JP4500989B2 - Photo-curable bioabsorbable material - Google Patents

Photo-curable bioabsorbable material Download PDF

Info

Publication number
JP4500989B2
JP4500989B2 JP2003379012A JP2003379012A JP4500989B2 JP 4500989 B2 JP4500989 B2 JP 4500989B2 JP 2003379012 A JP2003379012 A JP 2003379012A JP 2003379012 A JP2003379012 A JP 2003379012A JP 4500989 B2 JP4500989 B2 JP 4500989B2
Authority
JP
Japan
Prior art keywords
photocurable
repeating unit
och
acid
glycidol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003379012A
Other languages
Japanese (ja)
Other versions
JP2005139362A (en
Inventor
敦好 中山
泰秀 中山
学 西村
なぎさ 鎌田
敦 大高
徹 川田
賢二 砂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003379012A priority Critical patent/JP4500989B2/en
Publication of JP2005139362A publication Critical patent/JP2005139362A/en
Application granted granted Critical
Publication of JP4500989B2 publication Critical patent/JP4500989B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、光硬化性生体吸収性材料及び光硬化性生体組織固定化材料に関する。詳しくは、本発明は、二重結合を有する生分解性ポリマーを光により硬化させ、生体組織に固定化される光硬化性の生体組織固定化材料に関する。   The present invention relates to a photocurable bioabsorbable material and a photocurable biological tissue fixing material. Specifically, the present invention relates to a photocurable biological tissue immobilization material that is obtained by curing a biodegradable polymer having a double bond with light to be immobilized on the biological tissue.

外科手術における皮膚や臓器などの軟組織の接合は、損傷した組織をもとの形態に戻し、さらに創部が自己の組織再生修復機能によって治癒するまでの1週間から2週間ほどの期間、生体に内在する拍動圧や収縮力、あるいは外力に耐え接合力を維持することが必要である。   During the surgical operation, soft tissues such as skin and organs are joined in the living body for a period of 1 to 2 weeks until the damaged tissue is restored to its original form and the wound is healed by its own tissue regeneration and repair function. It is necessary to withstand the pulsating pressure, contraction force, or external force to maintain the bonding force.

従来より、組織の接合には縫合針と縫合糸による吻合が一般に行われている。また、これに代わる組織接合方法として古くから接着剤を使う方法が開発されており、(1)液状のシアノアクリレートモノマーが水分により短時間のうちに重合し、硬化することを利用しているシアノアクリレート系接着剤(非特許文献1)、(2)フィブリノーゲンがトロンビンの働きによって不溶性のフィブリン塊を形成するという生体内の血液凝固の機構を利用したフィブリン糊(非特許文献2)、(3)ゼラチンとレゾシノールをホルマリンで架橋するというゼラチン系接着剤が実用化されている。(非特許文献3)
Tseng Y. C.; Tabata Y.; Hyon S. H.; Ikada Y. In vitro toxicity test of 2-cyanoacrylate polymers by cell culture method. J. Biomed. Mater. Res. 24: 1355-1367; 1990. Matras H. Fibrin seal: the state of the art. J. Oral Maxillofac Surg. 43: 605-611; 1985. Bachet, J.; Goudot, B.; Dreyfus, G.; Banfi, C.; Ayle, N. A.; Aota, M.; Brodaty, D.; Dubois, C.; Deleutdecker, P.; Guilmet, D. The proper use of glue: a 20-year experience with the GRF glue in acute aortic dissection. J. Card. Surg. 12: 243-253; 1997.
Conventionally, anastomosis using a suture needle and a suture is generally performed for joining tissues. As an alternative tissue bonding method, a method using an adhesive has been developed for a long time. (1) Cyano, which utilizes the fact that a liquid cyanoacrylate monomer is polymerized and cured by moisture in a short time. Acrylate-based adhesive (Non-patent Document 1), (2) Fibrin glue using a mechanism of blood coagulation in vivo in which fibrinogen forms an insoluble fibrin clot by the action of thrombin (Non-patent Document 2), (3) A gelatin-based adhesive in which gelatin and resorcinol are crosslinked with formalin has been put into practical use. (Non Patent Literature 3)
Tseng YC; Tabata Y .; Hyon SH; Ikada Y. In vitro toxicity test of 2-cyanoacrylate polymers by cell culture method.J. Biomed. Mater. Res. 24: 1355-1367; 1990. Matras H. Fibrin seal: the state of the art.J. Oral Maxillofac Surg. 43: 605-611; 1985. Bachet, J .; Goudot, B .; Dreyfus, G .; Banfi, C .; Ayle, NA; Aota, M .; Brodaty, D .; Dubois, C .; Deleutdecker, P .; Guilmet, D. The proper use of glue: a 20-year experience with the GRF glue in acute aortic dissection.J. Card. Surg. 12: 243-253; 1997.

シアノアクリレート系接着剤は、速硬性にすぐれており、組織との接着力が高い反面、硬化物は柔軟性に欠け、生体軟組織に比べ極めて硬いために、生体組織の収縮などの応力により接合不全になりやすく、また創傷治癒を妨げる場合がある。また、生体内での分解が半年から1年と遅いために被包化されて異物となりやすい。さらに、分解時に毒性の強いホルムアルデヒドを生成するものもあるなどの問題がある。フィブリン糊は生体組織への接着力が不十分で、組織の動きに追従できず組織から剥離しやすい。また、ヒト由来の血液製剤であるために肝炎やエイズなどのウィルス感染が懸念される。さらに、他の組織接着剤に比べて高価であり、大量には使用しにくいという問題点がある。ゼラチン系接着剤は、高い組織接着性を示すが、ゼラチンの架橋剤であるホルマリンが生体内のタンパク質とも架橋反応を起こし毒性を示すことが指摘されている。   Cyanoacrylate adhesives have excellent fast-curing properties and high adhesion to tissues. On the other hand, cured products lack flexibility and are extremely hard compared to soft biological tissues. And may interfere with wound healing. In addition, since decomposition in a living body is slow from half a year to one year, it is easily encapsulated and becomes a foreign substance. Furthermore, there are problems such as the generation of highly toxic formaldehyde during decomposition. Fibrin glue has insufficient adhesion to living tissue, and cannot easily follow the movement of the tissue and easily peels from the tissue. Moreover, since it is a human blood product, there is a concern about viral infections such as hepatitis and AIDS. Furthermore, there is a problem that it is more expensive than other tissue adhesives and is difficult to use in large quantities. Gelatin-based adhesives exhibit high tissue adhesion, but it has been pointed out that formalin, which is a cross-linking agent for gelatin, causes a cross-linking reaction with in vivo proteins and exhibits toxicity.

本発明は、上記の問題点を解決するために、柔軟性を有する生体組織との親和性の強い光硬化性のポリマー材料を提供するものである。   In order to solve the above-mentioned problems, the present invention provides a photocurable polymer material having a strong affinity for a living tissue having flexibility.

本発明はまた、毒性を示す薬品を使用することなく簡便な光照射操作で、湿潤した生体組織表面において速やかに硬化させることにより生体組織に強固に接着でき、硬化物は柔軟でかつ生分解性を有し、分解物は毒性を示さない医療用組織接着剤を提供することを目的とする。   The present invention is also capable of firmly adhering to a living tissue by quickly curing on the surface of a moist living tissue by a simple light irradiation operation without using a toxic chemical, and the cured product is flexible and biodegradable. An object of the present invention is to provide a medical tissue adhesive in which the degradation product does not exhibit toxicity.

本発明は、下記の光硬化性生体組織固定化材料及び光硬化性生体組織固定化材料に関する。
1. 下記の繰り返し単位(I)及び(III)を有し、必要に応じてさらに繰り返し単位(II)を含む、光硬化性生体吸収性材料:
(I)脂肪族ジカルボン酸及び/又は脂肪族ヒドロキシカルボン酸に由来する繰り返し単位
(II) 下記式で表されるグリシドール由来の繰り返し単位
−{OCH2CH(CH2OH)}−
もしくは
−{OCH2CH(OH)CH2}−
(III)光硬化性基を有する下記式で表される繰り返し単位
−{OCH2CH(CH2OR)}−
もしくは
−{OCH2CH(OR)CH2}−
{式中、Rは二重結合を有する光硬化性基を表す}。
2. さらに光反応性化合物を有する1.に記載の光硬化性生体吸収性材料。
3. 前記1.に記載の材料を含む光硬化性生体組織固定化材料。
The present invention relates to the following photocurable biological tissue fixing material and photocurable biological tissue fixing material.
1. A photocurable bioabsorbable material having the following repeating units (I) and (III) and further containing the repeating unit (II) as required:
(I) Repeating unit derived from aliphatic dicarboxylic acid and / or aliphatic hydroxycarboxylic acid (II) Repeating unit derived from glycidol represented by the following formula
- {OCH 2 CH (CH 2 OH)} -
Or
- {OCH 2 CH (OH) CH 2} -
(III) A repeating unit represented by the following formula having a photocurable group
- {OCH 2 CH (CH 2 OR)} -
Or
- {OCH 2 CH (OR) CH 2} -
{Wherein R represents a photocurable group having a double bond}.
2. Further having a photoreactive compound The photocurable bioabsorbable material described in 1.
3. 1 above. A photocurable biological tissue immobilization material comprising the material described in 1.

以下、本発明をより詳細に説明する。
(I) 脂肪族ジカルボン酸及び/又は脂肪族ヒドロキシカルボン酸に由来する繰り返し単位
脂肪族ジカルボン酸としては、コハク酸、シュウ酸、マロン酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、リンゴ酸、酒石酸が挙げられ、脂肪族ヒドロキシカルボン酸としては、グリコール酸、乳酸、グリセリン酸、タルトロン酸などが挙げられる。
(II)グリシドール由来の繰り返し単位
下記式(II)で表される繰り返し単位が例示できる:
−{OCH2CH(CH2OH)}− もしくは −{OCH2CH(OH)CH2}− (II)
式(II)の繰り返し単位は、グリシドールのエポキシ基が開環するときに形成され、繰り返し単位(I)に対応するジカルボン酸又はヒドロキシカルボン酸とエステル結合を形成するか、或いはグリシドールが重合してエーテル結合を形成する。塩基がエポキシ環を攻撃し、開裂した際に、グリシドールのプロトンが移動すれば、「−{OCH2CH(OH)CH2}−」で表される繰り返し単位が生成する。
(III)光硬化性基を有する繰り返し単位
下記式(III)で表される繰り返し単位を例示できる:
−{OCH2CH(CH2OR)}− もしくは −{OCH2CH(OR)CH2}− (III)
{式中、Rは二重結合を有する光硬化性基を表す}。
Hereinafter, the present invention will be described in more detail.
(I) Repeating unit derived from aliphatic dicarboxylic acid and / or aliphatic hydroxycarboxylic acid As aliphatic dicarboxylic acid, succinic acid, oxalic acid, malonic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid , Sebacic acid, malic acid, tartaric acid, and aliphatic hydroxycarboxylic acids include glycolic acid, lactic acid, glyceric acid, tartronic acid, and the like.
(II) Repeating unit derived from glycidol The repeating unit represented by the following formula (II) can be exemplified:
- {OCH 2 CH (CH 2 OH)} - or - {OCH 2 CH (OH) CH 2} - (II)
The repeating unit of the formula (II) is formed when the epoxy group of glycidol is ring-opened, and forms an ester bond with the dicarboxylic acid or hydroxycarboxylic acid corresponding to the repeating unit (I), or the glycidol is polymerized. An ether bond is formed. If the glycidol proton moves when the base attacks the epoxy ring and cleaves, a repeating unit represented by “— {OCH 2 CH (OH) CH 2 } —” is generated.
(III) Repeating unit having a photocurable group The repeating unit represented by the following formula (III) can be exemplified:
- {OCH 2 CH (CH 2 OR)} - or - {OCH 2 CH (OR) CH 2} - (III)
{Wherein R represents a photocurable group having a double bond}.

式(III)の繰り返し単位は、式(II)の繰り返し単位を有する原料ポリマーをR−OHで表されるカルボン酸化合物(例えば、置換基を有していてもよい(o−,m−,p−)スチレンカルボン酸、アクリル酸、メタクリル酸など)と脱水縮合させ、エステル結合を介してRで表される光重合性基を導入することにより得ることができる。(o−,m−,p−)スチレンカルボン酸の置換基としては、ハロゲン原子(F,Cl,Br,I)、OH,メトキシ、エトキシ、メチル、ヒドロキシメチル、シアノ、アミノなどが例示される。   The repeating unit of the formula (III) is a carboxylic acid compound represented by R—OH (for example, may have a substituent (o-, m-, p-) styrene carboxylic acid, acrylic acid, methacrylic acid and the like) and dehydrating condensation, and introducing a photopolymerizable group represented by R through an ester bond. Examples of the substituent of (o-, m-, p-) styrene carboxylic acid include halogen atom (F, Cl, Br, I), OH, methoxy, ethoxy, methyl, hydroxymethyl, cyano, amino and the like. .

原料ポリマーに導入されるRで表される光硬化性基は、光によりラジカル重合可能な二重結合を有するものを広く包含する。好ましい光硬化性基としては、CH2=CH−C64−CO−,CH2=CH−CO−,CH2=CH(CH3)−CO−など分子内に二重結合を有するものであればどのようなものでもよく、好ましくはCH2=CH−C64−CO−である。二重結合を有する光硬化性基の導入は、1-エチル-3-(-ジメチルアミノプロピル)カルボジイミド塩酸塩、あるいは1-シクロヘキシル-3-(2-モルフォリノエチル)カルボジイミドメソ-p-トルエンスルホン酸などの水溶性カルボジイミド系結合試薬を用いてエステル結合により行うことが好ましいが、クロロギ酸エチル、カルボニルジイミダゾールやジメチルアジピンイミデート、ジスクシンイミジルスベレートなどの2価性架橋試薬による化学結合を介して導入してもよい。また、原料ポリマーと光硬化性基との結合にはポリエチレングリコール鎖や長鎖アルキル鎖をスペーサーとして導入してもよい。 The photocurable group represented by R introduced into the raw material polymer widely includes those having a double bond capable of radical polymerization by light. Preferred photocurable group, CH 2 = CH-C 6 H 4 -CO-, CH 2 = CH-CO-, CH 2 = CH (CH 3) into -CO- such a molecule having a double bond As long as it is any one, preferably CH 2 ═CH—C 6 H 4 —CO—. Introduction of a photocurable group having a double bond is 1-ethyl-3-(-dimethylaminopropyl) carbodiimide hydrochloride or 1-cyclohexyl-3- (2-morpholinoethyl) carbodiimide meso-p-toluenesulfone. It is preferable to carry out by ester linkage using a water-soluble carbodiimide-based coupling reagent such as acid, but chemical coupling by a bivalent crosslinking reagent such as ethyl chloroformate, carbonyldiimidazole, dimethyladipine imidate, disuccinimidyl suberate, etc. It may be introduced via. Further, a polyethylene glycol chain or a long alkyl chain may be introduced as a spacer in the bond between the raw polymer and the photocurable group.

式(I)の繰り返し単位と式(II)の繰り返し単位を有する原料ポリマーは、公知であるか、公知のモノマーを使用し、公知の方法に従い容易に合成することができる。   The starting polymer having the repeating unit of the formula (I) and the repeating unit of the formula (II) is known or can be easily synthesized according to a known method using a known monomer.

原料ポリマーと前記カルボン酸化合物との反応において、式(II)の繰り返し単位の全てのCH2OHがCH2OR(Rは前記に定義される通りである)に変換される場合、本発明の硬化性ポリマーにおいて式(II)の繰り返し単位が存在しないことになる。しかしながら、通常は、式(II)の繰り返し単位のOH基が全てOR基に変換されることはなく、通常は、本発明の光硬化性生体吸収性材料において、式(II)の繰り返し単位が存在する。 In the reaction of the raw polymer with the carboxylic acid compound, when all CH 2 OH of the repeating unit of the formula (II) is converted to CH 2 OR (R is as defined above), There will be no repeat unit of formula (II) in the curable polymer. However, normally, the OH groups of the repeating unit of the formula (II) are not all converted to OR groups. Usually, in the photocurable bioabsorbable material of the present invention, the repeating unit of the formula (II) Exists.

本発明の光硬化性ポリマーにおいて、繰り返し単位(I)〜(III)のモル比は、
繰り返し単位(I):繰り返し単位(II):繰り返し単位(III)=
0〜80モル%:0〜80モル%:5〜50モル%;好ましくは
30〜75モル%:0〜40モル%:10〜30モル%;より好ましくは
45〜70モル%:20〜30モル%:15〜25モル%である。
In the photocurable polymer of the present invention, the molar ratio of the repeating units (I) to (III) is:
Repeating unit (I): Repeating unit (II): Repeating unit (III) =
0 to 80 mol%: 0 to 80 mol%: 5 to 50 mol%; preferably
30-75 mol%: 0-40 mol%: 10-30 mol%; more preferably
45-70 mol%: 20-30 mol%: 15-25 mol%.

本発明の光硬化性ポリマーの分子量は、300〜30000程度、好ましくは2500〜10000程度、より好ましくは3000〜4000程度である。なお、分子量はGPC法により測定することができる。   The molecular weight of the photocurable polymer of the present invention is about 300 to 30000, preferably about 2500 to 10,000, and more preferably about 3000 to 4000. The molecular weight can be measured by GPC method.

好ましい実施形態の1つにおいて、本発明の光硬化性生体組織固定化材料の特徴を具体的に列記すると(1)光照射操作により速やかにゲル化でき、(2)体液、血液など水存在下において組織との接着力を有し、(3)硬化ゲルは生体組織の動きに追従できる物理的柔軟性を有し、柔軟性は各繰り返し単位の種類、含有量などを変化させることにより容易に調節可能であり、(4)脂肪族エステルを用いたため生体適合性に優れ、さらに(5)生分解性を有し、分解物は低毒性ないし非毒性であるなどである。   In one of the preferred embodiments, the features of the photocurable living tissue immobilization material of the present invention are specifically listed: (1) it can be quickly gelled by a light irradiation operation, and (2) in the presence of water such as body fluid and blood. (3) Hardened gel has physical flexibility that can follow the movement of living tissue, and flexibility can be easily changed by changing the type and content of each repeating unit. It is adjustable, and (4) it is excellent in biocompatibility due to the use of an aliphatic ester, and (5) it has biodegradability, and the degradation product has low toxicity or non-toxicity.

本発明のポリマーは反応性側鎖を持つポリエステルから合成され、反応性側鎖を持つポリエステルの調製はグリシジル化合物などのエポキシ環を有するモノマーを活用し、ジカルボン酸との重付加やラクトン類、酸無水物などとの開環共重合によって合成される。モノマーを適宜選ぶことによって、反応性側鎖のタイプを変えることも可能である。   The polymer of the present invention is synthesized from a polyester having a reactive side chain, and the polyester having a reactive side chain is prepared by utilizing a monomer having an epoxy ring such as a glycidyl compound, polyaddition with a dicarboxylic acid, a lactone, an acid. It is synthesized by ring-opening copolymerization with an anhydride or the like. It is also possible to change the type of reactive side chain by appropriately selecting the monomer.

二重結合を有する光硬化性基Rを導入するための化合物は、ラジカル重合性のモノマー、オリゴマーおよびポリマーであればどのようなものでもよく、また二官能性、三官能性など多官能性ビニル化合物が好ましい。好ましい具体例の1つは、分子量約1000のポリエチレングリコール・ジアクリレートである。   The compound for introducing the photocurable group R having a double bond may be any radically polymerizable monomer, oligomer, or polymer, and a polyfunctional vinyl such as bifunctional or trifunctional. Compounds are preferred. One preferred embodiment is polyethylene glycol diacrylate having a molecular weight of about 1000.

本発明の材料は、繰り返し単位(I)〜(III)を有するポリマーと光反応性化合物を併用し、光硬化を促進するのが好ましい。   The material of the present invention preferably promotes photocuring by using a polymer having repeating units (I) to (III) and a photoreactive compound in combination.

光反応性化合物は、光照射によりラジカルを発生する有機化合物であり、たとえばカンファキノン、アセトフェノン、ベンゾフェノン、ジメトキシフェニルアセトフェノンなどのカルボニル化合物およびそれらの誘導体、ジチオカルバメート、ザンテート、チオフェノールなどのイオウ化合物およびそれらの誘導体、過酸化ベンゾイル、ブチルペルオキシドなどの過酸化物およびそれらの誘導体、アゾビスイソブチロニトリル、アゾビスイソ酪酸エステルなどのアゾビス化合物およびそれらの誘導体、ブロモプロパン、クロロメチルナフタレンなどのハロゲン化合物およびそれらの誘導体、フェニルアジドなどのアジド化合物およびそれらの誘導体、ローダミン、エリスロン、フルオレッセン、エオシンなどのキサンテン系色素およびそれらの誘導体、リボフラビンおよびそれらの誘導体よりなる群から選ばれた少なくとも1種類、またはアミン類などのプロトンドナーを添加した混合物であり、好ましくはカンファキノン単独、もしくはさらにジメチルアミノエチルメタクリレートとの混合系である。光反応性化合物が、上記の光反応性化合物を原料ポリマーの側鎖に導入されている光反応性原料ポリマーの場合には、前記原料ポリマーを用いない光反応性原料ポリマーからなるペーストでも固定化剤として使用することができる。   Photoreactive compounds are organic compounds that generate radicals upon irradiation with light. For example, carbonyl compounds such as camphorquinone, acetophenone, benzophenone, dimethoxyphenylacetophenone and their derivatives, sulfur compounds such as dithiocarbamate, xanthate, thiophenol, and the like Derivatives thereof, peroxides such as benzoyl peroxide, butyl peroxide and derivatives thereof, azobis compounds such as azobisisobutyronitrile, azobisisobutyric acid ester and derivatives thereof, halogen compounds such as bromopropane, chloromethylnaphthalene and the like Derivatives thereof, azide compounds such as phenyl azide and derivatives thereof, xanthene dyes such as rhodamine, erythrone, fluorescene, eosin and the like Derivatives, riboflavin and at least one selected from the group consisting of derivatives thereof, or a mixture to which a proton donor such as amines is added, preferably camphorquinone alone or further mixed with dimethylaminoethyl methacrylate . In the case where the photoreactive compound is a photoreactive raw material polymer in which the photoreactive compound is introduced into the side chain of the raw material polymer, the paste made of the photoreactive raw material polymer not using the raw material polymer is also immobilized. It can be used as an agent.

光反応性化合物は、本発明の光硬化性ポリマー100重量部あたり、0.01〜10重量部程度、好ましくは0.1〜5重量部程度、より好ましくは0.5〜3重量部程度使用できる。   The photoreactive compound is used in an amount of about 0.01 to 10 parts by weight, preferably about 0.1 to 5 parts by weight, more preferably about 0.5 to 3 parts by weight per 100 parts by weight of the photocurable polymer of the present invention. it can.

光照射における光源は、たとえばハロゲンランプ、キセノンランプ、白熱ランプあるいは水銀ランプ、あるいはエキシマレーザー、アルゴンイオンレーザーなどであり、好ましくはハロゲンランプを用い、望ましくは波長300から500nmの光を使用する。照射時間は1分程度が好ましい。   The light source in the light irradiation is, for example, a halogen lamp, a xenon lamp, an incandescent lamp, a mercury lamp, an excimer laser, an argon ion laser, or the like, preferably a halogen lamp, and preferably a light having a wavelength of 300 to 500 nm. The irradiation time is preferably about 1 minute.

本発明の光硬化性組織接着剤の硬化は以下の機構により進行する。まず光反応性化合物に光照射するとラジカルが発生する。生成したラジカルにより原料ポリマーに含まれる光硬化性基の重合反応が開始される。また、ビニル化合物を共存させている場合には原料ポリマーとの共重合反応が起こる。これらの重合反応により原料ポリマー間、あるいはさらにビニル化合物間ともにおいて架橋が起こり、ゲル状の硬化物を与える。   Curing of the photocurable tissue adhesive of the present invention proceeds by the following mechanism. First, when a photoreactive compound is irradiated with light, radicals are generated. The polymerization reaction of the photocurable group contained in the raw material polymer is initiated by the generated radical. Further, when a vinyl compound is present, a copolymerization reaction with a raw material polymer occurs. By these polymerization reactions, cross-linking occurs between the raw material polymers or even between the vinyl compounds to give a gel-like cured product.

本発明により光硬化性基を少なくとも一部に有するポリエステル系原料ポリマーを光反応性化合物と混合した混合水溶液に、光によりゲル状に硬化させ、生体組織に接着することを特徴とする医療用組織接着剤を提供できる。本組織接着剤により、生体組織に大きな傷害を与えることなく、光を照射するだけで速やかに生体組織に接着する、あるいは組織間を接合することがでる。また、組織接着剤の成分、硬化体および分解物はいずれも非毒性であるという利点がある。本組織接着剤を用いることにより手術操作の簡単化と手術時間の短縮だけでなく、癒着剥離部位や、肝臓、脾臓など実質臓器からあるいは微小血管からの出血に対する止血、あるいは死腔への充填など、縫合法では行うことのできなかった新しい手技を提供できる。また、ポリエステルの代わりにグリシドール重合体であるポリエーテルを用いることも可能である。反応性側鎖は光硬化性基の導入以外に医薬を導入することにより医薬徐放機能を有する生体吸収性材料として用いることもできる。   According to the present invention, a medical tissue comprising a mixed aqueous solution obtained by mixing a polyester-based raw material polymer having a photocurable group at least in part with a photoreactive compound in a gel form by light and adhering to a living tissue. Adhesive can be provided. With this tissue adhesive, it is possible to quickly adhere to a living tissue or to join tissues without damaging the living tissue simply by irradiating light. In addition, the tissue adhesive component, the cured product, and the decomposition product are all non-toxic. Use of this tissue adhesive not only simplifies the operation and shortens the operation time, but also provides hemostasis for bleeding from the site of adhesion detachment, liver, spleen, and other organs, or filling from the dead space It is possible to provide a new procedure that cannot be performed by the suturing method. Moreover, it is also possible to use the polyether which is a glycidol polymer instead of polyester. The reactive side chain can also be used as a bioabsorbable material having a drug sustained-release function by introducing a drug in addition to the introduction of a photocurable group.

次に本発明を実施例により具体的に説明する。
合成例1
反応性側鎖をもつ生分解性高分子の合成
グリシドールとε-カプロラクトンを各0.1molずつ混合し、砕いた水酸化ナトリウムを0.5mol%加え、60℃にて72時間撹拌した。開始剤としてはマグネシウムエトキシドなどの他の塩基性試薬でも代用できる。精製はメタノール/クロロホルム混合溶液に溶解後、石油エーテルから再沈殿させて行った。精製の際の混合溶媒は共重合体の組成比によって変化させ、混合比は75/25を中心に10/0〜1/10の間である。減圧乾燥後、収率80%でペースト状のコポリエステルエーテルを得た。
Next, the present invention will be specifically described with reference to examples.
Synthesis example 1
Synthesis of biodegradable polymer having reactive side chain Glycidol and ε-caprolactone were mixed in 0.1 mol each, 0.5 mol% of crushed sodium hydroxide was added, and the mixture was stirred at 60 ° C. for 72 hours. Other basic reagents such as magnesium ethoxide can be substituted for the initiator. Purification was performed by dissolving in a methanol / chloroform mixed solution and then reprecipitating from petroleum ether. The mixed solvent at the time of purification is changed depending on the composition ratio of the copolymer, and the mixing ratio is between 10/0 and 1/10, centering on 75/25. After drying under reduced pressure, a pasty copolyester ether was obtained in a yield of 80%.

得られたε-カプロラクトンとグリシドールの共重合体の1H−NMRのデータを図1に示す。
合成例2
ε-カプロラクトンに代えて無水コハク酸を使用する以外は上記と同様にして無水コハク酸とグリシドールの共重合体を得た。
FIG. 1 shows the 1 H-NMR data of the obtained copolymer of ε-caprolactone and glycidol.
Synthesis example 2
A copolymer of succinic anhydride and glycidol was obtained in the same manner as above except that succinic anhydride was used instead of ε-caprolactone.

得られた無水コハク酸とグリシドールの共重合体の1H−NMRのデータを図2に示す。 FIG. 2 shows the 1 H-NMR data of the obtained copolymer of succinic anhydride and glycidol.

また、触媒、仕込み比を表1に記載するように変更したときの収率、GPC方で測定した分子量、共重合比及び粘性の測定結果を表1に示す。   Table 1 shows the measurement results of the yield, the molecular weight measured by the GPC method, the copolymerization ratio, and the viscosity when the catalyst and the charging ratio are changed as described in Table 1.

Figure 0004500989
Figure 0004500989

合成例3
無水コハク酸とグリシドールの共重合体のビニル化ポリエステルの合成
100mL二口フラスコに窒素雰囲気下で氷冷しながらDMF 20mLと4-ビニル安息香酸 (18mmol, 2.66g)を順に加え撹拌により溶解させた。DMF 15mLを別のフラスコに入れ、氷浴で冷やしながらDCC (19mmol, 4.0g)を溶解させた。これを先の溶液に氷冷下で30分かけて滴下した。混合溶液を室温に戻し、1時間撹拌を続けた。合成例2で得られた開環共重合体2.5gを別のフラスコに入れ、15mLのDMFに溶解させた。これを先の混合溶媒に氷冷下で30分かけて滴下した。反応溶液を室温に戻し、一晩撹拌を続けた。析出物をろ過により取り除き、ろ液を減圧下で濃縮した。得られた残渣からメタノールで抽出し、エバポレーターにて濃縮すると、目的とするビニル化ポリエステルが得られた。収率は40%で、ビニル側鎖の導入率は分子量1000当たり約1であった。
Synthesis example 3
Synthesis of vinylated polyesters of copolymers of succinic anhydride and glycidol
To a 100 mL two-necked flask, 20 mL of DMF and 4-vinylbenzoic acid (18 mmol, 2.66 g) were sequentially added and dissolved by stirring while cooling with ice in a nitrogen atmosphere. DMF (15 mL) was placed in another flask, and DCC (19 mmol, 4.0 g) was dissolved while cooling in an ice bath. This was added dropwise to the previous solution over 30 minutes under ice cooling. The mixed solution was returned to room temperature and stirring was continued for 1 hour. 2.5 g of the ring-opening copolymer obtained in Synthesis Example 2 was placed in another flask and dissolved in 15 mL of DMF. This was added dropwise to the above mixed solvent over 30 minutes under ice cooling. The reaction solution was returned to room temperature and stirring was continued overnight. The precipitate was removed by filtration, and the filtrate was concentrated under reduced pressure. Extraction with methanol from the obtained residue and concentration with an evaporator gave the desired vinylated polyester. The yield was 40%, and the rate of introduction of vinyl side chains was about 1 per 1000 molecular weight.

各種条件で得られたビニル化ポリエステルの導入の結果を表2に示し、run1で得られたビニル化ポリエステルの1H−NMRのデータを図3に示す。表2中、WSCは水溶性カルボジイミドを意味し、SAは無水コハク酸を意味し、GLはグリシドールを意味する。 The results of introduction of the vinylated polyester obtained under various conditions are shown in Table 2, and 1 H-NMR data of the vinylated polyester obtained with run 1 are shown in FIG. In Table 2, WSC means water-soluble carbodiimide, SA means succinic anhydride, and GL means glycidol.

Figure 0004500989
Figure 0004500989

合成例4
アクリル酸エステルの合成
4-ビニル安息香酸の代わりに等モルのアクリル酸を使用し、合成例2で得られた開環共重合体に代えて、合成例1で得られた開環共重合体を使用した以外は合成例3と同様にして、ポリ(ε−カプロラクトン/グリシドール)にアクリル酸基を導入したポリエステルを得た。該ポリエステルが得られたことは、1H−NMRのデータにより確認した。1H−NMRのデータを図4に示す。
実施例1
光硬化性生体吸収性固定化材料の光硬化性
合成例3及び4で得られた本発明の光硬化性材料30mg (Wa)にカンファーキノン(CQ)と2-ジメチルアミノエチルメタクリレート(DMAEMA)とをそれぞれ0.5wt%、1.5wt%になるように混合し、ガラスシャーレ上にてハロゲンランプ(トクソー、パワーライト、照射波長:400-600nm、照射強度:200mW/cm2)の可視光を所定時間照射した。照射物にクロロホルムを加え、30分放置した。クロロホルムに溶解した非ゲル化部分はクロロホルム溶液として除去し、真空乾燥後、重量測定(Wb)しゲル化率を求めた。さらにゲル化サンプルに水を加え、30分放置後、水を取り除き重量測定(Wc)し、膨潤度を測定した。
Synthesis example 4
Synthesis of acrylic esters
Except for using equimolar acrylic acid in place of 4-vinylbenzoic acid and using the ring-opening copolymer obtained in Synthesis Example 1 instead of the ring-opening copolymer obtained in Synthesis Example 2. In the same manner as in Synthesis Example 3, a polyester in which an acrylic acid group was introduced into poly (ε-caprolactone / glycidol) was obtained. It was confirmed by 1 H-NMR data that the polyester was obtained. The 1 H-NMR data is shown in FIG.
Example 1
Photocurability of photocurable bioabsorbable immobilizing material 30 mg (Wa) of the photocurable material of the present invention obtained in Synthesis Examples 3 and 4 was added to camphorquinone (CQ) and 2-dimethylaminoethyl methacrylate (DMAEMA). Are mixed at 0.5 wt% and 1.5 wt%, respectively, and visible light from a halogen lamp (Tokuso, power light, irradiation wavelength: 400-600 nm, irradiation intensity: 200 mW / cm 2 ) on a glass petri dish for a predetermined time Irradiated. Chloroform was added to the irradiated product and left for 30 minutes. The non-gelling part dissolved in chloroform was removed as a chloroform solution, vacuum-dried and then weighed (Wb) to determine the gelation rate. Further, water was added to the gelled sample, and after standing for 30 minutes, the water was removed, the weight was measured (Wc), and the degree of swelling was measured.

合成例4の光硬化性材料を用いた結果を表3に示す。   The results of using the photocurable material of Synthesis Example 4 are shown in Table 3.

表3中、run1はε−カプロラクトン/グリシドール=50/50(モル比)の共重合体にアクリル酸基を(グリシドール残基に対し)50%導入したのものである(繰り返し単位では、(I):(II):(III)=50:25:25(モル比)である)。   In Table 3, run1 is obtained by introducing 50% of an acrylic acid group (relative to the glycidol residue) into a copolymer of ε-caprolactone / glycidol = 50/50 (molar ratio). ) :( II) :( III) = 50: 25: 25 (molar ratio)).

run2はε−カプロラクトン/グリシドール=50/50の共重合体であり、アクリル酸基を(グリシドール残基に対し)25%導入したものである(繰り返し単位では、(I):(II):(III)=50:37.5:12.5(モル比)である)。   run2 is a copolymer of ε-caprolactone / glycidol = 50/50, in which 25% of an acrylic acid group is introduced (relative to the glycidol residue) (in the repeating unit, (I) :( II) :( III) = 50: 37.5: 12.5 (molar ratio)).

run3はグリシドールのホモポリマーに対し、アクリル酸基を50%導入したものである。   run 3 is a homopolymer of glycidol with 50% acrylic acid group introduced.

Figure 0004500989
Figure 0004500989

ビニル化ポリエステルのゲル化率は(Wb-Wa)/Wa ×100(%)から求め、生成ゲルの膨潤度は(Wc- Wb)/ Wbから求めた。ゲル化は1分の照射で約70%が変換され、それより長い時間の照射でもあまりゲル化率は変化しなかった(run2)。また、ビニル化ポリエステル内に導入された光硬化性基の量が増加するほど、ゲル生成量は増加する傾向を示した。さらに、グリシドールのホモポリマー(ポリエーテル)をビニル化したものでも光硬化させることができた。   The gelation rate of the vinylated polyester was determined from (Wb-Wa) / Wa × 100 (%), and the swelling degree of the resulting gel was determined from (Wc-Wb) / Wb. About 70% of gelation was converted by irradiation for 1 minute, and the gelation rate did not change much after longer irradiation (run 2). In addition, the amount of gel formation tended to increase as the amount of photocurable group introduced into the vinylated polyester increased. Furthermore, even a vinylized glycidol homopolymer (polyether) could be photocured.

また、合成例3の(無水コハク酸/グリシドール)に4−ビニル安息香酸基を導入したものの経時変化の結果を図5に示す。
実施例2
光硬化した組織固定化剤の加水分解性
実施例1に基づいて作成した(無水コハク酸/グリシドール)のビニル化ポリエステルのゲル(10mg)を所定のpHに調整した緩衝水溶液内に加え、37℃の恒温槽中にて振とうさせた。所定時間後に溶液を分取した。これをフィルター(DISMIC-25HP、20μm)によりろ過し、不溶物を除去した。ろ液に6N HCl水溶液を1滴加え、水溶液中に溶存する有機物に由来する炭素濃度を全有機炭素計(島津製作所、TOC-5000A)を用いて測定した。結果を図6に示す。ゲルをpH7の1%PBS溶液中で振とうさせた。24時間後においても形状にほとんど変化は見られなかった。一方、pH13の水酸化ナトリウム中において振とうさせると、時間とともに溶液中の有機性炭素濃度が増加した。ビニル化ポリエステルから得られたゲルは加水分解性であるといえる。
実施例3
電極被覆剤への応用
兎の腎臓交感神経あるいは減圧神経を露出させ、各神経束を約1mm間隔で巻き付けたステンレス製ワイヤー電極を引き上げ、生体組織から離した。電極部にビニル化ポリエステルを塗布した。ポリエステルは適度な粘度を有しているため局部に限極させることが可能であった。塗布部分にハロゲンランプを照射するとポリエステルはゲル状に硬化し、生理食塩水で洗浄しても硬化物は溶解することはなかった。また、硬化させた後に組織と接触させた状態で神経束から活動電気信号を取得することが可能であった。
Moreover, the result of a time-dependent change of what introduce | transduced 4-vinylbenzoic acid group into (succinic anhydride / glycidol) of the synthesis example 3 is shown in FIG.
Example 2
Hydrolyzability of photocured tissue fixing agent Gel (10 mg) of vinylated polyester of (succinic anhydride / glycidol) prepared based on Example 1 was added to a buffered aqueous solution adjusted to a predetermined pH, and 37 ° C. It was made to shake in the constant temperature bath. The solution was collected after a predetermined time. This was filtered through a filter (DISMIC-25HP, 20 μm) to remove insolubles. One drop of 6N HCl aqueous solution was added to the filtrate, and the carbon concentration derived from organic substances dissolved in the aqueous solution was measured using a total organic carbon meter (Shimadzu Corporation, TOC-5000A). The results are shown in FIG. The gel was shaken in a pH 7 1% PBS solution. There was almost no change in shape even after 24 hours. On the other hand, when it was shaken in sodium hydroxide at pH 13, the concentration of organic carbon in the solution increased with time. It can be said that the gel obtained from vinylated polyester is hydrolysable.
Example 3
Application to electrode coating The kidney sympathetic nerve or decompression nerve of the vagina was exposed, and the stainless steel wire electrode in which each nerve bundle was wound at an interval of about 1 mm was pulled up and separated from the living tissue. Vinylated polyester was applied to the electrode part. Since the polyester has an appropriate viscosity, it can be limited to a local area. When the coated portion was irradiated with a halogen lamp, the polyester hardened in a gel state, and the cured product did not dissolve even when washed with physiological saline. Moreover, it was possible to acquire an active electrical signal from the nerve bundle in a state of being in contact with the tissue after being cured.

電極の減圧神経への固定化の結果を図7に示す。図6に示すように、電位信号は光処理の前後で変化せず、固定化剤として有効であることが示された。   FIG. 7 shows the result of immobilization of the electrode on the decompression nerve. As shown in FIG. 6, the potential signal did not change before and after the light treatment, indicating that it is effective as a fixing agent.

電極の腎臓交感神経への固定化の結果を図8に示す。図7に示すように、電位信号は光処理の前後で変化せず、固定化剤として有効であることが示された。   The results of immobilizing the electrodes on the kidney sympathetic nerve are shown in FIG. As shown in FIG. 7, the potential signal did not change before and after the light treatment, indicating that it is effective as a fixing agent.

合成例1で得られたε-カプロラクトンとグリシドールの共重合体の1H−NMRのデータを示す。The 1 H-NMR data of the copolymer of ε-caprolactone and glycidol obtained in Synthesis Example 1 are shown. 合成例2で得られた無水コハク酸とグリシドールの共重合体の1H−NMRのデータを示す。The 1 H-NMR data of the copolymer of succinic anhydride and glycidol obtained in Synthesis Example 2 are shown. 合成例3で得られたビニル化ポリエステルの1H−NMRのデータを示す。 1 H-NMR data of the vinylated polyester obtained in Synthesis Example 3 are shown. 合成例4で得られたポリ(ε−カプロラクトン/グリシドール)にアクリル酸基を導入したポリエステルの1H−NMRのデータを示す。Synthesis Example Poly obtained in 4 (.epsilon.-caprolactone / glycidol) shows a 1 H-NMR data of the polyester obtained by introducing an acrylic acid group. (無水コハク酸/グリシドール)に4−ビニル安息香酸基を導入したものの光硬化性を示す。The photocurability of what introduce | transduced 4-vinylbenzoic acid group into (succinic anhydride / glycidol) is shown. 実施例2の光硬化した組織固定化剤の加水分解性の結果を示す。図6において、全有機性炭素濃度は、加水分解の結果可溶化した有機性成分の水溶液中の濃度を表す。The hydrolyzable result of the photocured tissue fixing agent of Example 2 is shown. In FIG. 6, the total organic carbon concentration represents the concentration of an organic component solubilized as a result of hydrolysis in an aqueous solution. 電極の減圧神経への固定化の結果を示す。The result of fixation to the decompression nerve of an electrode is shown. 電極の腎臓交感神経への固定化の結果を示す。The result of the fixation | immobilization to the kidney sympathetic nerve of an electrode is shown.

Claims (3)

下記の繰り返し単位(I)及び(III)を有する光硬化性生体吸収性材料を含む、光硬化性生体組織固定化材料
(I)脂肪族ジカルボン酸及び/又は脂肪族ヒドロキシカルボン酸に由来する繰り返し単
III)光硬化性基を有する下記式で表される繰り返し単位
−{OCH2CH(CH2OR)}−
もしくは
−{OCH2CH(OR)CH2}−
{式中、Rは二重結合を有する光硬化性基を表す}。
Comprising a photocurable bioabsorbable material have the following repeating units (I) and (III), photocurable biological tissue immobilizing material:
(I) an aliphatic dicarboxylic acid and / or repeating units of derived from an aliphatic hydroxycarboxylic acid
( III) Repeating unit represented by the following formula having a photocurable group-{OCH 2 CH (CH 2 OR)}-
Or - {OCH 2 CH (OR) CH 2} -
{Wherein R represents a photocurable group having a double bond}.
下記の繰り返し単位(I)及び(III)を有し、さらに繰り返し単位(II)を含む光硬化性生体吸収性材料を含む、光硬化性生体組織固定化材料:A photocurable biological tissue immobilization material having the following repeating units (I) and (III) and further including a photocurable bioabsorbable material containing the repeating unit (II):
(I)脂肪族ジカルボン酸及び/又は脂肪族ヒドロキシカルボン酸に由来する繰り返し単位(I) Repeating units derived from aliphatic dicarboxylic acids and / or aliphatic hydroxycarboxylic acids
(II) 下記式で表されるグリシドール由来の繰り返し単位(II) A repeating unit derived from glycidol represented by the following formula
−{OCH-{OCH 22 CH(CHCH (CH 22 OH)}−OH)}-
もしくはOr
−{OCH-{OCH 22 CH(OH)CHCH (OH) CH 22 }−}-
(III)光硬化性基を有する下記式で表される繰り返し単位(III) A repeating unit represented by the following formula having a photocurable group
−{OCH-{OCH 22 CH(CHCH (CH 22 OR)}−OR)}-
もしくはOr
−{OCH-{OCH 22 CH(OR)CHCH (OR) CH 22 }−}-
{式中、Rは二重結合を有する光硬化性基を表す}。{Wherein R represents a photocurable group having a double bond}.
光硬化性生体吸収性材料が、さらに光反応性化合物を有する、請求項1又は2に記載の光硬化性生体組織固定化材料。The photocurable biological tissue immobilization material according to claim 1 or 2, wherein the photocurable bioabsorbable material further comprises a photoreactive compound.
JP2003379012A 2003-11-07 2003-11-07 Photo-curable bioabsorbable material Expired - Fee Related JP4500989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003379012A JP4500989B2 (en) 2003-11-07 2003-11-07 Photo-curable bioabsorbable material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003379012A JP4500989B2 (en) 2003-11-07 2003-11-07 Photo-curable bioabsorbable material

Publications (2)

Publication Number Publication Date
JP2005139362A JP2005139362A (en) 2005-06-02
JP4500989B2 true JP4500989B2 (en) 2010-07-14

Family

ID=34689228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003379012A Expired - Fee Related JP4500989B2 (en) 2003-11-07 2003-11-07 Photo-curable bioabsorbable material

Country Status (1)

Country Link
JP (1) JP4500989B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001898A1 (en) * 2008-07-04 2010-01-07 国立大学法人長崎大学 Method for producing hyperbranched polyester, method for producing polyurethane, and polyurethane
CN103764705B (en) * 2012-08-24 2015-12-02 小桧山登 Ester type solidified nature compound, containing its composition and the manufacture method of cured article and ester type solidified nature compound
JP5597779B2 (en) * 2014-01-20 2014-10-01 登 小檜山 Composition containing ester-type curable compound and cured product
KR102272791B1 (en) * 2014-09-11 2021-07-05 한국과학기술원 Emulsifier comprising polyglycerol-poly(ε-caprolactone) block copolymer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54155687A (en) * 1978-02-24 1979-12-07 Union Carbide Corp Equipment* material and method for orthopedics
JPS58147476A (en) * 1982-02-10 1983-09-02 ヘンケル・コマンデイトゲゼルシヤフト・アウフ・アクテイ−ン Surgical adhesive for adhering vital hard tissue and synthetic resin and/or metal
JPS61243823A (en) * 1985-04-23 1986-10-30 Dainippon Ink & Chem Inc Highly branched polyester ether copolymer and curable composition containing same
JP2002113087A (en) * 2000-08-24 2002-04-16 Inst Fuer Textil & Faserforschung Stuttgart Absorbent medical synthetic coating material, its manufacturing method, and medical usage
JP2002265580A (en) * 2001-01-13 2002-09-18 Merck Patent Gmbh Polyester containing (meth)acrylate terminal group

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54155687A (en) * 1978-02-24 1979-12-07 Union Carbide Corp Equipment* material and method for orthopedics
JPS58147476A (en) * 1982-02-10 1983-09-02 ヘンケル・コマンデイトゲゼルシヤフト・アウフ・アクテイ−ン Surgical adhesive for adhering vital hard tissue and synthetic resin and/or metal
JPS61243823A (en) * 1985-04-23 1986-10-30 Dainippon Ink & Chem Inc Highly branched polyester ether copolymer and curable composition containing same
JP2002113087A (en) * 2000-08-24 2002-04-16 Inst Fuer Textil & Faserforschung Stuttgart Absorbent medical synthetic coating material, its manufacturing method, and medical usage
JP2002265580A (en) * 2001-01-13 2002-09-18 Merck Patent Gmbh Polyester containing (meth)acrylate terminal group

Also Published As

Publication number Publication date
JP2005139362A (en) 2005-06-02

Similar Documents

Publication Publication Date Title
JP2855307B2 (en) Photoreactive glycosaminoglycans, cross-linked glycosaminoglycans and methods for producing them
JP4727812B2 (en) Crosslinkable macromer carrying a polymerization initiator group
RU2396985C2 (en) Materials characterised by adhesion to textiles
JP5937257B2 (en) Polymerizable biodegradable polymers containing carbonate or dioxanone linkages
US10005936B2 (en) Photoactive bioadhesive compositions
CN106822183B (en) Photosensitive platelet-rich plasma gel and preparation method and application thereof
JP2006513286A (en) Photopolymer network
JP2002514235A (en) Polymerizable biodegradable polymers containing carbonate or dioxanone linkages
KR20060003872A (en) Tissue-adhesive formulations
BR112015029078B1 (en) surgical glue, reticulated polyester prepared from it, kit comprising surgical glue and a photoinitiator, and plaster
CN102548581A (en) Adhesive complex coacervates and methods of making and using thereof
JP2011503214A (en) Derivatized tertiary amines and uses thereof
JP2018521203A (en) Adhesive composition
CN112876597B (en) Crosslinking agent, biological adhesive, preparation method and application thereof
KR101804501B1 (en) γ-Polyglutamic acid having catechol group, preparation method thereof and tissue adhesives comprising the same
Zhang et al. Photocurable hyperbranched polymer medical glue for water-resistant bonding
CN101437856A (en) Electrochemically degradable polymers
JP4500989B2 (en) Photo-curable bioabsorbable material
EP1106189A2 (en) Photo-curing tissue adhesive
JP2001224677A (en) Photosetting tissue adhesive
JP2005075815A (en) Hemostatic tissue-repairing material
Ito Bioadhesives and Biosealants
CN113384739B (en) Biological glue product for rapid hemostasis
JPH09103481A (en) Medical treatment implement having surface excellent in bioadaptability and its production
WO2021243835A1 (en) High strength and toughness photocrosslinked hydrogel material, preparation method therefor and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees