JP4499701B2 - Fuel reforming system having movable heat source and fuel cell system having the same - Google Patents

Fuel reforming system having movable heat source and fuel cell system having the same Download PDF

Info

Publication number
JP4499701B2
JP4499701B2 JP2006300813A JP2006300813A JP4499701B2 JP 4499701 B2 JP4499701 B2 JP 4499701B2 JP 2006300813 A JP2006300813 A JP 2006300813A JP 2006300813 A JP2006300813 A JP 2006300813A JP 4499701 B2 JP4499701 B2 JP 4499701B2
Authority
JP
Japan
Prior art keywords
unit
reforming
fuel
heat source
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006300813A
Other languages
Japanese (ja)
Other versions
JP2007191382A (en
Inventor
周龍 金
聖哲 李
贊鎬 李
東明 徐
鎭壙 金
鎭九 安
東旭 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Publication of JP2007191382A publication Critical patent/JP2007191382A/en
Application granted granted Critical
Publication of JP4499701B2 publication Critical patent/JP4499701B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/12Tube and panel arrangements for ceiling, wall, or underfloor heating
    • F24D3/14Tube and panel arrangements for ceiling, wall, or underfloor heating incorporated in a ceiling, wall or floor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0403Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal
    • B01J8/0407Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal through two or more cylindrical annular shaped beds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/12Tube and panel arrangements for ceiling, wall, or underfloor heating
    • F24D3/122Details
    • F24D3/127Mechanical connections between panels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00026Controlling or regulating the heat exchange system
    • B01J2208/00035Controlling or regulating the heat exchange system involving measured parameters
    • B01J2208/00044Temperature measurement
    • B01J2208/00061Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00309Controlling the temperature by indirect heat exchange with two or more reactions in heat exchange with each other, such as an endothermic reaction in heat exchange with an exothermic reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00548Flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00193Sensing a parameter
    • B01J2219/00195Sensing a parameter of the reaction system
    • B01J2219/002Sensing a parameter of the reaction system inside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00211Control algorithm comparing a sensed parameter with a pre-set value
    • B01J2219/00213Fixed parameter value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00222Control algorithm taking actions
    • B01J2219/00227Control algorithm taking actions modifying the operating conditions
    • B01J2219/00229Control algorithm taking actions modifying the operating conditions of the reaction system
    • B01J2219/00231Control algorithm taking actions modifying the operating conditions of the reaction system at the reactor inlet
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0816Heating by flames
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1604Starting up the process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • C01B2203/1619Measuring the temperature
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F2290/00Specially adapted covering, lining or flooring elements not otherwise provided for
    • E04F2290/02Specially adapted covering, lining or flooring elements not otherwise provided for for accommodating service installations or utility lines, e.g. heating conduits, electrical lines, lighting devices or service outlets
    • E04F2290/023Specially adapted covering, lining or flooring elements not otherwise provided for for accommodating service installations or utility lines, e.g. heating conduits, electrical lines, lighting devices or service outlets for heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/20Heat consumers
    • F24D2220/2081Floor or wall heating panels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、改質燃料としてブタンを使用して水素を主成分とする改質ガスを生成する燃料改質システム及びこれを備えた燃料電池システムに関し、より詳しくは、ブタンから水素を主成分とする改質ガスを生成する反応帯域に、熱エネルギーを提供するための熱源が移動可能に提供された燃料改質システム及びこれを備えた燃料電池システムに関する。   The present invention relates to a fuel reforming system that uses butane as a reformed fuel to generate a reformed gas containing hydrogen as a main component and a fuel cell system including the fuel reforming system, and more specifically, hydrogen from butane as a main component. The present invention relates to a fuel reforming system in which a heat source for providing thermal energy is movably provided in a reaction zone for generating reformed gas to be produced, and a fuel cell system including the fuel reforming system.

一般的に、燃料電池システムは、水素と酸素、またはメタノール、エタノールなどのアルコール系燃料;メタン、プロパン、ブタンなどの炭化水素系燃料、または液化天然ガスなどの天然ガス系燃料のような水素含有燃料から得られる水素に富む改質ガスと酸素とを、化学反応により電気エネルギーに変える発電装置であって、電力需要の増加に伴う電源確保の困難と日増しに増加する地球環境問題を解決できる代案として研究開発されている。   In general, fuel cell systems contain hydrogen and oxygen, or hydrogen-based fuels such as methanol or ethanol, hydrocarbon fuels such as methane, propane, or butane, or natural gas fuels such as liquefied natural gas. A power generation device that converts hydrogen-rich reformed gas obtained from fuel and oxygen into electrical energy through chemical reaction, which can solve the difficulty of securing power supply due to the increase in power demand and the increasing global environmental problems. It is being researched and developed as an alternative.

燃料電池システムは、使用される電解質の種類に応じて、リン酸型燃料電池(PAFC;phosphoric acid fuel cell)、溶融炭酸塩型燃料電池(MCFC;molten carbonate fuel cell)、固体酸化物型燃料電池(SOFC;solid oxide fuel cell)、高分子電解質型燃料電池(PEMFC;polymer electrolyte membrane fuel cell)、アルカリ型燃料電池(AFC;alkaline fuel cell)などに分類される。また、燃料電池システムは、その種類に応じて使用される燃料の種類とともに、作動温度、出力範囲などに応じて移動電源用、輸送用、分散発電用といった多様な応用分野に適用されることができる。   The fuel cell system includes a phosphoric acid fuel cell (PAFC), a molten carbonate fuel cell (MCFC), a solid oxide fuel cell, depending on the type of electrolyte used. (SOFC; solid oxide fuel cell), polymer electrolyte fuel cell (PEMFC), alkaline fuel cell (AFC), and the like. In addition, the fuel cell system can be applied to various application fields such as for mobile power supply, transportation, and distributed power generation according to the operating temperature, output range, etc., along with the type of fuel used according to the type. it can.

最近では、規格品として市販されている携帯用ブタン容器を燃料供給源として使用するための燃料電池システムが開発されており、このような燃料電池システムの一例として、特許文献1には、燃料電池発電システム(図6参照)が開示されている。本特許文献によると、燃料電池発電システムは、ブタン燃料ガスを収納する携帯用圧力容器と、前記圧力容器内に収容されたブタンガスの一部を燃料ガスとして使用し、前記ブタンガスの残りを水と反応させて水素ガスを含む改質ガスを生成する改質装置と、前記改質ガス中の水素と空気中の酸素とを使用して電気を生成する燃料電池と、ブタンガスの量を調節するための装置と、ブタンガスの流量を調節するための装置とを備えている。   Recently, a fuel cell system for using a portable butane container marketed as a standard product as a fuel supply source has been developed. As an example of such a fuel cell system, Patent Document 1 discloses a fuel cell system. A power generation system (see FIG. 6) is disclosed. According to this patent document, the fuel cell power generation system uses a portable pressure vessel for storing butane fuel gas, a part of the butane gas accommodated in the pressure vessel as fuel gas, and the rest of the butane gas as water. A reformer for generating a reformed gas containing hydrogen gas by reacting, a fuel cell for generating electricity using hydrogen in the reformed gas and oxygen in the air, and adjusting the amount of butane gas And a device for adjusting the flow rate of butane gas.

しかし、前述の携帯用燃料電池発電システムの改質装置において、ブタンガスから水素に富む改質ガスを得るための反応帯域を効果的に加熱することができず、改質効率の向上には限界があった。   However, in the above-described reformer of the portable fuel cell power generation system, the reaction zone for obtaining the reformed gas rich in hydrogen from butane gas cannot be effectively heated, and there is a limit to improving the reforming efficiency. there were.

また、特許文献1には、熱源から直接反応熱を受けて改質燃料を水蒸気改質して水素を主成分とする改質ガスを生成させる原料改質部と、熱源からの伝熱により間接加熱されるシフト反応部とCO酸化部とを備えた改質装置(図7参照)が開示されている。   In addition, Patent Document 1 discloses a raw material reforming unit that receives a reaction heat directly from a heat source to steam reform the reformed fuel to generate a reformed gas mainly containing hydrogen, and indirectly by heat transfer from the heat source. A reformer (see FIG. 7) having a shift reaction section and a CO oxidation section to be heated is disclosed.

しかし、このような改質装置において、シフト反応部を間接加熱して反応工程に必要な熱を供給するためには、相対的に長い時間が費やされるという問題があった。
大韓民国特許出願公開第2000−22546号明細書
However, in such a reformer, there is a problem that a relatively long time is consumed in order to indirectly heat the shift reaction unit and supply heat necessary for the reaction process.
Korean Patent Application Publication No. 2000-22546

本発明は、前記のような従来の問題を解決するために提案されたもので、本発明の目的は、ブタンガスから水素に富む改質ガスを得るための燃料改質部とシフト反応部とを熱源から直接加熱した後に、シフト反応部が触媒活性化温度まで上昇すると、燃料改質部のみを直接加熱するように前記熱源を移動させて改質効果を向上することができる燃料改質システムを提供することにある。   The present invention has been proposed in order to solve the above-described conventional problems. The object of the present invention is to provide a fuel reforming section and a shift reaction section for obtaining a reformed gas rich in hydrogen from butane gas. A fuel reforming system capable of improving the reforming effect by moving the heat source so as to directly heat only the fuel reforming section when the shift reaction section rises to the catalyst activation temperature after directly heating from the heat source. It is to provide.

本発明の他の目的は、燃料改質部とシフト反応部のそれぞれの反応帯域が熱エネルギーを提供する熱源により加熱される間、シフト反応部の反応帯域が所定の触媒活性化温度まで加熱されると、熱源が燃料改質部の反応帯域のみを加熱するように移動することができる燃料改質システムを備え、発電効率を向上することができる燃料電池システムを提供することにある。   Another object of the present invention is that while the reaction zones of the fuel reforming section and the shift reaction section are heated by a heat source that provides thermal energy, the reaction zone of the shift reaction section is heated to a predetermined catalyst activation temperature. Accordingly, an object of the present invention is to provide a fuel cell system that includes a fuel reforming system in which the heat source can move so as to heat only the reaction zone of the fuel reforming section and can improve power generation efficiency.

前記目的を達成するために、本発明によると、燃料改質システムは、水素含有燃料から水素を主成分とする改質ガスを生成させるための改質触媒を有する改質部と、前記改質ガスから一酸化炭素を除去するCO除去部と、前記改質部とCO除去部とに熱エネルギーを供給するための熱源と、前記熱源を前記改質部とCO除去部との間で移動させるための移動手段とからなることを特徴とする。   To achieve the above object, according to the present invention, a fuel reforming system includes a reforming unit having a reforming catalyst for generating a reformed gas containing hydrogen as a main component from a hydrogen-containing fuel, and the reforming unit. A CO removal unit for removing carbon monoxide from the gas; a heat source for supplying thermal energy to the reforming unit and the CO removal unit; and the heat source is moved between the reforming unit and the CO removal unit. And moving means.

前記CO除去部は、前記改質ガスの水性シフト反応によりCOの濃度を低減させるシフト反応部と、COを選択的に酸化させて除去するCO酸化部とからなり、前記熱源は、前記シフト反応部がシフト触媒の活性化温度まで加熱されると移動する。   The CO removal unit includes a shift reaction unit that reduces the concentration of CO by an aqueous shift reaction of the reformed gas, and a CO oxidation unit that selectively oxidizes and removes CO, and the heat source includes the shift reaction. When the part is heated to the activation temperature of the shift catalyst, it moves.

燃料改質システムは、改質部とCO除去部とを収容するための収容空間を有するハウジングをさらに含み、ハウジングの収容空間で熱源は、その火炎が改質部に向かうようにシフト反応部の後方に位置する。また、ハウジングの収容空間には、火炎の進行方向において改質部の前方に気化器が提供される。   The fuel reforming system further includes a housing having a housing space for housing the reforming unit and the CO removing unit, and in the housing space of the housing, the heat source is arranged in the shift reaction unit so that the flame is directed toward the reforming unit. Located behind. Further, a vaporizer is provided in the housing space in front of the reforming unit in the flame traveling direction.

また、本発明によると、燃料電池システムは、炭化水素を主成分とする水素含有燃料を供給する供給源と、前記供給源から供給される水素含有燃料を改質して水素を生成する改質器と、前記改質器の水素と酸化剤との電気化学反応により電気を生成する発電部とを含み、前記改質器は、水素含有燃料から水素を主成分とする改質ガスを生成させる改質部と、前記改質ガスから一酸化炭素を除去するCO除去部と、前記改質部とCO除去部とに直接熱エネルギーを供給するための熱源と、前記熱源を移動させるための移動手段とからなることを特徴とする。   Further, according to the present invention, a fuel cell system includes a supply source that supplies a hydrogen-containing fuel whose main component is hydrocarbon, and a reforming that generates hydrogen by reforming the hydrogen-containing fuel supplied from the supply source. And a power generation unit that generates electricity by an electrochemical reaction between hydrogen and an oxidant of the reformer, and the reformer generates a reformed gas containing hydrogen as a main component from a hydrogen-containing fuel. A reforming unit, a CO removing unit for removing carbon monoxide from the reformed gas, a heat source for directly supplying thermal energy to the reforming unit and the CO removing unit, and a movement for moving the heat source Means.

前記供給源は、ブタンガス圧力源であり、CO除去部は、前記改質ガスの水性シフト反応によりCOの濃度を低減させるシフト反応部と、COを選択的に酸化させて除去するCO酸化部とからなり、前記熱源は、前記シフト反応部がシフト触媒の活性化温度まで加熱されると移動する。   The supply source is a butane gas pressure source, and the CO removal unit includes a shift reaction unit that reduces the concentration of CO by an aqueous shift reaction of the reformed gas, and a CO oxidation unit that selectively oxidizes and removes CO. The heat source moves when the shift reaction unit is heated to the activation temperature of the shift catalyst.

本発明によると、ブタンガスから水素に富む改質ガスを得るための燃料改質部とシフト反応部とを熱源から直接加熱した後に、シフト反応部が触媒活性化温度まで上昇すると、燃料改質部のみを直接加熱するように前記熱源を移動させることにより、燃料改質システムの改質効果を向上することができる。   According to the present invention, after the fuel reforming section and the shift reaction section for obtaining the hydrogen-rich reformed gas from butane gas are directly heated from the heat source, the fuel reforming section is increased when the shift reaction section rises to the catalyst activation temperature. The reforming effect of the fuel reforming system can be improved by moving the heat source so as to directly heat only the fuel.

また、本発明は、燃料改質部とシフト反応部のそれぞれの反応帯域が熱エネルギーを提供する熱源により加熱される間、シフト反応部の反応帯域が所定の触媒活性化温度まで加熱されると、熱源が燃料改質部の反応帯域のみを加熱するように移動させることにより、燃料電池システムの発電効率を向上することができる。   Further, the present invention provides a method in which the reaction zone of the shift reaction section is heated to a predetermined catalyst activation temperature while the reaction zones of the fuel reforming section and the shift reaction section are heated by a heat source that provides thermal energy. The power generation efficiency of the fuel cell system can be improved by moving the heat source so as to heat only the reaction zone of the fuel reforming section.

以下、添付された図面を参照して、本発明の実施例について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

本明細書において、これに限るものではないが、ブタンを主成分とする水素含有燃料が使用され、このような水素含有燃料の一部は、水とともに使用される改質しようとする改質燃料として使用され、他の一部は、改質反応部とCO除去部をそれぞれの触媒活性化温度まで加熱するために、熱エネルギーを供給するための燃焼燃料として使用される。また、酸化剤は、別の貯蔵手段に貯蔵された純酸素または酸素含有空気を使用することができるが、以下では、外気に含まれた酸素を使用する。   In this specification, but not limited to this, a hydrogen-containing fuel containing butane as a main component is used, and a part of such a hydrogen-containing fuel is a reformed fuel to be reformed used together with water. And the other part is used as a combustion fuel for supplying thermal energy to heat the reforming reaction section and the CO removal section to their respective catalyst activation temperatures. As the oxidant, pure oxygen or oxygen-containing air stored in another storage means can be used. In the following, oxygen contained in the outside air is used.

まず、図1を参照すると、燃料電池システムは、ブタンを主成分とする水素含有燃料を供給する供給源10と、供給源10から供給される水素含有燃料を改質して水素を生成する改質器20と、改質器20の水素と酸化剤との電気化学反応により電気を生成するスタック30とを有する。説明していない参照番号40は、スタック30だけでなく、熱源28と選択的酸化部26とに空気のような酸化剤を供給するための空気供給部であり、説明していない参照番号50は、スタック30で発生する水を回収するための回収タンクである。   First, referring to FIG. 1, a fuel cell system includes a supply source 10 that supplies a hydrogen-containing fuel containing butane as a main component, and a reformer that generates hydrogen by reforming the hydrogen-containing fuel supplied from the supply source 10. And a stack 30 for generating electricity by an electrochemical reaction between hydrogen of the reformer 20 and an oxidizing agent. The reference number 40 not described is an air supply unit for supplying an oxidant such as air to the heat source 28 and the selective oxidation unit 26 as well as the stack 30. A recovery tank for recovering water generated in the stack 30.

供給源10として、汎用性の高いブタンガス圧力容器10’(図3参照)を使用することができる。好ましくは、供給源10は、前記ブタンガス圧力容器10’から供給されるブタンを気化させるための気化器12(図3参照)を含む。気化器12は、減圧によりブタンを気化させるか、または以下に説明する熱源28からの熱エネルギーにより気化することができる。   As the supply source 10, a versatile butane gas pressure vessel 10 '(see FIG. 3) can be used. Preferably, the supply source 10 includes a vaporizer 12 (see FIG. 3) for vaporizing butane supplied from the butane gas pressure vessel 10 '. The vaporizer 12 can vaporize butane by depressurization or vaporize by heat energy from the heat source 28 described below.

改質器20は、供給源10から供給される改質燃料から水素成分が主成分である改質ガスを生成する改質反応部22と、改質反応部22に流体連通可能に連結され、改質ガスに含まれている一酸化炭素を除去するCO除去部と、改質反応部22及び前記CO除去部のそれぞれに熱エネルギーを供給するための熱源28とを含む。   The reformer 20 is connected to the reforming reaction unit 22 that generates a reformed gas mainly composed of a hydrogen component from the reformed fuel supplied from the supply source 10, and is connected to the reforming reaction unit 22 so as to be in fluid communication. A CO removing unit that removes carbon monoxide contained in the reformed gas, and a heat source 28 for supplying thermal energy to each of the reforming reaction unit 22 and the CO removing unit are included.

改質反応部22には、改質触媒22aが提供される。   The reforming reaction unit 22 is provided with a reforming catalyst 22a.

改質反応部22は、これに限るものではないが、水蒸気改質方式(SR:steam reforming)、自己熱改質方式(ATR:autothermal reforming)及び部分酸化方式(POX:partial oxidation)を用いて水素含有燃料を改質させる。部分酸化方式と自己熱改質方式は、初期始動及び負荷変動による応答特性に優れている反面、水蒸気改質方式は、水素生産効率の側面から優れているという長所がある。   The reforming reaction section 22 is not limited to this, but uses a steam reforming system (SR), an autothermal reforming system (ATR), and a partial oxidation system (POX). Reforming hydrogen-containing fuel. The partial oxidation method and the autothermal reforming method are excellent in response characteristics due to initial start-up and load fluctuation, while the steam reforming method is advantageous in terms of hydrogen production efficiency.

水蒸気改質方式は、触媒上で水素含有燃料と水蒸気との化学反応、すなわち、吸熱反応により水素を主成分とする改質ガスを得る。このような水蒸気改質方式において、前記吸熱反応を行うために外部からの多量のエネルギーを要するが、改質ガスの供給が安定的で、相対的に高濃度の水素を得ることができるため、最も普遍的に使用される。   In the steam reforming method, a reformed gas containing hydrogen as a main component is obtained by a chemical reaction between a hydrogen-containing fuel and steam on a catalyst, that is, an endothermic reaction. In such a steam reforming system, a large amount of energy from the outside is required to perform the endothermic reaction, but the supply of the reformed gas is stable and relatively high concentration hydrogen can be obtained. Most commonly used.

したがって、改質反応部22が、例えば、水蒸気改質方式を採用している場合に、供給源10から供給される改質燃料、すなわちブタンを主成分とする水素含有燃料が、回収装置50から回収されて供給される水とともに、改質触媒22aで下記反応式1の水蒸気改質反応を行うことにより、水素に富む改質ガスが生成される。   Therefore, when the reforming reaction unit 22 adopts, for example, a steam reforming method, the reformed fuel supplied from the supply source 10, that is, the hydrogen-containing fuel mainly containing butane is recovered from the recovery device 50. A reformed gas rich in hydrogen is generated by performing a steam reforming reaction of the following reaction formula 1 with the reforming catalyst 22a together with the recovered and supplied water.

[反応式1]
n−C10 + 8HO ←→ 4CO + 13H
ΔH298 = 485.3KJ/mol
[Reaction Formula 1]
n-C 4 H 10 + 8H 2 O ← → 4CO 2 + 13H 2
ΔH 298 = 485.3 KJ / mol

改質触媒22aとしては、担体に金属を担持したものを例示することができる。担持金属は、ルテニウム、ロジウム、ニッケルなどがある。担体としては、二酸化ジルコニウム、アルミナ、シリカゲル、活性アルミナ、二酸化チタン、ゼオライト、活性炭などが使用されることができる。前述の改質ガスとしては、水素とともに、微量の二酸化炭素、メタンガス及び一酸化炭素も生成される。一酸化炭素は、特に、スタック30の電極として一般的に使用される白金触媒を被毒して燃料電池システムの性能を低下させるため、これを除去する必要がある。   The reforming catalyst 22a can be exemplified by a metal supported on a carrier. Examples of the supported metal include ruthenium, rhodium, and nickel. As the carrier, zirconium dioxide, alumina, silica gel, activated alumina, titanium dioxide, zeolite, activated carbon and the like can be used. As the above-mentioned reformed gas, a small amount of carbon dioxide, methane gas, and carbon monoxide are also generated along with hydrogen. Carbon monoxide, in particular, must be removed because it poisons the platinum catalyst commonly used as the electrode of the stack 30 and degrades the performance of the fuel cell system.

したがって、一酸化炭素を除去するためのCO除去部は、水性ガス切替触媒反応と選択的酸化触媒反応がそれぞれ行なわれる水性ガス切替部24と選択的酸化部26とを含む。水性ガス切替部24には、シフト触媒24aが提供され、選択的酸化部26には、酸化触媒26aが提供される。選択的酸化部26には、選択的酸化反応に必要な酸素のような酸化剤が空気供給部40により供給される。水性ガス切替触媒反応と選択的酸化触媒反応を反応式で表すと、それぞれ下記の反応式2及び反応式3の通りである。   Therefore, the CO removing unit for removing carbon monoxide includes the water gas switching unit 24 and the selective oxidation unit 26 in which the water gas switching catalytic reaction and the selective oxidation catalytic reaction are performed, respectively. The water gas switching unit 24 is provided with a shift catalyst 24a, and the selective oxidation unit 26 is provided with an oxidation catalyst 26a. The selective oxidizing unit 26 is supplied with an oxidizing agent such as oxygen necessary for the selective oxidation reaction by the air supply unit 40. The water gas switching catalytic reaction and the selective oxidation catalytic reaction are represented by the following reaction formulas 2 and 3, respectively.

[反応式2]
CO + HO ←→ CO + H
ΔH298 = −41.1KJ/mol
[Reaction Formula 2]
CO + H 2 O ← → CO 2 + H 2
ΔH 298 = -41.1KJ / mol

[反応式3]
CO + 1/2←→ CO
ΔH298 = −284.1KJ/mol
[Reaction Formula 3]
CO + 1/2 O 2 ← → CO 2
ΔH 298 = -284.1 KJ / mol

この時、改質器20において、供給源10から供給されるブタンを燃焼燃料として使用する熱源28が提供される。熱源28には、空気供給部40から酸素のような酸化剤が供給される。熱源28は、改質器20の改質反応部22、水性ガス切替部24及び選択的酸化部26をそれぞれの触媒活性化温度まで加熱するために必要な熱エネルギーを供給するように提供される。   At this time, the reformer 20 is provided with a heat source 28 that uses butane supplied from the supply source 10 as combustion fuel. The heat source 28 is supplied with an oxidizing agent such as oxygen from the air supply unit 40. A heat source 28 is provided to supply the thermal energy necessary to heat the reforming reaction section 22, the water gas switching section 24 and the selective oxidation section 26 of the reformer 20 to their respective catalyst activation temperatures. .

図3を参照すると、改質器20は、所定大きさの収容空間を有するハウジング20aを含み、前記収容空間には、改質反応部22と水性ガス切替部24とが順次収容される。熱源28は、前記収容空間に向かって火炎28aを放出できるように水性ガス切替部24の後方に位置する。好ましくは、供給源10と改質反応部22との間には、供給源、例えば、ブタンガス圧力容器10’から供給される改質燃料を気化させるための気化器12が流体連通可能に提供される。熱源28において、燃焼反応は、下記反応式4で表される。   Referring to FIG. 3, the reformer 20 includes a housing 20a having a storage space of a predetermined size, and the reforming reaction unit 22 and the water gas switching unit 24 are sequentially stored in the storage space. The heat source 28 is located behind the water gas switching unit 24 so that the flame 28a can be emitted toward the housing space. Preferably, a vaporizer 12 for vaporizing reformed fuel supplied from a supply source, for example, a butane gas pressure vessel 10 ′, is provided between the supply source 10 and the reforming reaction unit 22 so as to be in fluid communication. The In the heat source 28, the combustion reaction is represented by the following reaction formula 4.

[反応式4]
n−C10 + 6.5O ←→ 4CO + 5H
ΔH298 = −2658.5KJ/mol
[Reaction Formula 4]
n-C 4 H 10 + 6.5O 2 ← → 4CO 2 + 5H 2 O
ΔH 298 = -2658.5 KJ / mol

これを詳述すると、ブタンガス圧力容器10’からのブタンガスの一部は、燃焼燃料として熱源28に供給され、残りのブタンガスは、改質燃料として気化器12に供給される。この時、熱源28には、空気供給部40から酸素が供給され、気化器12には、水が供給される。熱源28に供給されたブタンガスの一部、すなわち、燃焼燃料は、上記反応式4の反応により燃焼され、この時発生する熱エネルギーは、改質反応部22と水性ガス切替部24とに伝達される。特に、熱源28の火炎28aが水性ガス切替部24に直接接触して熱エネルギーが直接伝達されるようにする。   More specifically, a part of the butane gas from the butane gas pressure vessel 10 ′ is supplied to the heat source 28 as combustion fuel, and the remaining butane gas is supplied to the vaporizer 12 as reformed fuel. At this time, oxygen is supplied from the air supply unit 40 to the heat source 28, and water is supplied to the vaporizer 12. Part of the butane gas supplied to the heat source 28, that is, the combustion fuel, is combusted by the reaction of the above reaction formula 4, and the thermal energy generated at this time is transmitted to the reforming reaction unit 22 and the water gas switching unit 24. The In particular, the flame 28a of the heat source 28 is in direct contact with the water gas switching unit 24 so that heat energy is directly transmitted.

この時、熱源28の火炎28aにより水性ガス切替部24がシフト触媒24a、例えば、銅−亜鉛系触媒の活性化温度まで加熱され、このような加熱状態が第2温度センサ24bにより感知されると、第2温度センサ24bは、図5に示されるように、水性ガス切替部24の加熱状態を制御部に提供する。その後、前記制御部は、駆動モータを起動させて熱源28が改質反応部22側に移動するようにする。このように水性ガス切替部24が熱源28の火炎28aにより直接加熱されるので、水性ガス切替部24をシフト触媒24aの活性化温度まで加熱するための加熱時間を短縮することができる。   At this time, when the water gas switching unit 24 is heated to the activation temperature of the shift catalyst 24a, for example, a copper-zinc catalyst, by the flame 28a of the heat source 28, such a heating state is detected by the second temperature sensor 24b. The 2nd temperature sensor 24b provides the control part with the heating state of the water gas switch part 24, as FIG. 5 shows. Thereafter, the control unit activates the drive motor so that the heat source 28 moves to the reforming reaction unit 22 side. Thus, since the water gas switching unit 24 is directly heated by the flame 28a of the heat source 28, the heating time for heating the water gas switching unit 24 to the activation temperature of the shift catalyst 24a can be shortened.

そして、図2及び4に示すように、熱源28が改質反応部22側に移動した後、熱源28の火炎28aは、改質反応部22に直接接触して加熱する。改質反応部22に提供された第1温度センサ22bは、改質反応部22の温度をリアルタイムで測定する。   2 and 4, after the heat source 28 moves to the reforming reaction unit 22 side, the flame 28a of the heat source 28 directly contacts the reforming reaction unit 22 and heats it. The first temperature sensor 22b provided to the reforming reaction unit 22 measures the temperature of the reforming reaction unit 22 in real time.

改質反応部22が改質触媒22aの活性化温度まで加熱され、このような加熱状態が第1温度センサ22bにより制御部に提供されると、制御部は、燃焼燃料の供給量を減少させて熱源28の火炎28aの大きさを減少する。   When the reforming reaction unit 22 is heated to the activation temperature of the reforming catalyst 22a and such a heating state is provided to the control unit by the first temperature sensor 22b, the control unit decreases the supply amount of the combustion fuel. Thus, the size of the flame 28a of the heat source 28 is reduced.

一方、熱源28が改質反応部22に移動した後、水性ガス切替部24の加熱状態は、ハウジング20aの内壁に沿って後方に排出される熱により維持される。また、第2温度センサ24bにより測定された水性ガス切替部24の温度がシフト触媒24aの活性化温度以下に維持されていると、制御部は、駆動モータを起動させて熱源28が水性ガス切替部24側に移動するようにする。   On the other hand, after the heat source 28 moves to the reforming reaction unit 22, the heating state of the water gas switching unit 24 is maintained by the heat exhausted rearward along the inner wall of the housing 20a. Further, when the temperature of the water gas switching unit 24 measured by the second temperature sensor 24b is maintained below the activation temperature of the shift catalyst 24a, the control unit starts the drive motor and the heat source 28 switches the water gas. It moves to the part 24 side.

熱源28により改質反応部22と水性ガス切替部24がそれぞれの触媒活性化温度まで加熱された状態で、ブタンガス圧力容器10’から供給されるブタンガス、すなわち、改質燃料は、水とともに、気化器12を通過しながら気化する。気化した改質燃料は、改質反応部22を通過しながら上記反応式1の反応により水素を主成分とする改質ガスを生成する。   In a state where the reforming reaction unit 22 and the water gas switching unit 24 are heated to the respective catalyst activation temperatures by the heat source 28, butane gas supplied from the butane gas pressure vessel 10 ′, that is, reformed fuel is vaporized together with water. Vaporizes while passing through the vessel 12. The vaporized reformed fuel generates a reformed gas mainly composed of hydrogen by the reaction of the above reaction formula 1 while passing through the reforming reaction section 22.

このような改質ガスが水性ガス切替部24を通過する間、上記反応式2の反応により改質ガスに含まれている一酸化炭素が除去され、結果として、改質ガスに含まれている一酸化炭素の含有量が一次減少する。そして、改質ガスに含まれている一酸化炭素の含有量を最終目標、例えば、少なくとも10ppm以下に減少させるために、水性ガス切替部24の後段には、選択的酸化部26が流体連通可能に連結される。   While such reformed gas passes through the water gas switching unit 24, carbon monoxide contained in the reformed gas is removed by the reaction of the above reaction formula 2, and as a result, contained in the reformed gas. The carbon monoxide content decreases primarily. Then, in order to reduce the content of carbon monoxide contained in the reformed gas to a final target, for example, at least 10 ppm or less, the selective oxidation unit 26 can be in fluid communication with the subsequent stage of the water gas switching unit 24. Connected to

選択的酸化部26には、酸化触媒26aが提供される。酸化触媒26aは、例えば、白金系触媒またはルテニウム系触媒などで構成され、これらは、固形質形態または多孔性形態で提供されることができる。これにより、水性ガス切替部24を通過した改質ガスが選択的酸化部26の酸化触媒26aを通過する間、上記反応式3の反応により一酸化炭素が除去され、ほぼ純粋な高純度の水素を生成する。   The selective oxidation unit 26 is provided with an oxidation catalyst 26a. The oxidation catalyst 26a is composed of, for example, a platinum-based catalyst or a ruthenium-based catalyst, and these can be provided in a solid form or a porous form. As a result, while the reformed gas that has passed through the water gas switching unit 24 passes through the oxidation catalyst 26a of the selective oxidation unit 26, carbon monoxide is removed by the reaction of the above reaction formula 3, and almost pure high-purity hydrogen Is generated.

このような高純度の水素は、スタック30に供給される。すなわち、スタック30のアノード電極とカソード電極に高純度の水素と空気がそれぞれ供給されると、水素酸化反応により生成される電気は、集電体(図示せず)を介して外部回路に通電される。   Such high-purity hydrogen is supplied to the stack 30. That is, when high-purity hydrogen and air are respectively supplied to the anode electrode and the cathode electrode of the stack 30, the electricity generated by the hydrogen oxidation reaction is supplied to an external circuit through a current collector (not shown). The

これを詳述すると、改質器20の選択的酸化部26から生成された高純度の水素は、スタック30のアノード電極(図示せず)に供給され、空気供給部40からの酸素含有空気は、スタック30のカソード電極(図示せず)に供給される。スタック30のMEA(図示せず)を介した水素イオンの伝達の結果、水素と酸素との化学反応により電気が生成される。そして、スタック30内での化学反応の結果生成される水は、回収タンク50に回収された後にリサイクルされる。   More specifically, high-purity hydrogen generated from the selective oxidation unit 26 of the reformer 20 is supplied to an anode electrode (not shown) of the stack 30, and oxygen-containing air from the air supply unit 40 is , And supplied to a cathode electrode (not shown) of the stack 30. As a result of the transfer of hydrogen ions through the MEA (not shown) of the stack 30, electricity is generated by a chemical reaction between hydrogen and oxygen. The water generated as a result of the chemical reaction in the stack 30 is collected in the collection tank 50 and then recycled.

上記の内容は、本発明の好ましい実施例を単に例示したものであり、本発明の属する技術分野における当業者は、添付された請求範囲に記載の本発明の思想及び要旨を逸脱することなく、本発明に対する修正及び変更を加えることができるということを認識しなければならない。   The above description is merely illustrative of a preferred embodiment of the present invention, and those skilled in the art to which the present invention pertains shall not depart from the spirit and gist of the present invention as described in the appended claims. It should be recognized that modifications and changes can be made to the present invention.

本発明による燃料改質システムを有する燃料電池システムの図である。1 is a diagram of a fuel cell system having a fuel reforming system according to the present invention. 図1の燃料電池システムにおける熱源の移動状態を示す図である。It is a figure which shows the movement state of the heat source in the fuel cell system of FIG. 本発明による燃料改質システムの構成図である。It is a block diagram of the fuel reforming system by this invention. 図3の燃料改質システムにおける熱源の移動状態を示す図である。It is a figure which shows the movement state of the heat source in the fuel reforming system of FIG. 熱源を移動するための移動手段の構成を概略的に示す図である。It is a figure which shows schematically the structure of the moving means for moving a heat source. 従来の一実施例による燃料電池発電システムの図である。It is a figure of the fuel cell power generation system by one conventional Example. 従来の他の実施例による改質装置の図である。It is a figure of the reformer by other conventional examples.

符号の説明Explanation of symbols

10 燃料供給部
20 改質器
22 改質反応部
24 水性ガス切替部
26 選択的酸化部
28 熱源
30 スタック
40 空気供給部
50 回収タンク
DESCRIPTION OF SYMBOLS 10 Fuel supply part 20 Reformer 22 Reformation reaction part 24 Water gas switching part 26 Selective oxidation part 28 Heat source 30 Stack 40 Air supply part 50 Recovery tank

Claims (20)

水素含有燃料から水素を主成分とする改質ガスを生成させるための改質部と、
前記改質ガスから一酸化炭素を除去するCO除去部と、
前記改質部とCO除去部とに熱エネルギーを供給するための熱源と、
前記熱源を前記改質部とCO除去部との間で移動させるための移動手段とからなることを特徴とする燃料改質システム。
A reforming section for generating a reformed gas containing hydrogen as a main component from a hydrogen-containing fuel;
A CO removal section for removing carbon monoxide from the reformed gas;
A heat source for supplying thermal energy to the reforming unit and the CO removal unit;
A fuel reforming system comprising a moving means for moving the heat source between the reforming unit and the CO removing unit.
前記移動手段は、前記熱源を移動させるための駆動モータと、前記駆動モータの動作を制御するための制御部とを含むことを特徴とする請求項1に記載の燃料改質システム。   The fuel reforming system according to claim 1, wherein the moving unit includes a drive motor for moving the heat source, and a control unit for controlling the operation of the drive motor. 前記CO除去部は、前記改質ガスの水性シフト反応により一酸化炭素の濃度を低減させるためのシフト触媒を有するシフト反応部と、一酸化炭素を選択的に酸化させて除去するための酸化触媒を有するCO酸化部とからなることを特徴とする請求項2に記載の燃料改質システム。   The CO removing unit includes a shift reaction unit having a shift catalyst for reducing the concentration of carbon monoxide by an aqueous shift reaction of the reformed gas, and an oxidation catalyst for selectively oxidizing and removing carbon monoxide. The fuel reforming system according to claim 2, further comprising a CO oxidation unit having 前記改質部とシフト反応部とを収容するための収容空間を有するハウジングをさらに含むことを特徴とする請求項3に記載の燃料改質システム。   The fuel reforming system according to claim 3, further comprising a housing having an accommodating space for accommodating the reforming part and the shift reaction part. 前記熱源は、前記ハウジング内でその火炎が改質部側に向かうように前記シフト反応部の後方に位置することを特徴とする請求項4に記載の燃料改質システム。   5. The fuel reforming system according to claim 4, wherein the heat source is located behind the shift reaction unit such that a flame thereof is directed toward the reforming unit in the housing. 前記熱源は、前記シフト反応部がシフト触媒の活性化温度まで加熱されると、前記改質部に向かって移動することを特徴とする請求項5に記載の燃料改質システム。   The fuel reforming system according to claim 5, wherein the heat source moves toward the reforming unit when the shift reaction unit is heated to an activation temperature of the shift catalyst. 前記シフト反応部には、温度センサが提供されたことを特徴とする請求項6に記載の燃料改質システム。   The fuel reforming system according to claim 6, wherein the shift reaction unit is provided with a temperature sensor. 前記ハウジングの収容空間には、前記火炎の進行方向において前記改質部の前方に前記水素含有燃料を気化させるための気化器が提供されていることを特徴とする請求項5に記載の燃料改質システム。   6. The fuel reformer according to claim 5, wherein a vaporizer for vaporizing the hydrogen-containing fuel is provided in the housing space of the housing in front of the reforming portion in the flame traveling direction. Quality system. 前記改質部には、温度センサが提供されたことを特徴とする請求項2に記載の燃料改質システム。   The fuel reforming system according to claim 2, wherein the reforming unit is provided with a temperature sensor. 前記水素含有燃料は、液化ガス容器から供給されることを特徴とする請求項1に記載の燃料改質システム。   The fuel reforming system according to claim 1, wherein the hydrogen-containing fuel is supplied from a liquefied gas container. 水素含有燃料を供給する供給源と、
前記供給源から供給される水素含有燃料を改質して水素を生成する改質器と、
前記改質器の水素と酸化剤との電気化学反応により電気を生成する発電部とを含み、
前記改質器は、水素含有燃料から水素を主成分とする改質ガスを生成させるための改質部と、前記改質ガスから一酸化炭素を除去するCO除去部と、前記改質部とCO除去部とに熱エネルギーを供給するための熱源と、前記熱源を前記改質部とCO除去部との間で移動させるための移動手段とからなることを特徴とする燃料電池システム。
A source for supplying hydrogen-containing fuel;
A reformer for reforming the hydrogen-containing fuel supplied from the supply source to generate hydrogen;
A power generation unit that generates electricity by an electrochemical reaction between hydrogen and an oxidant in the reformer,
The reformer includes a reforming unit for generating a reformed gas containing hydrogen as a main component from a hydrogen-containing fuel, a CO removing unit for removing carbon monoxide from the reformed gas, and the reforming unit, A fuel cell system comprising: a heat source for supplying thermal energy to a CO removal unit; and a moving means for moving the heat source between the reforming unit and the CO removal unit.
前記移動手段は、前記熱源を移動させるための駆動モータと、前記駆動モータの動作を制御するための制御部とを含むことを特徴とする請求項11に記載の燃料電池システム。 The fuel cell system according to claim 11 , wherein the moving means includes a drive motor for moving the heat source and a control unit for controlling the operation of the drive motor. 前記CO除去部は、前記改質ガスの水性シフト反応により一酸化炭素の濃度を低減させるためのシフト触媒を有するシフト反応部と、一酸化炭素を選択的に酸化させて除去するための酸化触媒を有するCO酸化部とからなることを特徴とする請求項12に記載の燃料電池システム。 The CO removing unit includes a shift reaction unit having a shift catalyst for reducing the concentration of carbon monoxide by an aqueous shift reaction of the reformed gas, and an oxidation catalyst for selectively oxidizing and removing carbon monoxide. The fuel cell system according to claim 12 , further comprising a CO oxidation unit having 前記改質部とシフト反応部とを収容するための収容空間を有するハウジングをさらに含むことを特徴とする請求項13に記載の燃料電池システム。 The fuel cell system according to claim 13 , further comprising a housing having a housing space for housing the reforming unit and the shift reaction unit. 前記熱源は、前記ハウジング内でその火炎が改質部側に向かうように前記シフト反応部の後方に位置することを特徴とする請求項14に記載の燃料電池システム。 The fuel cell system according to claim 14 , wherein the heat source is located behind the shift reaction unit so that the flame is directed toward the reforming unit in the housing. 前記熱源は、前記シフト反応部がシフト触媒の活性化温度まで加熱されると、前記改質部に向かって移動することを特徴とする請求項15に記載の燃料電池システム。 The fuel cell system according to claim 15 , wherein the heat source moves toward the reforming unit when the shift reaction unit is heated to the activation temperature of the shift catalyst. 前記シフト反応部には、温度センサが提供されたことを特徴とする請求項16に記載の燃料電池システム。 The fuel cell system according to claim 16 , wherein the shift reaction unit is provided with a temperature sensor. 前記ハウジングの収容空間には、前記火炎の進行方向において前記改質部の前方に前記水素含有燃料を気化させるための気化器が提供されていることを特徴とする請求項15に記載の燃料電池システム。 The fuel cell according to claim 15 , wherein a vaporizer for vaporizing the hydrogen-containing fuel is provided in the housing space of the housing in front of the reforming portion in the flame traveling direction. system. 前記改質部には、温度センサが提供されたことを特徴とする請求項12に記載の燃料電池システム。 The fuel cell system according to claim 12 , wherein the reforming unit is provided with a temperature sensor. 前記供給源は、液化ガス圧力容器であることを特徴とする請求項11に記載の燃料電池システム。 The fuel cell system according to claim 11 , wherein the supply source is a liquefied gas pressure vessel.
JP2006300813A 2006-01-17 2006-11-06 Fuel reforming system having movable heat source and fuel cell system having the same Expired - Fee Related JP4499701B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060005088A KR101240704B1 (en) 2006-01-17 2006-01-17 Fuel reforming system having movable heat source and fuel cell system comprising the same

Publications (2)

Publication Number Publication Date
JP2007191382A JP2007191382A (en) 2007-08-02
JP4499701B2 true JP4499701B2 (en) 2010-07-07

Family

ID=37964581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006300813A Expired - Fee Related JP4499701B2 (en) 2006-01-17 2006-11-06 Fuel reforming system having movable heat source and fuel cell system having the same

Country Status (6)

Country Link
US (1) US7824813B2 (en)
EP (1) EP1808927B1 (en)
JP (1) JP4499701B2 (en)
KR (1) KR101240704B1 (en)
CN (1) CN100521344C (en)
DE (1) DE602007002413D1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7743861B2 (en) * 2006-01-06 2010-06-29 Delphi Technologies, Inc. Hybrid solid oxide fuel cell and gas turbine electric generating system using liquid oxygen
CA2673847A1 (en) * 2007-01-03 2008-07-17 Blacklight Power, Inc. System and method of computing and rendering the nature of molecules, molecular ions, compounds and materials
US20090098421A1 (en) * 2007-04-24 2009-04-16 Mills Randell L Hydrogen-Catalyst Reactor
JP5037214B2 (en) 2007-05-01 2012-09-26 Jx日鉱日石エネルギー株式会社 Reformer system, fuel cell system, and operation method thereof
US20100082306A1 (en) * 2008-01-02 2010-04-01 Mills Randell L System and method of computing the nature of atoms and molecules using classical physical laws
AP3363A (en) * 2008-07-30 2015-07-31 Blacklight Power Inc Heterogeneous hydrogen-catalyst reactor
JP2010277843A (en) * 2009-05-28 2010-12-09 Toto Ltd Solid oxide fuel cell device
JP5441001B2 (en) 2009-05-28 2014-03-12 Toto株式会社 Solid oxide fuel cell
KR101341255B1 (en) * 2012-02-16 2014-01-03 세종공업 주식회사 Heat Weakness Improved Burning Catalyst and Reformer and Fuel Cell System
ES2429738B1 (en) * 2013-08-07 2014-08-11 Abengoa Hidrógeno, S.A. Hydrocarbon and / or alcohol reforming system and associated procedure
MX2017002226A (en) * 2014-08-19 2017-08-21 WATT Fuel Cell Corp Multi-reformable fuel delivery systems and methods for fuel cells.
US10369540B2 (en) 2017-04-17 2019-08-06 Honeywell International Inc. Cell structures for use in heat exchangers, and methods of producing the same
US10128518B2 (en) 2017-04-17 2018-11-13 Honeywell International Inc. Hydrogen production system and methods of producing the same
KR102387372B1 (en) * 2020-09-10 2022-04-14 연세대학교 산학협력단 Thermally Manageable Fuel Cell Hot Box Controlling Heat Transfer Area
CN114484285B (en) * 2022-04-01 2022-06-10 正和集团股份有限公司 Pressure adjusting method for hydrogen pipe network of oil refinery
KR102525598B1 (en) * 2022-11-15 2023-04-25 고등기술연구원연구조합 Flexible reactor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121004A (en) * 2000-10-06 2002-04-23 Denso Corp Hydrogen supply device
JP2005005011A (en) * 2003-06-10 2005-01-06 Mitsubishi Heavy Ind Ltd Fuel reformer for fuel cell
JP2005530673A (en) * 2002-06-25 2005-10-13 エクソンモービル リサーチ アンド エンジニアリング カンパニー Pressure swing reforming

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3337078A1 (en) 1983-10-12 1985-05-02 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München METHOD AND DEVICE FOR PRODUCING SYNTHESIS GAS
CA2259386C (en) 1996-06-28 2002-06-25 Matsushita Electric Works, Ltd. Modification apparatus
CA2259396C (en) 1996-07-02 2003-08-19 Matsushita Electric Works, Ltd. Fuel-cell power generating system
GB9801564D0 (en) 1998-01-27 1998-03-25 Ici Plc Catalyst
US6238815B1 (en) * 1998-07-29 2001-05-29 General Motors Corporation Thermally integrated staged methanol reformer and method
JP3508094B2 (en) 1999-06-15 2004-03-22 本田技研工業株式会社 Liquid fuel evaporation control method in fuel cell system
DE10141843A1 (en) 2000-08-30 2002-06-13 Denso Corp Hydrogen supply device
JP4363002B2 (en) * 2002-04-18 2009-11-11 日産自動車株式会社 Fuel reforming system and its warm-up device
KR20040005064A (en) * 2002-07-08 2004-01-16 현대자동차주식회사 Co gas removal device of air flow controlling device of fuel cell and method thereof
JP4714023B2 (en) 2004-01-30 2011-06-29 出光興産株式会社 Reformer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121004A (en) * 2000-10-06 2002-04-23 Denso Corp Hydrogen supply device
JP2005530673A (en) * 2002-06-25 2005-10-13 エクソンモービル リサーチ アンド エンジニアリング カンパニー Pressure swing reforming
JP2005005011A (en) * 2003-06-10 2005-01-06 Mitsubishi Heavy Ind Ltd Fuel reformer for fuel cell

Also Published As

Publication number Publication date
EP1808927B1 (en) 2009-09-16
KR20070076096A (en) 2007-07-24
DE602007002413D1 (en) 2009-10-29
US7824813B2 (en) 2010-11-02
US20070166580A1 (en) 2007-07-19
JP2007191382A (en) 2007-08-02
CN100521344C (en) 2009-07-29
CN101005142A (en) 2007-07-25
EP1808927A1 (en) 2007-07-18
KR101240704B1 (en) 2013-03-07

Similar Documents

Publication Publication Date Title
JP4499701B2 (en) Fuel reforming system having movable heat source and fuel cell system having the same
KR100762685B1 (en) reformer and fuel cell system using the same
KR100786462B1 (en) reformer with oxygen supplier and fuel cell system using the same
US20090291336A1 (en) Solid oxide fuel cell system and its operating method
JP4545118B2 (en) Fuel reforming system and fuel cell system including fuel reforming system
KR101282578B1 (en) reformer with double heater and fuel cell system using the same
KR100748363B1 (en) Fuel reforming system having ignitor
JP5007077B2 (en) Reformer and indirect internal reforming type solid oxide fuel cell
JP4917791B2 (en) Fuel cell system
KR20060135382A (en) Fuel reforming system having auxiliary heat source and fuel cell system comprising the same
US20080171247A1 (en) Reformer of fuel cell system
WO2012091063A1 (en) Fuel cell system
KR20070040249A (en) Fuel cell system having cooling apparatus
JP5400425B2 (en) Hydrogen production apparatus and fuel cell system
JP2005166580A (en) Fuel reformer, fuel cell system and operation control method thereof
KR100729056B1 (en) Fuel cell system having fluid supply apparatus
JP5390887B2 (en) Hydrogen production apparatus and fuel cell system
KR100713991B1 (en) Fuel Cell Having an Evaporator
KR20060095223A (en) Fuel cell system having non-reactive fuel withdraw apparatus for reformer
KR20080027685A (en) Reformer having eccentric type water gas shift

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees