JP4497384B2 - Lubricant composition - Google Patents

Lubricant composition Download PDF

Info

Publication number
JP4497384B2
JP4497384B2 JP2009275781A JP2009275781A JP4497384B2 JP 4497384 B2 JP4497384 B2 JP 4497384B2 JP 2009275781 A JP2009275781 A JP 2009275781A JP 2009275781 A JP2009275781 A JP 2009275781A JP 4497384 B2 JP4497384 B2 JP 4497384B2
Authority
JP
Japan
Prior art keywords
lubricant composition
spherical
less
particle size
extreme pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009275781A
Other languages
Japanese (ja)
Other versions
JP2010100856A (en
Inventor
重信 関根
由莉奈 関根
Original Assignee
有限会社ナプラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社ナプラ filed Critical 有限会社ナプラ
Priority to JP2009275781A priority Critical patent/JP4497384B2/en
Publication of JP2010100856A publication Critical patent/JP2010100856A/en
Application granted granted Critical
Publication of JP4497384B2 publication Critical patent/JP4497384B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)

Description

本発明は潤滑剤組成物に関し、特に極圧耐性や潤滑性能等において優れた性質を示すナノリテーナ又はナノベアリングを極圧部において自己組織化して形成する潤滑剤組成物に関するものである。   The present invention relates to a lubricant composition, and more particularly to a lubricant composition formed by self-organizing a nano-retainer or a nano-bearing that exhibits excellent properties in extreme pressure resistance, lubrication performance, and the like at an extreme pressure portion.

潤滑剤としては、液状の潤滑油、常温で半固体状或いは粘稠なペースト状のグリース及び粉末状の固体潤滑剤があるが、如何なる使用条件にも適合し得るような潤滑剤はない。添加剤として固体潤滑剤を配合することも行われているが、潤滑油やグリースに対して親和性が悪く潤滑基材中での分散安定性が劣るので添加剤を多量に必要とし、添加しても分離が起き、充分な極圧耐性や潤滑性能を発揮し得ない場合がある。   Lubricants include liquid lubricants, paste greases that are semi-solid or viscous at room temperature, and powdered solid lubricants, but there is no lubricant that can be adapted to any use conditions. Solid lubricants are also added as additives, but they have a poor affinity for lubricating oils and greases and poor dispersion stability in lubricating base materials. However, separation may occur and sufficient extreme pressure resistance and lubrication performance may not be exhibited.

相対的に動く物体における摩擦抵抗を減少させ、消費エネルギーを節約するために従来より多種多様な潤滑剤が使われているが、すべてが潤滑基材の表面張力を利用したものである。このような観点から、非常に大きな荷重が作用する軸や軸受、歯車等に表面張力を維持するため固体潤滑剤(固体−樹脂グラフト重合複合材粉末)を添加剤として多量に使用(特開昭56−112995号公報)しても、十分な極圧耐性や潤滑性能を発揮し得ない場合があった。また長期安定使用のため、粉末状固体潤滑材を基油に分散させてなる潤滑剤組成物において基油としてナフテン系油を使用することが提案(特開平1−92296号公報)されている。しかしこの場合、使用する基油が制限されその用途範囲も制限される難点がある。   A wide variety of lubricants have been used in the past to reduce frictional resistance in relatively moving objects and save energy consumption, but all use the surface tension of the lubricating substrate. From this point of view, a large amount of solid lubricant (solid-resin graft polymerization composite powder) is used as an additive in order to maintain surface tension on shafts, bearings, gears, etc., to which a very large load is applied (Japanese Patent Laid-Open No. Sho) 56-112995) may not be able to exhibit sufficient extreme pressure resistance and lubrication performance. For long-term stable use, it has been proposed to use a naphthenic oil as a base oil in a lubricant composition in which a powdery solid lubricant is dispersed in a base oil (JP-A-1-92296). However, in this case, there is a difficulty that the base oil to be used is limited and its application range is limited.

石英超微粒子と摩擦抵抗の少ない超微粒子物質をエンジンオイルに添加してなる潤滑用材(特開平6−271882号公報)でその摩擦や損傷並びに焼付け等を防止することが出来るとのことであるがフッソ系樹脂微粒子では、球状微粒子が摩擦部に固定されないので長期安定効果を維持できず摺動部の耐久性を劣化してしまう恐れがあり亦騒音悪化を招いてしまう。   It is said that friction, damage, seizure, etc. can be prevented with a lubricating material (Japanese Patent Laid-Open No. Hei 6-271882) obtained by adding ultrafine particles of quartz and ultrafine particles with low friction resistance to engine oil. In the case of the fluorine resin fine particles, since the spherical fine particles are not fixed to the friction portion, the long-term stability effect cannot be maintained, and the durability of the sliding portion may be deteriorated, resulting in a worsening of noise.

特開昭56−112995号公報JP 56-112995 A 特開平1−92296号公報Japanese Unexamined Patent Publication No. 1-92296 特開平6−271882JP-A-6-271882

本発明は潤滑剤組成物、特に極圧耐性や潤滑性能等において優れた性質を示すナノリテーナ又はナノベアリングを極圧部において自己組織化して形成する潤滑剤組成物を提供することを目的とする。   An object of the present invention is to provide a lubricant composition, in particular, a lubricant composition formed by self-organizing a nano-retainer or a nano-bearing having excellent properties in extreme pressure resistance, lubrication performance and the like at the extreme pressure portion.

本発明に関わる潤滑剤組成物は、モース硬度5以上で粒径300ナノメーター(nm)以下の球状酸化物系セラミック0.01〜40重量%とブリネル硬さ試験値17H以下で粒径50マイクロメーター(μm)以下の球状金属0.01〜40重量%とが有機質潤滑基剤中に分散含有されていることを特徴とする。 The lubricant composition according to the present invention, particle size 50 particle size 300 nanometers (nm) or less spherical oxide ceramic 0.01-40 wt% and Brinell hardness less test value 17H B Mohs hardness of 5 or more 0.01 to 40% by weight of a spherical metal having a micrometer (μm) or less is dispersed and contained in an organic lubricant base.

本発明の潤滑剤組成物においては、粒径50μm以下の球状金属微粒子表面に粒径300nm以下のナノメータースケールの無機超微粒子が付着した状態で有機質潤滑基剤中に分散している。軸や軸受けなどの摺動部に極圧が作用すると、球状金属粒子が強制的に変形しナノメータースケールの薄膜を形成する。その薄膜にナノメータースケールの無機超微粒子がナノメータースケールのベアリングとして存在し著しく摩擦応力を軽減することが出来、摺動接点の磨耗を防止すると共に接触抵抗を安定化させ雑音の発生を防止する。   In the lubricant composition of the present invention, nanometer-scale inorganic ultrafine particles having a particle size of 300 nm or less are dispersed on the surface of the spherical metal fine particles having a particle size of 50 μm or less and dispersed in the organic lubricant base. When extreme pressure acts on sliding parts such as shafts and bearings, the spherical metal particles are forcibly deformed to form a nanometer-scale thin film. Nanometer-scale inorganic ultrafine particles exist as nanometer-scale bearings in the thin film, which can significantly reduce frictional stress, prevent wear of sliding contacts, stabilize contact resistance, and prevent noise generation. .

モース硬度5以上の球状酸化物系セラミックとしては、Al、BeO、CaO、MgO、SiO、ThO、TiO、ムライト、スピネル、フォルステライト、ジルコニア及びジルコンの中から選ばれる1種又は2種以上が挙げられる。モース硬度5未満であると、材質的に極圧に耐えられない。また粒径が300ナノメーター(nm)を超えると、ナノリテーナ又はナノベアリングとしての効果を発揮できない。 As a spherical oxide ceramic having a Mohs hardness of 5 or more, one kind selected from Al 2 O 3 , BeO, CaO, MgO, SiO 2 , ThO 2 , TiO 2 , mullite, spinel, forsterite, zirconia and zircon. Or 2 or more types are mentioned. If the Mohs hardness is less than 5, the material cannot withstand extreme pressure. On the other hand, when the particle diameter exceeds 300 nanometers (nm), the effect as a nano retainer or a nano bearing cannot be exhibited.

ブリネル硬さ試験値17H以下の金属としては、Al、Cu、Sb、Sn及びZnの中から選ばれた1種又は2種以上、或いはそれらの合金が挙げられる。
ブリネル硬さ試験値17Hを超えると、極圧負荷時に変形してナノスケールの薄膜を形成する現象が起きにくい。
Examples of the metal having a Brinell hardness test value of 17H B or less include one or more selected from Al, Cu, Sb, Sn, and Zn, or alloys thereof.
Beyond Brinell Hardness value 17H B, hardly occurs a phenomenon that deforms when extreme pressure load to form a thin film of nanoscale.

潤滑基材としいては、潤滑油類、有機溶媒、合成樹脂、糊類、膠類等から選択された一種類又は二種類以上の組み合わせからなるものが良い。   The lubricating base material is preferably composed of one or a combination of two or more selected from lubricating oils, organic solvents, synthetic resins, glues, glues and the like.

潤滑油類としては、パラフィン系、ナフテン系、又は芳香族系鉱油、オレフィン重合油、アルキル化芳香族油、ポリエーテル油、エステル油、ハロゲン化炭化水素油、シリコン油、フッソ化油、水素添加油等の合成油、動植物油脂、固形又は半固形状のパラフィン、アルコール等の潤滑剤及びそれらに金属石鹸、ソープレスソープ等の石鹸類を加えたグリース類を挙げることが出来る。   Lubricating oils include paraffinic, naphthenic or aromatic mineral oils, olefin polymerized oils, alkylated aromatic oils, polyether oils, ester oils, halogenated hydrocarbon oils, silicon oils, fluorinated oils, hydrogenated Synthetic oils such as oils, animal and vegetable oils and fats, solid or semi-solid paraffins, lubricants such as alcohols, and greases added with soaps such as metal soaps and soapless soaps.

有機溶媒としては、炭化水素系溶媒、ハロゲン炭化水素系溶媒、アルコール、フェノールあるいはエーテル系溶媒、酸あるいはエステル系溶媒、アルデヒド、アセタールあるいはケトン類、含窒素化合物、イオウ化合物、シンナー類等を挙げることが出来る。   Examples of organic solvents include hydrocarbon solvents, halogen hydrocarbon solvents, alcohol, phenol or ether solvents, acid or ester solvents, aldehydes, acetals or ketones, nitrogen-containing compounds, sulfur compounds and thinners. I can do it.

更に、合成樹脂類としては、フェノール樹脂、ABS樹脂、アセタール樹脂、ポリカーボネート樹脂、エポキシ樹脂、DVB樹脂、フラン樹脂、フッソ樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、シリコン樹脂、メタアクリル樹脂、ポリエステル樹脂、塩化ビニール樹脂、ナイロン、メラミン樹脂、アクリル樹脂、合成ゴム、アスファルト、ピッチ、タール等を挙げることが出来る、更に糊類及び膠類としては、澱粉、寒天、膠、天然ゴム、天然樹脂、蛋白質等を挙げることが出来る。   Further, synthetic resins include phenolic resin, ABS resin, acetal resin, polycarbonate resin, epoxy resin, DVB resin, furan resin, fluorine resin, polyethylene resin, polypropylene resin, silicon resin, methacrylic resin, polyester resin, vinyl chloride. Resin, nylon, melamine resin, acrylic resin, synthetic rubber, asphalt, pitch, tar, etc. Further examples of paste and glue include starch, agar, glue, natural rubber, natural resin, protein, etc. I can do it.

潤滑基材を選択することにより、潤滑油、エンジンオイル、グリース、乾式潤滑剤として有効な潤滑剤組成物を得ることができる。   By selecting a lubricating base material, it is possible to obtain a lubricant composition that is effective as a lubricant, engine oil, grease, or dry lubricant.

金属の球状微粒子は、特開2002−317212号公報記載の方法で製造できる。   Metal spherical fine particles can be produced by the method described in JP-A-2002-317212.

本発明における自己組織化とは、本発明の潤滑剤組成物が、その内包する特性に基づきかつ外部環境に応じて、極圧の摺動部に自動的にナノ超薄膜リテーナ・ナノベアリングを構成することを言う。   Self-organization in the present invention means that the lubricant composition of the present invention automatically forms a nano-ultra thin film retainer / nano-bearing on the sliding portion of extreme pressure based on the characteristics contained therein and in accordance with the external environment. Say to do.

粒径200nm以下の球状SiO(モース硬度7)30重量%、粒径30μm以下の球状Cu(ブリネル硬さ試験値17H以下)40重量%及び有機質潤滑基剤としてのパラフィン系鉱油30重量%を混合して本発明の潤滑剤組成物を得た。 Spherical SiO 2 having a particle size of 200 nm or less (Mohs hardness 7) 30% by weight, spherical Cu having a particle size of 30 μm or less (Brinell hardness test value 17H B or less) 40% by weight, and 30% by weight of paraffinic mineral oil as an organic lubricant base Were mixed to obtain a lubricant composition of the present invention.

[比較例1]
球状Cuを加えなかった以外は実施例1と同様にして、即ち粒径200nm以下の球状SiO(モース硬度7)30重量%及び有機質潤滑基剤としてのパラフィン系鉱油70重量%を混合して潤滑剤組成物を得た。
[Comparative Example 1]
In the same manner as in Example 1 except that spherical Cu was not added, that is, 30% by weight of spherical SiO 2 having a particle size of 200 nm or less (Mohs hardness 7) and 70% by weight of paraffinic mineral oil as an organic lubricant base were mixed. A lubricant composition was obtained.

[比較例2]
特開昭56−112995号公報に記載された方法に従って潤滑剤組成物を調整した。
[Comparative Example 2]
A lubricant composition was prepared according to the method described in JP-A-56-112995.

実施例1、比較例1及び比較例2の潤滑剤組成物を極圧試験機の摺動部に塗り極圧750Kgf/cmをかけて極圧潤滑性を比較した。試験結果を表1に示す。比較例2の潤滑剤組成物を用いた場合は1分10秒後に停止(停止直前の電流値は6.0A:アンペア)、比較例1の潤滑剤組成物を用いた場合は6分10秒後に停止(停止直前の電流値は6.0A)したが、実施例1の潤滑剤組成物を用いた場合は6分10秒後も順調に回転続行しており、電流値は5Aのままであった。 The lubricant compositions of Example 1, Comparative Example 1 and Comparative Example 2 were applied to the sliding part of an extreme pressure tester, and an extreme pressure of 750 kgf / cm 2 was applied to compare the extreme pressure lubricity. The test results are shown in Table 1. When the lubricant composition of Comparative Example 2 was used, it stopped after 1 minute and 10 seconds (current value immediately before stopping was 6.0 A: ampere), and when the lubricant composition of Comparative Example 1 was used, it was 6 minutes and 10 seconds. Although it stopped later (current value immediately before the stop was 6.0 A), when the lubricant composition of Example 1 was used, the rotation continued smoothly even after 6 minutes and 10 seconds, and the current value remained at 5 A. there were.

Figure 0004497384
Figure 0004497384

Claims (2)

モース硬度5以上で粒径300ナノメーター(nm)以下の球状酸化物系セラミック0.01〜40重量%と、ブリネル硬さ試験値17HB以下で粒径50マイクロメーター(μm)以下の球状金属0.01〜40重量%とが有機質潤滑基剤中に分散含有された薄膜ベアリング形成用潤滑剤組成物であって、
前記球状酸化物系セラミックは、Al、BeO、CaO、MgO、SiO、ThO、TiO、ムライト、スピネル、フォルステライト、ジルコニア及びジルコンの中から選ばれた少なくとも1種であり、
前記球状金属は、Al、Cu、Sb、Sn及びZnの中から選ばれた少なくも1種であり、
軸又は軸受け以外の摺動部に用いられ、前記摺動部に極圧が作用すると、前記球状金属粒子が強制的に変形され、前記球状酸化物系セラミックの前記粒径による薄膜ベアリングを構成する、
潤滑剤組成物。
0.01 to 40% by weight of a spherical oxide ceramic having a Mohs hardness of 5 or more and a particle size of 300 nanometers (nm) or less, and a spherical metal having a Brinell hardness test value of 17 HB or less and a particle size of 50 micrometers (μm) or less. A lubricant composition for forming a thin film bearing, in which 0.01 to 40% by weight is dispersed and contained in an organic lubricant base,
The spherical oxide-based ceramic is at least one selected from Al 2 O 3 , BeO, CaO, MgO, SiO 2 , ThO 2 , TiO 2 , mullite, spinel, forsterite, zirconia, and zircon,
The spherical metal is at least one selected from Al, Cu, Sb, Sn and Zn,
Used in sliding parts other than shafts or bearings, and when an extreme pressure acts on the sliding parts, the spherical metal particles are forcibly deformed to constitute a thin film bearing with the particle size of the spherical oxide ceramic. ,
Lubricant composition.
ナノリテーナ又はナノベアリングを極圧部において自己組織化して形成する潤滑剤組成物であって、前記潤滑剤組成物は、請求項1に記載されたものでなる、潤滑剤組成物。
A lubricant composition formed by self-organizing a nano-retainer or a nano-bearing at an extreme pressure portion, wherein the lubricant composition is the lubricant composition according to claim 1.
JP2009275781A 2009-12-03 2009-12-03 Lubricant composition Expired - Fee Related JP4497384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009275781A JP4497384B2 (en) 2009-12-03 2009-12-03 Lubricant composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009275781A JP4497384B2 (en) 2009-12-03 2009-12-03 Lubricant composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004018434A Division JP4444680B2 (en) 2004-01-27 2004-01-27 Lubricant composition

Publications (2)

Publication Number Publication Date
JP2010100856A JP2010100856A (en) 2010-05-06
JP4497384B2 true JP4497384B2 (en) 2010-07-07

Family

ID=42291749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009275781A Expired - Fee Related JP4497384B2 (en) 2009-12-03 2009-12-03 Lubricant composition

Country Status (1)

Country Link
JP (1) JP4497384B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102260577B (en) * 2010-05-25 2013-05-29 石家庄新泰特种油有限公司 Additive composition with excellent water separation performance for no-oil-stain film bearing oil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57133196A (en) * 1980-12-29 1982-08-17 Bizukumuni Usutafu Keramiki Separating and lubricating agent for metal mold treatment
JPS61103994A (en) * 1984-10-26 1986-05-22 Kawabata Seisakusho:Kk Production of lubricant
JPH1037962A (en) * 1996-07-18 1998-02-13 Taiho Kogyo Co Ltd Sliding bearing
JP4444680B2 (en) * 2004-01-27 2010-03-31 有限会社ナプラ Lubricant composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57133196A (en) * 1980-12-29 1982-08-17 Bizukumuni Usutafu Keramiki Separating and lubricating agent for metal mold treatment
JPS61103994A (en) * 1984-10-26 1986-05-22 Kawabata Seisakusho:Kk Production of lubricant
JPH1037962A (en) * 1996-07-18 1998-02-13 Taiho Kogyo Co Ltd Sliding bearing
JP4444680B2 (en) * 2004-01-27 2010-03-31 有限会社ナプラ Lubricant composition

Also Published As

Publication number Publication date
JP2010100856A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
Thottackkad et al. Experimental evaluation on the tribological properties of coconut oil by the addition of CuO nanoparticles
Lovell et al. Influence of boric acid additive size on green lubricant performance
Sunqing et al. A review of ultrafine particles as antiwear additives and friction modifiers in lubricating oils
Sunil et al. A critical review on solid lubricants
Baskar et al. Tribological Behavior of Journal Bearing Material under Different Lubricants.
Rawat et al. Current and future trends in grease lubrication
JP2014518927A (en) Hybrid nano lubricant
CN105849182A (en) Self-lubricating thermoplastic layers containing PTFE additive having a polymodal molecular weight
Charoo et al. Tribological properties of MoS2 particles as lubricant additive on EN31 alloy steel and AISI 52100 steel ball
US10273428B1 (en) Lubricating greases containing solid lubricant blends
CA2837217C (en) Surface conditioning nanolubricant
JP2010275384A (en) Silicone grease based lubricant composition
Gupta et al. Tribological evaluation of calcium‐copper‐titanate/cerium oxide‐based nanolubricants in sliding contact
Menezes et al. Green lubricants: role of additive size
Sia et al. Morphology investigation of worn bearing surfaces using SiO 2 nanolubrication system
JP4444680B2 (en) Lubricant composition
KR20160127034A (en) Lubricating composition based on metal nanoparticles
JP4464495B2 (en) Grease composition for resin
US4828729A (en) Molybdenum disulfide - molybdenum oxide lubricants
JP5652634B2 (en) Grease composition for resin lubrication
Raina et al. Lubrication characteristics of oils containing nanoadditives: influencing parameters, market scenario and advancements
JP4497384B2 (en) Lubricant composition
US7781382B2 (en) Lubricant composition and bearing structure
JPWO2004037958A1 (en) Lubricating grease composition for reduction gear and electric power steering device
Saleem et al. A review on tribological performance of nano based bio-lubricants and its applications

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4497384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100713

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20101208

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees