JP4502498B2 - Rotor type adsorption refrigerator - Google Patents

Rotor type adsorption refrigerator Download PDF

Info

Publication number
JP4502498B2
JP4502498B2 JP2000354222A JP2000354222A JP4502498B2 JP 4502498 B2 JP4502498 B2 JP 4502498B2 JP 2000354222 A JP2000354222 A JP 2000354222A JP 2000354222 A JP2000354222 A JP 2000354222A JP 4502498 B2 JP4502498 B2 JP 4502498B2
Authority
JP
Japan
Prior art keywords
adsorption
rotor
gas
desorption
refrigerant liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000354222A
Other languages
Japanese (ja)
Other versions
JP2002162129A (en
Inventor
正信 斎藤
清和 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taikisha Ltd
Original Assignee
Taikisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taikisha Ltd filed Critical Taikisha Ltd
Priority to JP2000354222A priority Critical patent/JP4502498B2/en
Publication of JP2002162129A publication Critical patent/JP2002162129A/en
Application granted granted Critical
Publication of JP4502498B2 publication Critical patent/JP4502498B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1417Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with liquid hygroscopic desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • F24F2011/0006Control or safety arrangements for ventilation using low temperature external supply air to assist cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はロータ式吸着冷凍機に関する。
【0002】
【従来の技術】
従来、吸着材による吸脱着を利用した吸着冷凍機では(図4参照)、吸着剤熱交換器30aを内蔵した吸脱着室30Aを蒸発室31に連通させる吸着工程と、その吸脱着室30Aを凝縮室32に連通させる再生工程とを、弁Vの切り換え操作により交互に繰り返すようにしていた。
【0003】
つまり、吸着工程では、図4の(イ)に示す如く、吸着剤熱交換器30aに冷却水Rを供給する吸着剤冷却下で吸脱着室30Aにおいて吸着剤Xに冷媒蒸気S(水蒸気)を吸着させながら、蒸発室31において冷媒液W(水)を蒸発させ、この冷媒蒸発に伴う気化熱奪取により蒸発室31における出力熱交換器31aで冷却対象水Cを冷却する。
【0004】
また、再生工程では、図4の(ロ)に示す如く、凝縮用熱交換器32aでの冷却水Rによる冷却で凝縮室32において冷媒蒸気S′(水蒸気)を凝縮させながら、吸着剤熱交換器30aに温水Hを供給する吸着剤加熱により、吸脱着室30Aにおいて先の吸着工程での吸着冷媒蒸気S′を吸着剤Xから脱着させ、これにより次の吸着工程に備えて吸着剤Xを再生する。33は凝縮室32での凝縮冷媒W(水)を蒸発室31に戻す冷媒路である。
【0005】
そして、従来の吸着冷凍機では、各別の吸着剤熱交換器30a,30bを内蔵した第1及び第2の吸脱着室30A,30Bを設けて、図4の(イ),(ロ)に示す如く、一方の吸脱着室30Aについて吸着工程を実施している間に他方の吸脱着室30Bについて脱着工程を実施する形態で、第1,第2吸脱着室30A,30Bの各々について吸着工程と脱着工程とを弁Vの切り換え操作により交互に繰り返すことで、出力熱交換器31aにおいて冷却対象水Cを連続に冷却するようにしていた。
【0006】
なお、従来の吸着冷凍機では、各室30A,30B,31,32を真空化する真空ポンプを装備して高真空下で吸脱着を行なわせるようにしており、また、その高真空状態を維持する為に各室30A,30B,31,32は耐圧気密構造になっている。
【0007】
【発明が解決しようとする課題】
しかし、従来の吸着冷凍機では、第1,第2吸脱着室30A,30Bの各々を蒸発室31と凝縮室32とに対して交互に連通させるための複雑な切り換え構成、並びに、それら第1,第2吸脱着室30A,30Bの夫々に内蔵した吸着剤熱交換器30a,30bに対し冷却水Rと温水Hとを交互に供給するための複雑な切り換え構成が必要なことで、また、それら切り換えのために装置制御の制御構成も複雑になることで、装置コストが高く付くとともに装置が大型化し、また、メンテナンスも難しい問題があった。
【0008】
この実情に鑑み、本発明の主たる課題は、合理的な吸脱着構造により上記問題を効果的に解消する点にある。
【0009】
【課題を解決するための手段】
ロータ式吸着冷凍機を構成するのに、
吸着剤を備える通気性吸着ロータの回転域に吸着域と脱着域とをロータ回転方向に並べて設け、
前記吸着域と、その吸着域で前記吸着ロータを通過した作動ガスを冷却する冷却器と、その冷却器で冷却した作動ガスに対し散布手段により冷媒液を散布する蒸発室とにわたって、その順に作動ガスを循環させるガス循環路を形成し、
前記蒸発室での散布冷媒液の蒸発に伴う気化熱奪取により冷却対象流体を冷却する出力熱交換器を設け、
前記脱着域で前記吸着ロータに通過させる再生用ガスを前記脱着域に通風供給する再生用ガス供給手段を設ける構成にしてもよい。
【0010】
つまり、この構成では、蒸発室での散布冷媒液の蒸発により冷媒蒸気を含む状態になった作動ガスを、吸着域で吸着ロータに通過させることにより、吸着域にあるロータ部分の吸着剤をもって通過作動ガスから冷媒蒸気を吸着除去する。また、吸着域を通過した作動ガスを冷却器により冷却することで、上記吸着に伴う発生吸着熱(及び脱着域からの移行熱)により昇温した作動ガスを温度低下させる。
【0011】
そして、このように冷媒蒸気を除去するとともに温度低下させた作動ガスに対し蒸発室において再び冷媒液を散布することで、散布冷媒液を冷媒蒸気分圧の低い低温雰囲気下で効率的に蒸発させて、その蒸発に伴う気化熱奪取により出力熱交換器において冷却対象流体を効率的に冷却し、また、その気化熱奪取により低温化した作動ガスを吸着域に送って吸着ロータに通過させることで、その低温作動ガスによる吸着剤冷却により高い吸着効率を発揮させて、上記吸着による通過作動ガスからの冷媒蒸気除去を効率的に行なう。
【0012】
一方、この作動ガス循環に並行して、脱着域では、供給される再生用ガスを吸着ロータに通過させることで、ロータ回転により吸着域から脱着域に移行したロータ部分の吸着剤(すなわち、吸着域において冷媒蒸気を吸着した吸着剤)から吸着冷媒蒸気を再生用ガス中へ脱着させ、この脱着により再生した吸着剤をロータ回転により再び吸着域に移行させる。
【0013】
すなわち、上記構成であれば、吸着ロータの回転により吸着域での上記吸着と脱着域での上記脱着とを並行して連続に実施し、そのことで出力熱交換器での冷却対象流体の連続冷却を可能にするから、従来の吸着冷凍機の如き、第1,第2吸脱着室の各々を蒸発室と凝縮室とに対して交互に連通させるための複雑な切り換え構成、並びに、それら第1,第2吸脱着室の夫々に内蔵した吸着剤熱交換器に対し冷却水と温水とを交互に供給するための複雑な切り換え構成が不要になり、また、それら切り換えが不要なことで装置制御のための制御構成も簡単になり、これらのことで、装置コストを安価にし得るとともに装置の小型化が可能になり、また、メンテナンスも容易にすることができる。
【0014】
なお、上記構成の実施において、作動ガス及び再生用ガスには、夫々、種々の気体を用いることができ、冷媒液にも種々の液体を用いることができる。
【0015】
また、運転時におけるガス循環路や脱着域の圧力をどの程度の圧力にするかは、出力側の要求条件や装置構造上の条件など、種々の条件に応じて決定すればよい。
【0016】
上記構成の実施おいて、前記作動ガスに空気を用い、かつ、前記冷媒液に水を用いてもよい。
【0017】
つまり、空気や水は入手に手間やコストがかからず、また、漏れを起こしたとしても大きな問題を招くことがないことから、作動ガスに空気を用い、かつ、冷媒液に水を用いれば、作動ガスに空気以外の非凝縮性気体を用いたり、冷媒液に水以外の液体を用いるに比べ、コスト面、取り扱い面、安全面、並びに、汎用性の面などで一層優れたものになる。
【0018】
また、冷媒液に水を用いれば、脱着域で再生用ガス中に脱着される冷媒蒸気が単なる水蒸気となることから、脱着域を通過させた使用済み再生用ガスの処理も容易になる。
【0019】
上記構成の実施において、前記ガス循環路で作動ガスとしての空気を循環させる通常運転と、前記ガス循環路のうち前記出力熱交換器の配置部に外部空気を一過的に通過させる外気運転との切り換えを可能にしてもよい。
【0020】
つまり、この構成によれば、吸着ロータによる吸脱着、及び、冷却器による冷却を行ないながら作動ガスとしての空気をガス循環路で循環させて出力熱交換器で冷却対象流体を冷却する前述の運転(上記通常運転)の他、外部空気の温度が低いときには、ガス循環路のうち出力熱交換器の配置部に外部空気を一過的に通過させることにより、出力熱交換器で通過外部空気と冷却対象流体とを熱交換させて冷却対象流体を冷却するといった所謂フリークーリング運転(上記外気運転)を選択実施することができ、この点で機能性に一層優れ、また、省エネ面でも一層優れたものになる。
【0021】
なお、出力熱交換器で通過外部空気と冷却対象流体とを熱交換させて冷却対象流体を冷却する上記外気運転は、冷媒液としての水の散布を停止した形態、あるいは、冷媒液としての水の散布を実施してその散布水の蒸発に伴う気化熱奪取により冷却対象流体の冷却を促進する形態のいずれで実施してもよく、また、外部空気の状態(特に温度)によっていずれかの形態を選択するようにしてもよい。
【0022】
ちなみに、作動ガスに空気以外の気体を用いる場合において、ガス循環路で作動ガスを循環させる通常運転と、ガス循環路のうち出力熱交換器の配置部に外部空気を一過的に通過させる外気運転との切り換えを可能にすることも考えられるが、この場合、外気運転の実施時に作動ガスを回収することが必要になって装置構成及び取り扱いが複雑になり、この点で、作動ガスに空気を用いる形態において外気運転の切り換え実施を可能にする上記構成の方が有利である。
【0023】
上記構成の実施において、前記再生用ガスとして加熱手段により加熱した空気を用いてもよい。
【0024】
つまり、この構成によれば、周囲の空気を加熱するだけで容易に再生用ガスを生成することができ、これにより、再生用ガスに空気以外の気体を用いるに比べ、コスト面、取り扱い面、安全面、並びに、汎用性の面などで一層優れたものになる。
【0025】
なお、再生用ガスに加熱空気を用い、かつ、冷媒液に水を用いれば、脱着域から排出される使用済み再生用ガスが単なる高湿高温の空気となることから、使用済み再生用ガスの処理が極めて容易になって、使用済み再生用ガスをそのまま外部へ排気することも可能になり、このことからコスト面、取り扱い面、安全面、並びに、汎用性の面などで更に優れたものになる。
【0026】
上記構成の実施において、運転時における前記ガス循環路及び前記脱着域の圧力を大気圧とほぼ等しい常圧にしてもよい。
【0027】
つまり、この構成によれば、従来の吸着冷凍機の如き真空ポンプの装備や耐圧気密構造が不要になることで、また、作動ガス循環や再生用ガス供給に一般仕様のファンを使用できるようになることで、装置の製作を容易にし得るとともに装置コストを効果的に低減でき、また、運転圧力が常圧であることから取り扱い面、安全面、並びに、汎用性の面などでも更に優れたものになる。
【0028】
そしてまた、脱着域から排出される使用済み再生用ガスを外部に排気する場合には、脱着域とほぼ同圧の外部へ使用済み再生用ガスを容易に排気することができ、また、前述外気運転の切り換え実施を可能にする場合には、ガス循環路の内外圧力がほぼ等しい状況の下で、その切り換えを容易に行なうことができる。
【0029】
なお、運転時におけるガス循環路及び脱着域の圧力を大気圧とほぼ等しい常圧にした場合、運転時におけるガス循環路及び脱着域の圧力を大気圧よりも低くする場合(すなわち、真空ポンプを用いて真空化する場合)に比べ、蒸発室での冷媒の蒸発温度が高くなって冷却対象流体の冷却温度が高くなる(例えば15℃程度になる)が、工場などにおける種々の冷熱用途には比較的高温の冷熱が必要な用途が多々あることから、冷却温度が高くなることで有用性が損なわれることはなく、むしろ、低温の冷熱を高温熱との混合により所要の温度の冷熱にするといった形態を採るに比べ、一層低温の排熱を脱着用熱源として有効利用できる等の面でエネルギ的に有利になる。
【0030】
〔1〕請求項1に係る発明はロータ式吸着冷凍機に係り、その特徴は、
吸着剤を備える通気性吸着ロータの回転域に吸着域と脱着域とをロータ回転方向に並べて設け、
前記吸着域と、その吸着域で前記吸着ロータを通過した作動ガスを冷却する冷却器と、その冷却器で冷却した作動ガスに対し散布手段により冷媒液を散布する蒸発室とにわたって、その順に作動ガスを循環させるガス循環路を形成し、
前記蒸発室での散布冷媒液の蒸発に伴う気化熱奪取により冷却対象流体を冷却する出力熱交換器を設け、
前記脱着域で前記吸着ロータに通過させる再生用ガスを前記脱着域に通風供給する再生用ガス供給手段を設け、
前記脱着域で前記吸着ロータに通過させた再生用ガスを冷却して、その再生用ガス中の冷媒蒸気を凝縮させる凝縮器と、
この凝縮器での凝縮により生じた冷媒液を前記散布手段に供給する還液手段とを設けてある点にある。
【0031】
つまり、この構成では、基本的に前述の如く(図1参照)、蒸発室8での散布冷媒液Wの蒸発により冷媒蒸気を含む状態になった作動ガスAを、吸着域aで吸着ロータ5に通過させることにより、吸着域aにあるロータ部分の吸着剤Xをもって通過作動ガスAから冷媒蒸気を吸着除去する。また、吸着域aを通過した作動ガスAを冷却器14により冷却することで、上記吸着に伴う発生吸着熱(及び脱着域bからの移行熱)により昇温した作動ガスAを温度低下させる。
そして、このように冷媒蒸気を除去するとともに温度低下させた作動ガスAに対し蒸発室8において再び冷媒液Wを散布することで、散布冷媒液Wを冷媒蒸気分圧の低い低温雰囲気下で効率的に蒸発させて、その蒸発に伴う気化熱奪取により出力熱交換器9において冷却対象流体Cを効率的に冷却し、また、その気化熱奪取により低温化した作動ガスAを吸着域aに送って吸着ロータ5に通過させることで、その低温作動ガスAによる吸着剤冷却により高い吸着効率を発揮させて、上記吸着による通過作動ガスAからの冷媒蒸気除去を効率的に行なう。
一方、この作動ガス循環に並行して、脱着域bでは、供給される再生用ガスAo′を吸着ロータ5に通過させることで、ロータ回転により吸着域aから脱着域bに移行したロータ部分の吸着剤X(すなわち、吸着域aにおいて冷媒蒸気を吸着した吸着剤X)から吸着冷媒蒸気を再生用ガスAo′中へ脱着させ、この脱着により再生した吸着剤Xをロータ回転により再び吸着域aに移行させる。
すなわち、上記構成であれば、吸着ロータ5の回転により吸着域aでの上記吸着と脱着域bでの上記脱着とを並行して連続に実施し、そのことで出力熱交換器9での冷却対象流体Cの連続冷却を可能にするから、従来の吸着冷凍機の如き、第1,第2吸脱着室の各々を蒸発室と凝縮室とに対して交互に連通させるための複雑な切り換え構成、並びに、それら第1,第2吸脱着室の夫々に内蔵した吸着剤熱交換器に対し冷却水と温水とを交互に供給するための複雑な切り換え構成が不要になり、また、それら切り換えが不要なことで装置制御のための制御構成も簡単になり、これらのことで、装置コストを安価にし得るとともに装置の小型化が可能になり、また、メンテナンスも容易にすることができる。
そしてまた、上記構成によれば、脱着域から排出される使用済み再生用ガスAo′に蒸気の形で含まれる脱着冷媒を凝縮させた上で蒸発室での散布冷媒液として再使用するから、使用済み再生用ガスAo′中の脱着冷媒を外部に排出する形態に比べ、冷媒液の必要補給量を大幅に低減でき、そのことで、ランニングコストを効果的に低減することができる。
〔2〕請求項2に係る発明はロータ式吸着冷凍機に係り、その特徴は、
吸着剤を備える通気性吸着ロータの回転域に吸着域と脱着域とをロータ回転方向に並べて設け、
前記吸着域と、その吸着域で前記吸着ロータを通過した作動ガスを冷却する冷却器と、その冷却器で冷却した作動ガスに対し散布手段により冷媒液を散布する蒸発室とにわたって、その順に作動ガスを循環させるガス循環路を形成し、
前記蒸発室での散布冷媒液の蒸発に伴う気化熱奪取により冷却対象流体を冷却する出力熱交換器を設け、
前記脱着域で前記吸着ロータに通過させる再生用ガスを前記脱着域に通風供給する再生用ガス供給手段を設け、
前記吸着域を前記蒸発室の室内に臨ませる状態に配置して、前記吸着ロータのうち前記吸着域に位置する状態にあるロータ部分が前記蒸発室の室内に臨む状態となる構成にし、
前記蒸発室において前記散布手段を前記出力熱交換器の上方で冷媒液散布させる状態に配置してある点にある。
つまり、この構成では、基本的に前述の如く(図1参照)、蒸発室8での散布冷媒液Wの蒸発により冷媒蒸気を含む状態になった作動ガスAを、吸着域aで吸着ロータ5に通過させることにより、吸着域aにあるロータ部分の吸着剤Xをもって通過作動ガスAから冷媒蒸気を吸着除去する。また、吸着域aを通過した作動ガスAを冷却器14により冷却することで、上記吸着に伴う発生吸着熱(及び脱着域bからの移行熱)により昇温した作動ガスAを温度低下させる。
そして、このように冷媒蒸気を除去するとともに温度低下させた作動ガスAに対し蒸発室8において再び冷媒液Wを散布することで、散布冷媒液Wを冷媒蒸気分圧の低い低温雰囲気下で効率的に蒸発させて、その蒸発に伴う気化熱奪取により出力熱交換器9において冷却対象流体Cを効率的に冷却し、また、その気化熱奪取により低温化した作動ガスAを吸着域aに送って吸着ロータ5に通過させることで、その低温作動ガスAによる吸着剤冷却により高い吸着効率を発揮させて、上記吸着による通過作動ガスAからの冷媒蒸気除去を効率的に行なう。
一方、この作動ガス循環に並行して、脱着域bでは、供給される再生用ガスAo′を吸着ロータ5に通過させることで、ロータ回転により吸着域aから脱着域bに移行したロータ部分の吸着剤X(すなわち、吸着域aにおいて冷媒蒸気を吸着した吸着剤X)から吸着冷媒蒸気を再生用ガスA中へ脱着させ、この脱着により再生した吸着剤Xをロータ回転により再び吸着域aに移行させる。
すなわち、上記構成であれば、吸着ロータ5の回転により吸着域aでの上記吸着と脱着域bでの上記脱着とを並行して連続に実施し、そのことで出力熱交換器9での冷却対象流体Cの連続冷却を可能にするから、従来の吸着冷凍機の如き、第1,第2吸脱着室の各々を蒸発室と凝縮室とに対して交互に連通させるための複雑な切り換え構成、並びに、それら第1,第2吸脱着室の夫々に内蔵した吸着剤熱交換器に対し冷却水と温水とを交互に供給するための複雑な切り換え構成が不要になり、また、それら切り換えが不要なことで装置制御のための制御構成も簡単になり、これらのことで、装置コストを安価にし得るとともに装置の小型化が可能になり、また、メンテナンスも容易にすることができる。
そしてまた、上記構成では、吸着ロータ5のうち吸着域aにあるロータ部分(即ち、吸着域aを蒸発室8の室内に臨ませる状態に配置して蒸発室8の室内に臨ませるようにしたロータ部分)により冷媒蒸気が通過作動ガスAから吸着除去され、また、蒸発室8において散布手段12が出力熱交換器9の上方で冷媒液Wの散布を行なう。
〔3〕請求項3に係る発明はロータ式吸着冷凍機に係り、その特徴は、
吸着剤を備える通気性吸着ロータの回転域に吸着域と脱着域とをロータ回転方向に並べて設け、
前記吸着域と、その吸着域で前記吸着ロータを通過した作動ガスを冷却する冷却器と、その冷却器で冷却した作動ガスに対し散布手段により冷媒液としての水を散布する蒸発室とにわたって、その順に作動ガスとしての空気を循環させるガス循環路を形成し、
前記蒸発室での散布冷媒液の蒸発に伴う気化熱奪取により冷却対象流体を冷却する出力熱交換器を設け、
前記脱着域で前記吸着ロータに通過させる再生用ガスを前記脱着域に通風供給する再生用ガス供給手段を設け、
前記吸着ロータによる吸脱着、前記冷却器による冷却、並びに、前記散布手段による冷媒液散布を行いながら前記ガス循環路で作動ガスとしての空気を循環させて散布冷媒液の蒸発に伴う気化熱奪取により前記出力熱交換器で冷却対象流体を冷却する通常運転と、
前記ガス循環路のうち前記出力熱交換器の配置部に外部空気を一過的に通過させて、前記出力熱交換器での通過外部空気と冷却対象流体との熱交換により冷却対象流体を冷却する外気運転との切り換えを可能にしてある点にある。
つまり、この構成において上記通常運転では、基本的に前述の如く(図1参照)、蒸発室8での散布冷媒液Wの蒸発により冷媒蒸気を含む状態になった作動ガスAを、吸着域aで吸着ロータ5に通過させることにより、吸着域aにあるロータ部分の吸着剤Xをもって通過作動ガスAから冷媒蒸気を吸着除去する。また、吸着域aを通過した作動ガスAを冷却器14により冷却することで、上記吸着に伴う発生吸着熱(及び脱着域bからの移行熱)により昇温した作動ガスAを温度低下させる。
そして、このように冷媒蒸気を除去するとともに温度低下させた作動ガスAに対し蒸発室8において再び冷媒液Wを散布することで、散布冷媒液Wを冷媒蒸気分圧の低い低温雰囲気下で効率的に蒸発させて、その蒸発に伴う気化熱奪取により出力熱交換器9において冷却対象流体Cを効率的に冷却し、また、その気化熱奪取により低温化した作動ガスAを吸着域aに送って吸着ロータ5に通過させることで、その低温作動ガスAによる吸着剤冷却により高い吸着効率を発揮させて、上記吸着による通過作動ガスAからの冷媒蒸気除去を効率的に行なう。
一方、この作動ガス循環に並行して、脱着域bでは、供給される再生用ガスAを吸着ロータ5に通過させることで、ロータ回転により吸着域aから脱着域bに移行したロータ部分の吸着剤X(すなわち、吸着域aにおいて冷媒蒸気を吸着した吸着剤X)から吸着冷媒蒸気を再生用ガスA中へ脱着させ、この脱着により再生した吸着剤Xをロータ回転により再び吸着域aに移行させる。
すなわち、上記構成であれば、吸着ロータ5の回転により吸着域aでの上記吸着と脱着域bでの上記脱着とを並行して連続に実施し、そのことで出力熱交換器9での冷却対象流体Cの連続冷却を可能にするから、従来の吸着冷凍機の如き、第1,第2吸脱着室の各々を蒸発室と凝縮室とに対して交互に連通させるための複雑な切り換え構成、並びに、それら第1,第2吸脱着室の夫々に内蔵した吸着剤熱交換器に対し冷却水と温水とを交互に供給するための複雑な切り換え構成が不要になり、また、それら切り換えが不要なことで装置制御のための制御構成も簡単になり、これらのことで、装置コストを安価にし得るとともに装置の小型化が可能になり、また、メンテナンスも容易にすることができる。
そしてまた、上記構成によれば、吸着ロータ5による吸脱着、及び、冷却器14による冷却を行ないながら作動ガスAとしての空気をガス循環路6で循環させて出力熱交換器9で冷却対象流体Cを冷却する上記通常運転の他、外部空気Aoの温度が低いときには、ガス循環路6のうち出力熱交換器9の配置部に外部空気Aoを一過的に通過させることにより、出力熱交換器9で通過外部空気Aoと冷却対象流体Cとを熱交換させて冷却対象流体Cを冷却するといった所謂フリークーリング運転(上記外気運転)を選択実施することができ、この点で機能性に一層優れ、また、省エネ面でも一層優れたものになる。
なお、出力熱交換器9で通過外部空気Aoと冷却対象流体Cとを熱交換させて冷却対象流体Cを冷却する上記外気運転は、冷媒液Wとしての水の散布を停止した形態、あるいは、冷媒液Wとしての水の散布を実施してその散布水Wの蒸発に伴う気化熱奪取により冷却対象流体Cの冷却を促進する形態のいずれで実施してもよく、また、外部空気Aoの状態(特に温度)によっていずれかの形態を選択するようにしてもよい。
ちなみに、作動ガスAに空気以外の気体を用いる場合において、ガス循環路6で作動ガスAを循環させる通常運転と、ガス循環路6のうち出力熱交換器9の配置部に外部空気Aoを一過的に通過させる外気運転との切り換えを可能にすることも考えられるが、この場合、外気運転の実施時に作動ガスAを回収することが必要になって装置構成及び取り扱いが複雑になり、この点で、作動ガスAに空気を用いる形態において外気運転の切り換え実施を可能にする上記構成の方が有利である。
〔4〕請求項4に係る発明はロータ式吸着冷凍機に係り、その特徴は、
吸着剤を備える通気性吸着ロータの回転域に吸着域と脱着域とをロータ回転方向に並べて設け、
前記吸着域と、その吸着域で前記吸着ロータを通過した作動ガスを冷却する冷却器と、その冷却器で冷却した作動ガスに対し散布手段により冷媒液を散布する蒸発室とにわたって、その順に作動ガスを循環させるガス循環路を形成し、
前記蒸発室での散布冷媒液の蒸発に伴う気化熱奪取により冷却対象流体を冷却する出力熱交換器を設け、
前記脱着域で前記吸着ロータに通過させる再生用ガスを前記脱着域に通風供給する再生用ガス供給手段を設け、
前記散布手段は前記蒸発室において前記冷却対象流体を前記冷媒液として散布する構成にしてある点にある。
つまり、この構成では、基本的には前述の如く(図3参照)、蒸発室8での散布冷媒液Wの蒸発により冷媒蒸気を含む状態になった作動ガスAを、吸着域aで吸着ロータ5に通過させることにより、吸着域aにあるロータ部分の吸着剤Xをもって通過作動ガスAから冷媒蒸気を吸着除去する。また、吸着域aを通過した作動ガスAを冷却器14により冷却することで、上記吸着に伴う発生吸着熱(及び脱着域bからの移行熱)により昇温した作動ガスAを温度低下させる。
そして、このように冷媒蒸気を除去するとともに温度低下させた作動ガスAに対し蒸発室8において再び冷媒液Wを散布することで、散布冷媒液Wを冷媒蒸気分圧の低い低温雰囲気下で効率的に蒸発させて、その蒸発に伴う気化熱奪取により出力熱交換器9において冷却対象流体Cを効率的に冷却し、また、その気化熱奪取により低温化した作動ガスAを吸着域aに送って吸着ロータ5に通過させることで、その低温作動ガスAによる吸着剤冷却により高い吸着効率を発揮させて、上記吸着による通過作動ガスAからの冷媒蒸気除去を効率的に行なう。
一方、この作動ガス循環に並行して、脱着域bでは、供給される再生用ガスAo′を吸着ロータ5に通過させることで、ロータ回転により吸着域aから脱着域bに移行したロータ部分の吸着剤X(すなわち、吸着域aにおいて冷媒蒸気を吸着した吸着剤X)から吸着冷媒蒸気を再生用ガスAo′中へ脱着させ、この脱着により再生した吸着剤Xをロータ回転により再び吸着域aに移行させる。
すなわち、上記構成であれば、吸着ロータ5の回転により吸着域aでの上記吸着と脱着域bでの上記脱着とを並行して連続に実施し、そのことで出力熱交換器9での冷却対象流体Cの連続冷却を可能にするから、従来の吸着冷凍機の如き、第1,第2吸脱着室の各々を蒸発室と凝縮室とに対して交互に連通させるための複雑な切り換え構成、並びに、それら第1,第2吸脱着室の夫々に内蔵した吸着剤熱交換器に対し冷却水と温水とを交互に供給するための複雑な切り換え構成が不要になり、また、それら切り換えが不要なことで装置制御のための制御構成も簡単になり、これらのことで、装置コストを安価にし得るとともに装置の小型化が可能になり、また、メンテナンスも容易にすることができる。
そしてまた、上記構成では、蒸発室8において冷却対象流体Cそのものを冷媒液Wとして散布手段12により散布する形態で冷却対象流体Cを冷却する形式(略言すれば、蒸発室8の全体を出力熱交換器9とする形式)を採用する。
〔5〕請求項5に係る発明は、請求項1〜4のいずれか1項に係る発明を実施するのに好適な実施形態を特定するものであり、その特徴は、
運転時における前記ガス循環路及び前記脱着域の圧力を大気圧とほぼ等しい常圧にしてある点にある。
つまり、この構成によれば、従来の吸着冷凍機の如き真空ポンプの装備や耐圧気密構造が不要になることで、また、作動ガス循環や再生用ガス供給に一般仕様のファンを使用できるようになることで、装置の製作を容易にし得るとともに装置コストを効果的に低減でき、また、運転圧力が常圧であることから取り扱い面、安全面、並びに、汎用性の面などでも更に優れたものになる。
そしてまた、脱着域から排出される使用済み再生用ガスを外部に排気する場合には、脱着域とほぼ同圧の外部へ使用済み再生用ガスを容易に排気することができ、また、前述外気運転の切り換え実施を可能にする場合には、ガス循環路の内外圧力がほぼ等しい状況の下で、その切り換えを容易に行なうことができる。
なお、運転時におけるガス循環路及び脱着域の圧力を大気圧とほぼ等しい常圧にした場合、運転時におけるガス循環路及び脱着域の圧力を大気圧よりも低くする場合(すなわち、真空ポンプを用いて真空化する場合)に比べ、蒸発室での冷媒の蒸発温度が高くなって冷却対象流体の冷却温度が高くなる(例えば15℃程度になる)が、工場などにおける種々の冷熱用途には比較的高温の冷熱が必要な用途が多々あることから、冷却温度が高くなることで有用性が損なわれることはなく、むしろ、低温の冷熱を高温熱との混合により所要の温度の冷熱にするといった形態を採るに比べ、一層低温の排熱を脱着用熱源として有効利用できる等の面でエネルギ的に有利になる。
〔6〕請求項6に係る発明は、請求項1〜5のいずれか1項に係る発明を実施するのに好適な実施形態を特定するものであり、その特徴は、
他機からの低温排熱により空気を加熱する排熱利用加熱器を設け、
この排熱利用加熱器により加熱した空気を前記再生用ガスとして前記脱着域で前記吸着ロータに通過させる構成にしてある点にある。
つまり、この構成によれば、周囲の空気を加熱するだけで容易に再生用ガスを生成することができ、これにより、再生用ガスに空気以外の気体を用いるに比べ、コスト面、取り扱い面、安全面、並びに、汎用性の面などで一層優れたものになる。
なお、再生用ガスに加熱空気を用い、かつ、冷媒液に水を用いれば、脱着域から排出される使用済み再生用ガスが単なる高湿高温の空気となることから、使用済み再生用ガスの処理が極めて容易になって、使用済み再生用ガスをそのまま外部へ排気することも可能になり、このことからコスト面、取り扱い面、安全面、並びに、汎用性の面などで更に優れたものになる。
【0032】
〔7〕請求項7に係る発明は、請求項1〜6のいずれか1項に係る発明を実施するのに好適な実施形態を特定するものであり、その特徴は、
前記脱着域で前記吸着ロータに通過させた再生用ガスから熱回収して、その回収熱により前記脱着域へ供給する再生用ガスを予熱する熱回収・予熱手段を設けてある点にある。
【0033】
つまり、この構成によれば、脱着域から排出される使用済み再生用ガスの保有熱を回収して、その回収熱を脱着域への供給再生用ガスの予熱に利用するから、使用済み再生用ガスの保有熱を外部に廃棄する形態に比べ、熱ロスを大幅に低減することができて、省エネ面で一層優れたものにすることができる。
【0034】
【発明の実施の形態】
図1はロータ式吸着冷凍機を示し、ロータ収容室1の内部を隔壁2により吸着側室3と脱着側室4とに区分し、ゼオライトや活性炭などの吸着剤Xを備えさせた円盤状の通気性吸着ロータ5を、その回転によりロータ各部が吸着側室3と脱着側室4とを交互に通過するように、吸着側室3と脱着側室4とに跨らせてロータ収容室1に収容してある。
【0035】
換言すれば、ロータ回転域のうち吸着側室3に位置する部分を吸着域aとし、かつ、脱着側室4に位置する部分を脱着域bとする形態で、ロータ回転域に吸着域aと脱着域bとをロータ回転方向に並べて区画形成してある。
【0036】
6は吸着側室3を循環路の一部にして作動ガスとしての空気Aを循環ファン7により循環させるガス循環路であり、吸着側室3のうち空気循環方向で吸着ロータ5よりも上流側の部分(本例では下側の部分)を蒸発室8として、この蒸発室8には、冷却対象流体としての冷水Cを冷却する出力熱交換器9、及び、散布ポンプ10により蒸発室8の底槽部から散布用供給路11を通じて供給される冷媒液としての水Wを蒸発室8内に散布する散布具12を設けてある。
【0037】
また、吸着側室3の外部においてガス循環路6には、外部空気Aoを放熱源とする冷却塔13との間で循環させる冷却水Rにより作動ガスとしての路内通過空気Aを冷却する冷却器14を設けてある。
【0038】
すなわち、上記ガス循環路6は、吸着域aと、その吸着域aにおいて吸着ロータ5を通過した空気Aを冷却する冷却器14と、その冷却器14で冷却した空気Aに対し散布具12により水Wを散布する蒸発室8とにわたって、その順に空気Aを循環させるものにしてある。
【0039】
一方、脱着側室4には、外部空気Aoを再生用ファン15により室内の脱着域bに供給して吸着ロータ5に通過させる再生用ガス供給路16、及び、脱着域bを通過した外部空気Ao′を室外に排出する再生用ガス排気路17を接続してあり、また、再生用ガス供給路16には、脱着域bに供給する外部空気Aoを他機器(例えば、発電用マイクロガスタービンなど)からの低温排熱により加熱する排熱利用加熱器18を設け、この加熱器18により加熱した外部空気Ao′を再生用ガスとして脱着域bに通風供給するようにしてある。
【0040】
なお、本実施形態では、ガス循環路6及び脱着側室4の夫々を大気圧とほぼ等しい常圧下で運転するようにしてあり、循環ファン7及び再生用ファン15には一般仕様のファンを用いている。
【0041】
また、吸着ロータ5は、それによって吸着側室3及び脱着側室4夫々の室内を2領域に区分するように配備して、吸着域a及び脱着域bの夫々で作動ガスとしての循環空気Aの全量及び再生用ガスとしての加熱外部空気Ao′の全量を吸着ロータ5に通過させるようにしてある。
【0042】
つまり、このロータ式吸着冷凍機では(図2参照)、蒸発室8での散布水Wの蒸発により高湿になった空気A(図2におけるイ点)を、吸着域aで吸着ロータ5に通過させることで、吸着域aにあるロータ部分の吸着剤Xにより水蒸気を吸着除去(すなわち除湿)して、その空気Aを低湿の高温空気(図2におけるロ点)し、また、その空気Aを冷却器14により冷却することで、上記吸着に伴う発生吸着熱及び脱着域bからの移行熱により昇温した空気A(図2におけるロ点)を温度低下させる(図2におけるハ点)。
【0043】
そして、このようにして低湿低温にした空気A(図2におけるハ点)に対し蒸発室8において再び水Wを散布することで、散布水Wを水蒸気分圧の低い低温雰囲気下で効率的に蒸発させて、その蒸発に伴う気化熱奪取により出力熱交換器9において冷却対象の冷水Cを効率的に冷却し、また、その気化熱奪取により低温化した空気A(図2におけるイ点)を吸着域aに送って吸着ロータ5に通過させることで、その低温空気Aによる吸着剤冷却により高い吸着効率を発揮させて、上記吸着による空気Aからの水蒸気除去(除湿)を効率的に行なう。
【0044】
一方、この空気循環に並行して、脱着域bでは、再生用ガスとして供給される加熱外部空気Ao′を吸着ロータ5に通過させることで、ロータ回転により吸着域aから脱着域bに移行したロータ部分の吸着剤X(すなわち、吸着域aにおいて吸湿した吸着剤)から吸着水蒸気を加熱外部空気Ao′中へ脱着させ、この脱着により再生した吸着剤Xをロータ回転により再び吸着域aに移行させる。
【0045】
すなわち、吸着ロータ5の回転により吸着域aでの上記吸着と脱着域bでの上記脱着とを並行して連続に実施し、そのことで出力熱交換器9での冷却対象冷水Cの連続冷却を可能にしている。
【0046】
19は再生用ガス排気路17に介装した凝縮器、20は再生用ガス供給路16に介装した予熱器であり、これら凝縮器19と予熱器20との間で循環路21を通じて熱媒液Lを循環させることにより、脱着側室4から使用済み再生用ガスとして排出される加熱外部空気Ao′からその空気Ao′中の脱着水蒸気を凝縮させる形態で保有熱を回収して、その回収熱により再生用ガスとして脱着域bに供給する外部空気Aoを予熱する。
【0047】
22は凝縮器19での発生凝縮水W(すなわち、凝縮冷媒)を蒸発室8の底槽部に戻して散布水Wに再使用するための還液路、23はその還液路22に介装した還液ポンプである。
【0048】
また、24はガス循環路6のうち出力熱交換器9の配置部(すなわち、吸着側室3の下側部分)へ循環ファン7を用いて外部空気Aoを取り入れる外気取入路、25はこの取り入れ外部空気Aoをガス循環路6のうち出力熱交換器9の配置部から外部へ排出する外気排出路であり、外部空気Aoが低温の場合には、これら外気取入路24及び外気排出路25のダンパV1,V2を開いて、循環ファン7により低温外部空気Aoを出力熱交換器9の配置部に一過的に通過させることで、その通過外部空気Aoとの熱交換により冷却対象水Wを冷却する外気運転を適宜実施できるようにしてある。
【0049】
26は冷媒液としての水Wの補給路、27は補給弁である。
【0050】
〔別実施形態〕
次に別の実施形態を列記する。
【0051】
吸着ロータ5は、前述の実施形態の如き回転軸芯方向にガスを通過させる円盤形のロータに限られるものではなく、半径方向にガスを通過させる円筒形のロータや、シート厚さ方向にガスを通過させる無端帯状(輪状)シート形のロータであってもよく、また、吸着剤Xには活性炭やゼオライトなど種々のもの使用できる。
【0052】
作動ガスAには空気に限らず種々の気体を使用でき、冷媒液Wにも水に限らず種々の液体を使用できる。また、冷却対象流体Cも水以外の液体、場合によっては気体でもよい。
【0053】
蒸発室8で作動ガスAに対し冷媒液Wを散布する散布手段には、前述の実施形態で示した如き多ノズル形式の散布具12に限らず、種々の散布方式のものを使用でき、例えば、樋状部から冷媒液Wを溢液させる方式や、平板状の出力熱交換器9の外面に沿って冷媒液Wを流下させる方式、あるいは、板に形成した多数の小孔から冷媒液Wを雨状に流出させる方式などを採用してもよい。
【0054】
散布冷媒液Wの蒸発に伴う気化熱奪取により冷却対象流体Cを冷却する出力熱交換器9は、コイル状や平板状のものなど、どのような形式のものであってもよく、また場合によっては、図3に示す如く、蒸発室8において冷却対象液C(例えば水)そのものを冷媒液Wとして散布する形態でその冷却対象液Cを冷却する形式(略言すれば、蒸発室8全体を出力熱交換器9とする形式)を採用してもよい。
【0055】
再生用ガスには加熱外部空気Ao′に限らず種々の気体を使用でき、また、再生用ガスを脱着域bに通風供給する再生用ガス供給手段の具体的構成も、使用する再生用ガスに応じて種々の構成変更が可能である。
【0056】
再生用ガスを加熱生成する場合、その熱源には各種機器・設備から排熱を初め、燃焼熱、電熱、太陽熱など種々のものを使用できる。
【0057】
前述の実施形態では、脱着域bで吸着ロータ5に通過させた再生用ガスAo′から熱回収して、その回収熱により脱着域bへ供給する再生用ガスAoを予熱する熱回収・予熱手段を、凝縮器19,予熱器20、それら凝縮器19と予熱器20との間で熱媒液Lを循環させる循環路21で構成したが、脱着域bで吸着ロータ5に通過させた再生用ガスAo′と脱着域bへ供給する再生用ガスAoとを直接的に熱交換させる気体対気体熱交換器を用いて熱回収・予熱手段を構成してもよく、また場合によっては、熱回収・予熱手段を省略してもよい。
【0058】
前述の実施形態では、凝縮器19での凝縮により生じた冷媒液Wを散布手段12に供給する還液手段を、還液路22及び還液ポンプ23により構成したが、場合によっては、凝縮冷媒液Wを自重流下により蒸発室8の底槽部に戻す形式の還液手段にしてもよく、また場合によっては、還液手段を省略して脱着冷媒蒸気を使用済み再生用ガスA′とともに外部に排出するようにしてもよい。
【図面の簡単な説明】
【図1】 ロータ式吸着冷凍機の構成図
【図2】 作動ガス(空気)の状態変化を示す湿り空気線図
【図3】 別実施形態を示すロータ式吸着冷凍機の構成図
【図4】 従来の吸着冷凍機の構成図
【符号の説明】
5 吸着ロータ
6 ガス循環路
8 蒸発室
9 出力熱交換器
12 散布手段
14 冷却器
15,16,18 再生用ガス供給手段
18 排熱利用加熱器
19 凝縮器
19,20,21 熱回収・予熱手段
22,23 還液手段
a 吸着域
b 脱着域
A 作動ガス,空気
Ao′ 再生用ガス,加熱外部空気
C 冷却対象流体
W 冷媒液,水
X 吸着剤
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a rotor type adsorption refrigerator.
[0002]
[Prior art]
  Conventionally, in an adsorption refrigerator using adsorption / desorption by an adsorbent (see FIG. 4), an adsorption step in which an adsorption / desorption chamber 30A containing an adsorbent heat exchanger 30a is communicated with an evaporation chamber 31 and the adsorption / desorption chamber 30A are provided. The regeneration step for communicating with the condensation chamber 32 is repeated alternately by the switching operation of the valve V.
[0003]
  That is, in the adsorption step, as shown in FIG. 4 (a), the refrigerant vapor S (water vapor) is supplied to the adsorbent X in the adsorption / desorption chamber 30A under the adsorbent cooling which supplies the cooling water R to the adsorbent heat exchanger 30a. While adsorbing, the refrigerant liquid W (water) is evaporated in the evaporation chamber 31, and the cooling target water C is cooled by the output heat exchanger 31 a in the evaporation chamber 31 by taking the heat of vaporization accompanying the evaporation of the refrigerant.
[0004]
  In the regeneration step, as shown in FIG. 4B, the adsorbent heat exchange is performed while the refrigerant vapor S ′ (water vapor) is condensed in the condensation chamber 32 by cooling with the cooling water R in the condensation heat exchanger 32a. By adsorbent heating for supplying warm water H to the vessel 30a, the adsorbed refrigerant vapor S 'in the previous adsorption step is desorbed from the adsorbent X in the adsorption / desorption chamber 30A, whereby the adsorbent X is prepared for the next adsorption step. Reproduce. A refrigerant path 33 returns the condensed refrigerant W (water) in the condensation chamber 32 to the evaporation chamber 31.
[0005]
  And in the conventional adsorption | suction refrigerator, 1st and 2nd adsorption / desorption chamber 30A, 30B which incorporated each separate adsorbent heat exchanger 30a, 30b was provided, and (b) of FIG. As shown, the adsorption process is performed for each of the first and second adsorption / desorption chambers 30A and 30B in the form of performing the desorption process for the other adsorption / desorption chamber 30B while the adsorption process is performed for one adsorption / desorption chamber 30A. And the desorption process are alternately repeated by the switching operation of the valve V, so that the cooling target water C is continuously cooled in the output heat exchanger 31a.
[0006]
  The conventional adsorption refrigerator is equipped with a vacuum pump for evacuating each of the chambers 30A, 30B, 31, 32 so that the adsorption and desorption can be performed under high vacuum, and the high vacuum state is maintained. Therefore, each of the chambers 30A, 30B, 31, and 32 has a pressure-tight and airtight structure.
[0007]
[Problems to be solved by the invention]
  However, in the conventional adsorption refrigerator, the first and second adsorption / desorption chambers 30 </ b> A and 30 </ b> B have a complicated switching configuration for alternately communicating with the evaporation chamber 31 and the condensation chamber 32, and the first , A complicated switching configuration for alternately supplying the cooling water R and the hot water H to the adsorbent heat exchangers 30a, 30b built in the second adsorption / desorption chambers 30A, 30B, respectively, Due to the complicated control structure of the device control for the switching, the device cost is high, the device is enlarged, and the maintenance is difficult.
[0008]
  In view of this situation, the main problem of the present invention is to effectively solve the above problem by a rational adsorption / desorption structure.
[0009]
[Means for Solving the Problems]
  To construct a rotor type adsorption refrigerator,
  An adsorption area and a desorption area are arranged side by side in the rotor rotation direction in the rotation area of a breathable adsorption rotor equipped with an adsorbent,
  Operates in this order over the adsorption zone, a cooler that cools the working gas that has passed through the adsorption rotor in the adsorption zone, and an evaporation chamber that sprays refrigerant liquid to the working gas cooled by the cooler by a spraying means. Form a gas circulation path to circulate the gas,
  An output heat exchanger is provided that cools the fluid to be cooled by taking vaporization heat accompanying evaporation of the sprayed refrigerant liquid in the evaporation chamber,
  Regeneration gas supply means for supplying the regeneration gas to be passed through the adsorption rotor in the desorption region to the desorption region.You may make it the structure provided.
[0010]
  In other words, in this configuration, the working gas, which has been in a state containing refrigerant vapor due to evaporation of the sprayed refrigerant liquid in the evaporation chamber, passes through the adsorption rotor in the adsorption zone, and passes through the adsorbent of the rotor portion in the adsorption zone. Adsorbs and removes the refrigerant vapor from the working gas. In addition, the working gas that has passed through the adsorption zone is cooled by a cooler, so that the temperature of the working gas raised by the generated adsorption heat (and heat transferred from the desorption zone) accompanying the adsorption is lowered.
[0011]
  Then, by removing the refrigerant vapor in this way and spraying the refrigerant liquid again in the evaporation chamber on the working gas whose temperature has been lowered, the dispersed refrigerant liquid is efficiently evaporated in a low-temperature atmosphere with a low refrigerant vapor partial pressure. In this way, the fluid to be cooled is efficiently cooled in the output heat exchanger by taking the heat of vaporization accompanying the evaporation, and the working gas lowered in temperature by taking the heat of vaporization is sent to the adsorption zone and passed through the adsorption rotor. The adsorbent cooling by the low-temperature working gas exhibits high adsorption efficiency, and the refrigerant vapor is efficiently removed from the passing working gas by the adsorption.
[0012]
  On the other hand, in parallel with this working gas circulation, in the desorption region, the supplied regeneration gas is passed through the adsorption rotor, so that the adsorbent (that is, adsorption) of the rotor portion that has moved from the adsorption region to the desorption region by the rotor rotation. The adsorbed refrigerant vapor is desorbed into the regeneration gas from the adsorbent adsorbing the refrigerant vapor in the zone, and the adsorbent regenerated by this desorption is transferred again to the adsorption zone by the rotation of the rotor.
[0013]
  That is, if it is the said structure, the said adsorption | suction in an adsorption | suction area | region and the said desorption | desorption in a desorption area | region will be implemented continuously in parallel by rotation of an adsorption | suction rotor, and, by that, continuation of the fluid for cooling in an output heat exchanger Since cooling is possible, a complicated switching structure for alternately communicating each of the first and second adsorption / desorption chambers with the evaporation chamber and the condensation chamber, such as a conventional adsorption refrigerator, No complicated switching configuration for supplying cooling water and hot water alternately to the adsorbent heat exchanger built in each of the first and second adsorbing / desorbing chambers is required. The control configuration for the control is also simplified, which enables the apparatus cost to be reduced, allows the apparatus to be downsized, and facilitates maintenance.
[0014]
  In addition,Implementation of the above configurationIn the above, various gases can be used as the working gas and the regeneration gas, and various liquids can be used as the refrigerant liquid.
[0015]
  In addition, the pressure in the gas circulation path and the desorption region during operation may be determined in accordance with various conditions such as output-side requirements and apparatus structure conditions.
[0016]
  In the implementation of the above configuration,Air is used for the working gas, and water is used for the refrigerant liquid.It may be used.
[0017]
  In other words, air and water do not require labor and cost to obtain, and even if leakage occurs, it does not cause a big problem, so if air is used for the working gas and water is used for the refrigerant liquid Compared to using non-condensable gas other than air for working gas and liquid other than water for refrigerant liquid, it is more excellent in terms of cost, handling, safety and versatility. .
[0018]
  In addition, when water is used as the refrigerant liquid, the refrigerant vapor desorbed into the regeneration gas in the desorption region becomes simple water vapor, so that the used regeneration gas that has passed through the desorption region can be easily treated.
[0019]
  In the implementation of the above configuration,It is possible to switch between a normal operation in which air as working gas is circulated in the gas circulation path and an outside air operation in which external air is temporarily passed through the arrangement portion of the output heat exchanger in the gas circulation path.May be.
[0020]
  That is, according to this configuration, the above-described operation of cooling the fluid to be cooled by the output heat exchanger by circulating the air as the working gas through the gas circulation path while performing the adsorption / desorption by the adsorption rotor and the cooling by the cooler. In addition to the above (normal operation), when the temperature of the external air is low, the external air is temporarily passed through the arrangement part of the output heat exchanger in the gas circulation path, so that the output heat exchanger The so-called free cooling operation (external air operation) in which the fluid to be cooled is cooled by exchanging heat with the fluid to be cooled can be selected and implemented. In this respect, the functionality is further improved and the energy saving is further improved. Become a thing.
[0021]
  The external air operation in which the external air passing through the output heat exchanger and the fluid to be cooled are heat-exchanged to cool the fluid to be cooled is a form in which spraying of water as the refrigerant liquid is stopped or water as the refrigerant liquid. May be performed in any form that promotes the cooling of the fluid to be cooled by taking vaporization heat accompanying evaporation of the sprayed water, and any form depending on the state of air (especially temperature) May be selected.
[0022]
  Incidentally, when a gas other than air is used as the working gas, the normal operation for circulating the working gas in the gas circulation path and the outside air that allows the external air to pass temporarily through the arrangement of the output heat exchanger in the gas circulation path. It may be possible to switch to the operation, but in this case, it becomes necessary to collect the working gas when the outside air operation is performed, and the configuration and handling of the apparatus become complicated. The above configuration that enables switching of the outside air operation is more advantageous in the form using.
[0023]
  In the implementation of the above configuration,Air heated by heating means as the regeneration gasIt may be used.
[0024]
  In other words, according to this configuration, it is possible to easily generate the regeneration gas simply by heating the surrounding air, which makes it possible to reduce the cost, handling, and the use of a gas other than air as the regeneration gas. It will be even better in terms of safety and versatility.
[0025]
  If heated air is used for the regeneration gas and water is used for the refrigerant liquid, the used regeneration gas discharged from the desorption zone becomes mere high-humidity and high-temperature air. Processing becomes extremely easy, and it is possible to exhaust the used regeneration gas to the outside as it is, which makes it more excellent in terms of cost, handling, safety, and versatility. Become.
[0026]
  In the implementation of the above configuration,The pressure in the gas circulation path and the desorption region during operation is set to an atmospheric pressure almost equal to the atmospheric pressure.May be.
[0027]
  In other words, this configuration eliminates the need for a vacuum pump such as a conventional adsorption refrigerator and a pressure-tight airtight structure, and allows a general-purpose fan to be used for working gas circulation and regeneration gas supply. As a result, it is possible to facilitate the manufacture of the device and effectively reduce the cost of the device, and since the operating pressure is normal pressure, it is further excellent in terms of handling, safety, and versatility. become.
[0028]
  In addition, when the used regeneration gas discharged from the desorption region is exhausted to the outside, the used regeneration gas can be easily exhausted to the outside at substantially the same pressure as the desorption region. In the case where the operation can be switched, the switching can be easily performed under the situation where the internal and external pressures of the gas circulation path are substantially equal.
[0029]
  In addition, when the pressure of the gas circulation path and the desorption zone during operation is set to a normal pressure that is substantially equal to the atmospheric pressure, the pressure of the gas circulation path and the desorption zone during operation is lower than the atmospheric pressure (that is, the vacuum pump is Compared to the case of using a vacuum), the evaporating temperature of the refrigerant in the evaporating chamber becomes higher and the cooling temperature of the fluid to be cooled becomes higher (for example, about 15 ° C.). Since there are many applications that require relatively high temperature cooling, the usefulness is not impaired by increasing the cooling temperature, but rather, the low temperature cooling is mixed with the high temperature heat to the required temperature. Compared to such a form, it is advantageous in terms of energy in that a lower temperature exhaust heat can be effectively used as a heat source for desorption.
[0030]
  [1] The invention according to claim 1 relates to a rotor-type adsorption refrigerator.
  An adsorption area and a desorption area are arranged side by side in the rotor rotation direction in the rotation area of a breathable adsorption rotor equipped with an adsorbent,
  Operates in this order over the adsorption zone, a cooler that cools the working gas that has passed through the adsorption rotor in the adsorption zone, and an evaporation chamber that sprays refrigerant liquid to the working gas cooled by the cooler by a spraying means. Form a gas circulation path to circulate the gas,
  An output heat exchanger is provided that cools the fluid to be cooled by taking vaporization heat accompanying evaporation of the sprayed refrigerant liquid in the evaporation chamber,
  Providing a regeneration gas supply means for supplying the regeneration gas to be passed through the adsorption rotor in the desorption region to the desorption region;
  A condenser for cooling the regeneration gas passed through the adsorption rotor in the desorption region and condensing the refrigerant vapor in the regeneration gas;
  There is provided a return liquid means for supplying the refrigerant liquid generated by the condensation in the condenser to the spraying means.
[0031]
  In other words, in this configuration, as described above (see FIG. 1), the working gas A that has entered the state including the refrigerant vapor by the evaporation of the sprayed refrigerant liquid W in the evaporation chamber 8 is adsorbed in the adsorption rotor 5 in the adsorption zone a. The refrigerant vapor is adsorbed and removed from the passing working gas A with the adsorbent X in the rotor portion in the adsorption zone a. Moreover, the working gas A that has passed through the adsorption zone a is cooled by the cooler 14, thereby lowering the temperature of the working gas A that has been heated by the generated adsorption heat (and heat transferred from the desorption zone b) accompanying the adsorption.
  Then, the refrigerant liquid W is removed again in the evaporation chamber 8 with respect to the working gas A whose temperature has been reduced while removing the refrigerant vapor in this way, whereby the dispersed refrigerant liquid W is efficiently used in a low-temperature atmosphere with a low refrigerant vapor partial pressure. The target fluid C is efficiently cooled in the output heat exchanger 9 due to vaporization heat deprivation caused by the vaporization, and the working gas A having a low temperature due to the vaporization heat deprivation is sent to the adsorption zone a. By passing through the adsorption rotor 5, the adsorbent cooling by the low-temperature working gas A exhibits high adsorption efficiency, and the refrigerant vapor is efficiently removed from the passing working gas A by the adsorption.
  On the other hand, in parallel with this working gas circulation, in the desorption zone b, the supplied regeneration gas Ao ′ is passed through the adsorption rotor 5, so that the rotor portion that has shifted from the adsorption zone a to the desorption zone b due to the rotation of the rotor. The adsorbed refrigerant vapor is desorbed into the regeneration gas Ao ′ from the adsorbent X (that is, the adsorbent X that has adsorbed the refrigerant vapor in the adsorption zone a), and the adsorbent X regenerated by this desorption is again adsorbed in the adsorption zone a To migrate.
  That is, with the above-described configuration, the adsorption in the adsorption zone a and the desorption in the desorption zone b are continuously performed in parallel by the rotation of the adsorption rotor 5, thereby cooling the output heat exchanger 9. Since the target fluid C can be continuously cooled, a complicated switching structure for alternately communicating the first and second adsorption / desorption chambers with the evaporation chamber and the condensation chamber as in the conventional adsorption refrigerator. In addition, a complicated switching configuration for alternately supplying cooling water and hot water to the adsorbent heat exchanger built in each of the first and second adsorbing / desorbing chambers becomes unnecessary. Since it is unnecessary, the control configuration for controlling the apparatus is simplified, and these can reduce the apparatus cost, reduce the size of the apparatus, and facilitate maintenance.
  Moreover, according to the above configuration, the desorption zonebUsed regeneration gas discharged fromAo 'Evaporation chamber after condensing desorbed refrigerant contained in the form of vapor8Sprayed refrigerant liquid atWAs reused as a used recycling gasAo 'Compared with the form in which the desorbed refrigerant is discharged outside, the refrigerant liquidWThe required replenishment amount can be greatly reduced, and the running cost can be effectively reduced.
  [2] The invention according to claim 2 relates to a rotor type adsorption refrigerator,
  An adsorption area and a desorption area are arranged side by side in the rotor rotation direction in the rotation area of a breathable adsorption rotor equipped with an adsorbent,
  Operates in this order over the adsorption zone, a cooler that cools the working gas that has passed through the adsorption rotor in the adsorption zone, and an evaporation chamber that sprays refrigerant liquid to the working gas cooled by the cooler by a spraying means. Form a gas circulation path to circulate the gas,
  An output heat exchanger is provided that cools the fluid to be cooled by taking vaporization heat accompanying evaporation of the sprayed refrigerant liquid in the evaporation chamber,
  Providing a regeneration gas supply means for supplying the regeneration gas to be passed through the adsorption rotor in the desorption region to the desorption region;
  Arranged in a state where the adsorption zone faces the interior of the evaporation chamber, the rotor portion of the adsorption rotor located in the adsorption zone is in a state facing the interior of the evaporation chamber,
  In the evaporation chamber, the spraying means is arranged in a state in which the refrigerant liquid is sprayed above the output heat exchanger.
  In other words, in this configuration, as described above (see FIG. 1), the working gas A that has entered the state including the refrigerant vapor by the evaporation of the sprayed refrigerant liquid W in the evaporation chamber 8 is adsorbed in the adsorption rotor 5 in the adsorption zone a. The refrigerant vapor is adsorbed and removed from the passing working gas A with the adsorbent X in the rotor portion in the adsorption zone a. Moreover, the working gas A that has passed through the adsorption zone a is cooled by the cooler 14, thereby lowering the temperature of the working gas A that has been heated by the generated adsorption heat (and heat transferred from the desorption zone b) accompanying the adsorption.
  Then, the refrigerant liquid W is removed again in the evaporation chamber 8 with respect to the working gas A whose temperature has been reduced while removing the refrigerant vapor in this way, whereby the dispersed refrigerant liquid W is efficiently used in a low-temperature atmosphere with a low refrigerant vapor partial pressure. The target fluid C is efficiently cooled in the output heat exchanger 9 due to vaporization heat deprivation caused by the vaporization, and the working gas A having a low temperature due to the vaporization heat deprivation is sent to the adsorption zone a. By passing through the adsorption rotor 5, the adsorbent cooling by the low-temperature working gas A exhibits high adsorption efficiency, and the refrigerant vapor is efficiently removed from the passing working gas A by the adsorption.
  On the other hand, in parallel with this working gas circulation, in the desorption zone b, the supplied regeneration gas Ao ′ is passed through the adsorption rotor 5, so that the rotor portion that has shifted from the adsorption zone a to the desorption zone b due to the rotation of the rotor. The adsorbed refrigerant vapor is desorbed into the regeneration gas A from the adsorbent X (that is, the adsorbent X that has adsorbed the refrigerant vapor in the adsorption zone a), and the adsorbent X regenerated by this desorption is returned to the adsorption zone a by rotating the rotor. Transition.
  That is, with the above-described configuration, the adsorption in the adsorption zone a and the desorption in the desorption zone b are continuously performed in parallel by the rotation of the adsorption rotor 5, thereby cooling the output heat exchanger 9. Since the target fluid C can be continuously cooled, a complicated switching structure for alternately communicating the first and second adsorption / desorption chambers with the evaporation chamber and the condensation chamber as in the conventional adsorption refrigerator. In addition, a complicated switching configuration for alternately supplying cooling water and hot water to the adsorbent heat exchanger built in each of the first and second adsorbing / desorbing chambers becomes unnecessary. Since it is unnecessary, the control configuration for controlling the apparatus is simplified, and these can reduce the apparatus cost, reduce the size of the apparatus, and facilitate maintenance.
  Further, in the above configuration, the rotor portion in the adsorption zone a of the adsorption rotor 5 (that is, the adsorption zone a is arranged so as to face the interior of the evaporation chamber 8 so as to face the interior of the evaporation chamber 8). The refrigerant vapor is adsorbed and removed from the passing working gas A by the rotor portion, and the spraying means 12 sprays the refrigerant liquid W above the output heat exchanger 9 in the evaporation chamber 8.
  [3] The invention according to claim 3 relates to a rotor type adsorption refrigerator,
  An adsorption area and a desorption area are arranged side by side in the rotor rotation direction in the rotation area of a breathable adsorption rotor equipped with an adsorbent,
  Over the adsorption zone, a cooler that cools the working gas that has passed through the adsorption rotor in the adsorption zone, and an evaporation chamber that sprays water as a refrigerant liquid by spraying means on the working gas cooled by the cooler, Form a gas circulation path that circulates air as working gas in that order,
  An output heat exchanger is provided that cools the fluid to be cooled by taking vaporization heat accompanying evaporation of the sprayed refrigerant liquid in the evaporation chamber,
  Providing a regeneration gas supply means for supplying the regeneration gas to be passed through the adsorption rotor in the desorption region to the desorption region;
  By absorbing and desorbing by the adsorption rotor, cooling by the cooler, and circulating the refrigerant liquid by the spraying means, circulating air as the working gas in the gas circulation path, and taking the heat of vaporization accompanying evaporation of the sprayed refrigerant liquid Normal operation of cooling the fluid to be cooled by the output heat exchanger;
  The external air is temporarily passed through the output heat exchanger in the gas circulation path, and the cooling target fluid is cooled by heat exchange between the external air passing through the output heat exchanger and the cooling target fluid. It is possible to switch to outside air operation.
  That is, in the above-described normal operation in this configuration, basically, as described above (see FIG. 1), the working gas A that has been in a state containing the refrigerant vapor by the evaporation of the sprayed refrigerant liquid W in the evaporation chamber 8 is removed from the adsorption zone a. Then, the refrigerant vapor is adsorbed and removed from the passing working gas A with the adsorbent X of the rotor portion in the adsorption zone a. Moreover, the working gas A that has passed through the adsorption zone a is cooled by the cooler 14, thereby lowering the temperature of the working gas A that has been heated by the generated adsorption heat (and heat transferred from the desorption zone b) accompanying the adsorption.
  Then, the refrigerant liquid W is removed again in the evaporation chamber 8 with respect to the working gas A whose temperature has been reduced while removing the refrigerant vapor in this way, whereby the dispersed refrigerant liquid W is efficiently used in a low-temperature atmosphere with a low refrigerant vapor partial pressure. The target fluid C is efficiently cooled in the output heat exchanger 9 due to vaporization heat deprivation caused by the vaporization, and the working gas A having a low temperature due to the vaporization heat deprivation is sent to the adsorption zone a. By passing through the adsorption rotor 5, the adsorbent cooling by the low-temperature working gas A exhibits high adsorption efficiency, and the refrigerant vapor is efficiently removed from the passing working gas A by the adsorption.
  On the other hand, in parallel with this working gas circulation, in the desorption zone b, the supplied regeneration gas A is passed through the adsorption rotor 5, so that the rotor portion adsorbed from the adsorption zone a to the desorption zone b by the rotor rotation is absorbed. The adsorbed refrigerant vapor is desorbed into the regeneration gas A from the agent X (that is, the adsorbent X that has adsorbed the refrigerant vapor in the adsorption zone a), and the adsorbent X regenerated by this desorption is transferred again to the adsorption zone a by rotating the rotor. Let
  That is, with the above-described configuration, the adsorption in the adsorption zone a and the desorption in the desorption zone b are continuously performed in parallel by the rotation of the adsorption rotor 5, thereby cooling the output heat exchanger 9. Since the target fluid C can be continuously cooled, a complicated switching structure for alternately communicating the first and second adsorption / desorption chambers with the evaporation chamber and the condensation chamber as in the conventional adsorption refrigerator. In addition, a complicated switching configuration for alternately supplying cooling water and hot water to the adsorbent heat exchanger built in each of the first and second adsorbing / desorbing chambers becomes unnecessary. Since it is unnecessary, the control configuration for controlling the apparatus is simplified, and these can reduce the apparatus cost, reduce the size of the apparatus, and facilitate maintenance.
  Further, according to the above configuration, air as the working gas A is circulated in the gas circulation path 6 while performing adsorption / desorption by the adsorption rotor 5 and cooling by the cooler 14, and is cooled in the output heat exchanger 9. In addition to the normal operation for cooling C, when the temperature of the external air Ao is low, the external air Ao is temporarily passed through the arrangement portion of the output heat exchanger 9 in the gas circulation path 6 to thereby output heat exchange. The so-called free cooling operation (the above-described external air operation) in which the external air Ao and the cooling target fluid C are exchanged in the vessel 9 to cool the cooling target fluid C can be selected and implemented in this respect. Excellent and energy saving.
  In addition, the said external air driving | operation which heat-exchanges the external air Ao and the cooling target fluid C by the output heat exchanger 9 and cools the cooling target fluid C is the form which stopped spraying the water as the refrigerant liquid W, or It may be carried out in any form that promotes the cooling of the cooling target fluid C by taking out the heat of vaporization accompanying the evaporation of the sprayed water W as the refrigerant liquid W, and the state of the external air Ao Any form may be selected according to (especially temperature).
  Incidentally, when a gas other than air is used as the working gas A, the normal operation in which the working gas A is circulated in the gas circulation path 6 and the external air Ao in the gas circulation path 6 are arranged in the arrangement portion of the output heat exchanger 9. It may be possible to switch to the outside air operation that passes excessively, but in this case, it becomes necessary to collect the working gas A when the outside air operation is performed, and the apparatus configuration and handling become complicated. In this respect, the above-described configuration that enables switching of the outside air operation in the form using air as the working gas A is more advantageous.
  [4] The invention according to claim 4 relates to a rotor type adsorption refrigerator, and its features are as follows:
  An adsorption area and a desorption area are arranged side by side in the rotor rotation direction in the rotation area of a breathable adsorption rotor equipped with an adsorbent,
  Operates in this order over the adsorption zone, a cooler that cools the working gas that has passed through the adsorption rotor in the adsorption zone, and an evaporation chamber that sprays refrigerant liquid to the working gas cooled by the cooler by a spraying means. Form a gas circulation path to circulate the gas,
  An output heat exchanger is provided that cools the fluid to be cooled by taking vaporization heat accompanying evaporation of the sprayed refrigerant liquid in the evaporation chamber,
  Providing a regeneration gas supply means for supplying the regeneration gas to be passed through the adsorption rotor in the desorption region to the desorption region;
  The spraying means is configured to spray the cooling target fluid as the refrigerant liquid in the evaporation chamber.
  That is, in this configuration, basically, as described above (see FIG. 3), the working gas A that has entered the state including the refrigerant vapor by the evaporation of the sprayed refrigerant liquid W in the evaporation chamber 8 is absorbed in the adsorption zone a. The refrigerant vapor is adsorbed and removed from the passing working gas A with the adsorbent X in the rotor portion in the adsorption zone a. Moreover, the working gas A that has passed through the adsorption zone a is cooled by the cooler 14, thereby lowering the temperature of the working gas A that has been heated by the generated adsorption heat (and heat transferred from the desorption zone b) accompanying the adsorption.
  Then, the refrigerant liquid W is removed again in the evaporation chamber 8 with respect to the working gas A whose temperature has been reduced while removing the refrigerant vapor in this way, whereby the dispersed refrigerant liquid W is efficiently used in a low-temperature atmosphere with a low refrigerant vapor partial pressure. The target fluid C is efficiently cooled in the output heat exchanger 9 due to vaporization heat deprivation caused by the vaporization, and the working gas A having a low temperature due to the vaporization heat deprivation is sent to the adsorption zone a. By passing through the adsorption rotor 5, the adsorbent cooling by the low-temperature working gas A exhibits high adsorption efficiency, and the refrigerant vapor is efficiently removed from the passing working gas A by the adsorption.
  On the other hand, in parallel with this working gas circulation, in the desorption zone b, the supplied regeneration gas Ao ′ is passed through the adsorption rotor 5, so that the rotor portion that has shifted from the adsorption zone a to the desorption zone b due to the rotation of the rotor. The adsorbed refrigerant vapor is desorbed into the regeneration gas Ao ′ from the adsorbent X (that is, the adsorbent X that has adsorbed the refrigerant vapor in the adsorption zone a), and the adsorbent X regenerated by this desorption is again adsorbed in the adsorption zone a To migrate.
  That is, with the above-described configuration, the adsorption in the adsorption zone a and the desorption in the desorption zone b are continuously performed in parallel by the rotation of the adsorption rotor 5, thereby cooling the output heat exchanger 9. Since the target fluid C can be continuously cooled, a complicated switching structure for alternately communicating the first and second adsorption / desorption chambers with the evaporation chamber and the condensation chamber as in the conventional adsorption refrigerator. In addition, a complicated switching configuration for alternately supplying cooling water and hot water to the adsorbent heat exchanger built in each of the first and second adsorbing / desorbing chambers becomes unnecessary. Since it is unnecessary, the control configuration for controlling the apparatus is simplified, and these can reduce the apparatus cost, reduce the size of the apparatus, and facilitate maintenance.
  Further, in the above configuration, the cooling target fluid C is cooled in the form in which the cooling target fluid C itself is sprayed by the spraying means 12 as the refrigerant liquid W in the evaporation chamber 8 (in short, the entire evaporation chamber 8 is output. The heat exchanger 9 is used.
  [5] The invention according to claim 5 specifies an embodiment suitable for carrying out the invention according to any one of claims 1 to 4, and its features are as follows:
The pressure in the gas circulation path and the desorption region during operation is an atmospheric pressure that is substantially equal to the atmospheric pressure.
  In other words, this configuration eliminates the need for a vacuum pump such as a conventional adsorption refrigerator and a pressure-tight airtight structure, and allows a general-purpose fan to be used for working gas circulation and regeneration gas supply. As a result, it is possible to facilitate the manufacture of the device and effectively reduce the cost of the device, and since the operating pressure is normal pressure, it is further excellent in terms of handling, safety, and versatility. become.
  In addition, when the used regeneration gas discharged from the desorption region is exhausted to the outside, the used regeneration gas can be easily exhausted to the outside at substantially the same pressure as the desorption region. In the case where the operation can be switched, the switching can be easily performed under the situation where the internal and external pressures of the gas circulation path are substantially equal.
  In addition, when the pressure of the gas circulation path and the desorption zone during operation is set to a normal pressure that is substantially equal to the atmospheric pressure, the pressure of the gas circulation path and the desorption zone during operation is lower than the atmospheric pressure (that is, the vacuum pump is Compared to the case of using a vacuum), the evaporating temperature of the refrigerant in the evaporating chamber becomes higher and the cooling temperature of the fluid to be cooled becomes higher (for example, about 15 ° C.). Since there are many applications that require relatively high-temperature cooling, the usefulness is not impaired by increasing the cooling temperature. Rather, the low-temperature cooling is mixed with the high-temperature heating to obtain the required temperature. Compared to such a form, it is advantageous in terms of energy in that a lower temperature exhaust heat can be effectively used as a heat source for desorption.
  [6] The invention according to claim 6 specifies a preferred embodiment for carrying out the invention according to any one of claims 1 to 5, and its features are as follows:
  A heater using exhaust heat that heats air by low-temperature exhaust heat from other machines is installed.
  The configuration is such that the air heated by the exhaust heat utilization heater is passed through the adsorption rotor in the desorption region as the regeneration gas.
  In other words, according to this configuration, it is possible to easily generate the regeneration gas simply by heating the surrounding air, which makes it possible to reduce the cost, handling, and the use of a gas other than air as the regeneration gas. It will be even better in terms of safety and versatility.
  If heated air is used for the regeneration gas and water is used for the refrigerant liquid, the used regeneration gas discharged from the desorption zone becomes mere high-humidity and high-temperature air. Processing becomes extremely easy, and it is possible to exhaust the used regeneration gas to the outside as it is, which makes it more excellent in terms of cost, handling, safety, and versatility. Become.
[0032]
  [7] The invention according to claim 7 specifies an embodiment suitable for carrying out the invention according to any one of claims 1 to 6, and its features are as follows:
  Heat recovery / preheating means for recovering heat from the regeneration gas passed through the adsorption rotor in the desorption region and preheating the regeneration gas supplied to the desorption region by the recovered heat is provided.
[0033]
  In other words, according to this configuration, the retained heat of the used regeneration gas discharged from the desorption zone is recovered, and the recovered heat is used for preheating the supply regeneration gas to the desorption zone. Compared with a configuration in which the retained heat of gas is discarded to the outside, heat loss can be greatly reduced, and energy saving can be further improved.
[0034]
DETAILED DESCRIPTION OF THE INVENTION
  FIG. 1 shows a rotor type adsorption refrigerator, in which the interior of a rotor housing chamber 1 is divided into an adsorption side chamber 3 and a desorption side chamber 4 by a partition wall 2 and is provided with an adsorbent X such as zeolite or activated carbon. The adsorption rotor 5 is accommodated in the rotor accommodation chamber 1 so as to straddle the adsorption side chamber 3 and the desorption side chamber 4 so that each part of the rotor alternately passes through the adsorption side chamber 3 and the desorption side chamber 4 by its rotation.
[0035]
  In other words, a portion located in the suction side chamber 3 in the rotor rotation region is defined as a suction region a, and a portion located in the desorption side chamber 4 is defined as a desorption region b. b are partitioned in the rotor rotation direction.
[0036]
  A gas circulation path 6 circulates the air A as the working gas by the circulation fan 7 with the adsorption side chamber 3 as a part of the circulation path, and a portion of the adsorption side chamber 3 upstream of the adsorption rotor 5 in the air circulation direction. (Lower part in this example) is an evaporation chamber 8, and the evaporation chamber 8 includes an output heat exchanger 9 that cools cold water C as a cooling target fluid, and a bottom tank of the evaporation chamber 8 by a spray pump 10. A sprayer 12 is provided for spraying water W as a refrigerant liquid supplied from the section through the spray supply path 11 into the evaporation chamber 8.
[0037]
  Further, in the gas circulation path 6 outside the adsorption side chamber 3, a cooler that cools the passage air A as the working gas with the cooling water R circulated with the cooling tower 13 using the external air Ao as a heat radiation source. 14 is provided.
[0038]
  That is, the gas circulation path 6 includes an adsorption zone a, a cooler 14 that cools the air A that has passed through the adsorption rotor 5 in the adsorption zone a, and the air A cooled by the cooler 14 by the spreader 12. The air A is circulated in that order over the evaporation chamber 8 in which the water W is dispersed.
[0039]
  On the other hand, in the desorption side chamber 4, the regeneration air supply path 16 through which the external air Ao is supplied to the indoor desorption zone b by the regeneration fan 15 and passed through the adsorption rotor 5, and the external air Ao that has passed through the desorption zone b. 'Is connected to the regeneration gas exhaust passage 17 for discharging the air to the outside, and the regeneration gas supply passage 16 receives external air Ao to be supplied to the desorption region b from other equipment (for example, a micro gas turbine for power generation). The exhaust heat utilization heater 18 that is heated by the low temperature exhaust heat is provided, and the external air Ao ′ heated by the heater 18 is supplied to the desorption zone b as a regeneration gas.
[0040]
  In the present embodiment, each of the gas circulation path 6 and the desorption side chamber 4 is operated under a normal pressure substantially equal to the atmospheric pressure, and general circulation fans are used as the circulation fan 7 and the regeneration fan 15. Yes.
[0041]
  Further, the adsorption rotor 5 is arranged so as to divide the chambers of the adsorption side chamber 3 and the desorption side chamber 4 into two regions, and the total amount of circulating air A as the working gas in each of the adsorption region a and the desorption region b. In addition, the entire amount of the heated external air Ao ′ as the regeneration gas is passed through the adsorption rotor 5.
[0042]
  That is, in this rotor-type adsorption refrigerator (see FIG. 2), the air A (a point in FIG. 2) that has become highly humid due to evaporation of the spray water W in the evaporation chamber 8 is transferred to the adsorption rotor 5 in the adsorption zone a. By passing, the water vapor is adsorbed and removed (that is, dehumidified) by the adsorbent X in the rotor portion in the adsorption zone a, and the air A is converted into low-humidity high-temperature air (point D in FIG. 2). Is cooled by the cooler 14, the temperature of the air A (the point B in FIG. 2) raised by the generated adsorption heat accompanying the adsorption and the transfer heat from the desorption region b is lowered (point C in FIG. 2).
[0043]
  Then, by spraying the water W again in the evaporation chamber 8 to the air A (having the point C in FIG. 2) that has been reduced in humidity and temperature in this manner, the sprayed water W can be efficiently dispersed in a low-temperature atmosphere with a low water vapor partial pressure. By evaporating, the cooling water C to be cooled is efficiently cooled in the output heat exchanger 9 by taking the heat of vaporization accompanying the evaporation, and the air A (a point in FIG. 2) having been lowered in temperature by taking the heat of vaporization. By sending it to the adsorption zone a and passing it through the adsorption rotor 5, high adsorption efficiency is exhibited by the adsorbent cooling by the low temperature air A, and water vapor removal (dehumidification) from the air A by the adsorption is performed efficiently.
[0044]
  On the other hand, in parallel with this air circulation, in the desorption zone b, the heated external air Ao ′ supplied as the regeneration gas is passed through the adsorption rotor 5, so that the rotation is changed from the adsorption zone a to the desorption zone b. The adsorbed water vapor is desorbed into the heated external air Ao ′ from the adsorbent X in the rotor portion (that is, the adsorbent absorbed in the adsorption zone a), and the adsorbent X regenerated by this desorption is transferred again to the adsorption zone a by the rotor rotation. Let
[0045]
  That is, by the rotation of the adsorption rotor 5, the adsorption in the adsorption zone a and the desorption in the desorption zone b are continuously performed in parallel, whereby the cooling water C to be cooled in the output heat exchanger 9 is continuously cooled. Is possible.
[0046]
  Reference numeral 19 denotes a condenser interposed in the regeneration gas exhaust passage 17, and reference numeral 20 denotes a preheater interposed in the regeneration gas supply passage 16, and a heating medium is connected between the condenser 19 and the preheater 20 through the circulation passage 21. By circulating the liquid L, the retained heat is recovered in a form in which the desorbed water vapor in the air Ao ′ is condensed from the heated external air Ao ′ discharged from the desorption side chamber 4 as the used regeneration gas. Thus, the external air Ao supplied to the desorption zone b as a regeneration gas is preheated.
[0047]
  Reference numeral 22 denotes a return liquid path for returning the condensed water W (that is, condensed refrigerant) generated in the condenser 19 to the bottom tank portion of the evaporation chamber 8 and reusing it as the spray water W, and reference numeral 23 denotes the return liquid path 22. It is a return liquid pump.
[0048]
  Reference numeral 24 denotes an outside air intake path for taking in the external air Ao using the circulation fan 7 to the arrangement part of the output heat exchanger 9 (that is, the lower part of the adsorption side chamber 3) in the gas circulation path 6, and 25 denotes this intake. This is an outside air discharge path for discharging the outside air Ao from the arrangement portion of the output heat exchanger 9 in the gas circulation path 6 to the outside. When the outside air Ao is at a low temperature, the outside air intake path 24 and the outside air discharge path 25. The dampers V1 and V2 are opened, and the low-temperature external air Ao is temporarily passed through the arrangement portion of the output heat exchanger 9 by the circulation fan 7, so that the cooling target water W is exchanged by heat exchange with the passing external air Ao. The outside air operation for cooling the air can be appropriately performed.
[0049]
  Reference numeral 26 denotes a supply path for water W as a refrigerant liquid, and 27 denotes a supply valve.
[0050]
  [Another embodiment]
  Next, another embodiment will be listed.
[0051]
  The suction rotor 5 is not limited to a disk-shaped rotor that allows gas to pass in the direction of the rotation axis as in the above-described embodiment, but a cylindrical rotor that allows gas to pass in the radial direction, or gas in the sheet thickness direction. An endless belt-like (ring-shaped) sheet-shaped rotor that passes through the catalyst may be used, and as the adsorbent X, various types such as activated carbon and zeolite can be used.
[0052]
  The working gas A is not limited to air, and various gases can be used. The refrigerant liquid W is not limited to water, and various liquids can be used. Also, the cooling target fluid C may be a liquid other than water, or in some cases a gas.
[0053]
  The spraying means for spraying the refrigerant liquid W to the working gas A in the evaporation chamber 8 is not limited to the multi-nozzle spray tool 12 as shown in the above-described embodiment, and various spraying types can be used. The refrigerant liquid W overflows from the bowl-shaped part, the refrigerant liquid W flows down along the outer surface of the flat plate-shaped output heat exchanger 9, or the refrigerant liquid W from a large number of small holes formed in the plate. A method of draining water in a rainy state may be adopted.
[0054]
  The output heat exchanger 9 that cools the cooling target fluid C by taking vaporization heat accompanying the evaporation of the sprayed refrigerant liquid W may be of any type such as a coil shape or a flat plate shape, and depending on circumstances. As shown in FIG. 3, the cooling target liquid C (for example, water) itself is sprayed as the refrigerant liquid W in the evaporation chamber 8 to cool the cooling target liquid C (in short, the entire evaporation chamber 8 is You may employ | adopt the form used as the output heat exchanger 9.
[0055]
  The regeneration gas is not limited to the heated external air Ao ′, and various gases can be used, and the specific configuration of the regeneration gas supply means for supplying the regeneration gas to the desorption zone b is also included in the regeneration gas to be used. Various configuration changes can be made accordingly.
[0056]
  When the regeneration gas is heated and generated, various heat sources such as exhaust heat from various devices and facilities, combustion heat, electric heat, solar heat, and the like can be used.
[0057]
  In the above-described embodiment, heat recovery / preheating means for recovering heat from the regeneration gas Ao ′ passed through the adsorption rotor 5 in the desorption zone b and preheating the regeneration gas Ao supplied to the desorption zone b by the recovered heat. Is composed of a condenser 19, a preheater 20, and a circulation path 21 that circulates the heat transfer liquid L between the condenser 19 and the preheater 20. The heat recovery / preheating means may be configured by using a gas-to-gas heat exchanger that directly exchanges heat between the gas Ao ′ and the regeneration gas Ao to be supplied to the desorption zone b. -Preheating means may be omitted.
[0058]
  In the above-described embodiment, the return liquid means for supplying the refrigerant liquid W generated by the condensation in the condenser 19 to the spraying means 12 is configured by the return liquid path 22 and the return liquid pump 23. The liquid W may be returned to the bottom tank portion of the evaporation chamber 8 under its own weight flow. In some cases, the return means is omitted and the desorbed refrigerant vapor is used together with the used regeneration gas A ′. You may make it discharge | emit to.
[Brief description of the drawings]
1 is a block diagram of a rotor type adsorption refrigerator.
[Fig. 2] Wet air diagram showing changes in working gas (air) state
FIG. 3 is a configuration diagram of a rotor type adsorption refrigerator showing another embodiment.
FIG. 4 is a configuration diagram of a conventional adsorption refrigerator.
[Explanation of symbols]
  5 Adsorption rotor
  6 Gas circuit
  8 Evaporation chamber
  9 Output heat exchanger
  12 Spraying means
  14 Cooler
  15, 16, 18 Regeneration gas supply means
  18Waste heat utilization heater
  19 Condenser
  19, 20, 21 Heat recovery and preheating means
  22, 23 Returning means
  a Adsorption zone
  b Desorption area
  A Working gas, air
  Ao 'Regenerative gas, heated external air
  C Cooling target fluid
  W Refrigerant liquid, water
  X adsorbent

Claims (7)

吸着剤を備える通気性吸着ロータの回転域に吸着域と脱着域とをロータ回転方向に並べて設け、
前記吸着域と、その吸着域で前記吸着ロータを通過した作動ガスを冷却する冷却器と、その冷却器で冷却した作動ガスに対し散布手段により冷媒液を散布する蒸発室とにわたって、その順に作動ガスを循環させるガス循環路を形成し、
前記蒸発室での散布冷媒液の蒸発に伴う気化熱奪取により冷却対象流体を冷却する出力熱交換器を設け、
前記脱着域で前記吸着ロータに通過させる再生用ガスを前記脱着域に通風供給する再生用ガス供給手段を設け、
前記脱着域で前記吸着ロータに通過させた再生用ガスを冷却して、その再生用ガス中の冷媒蒸気を凝縮させる凝縮器と、
この凝縮器での凝縮により生じた冷媒液を前記散布手段に供給する還液手段とを設けてあるロータ式吸着冷凍機。
An adsorption area and a desorption area are arranged side by side in the rotor rotation direction in the rotation area of a breathable adsorption rotor equipped with an adsorbent,
Operates in this order over the adsorption zone, a cooler that cools the working gas that has passed through the adsorption rotor in the adsorption zone, and an evaporation chamber that sprays refrigerant liquid to the working gas cooled by the cooler by a spraying means. Form a gas circulation path to circulate the gas,
An output heat exchanger is provided that cools the fluid to be cooled by taking vaporization heat accompanying evaporation of the sprayed refrigerant liquid in the evaporation chamber,
Providing a regeneration gas supply means for supplying the regeneration gas to be passed through the adsorption rotor in the desorption region to the desorption region ;
A condenser for cooling the regeneration gas passed through the adsorption rotor in the desorption region and condensing the refrigerant vapor in the regeneration gas;
A rotor type adsorption refrigeration machine provided with return liquid means for supplying refrigerant liquid generated by condensation in the condenser to the spraying means .
吸着剤を備える通気性吸着ロータの回転域に吸着域と脱着域とをロータ回転方向に並べて設け、
前記吸着域と、その吸着域で前記吸着ロータを通過した作動ガスを冷却する冷却器と、その冷却器で冷却した作動ガスに対し散布手段により冷媒液を散布する蒸発室とにわたって、その順に作動ガスを循環させるガス循環路を形成し、
前記蒸発室での散布冷媒液の蒸発に伴う気化熱奪取により冷却対象流体を冷却する出力熱交換器を設け、
前記脱着域で前記吸着ロータに通過させる再生用ガスを前記脱着域に通風供給する再生用ガス供給手段を設け、
前記吸着域を前記蒸発室の室内に臨ませる状態に配置して、前記吸着ロータのうち前記吸着域に位置する状態にあるロータ部分が前記蒸発室の室内に臨む状態となる構成にし、
前記蒸発室において前記散布手段を前記出力熱交換器の上方で冷媒液散布させる状態に配置してあるロータ式吸着冷凍機。
An adsorption area and a desorption area are arranged side by side in the rotor rotation direction in the rotation area of a breathable adsorption rotor equipped with an adsorbent,
Operates in this order over the adsorption zone, a cooler that cools the working gas that has passed through the adsorption rotor in the adsorption zone, and an evaporation chamber that sprays refrigerant liquid to the working gas cooled by the cooler by a spraying means. Form a gas circulation path to circulate the gas,
An output heat exchanger is provided that cools the fluid to be cooled by taking vaporization heat accompanying evaporation of the sprayed refrigerant liquid in the evaporation chamber,
Providing a regeneration gas supply means for supplying the regeneration gas to be passed through the adsorption rotor in the desorption region to the desorption region;
Arranged in a state where the adsorption zone faces the interior of the evaporation chamber, the rotor portion of the adsorption rotor located in the adsorption zone is in a state facing the interior of the evaporation chamber,
A rotor type adsorption refrigeration machine , wherein the spraying means is arranged in a state in which the refrigerant liquid is sprayed above the output heat exchanger in the evaporation chamber .
吸着剤を備える通気性吸着ロータの回転域に吸着域と脱着域とをロータ回転方向に並べて設け、
前記吸着域と、その吸着域で前記吸着ロータを通過した作動ガスを冷却する冷却器と、その冷却器で冷却した作動ガスに対し散布手段により冷媒液としての水を散布する蒸発室とにわたって、その順に作動ガスとしての空気を循環させるガス循環路を形成し、
前記蒸発室での散布冷媒液の蒸発に伴う気化熱奪取により冷却対象流体を冷却する出力熱交換器を設け、
前記脱着域で前記吸着ロータに通過させる再生用ガスを前記脱着域に通風供給する再生用ガス供給手段を設け、
前記吸着ロータによる吸脱着、前記冷却器による冷却、並びに、前記散布手段による冷媒液散布を行いながら前記ガス循環路で作動ガスとしての空気を循環させて散布冷媒液の蒸発に伴う気化熱奪取により前記出力熱交換器で冷却対象流体を冷却する通常運転と、
前記ガス循環路のうち前記出力熱交換器の配置部に外部空気を一過的に通過させて、前記出力熱交換器での通過外部空気と冷却対象流体との熱交換により冷却対象流体を冷却する外気運転との切り換えを可能にしてあるロータ式吸着冷凍機。
An adsorption area and a desorption area are arranged side by side in the rotor rotation direction in the rotation area of a breathable adsorption rotor equipped with an adsorbent,
Over the adsorption zone, a cooler that cools the working gas that has passed through the adsorption rotor in the adsorption zone, and an evaporation chamber that sprays water as a refrigerant liquid by spraying means on the working gas cooled by the cooler, Form a gas circulation path that circulates air as working gas in that order,
An output heat exchanger is provided that cools the fluid to be cooled by taking vaporization heat accompanying evaporation of the sprayed refrigerant liquid in the evaporation chamber,
Providing a regeneration gas supply means for supplying the regeneration gas to be passed through the adsorption rotor in the desorption region to the desorption region;
By absorbing and desorbing by the adsorption rotor, cooling by the cooler, and circulating the refrigerant liquid by the spraying means, circulating air as the working gas in the gas circulation path, and taking the heat of vaporization accompanying evaporation of the sprayed refrigerant liquid Normal operation of cooling the fluid to be cooled by the output heat exchanger;
The external air is temporarily passed through the output heat exchanger in the gas circulation path, and the cooling target fluid is cooled by heat exchange between the external air passing through the output heat exchanger and the cooling target fluid. A rotor type adsorption refrigerator that can be switched to outside air operation .
吸着剤を備える通気性吸着ロータの回転域に吸着域と脱着域とをロータ回転方向に並べて設け、
前記吸着域と、その吸着域で前記吸着ロータを通過した作動ガスを冷却する冷却器と、その冷却器で冷却した作動ガスに対し散布手段により冷媒液を散布する蒸発室とにわたって、その順に作動ガスを循環させるガス循環路を形成し、
前記蒸発室での散布冷媒液の蒸発に伴う気化熱奪取により冷却対象流体を冷却する出力熱交換器を設け、
前記脱着域で前記吸着ロータに通過させる再生用ガスを前記脱着域に通風供給する再生用ガス供給手段を設け、
前記散布手段は前記蒸発室において前記冷却対象流体を前記冷媒液として散布する構成にしてあるロータ式吸着冷凍機。
An adsorption area and a desorption area are arranged side by side in the rotor rotation direction in the rotation area of a breathable adsorption rotor equipped with an adsorbent,
Operates in this order over the adsorption zone, a cooler that cools the working gas that has passed through the adsorption rotor in the adsorption zone, and an evaporation chamber that sprays refrigerant liquid to the working gas cooled by the cooler by a spraying means. Form a gas circulation path to circulate the gas,
An output heat exchanger is provided that cools the fluid to be cooled by taking vaporization heat accompanying evaporation of the sprayed refrigerant liquid in the evaporation chamber,
Providing a regeneration gas supply means for supplying the regeneration gas to be passed through the adsorption rotor in the desorption region to the desorption region;
The said dispersion | spreading means is a rotor type adsorption | suction refrigerator made into the structure which spreads the said cooling object fluid as said refrigerant | coolant liquid in the said evaporation chamber .
運転時における前記ガス循環路及び前記脱着域の圧力を大気圧とほぼ等しい常圧にしてある請求項1〜4のいずれか1項に記載のロータ式吸着冷凍機。  The rotor type adsorption refrigerator according to any one of claims 1 to 4, wherein pressures in the gas circulation path and the desorption region during operation are normal pressures substantially equal to atmospheric pressure. 他機からの低温排熱により空気を加熱する排熱利用加熱器を設け、
この排熱利用加熱器により加熱した空気を前記再生用ガスとして前記脱着域で前記吸着ロータに通過させる構成にしてある請求項1〜5のいずれか1項に記載のロータ式吸着冷凍機。
A heater using exhaust heat that heats air by low-temperature exhaust heat from other machines is installed.
The rotor type adsorption refrigerator according to any one of claims 1 to 5, wherein air heated by the exhaust heat utilization heater is configured to pass through the adsorption rotor in the desorption region as the regeneration gas .
前記脱着域で前記吸着ロータに通過させた再生用ガスから熱回収して、その回収熱により前記脱着域へ供給する再生用ガスを予熱する熱回収・予熱手段を設けてある請求項1〜6のいずれか1項に記載のロータ式吸着冷凍機。  Heat recovery / preheating means is provided for recovering heat from the regeneration gas passed through the adsorption rotor in the desorption region and preheating the regeneration gas supplied to the desorption region by the recovered heat. The rotor type adsorption refrigerator according to any one of the above.
JP2000354222A 2000-11-21 2000-11-21 Rotor type adsorption refrigerator Expired - Fee Related JP4502498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000354222A JP4502498B2 (en) 2000-11-21 2000-11-21 Rotor type adsorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000354222A JP4502498B2 (en) 2000-11-21 2000-11-21 Rotor type adsorption refrigerator

Publications (2)

Publication Number Publication Date
JP2002162129A JP2002162129A (en) 2002-06-07
JP4502498B2 true JP4502498B2 (en) 2010-07-14

Family

ID=18826856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000354222A Expired - Fee Related JP4502498B2 (en) 2000-11-21 2000-11-21 Rotor type adsorption refrigerator

Country Status (1)

Country Link
JP (1) JP4502498B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8302425B2 (en) * 2004-05-11 2012-11-06 Cyclect Singapore Pte Ltd. Regenerative adsorption system with a spray nozzle for producing adsorbate vapor and condensing desorbed vapor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03129266A (en) * 1989-10-13 1991-06-03 Ebara Corp Adsorption refrigerator
JPH0842935A (en) * 1994-07-27 1996-02-16 Mayekawa Mfg Co Ltd Adsorption type cooler and cold heat output controlling method therefor
JPH10122689A (en) * 1996-10-22 1998-05-15 Ebara Corp Absorption heat pump and air conditioning system using the same
JPH10141705A (en) * 1996-11-07 1998-05-29 Setsubi Design:Kk Fan coil device having ventilating function
JPH10325638A (en) * 1997-03-27 1998-12-08 Mayekawa Mfg Co Ltd Adsorption type refrigerating machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03129266A (en) * 1989-10-13 1991-06-03 Ebara Corp Adsorption refrigerator
JPH0842935A (en) * 1994-07-27 1996-02-16 Mayekawa Mfg Co Ltd Adsorption type cooler and cold heat output controlling method therefor
JPH10122689A (en) * 1996-10-22 1998-05-15 Ebara Corp Absorption heat pump and air conditioning system using the same
JPH10141705A (en) * 1996-11-07 1998-05-29 Setsubi Design:Kk Fan coil device having ventilating function
JPH10325638A (en) * 1997-03-27 1998-12-08 Mayekawa Mfg Co Ltd Adsorption type refrigerating machine

Also Published As

Publication number Publication date
JP2002162129A (en) 2002-06-07

Similar Documents

Publication Publication Date Title
US5943874A (en) Desiccant assisted air conditioning apparatus
KR101250769B1 (en) Hybrid air conditioning system
JP5243900B2 (en) Solvent recovery equipment
JP4799635B2 (en) Liquid desiccant regenerator and desiccant dehumidifier air conditioner
AU2006253864B2 (en) System and method for managing water content in a fluid
US5758509A (en) Absorption heat pump and desiccant assisted air conditioning apparatus
JPH0684822B2 (en) Indirect air conditioner
CN107051100A (en) Drying device
JP2011125768A (en) Solvent recovery method and apparatus
JP6068826B2 (en) Drying system with dehumidifying mechanism for dry air
JP2018128242A (en) Adsorption refrigerator, method of controlling adsorption refrigerator and cooling system
JP4502498B2 (en) Rotor type adsorption refrigerator
JP3300565B2 (en) Low dew point air supply system
JPS6223418A (en) Wet type dehumidifier
TWI791178B (en) Drying appartus and drying method
JP4200214B2 (en) Particle circulation adsorption heat pump
JPH06189727A (en) Vacuum cooler
JPS6271512A (en) Adsorber or absorber
JPH0658643A (en) Adsorptive type freezer
JP2017199169A (en) Cooling system, and information processing system using the same
JP3302833B2 (en) Dehumidification method and dehumidification system
JPH09178289A (en) Desiccant air-conditioner
JP2520975Y2 (en) Absorption cold water heater
JP2000291979A (en) Dehumidifier
RU2300056C2 (en) Method for utilizing heat of gas (air) flow

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4502498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees