10 2013-08-14 Jfeスチール株式会社 Steel structure coated with Al alloy and its anticorrosion coating method
KR101722793B1 (en) 2009-04-22 2017-04-03 오일레스고교 가부시키가이샤 Conductive metallic coating material, method of corrosion prevention with conductive metallic coating material, and method of corrosion-preventive repair therewith
FR2959244B1 (en) 2010-04-23 2012-06-29 Commissariat Energie Atomique PROCESS FOR PREPARING A MULTILAYER COATING ON A SURFACE OF A SUBSTRATE BY THERMAL PROJECTION
DE102011086803A1 (en) 2011-11-22 2013-05-23 Ford Global Technologies, Llc Repair method of a cylinder surface by means of plasma spraying
DE102013200912B4 (en) 2012-02-02 2018-05-30 Ford Global Technologies, Llc crankcase
US8726874B2 (en) 2012-05-01 2014-05-20 Ford Global Technologies, Llc Cylinder bore with selective surface treatment and method of making the same
US9511467B2 (en) 2013-06-10 2016-12-06 Ford Global Technologies, Llc Cylindrical surface profile cutting tool and process
US9079213B2 (en) 2012-06-29 2015-07-14 Ford Global Technologies, Llc Method of determining coating uniformity of a coated surface
TWI586446B (en) * 2013-12-18 2017-06-11 國立清華大學 Method of applying electric arc furnace dust in chemical looping combusion process
US9382868B2 (en) 2014-04-14 2016-07-05 Ford Global Technologies, Llc Cylinder bore surface profile and process
KR101580682B1 (en) * 2014-07-28 2015-12-28 주식회사 혁성 Anti-Fouling Coating Layer for Water Supply Facilities and Preparation Method Thereof
US10220453B2 (en) 2015-10-30 2019-03-05 Ford Motor Company Milling tool with insert compensation
JP6531736B2 (en) * 2016-07-29 2019-06-19 ダイキン工業株式会社 Sea transport frozen or refrigerated container unit
KR20180040754A (en) * 2016-10-12 2018-04-23 케이씨에프테크놀로지스 주식회사 Easily Handleable Electrolytic Copper Foil, Electrode Comprising The Same, Secondary Battery Comprising The Same, and Method for Manufacturing The Same
US20210293457A1 (en) * 2018-12-19 2021-09-23 Carrier Corporation Aluminum compressor with sacrificial cladding
JP7309544B2 (en) * 2019-09-13 2023-07-18 株式会社東芝 Coating method and coating structure
CN110484850A (en) * 2019-09-26 2019-11-22 中国人民解放军陆军装甲兵学院 A method of preparing the good spray coating of binding performance on nitriding matrix
KR102261843B1 (en) * 2021-01-21 2021-06-09 (주)세원하드페이싱 Non-slip panel and THE MANUFACTURING METHOD THEREOF
CN112727116B (en) * 2021-01-24 2022-08-26 新疆鑫瑞成建设工程有限公司 A spread equipment of pasting for spreading paste waterproofing membrane

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5446144A (en) * 1977-09-20 1979-04-11 Matsushita Electric Ind Co Ltd Hot plate
JPS61104062A (en) * 1984-10-23 1986-05-22 Tsukishima Kikai Co Ltd Method for sealing pore of metallic or ceramic thermally sprayed coated film
JP2000064063A (en) * 1998-08-21 2000-02-29 Nikken Toso Kogyo Kk Composite coating of metal and its formation
WO2002040733A1 (en) * 2000-11-17 2002-05-23 Nikko Materials Company, Limited Sputtering target producing few particles, backing plate or sputtering apparatus and sputtering method producing few particles
JP2003286559A (en) * 2002-03-28 2003-10-10 Kurimoto Ltd Corrosion prevention coating on ferrous substrate and corrosion prevention method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4762977A (en) * 1987-04-15 1988-08-09 Browning James A Double arc prevention for a transferred-arc flame spray system
US4788077A (en) * 1987-06-22 1988-11-29 Union Carbide Corporation Thermal spray coating having improved addherence, low residual stress and improved resistance to spalling and methods for producing same
GB8715035D0 (en) * 1987-06-26 1987-08-05 Sansome D H Spray depositing of metals
US5171360A (en) * 1990-08-30 1992-12-15 University Of Southern California Method for droplet stream manufacturing
DE4120387A1 (en) * 1991-06-20 1992-12-24 Kabelmetal Ag METHOD FOR PRODUCING A STRUCTURED SURFACE ON A SEMI-PRODUCT CONSTRUCTING FROM COPPER OR A COOL ALLOY
JP2729935B2 (en) * 1995-10-31 1998-03-18 大日本塗料株式会社 Sealing treatment method for thermal spray coating and sealing material
US6001426A (en) * 1996-07-25 1999-12-14 Utron Inc. High velocity pulsed wire-arc spray
JP2002080956A (en) * 2000-09-07 2002-03-22 Daihen Corp Thermal-spraying method for inclined thermal-spraying surface having sharply changing thermal-spraying surface
JP4556352B2 (en) * 2001-06-27 2010-10-06 日本電気硝子株式会社 Platinum coated refractory

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5446144A (en) * 1977-09-20 1979-04-11 Matsushita Electric Ind Co Ltd Hot plate
JPS61104062A (en) * 1984-10-23 1986-05-22 Tsukishima Kikai Co Ltd Method for sealing pore of metallic or ceramic thermally sprayed coated film
JP2000064063A (en) * 1998-08-21 2000-02-29 Nikken Toso Kogyo Kk Composite coating of metal and its formation
WO2002040733A1 (en) * 2000-11-17 2002-05-23 Nikko Materials Company, Limited Sputtering target producing few particles, backing plate or sputtering apparatus and sputtering method producing few particles
JP2003286559A (en) * 2002-03-28 2003-10-10 Kurimoto Ltd Corrosion prevention coating on ferrous substrate and corrosion prevention method

Also Published As

Publication number Publication date
CN1867691A (en) 2006-11-22
KR101088005B1 (en) 2011-12-01
KR20060125714A (en) 2006-12-06
JP2005126750A (en) 2005-05-19
EP1679388A4 (en) 2008-03-19
EP1679388A1 (en) 2006-07-12
TWI341876B (en) 2011-05-11
WO2005040446A1 (en) 2005-05-06
TW200514869A (en) 2005-05-01
CN100569989C (en) 2009-12-16

Similar Documents

Publication Publication Date Title
JP4502622B2 (en) Thermal spraying method
US10272468B2 (en) Integrated fluidjet system for stripping, prepping and coating a part
US20060090593A1 (en) Cold spray formation of thin metal coatings
JP5886258B2 (en) Method for forming anti-rust coating on bridge
US7682667B2 (en) Method of thermal spraying
CN106436500B (en) A kind of magnetic suspension guide rail and preparation method thereof
CN107201491A (en) A kind of preparation method of drilling riser sleeve pipe electric arc spraying protective coating
CN106893961A (en) A kind of supersonic flame spraying method for strengthening turbine blade surface
US6190740B1 (en) Article providing corrosion protection with wear resistant properties
CN1763248A (en) Bearing surface anticorrosion treatment process
Herman et al. Thermal spray coatings
CN104862640A (en) Method for preparing anti-erosion wearing-resistant coating of slurry pump overflowing part
CN109321860A (en) A kind of workpiece wear-resistant coating and its spraying method
JP3475011B2 (en) Roller for belt conveyor
JP5647608B2 (en) Melt-resistant metal member and method for producing molten metal member
JP2003105517A (en) Construction method for protecting and repairing concrete
Boulos et al. Wire Arc Spraying
JPH07825B2 (en) Method for preparing metal spray coating
CN205957165U (en) Improve combustor of combustor abrasive resistanc
JPH10121221A (en) Wear resistant and corrosion resistant metallic member
WO2023020641A1 (en) Method for production of a component having a surface coating
Ballard Metal spraying by wire method
Babu et al. Thermal Spray Coatings: Aluminum Alloy Protection
Bailey Progress in metal spraying technique and application
CN107312999A (en) Coat thermal power plant's draught fan impeller of Fe-based amorphous metal coating

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051027

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060501

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060607

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100420

R150 Certificate of patent or registration of utility model

Ref document number: 4502622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term