JP4496879B2 - Method and apparatus for measuring diameter of member having circular peripheral surface - Google Patents

Method and apparatus for measuring diameter of member having circular peripheral surface Download PDF

Info

Publication number
JP4496879B2
JP4496879B2 JP2004227122A JP2004227122A JP4496879B2 JP 4496879 B2 JP4496879 B2 JP 4496879B2 JP 2004227122 A JP2004227122 A JP 2004227122A JP 2004227122 A JP2004227122 A JP 2004227122A JP 4496879 B2 JP4496879 B2 JP 4496879B2
Authority
JP
Japan
Prior art keywords
peripheral surface
balls
diameter
circular peripheral
outer ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004227122A
Other languages
Japanese (ja)
Other versions
JP2006047060A (en
Inventor
博司 荒木
孝 前田
仁 山田
勝義 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2004227122A priority Critical patent/JP4496879B2/en
Publication of JP2006047060A publication Critical patent/JP2006047060A/en
Application granted granted Critical
Publication of JP4496879B2 publication Critical patent/JP4496879B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、例えば深溝型玉軸受を構成する内輪の外径を内輪軌道の最深部で、或は外輪の内径を外輪軌道の最深部で測定する場合に利用する、円形の周面を有する部材の直径測定方法及び測定装置の改良に関する。具体的には、接触子に大きな力を加える事なくこの接触子を上記最深部に確実に位置させる事で、上記内輪の外径或は上記外輪の内径を精度良く測定できる様にするものである。   The present invention is a member having a circular peripheral surface, for example, used when measuring the outer diameter of the inner ring constituting the deep groove type ball bearing at the deepest part of the inner ring raceway or the inner diameter of the outer ring at the deepest part of the outer ring raceway. The present invention relates to an improved diameter measuring method and measuring apparatus. Specifically, the outer diameter of the inner ring or the inner diameter of the outer ring can be accurately measured by reliably positioning the contact element in the deepest portion without applying a large force to the contact element. is there.

例えば深溝型の玉軸受の高性能化を図る設計に利用するデータを得る為に、この玉軸受を構成する外輪の内周面に形成した外輪軌道の内径や、内輪の外周面に形成した内輪軌道の外径を測定する必要がある。この様な場合に使用する測定装置として従来から、特許文献1、2に記載されたものが知られている。図10〜11は、このうちの特許文献1に記載された測定装置を示している。この図10〜11に記載した従来構造の場合には、中心軸を鉛直方向に配置した、単列深溝型の玉軸受を構成する外輪1の内径を、この外輪1の内周面に形成した外輪軌道2の溝底部分(最も内径が大きくなった部分)で測定する様に構成している。   For example, in order to obtain data for use in designing high-performance deep groove ball bearings, the inner diameter of the outer ring raceway formed on the inner peripheral surface of the outer ring constituting the ball bearing or the inner ring formed on the outer peripheral surface of the inner ring It is necessary to measure the outer diameter of the track. Conventionally, those described in Patent Documents 1 and 2 are known as measuring apparatuses used in such a case. 10-11 has shown the measuring apparatus described in patent document 1 among these. In the case of the conventional structure described in FIGS. 10 to 11, the inner diameter of the outer ring 1 constituting the single-row deep groove type ball bearing in which the central axis is arranged in the vertical direction is formed on the inner peripheral surface of the outer ring 1. The outer ring raceway 2 is configured to measure at the groove bottom portion (the portion with the largest inner diameter).

この為に上記従来構造の場合には、3個の玉3a、3b、3cを上記外輪軌道2に突き当てる様にしている。これら各玉3a、3b、3cのうちの2個の玉3a、3bは、固定腕4の先端部に、残り1個の玉3cは可動腕5の先端部に、それぞれ支持している。そして、この可動腕5を揺動変位させて上記各玉3a、3b、3cを上記外輪軌道2の溝底部分に当接させ、この当接した状態での上記可動腕5の変位量を測定器6により求めて、この変位量から、上記溝底部分の直径を算出する様にしている。   For this reason, in the case of the conventional structure, three balls 3a, 3b, 3c are abutted against the outer ring raceway 2. Of these balls 3 a, 3 b, 3 c, two balls 3 a, 3 b are supported at the tip of the fixed arm 4, and the remaining one ball 3 c is supported at the tip of the movable arm 5. Then, the movable arm 5 is oscillated and displaced to bring the balls 3a, 3b, and 3c into contact with the groove bottom portion of the outer ring raceway 2, and the amount of displacement of the movable arm 5 in the contacted state is measured. The diameter of the groove bottom portion is calculated from the amount of displacement obtained by the device 6.

上述の様な従来構造の場合、上記各玉3a、3b、3cを上記外輪軌道2の最深部に確実に当接させる事に就いては、特に考慮していない。一方、この外輪軌道2と上記各玉3a、3b、3cの表面との接触部には滑り摩擦が作用する。この為、上記特許文献1に記載された従来構造の場合には、これら各玉3a、3b、3cを上記外輪軌道2に向けて強く押し付けない限り、これら各玉3a、3b、3cがこの外輪軌道2の最深部から少し外れた部分に当接した状態で、上記溝底部分の直径を測定する可能性がある。この結果、測定値が、実際の値よりも少し小さくなる。   In the case of the conventional structure as described above, no particular consideration is given to bringing the balls 3a, 3b, 3c into contact with the deepest part of the outer ring raceway 2. On the other hand, sliding friction acts on contact portions between the outer ring raceway 2 and the surfaces of the balls 3a, 3b, and 3c. For this reason, in the case of the conventional structure described in Patent Document 1, unless the balls 3a, 3b, 3c are strongly pressed against the outer ring raceway 2, the balls 3a, 3b, 3c There is a possibility that the diameter of the groove bottom portion may be measured in a state where the track 2 is in contact with a portion slightly deviated from the deepest portion. As a result, the measured value is slightly smaller than the actual value.

上記各玉3a、3b、3cを上記外輪軌道2に向けて強く押し付ければ、これら各玉3a、3b、3cの当接位置をこの外輪軌道2の最深部に近づけられるが、この場合には、前記外輪1が弾性変形して、上記測定値が実際の値よりも大きくなる。上記直径の測定に関する要求精度は極めて高い為、何れの原因にしても、測定値に誤差が生じる事は好ましくない。この様な点を考慮した場合に、接触子を被測定面に軽く当接させた状態で、この接触子をこの被測定面の最深部に移動させられる技術の実現が望まれる。尚、特許文献3には、円筒ころ軸受の内輪を固定したまま外輪をラジアル方向に変位させ、この外輪のラジアル方向の変位量を測定する事で、上記円筒ころ軸受のラジアル隙間を測定する装置が記載されている。この様な特許文献3に記載された発明を、ラジアル玉軸受に適用して、このラジアル玉軸受の内部隙間を測定する事も考えられるが、この様な場合も、玉が外輪軌道及び内輪軌道の最深部に当接しているとは限られない為、上記内部隙間を正確に測定する事が難しくなる。   If the balls 3a, 3b, 3c are pressed strongly toward the outer ring raceway 2, the contact position of the balls 3a, 3b, 3c can be brought closer to the deepest part of the outer ring raceway 2, but in this case The outer ring 1 is elastically deformed, and the measured value becomes larger than the actual value. Since the required accuracy regarding the measurement of the diameter is extremely high, it is not preferable that an error occurs in the measured value for any cause. In consideration of such a point, it is desired to realize a technique for moving the contact to the deepest portion of the surface to be measured in a state where the contact is lightly brought into contact with the surface to be measured. Patent Document 3 discloses an apparatus for measuring the radial clearance of the cylindrical roller bearing by displacing the outer ring in the radial direction while fixing the inner ring of the cylindrical roller bearing and measuring the radial displacement of the outer ring. Is described. It is conceivable that the invention described in Patent Document 3 is applied to a radial ball bearing and the internal clearance of the radial ball bearing is measured. Since it is not always in contact with the deepest part, it is difficult to accurately measure the internal gap.

実開平5−79412号公報Japanese Utility Model Publication No. 5-79412 実開平6−51807号公報Japanese Utility Model Publication No. 6-51807 特公昭62−7964号公報Japanese Examined Patent Publication No. 62-7964

本発明は、上述の様な事情に鑑み、接触子を被測定面に軽く当接させた状態で、この接触子をこの被測定面に存在する断面円弧形の凹溝の最深部に移動させる事により、この凹溝の最深部の直径を正確に測定できる、円形の周面を有する部材の直径測定方法及び測定装置を実現すべく発明したものである。   In the present invention, in view of the circumstances as described above, the contact is moved to the deepest portion of the concave groove having an arc-shaped cross section existing on the surface to be measured in a state where the contact is lightly brought into contact with the surface to be measured. Thus, the present invention has been invented to realize a diameter measuring method and measuring device for a member having a circular peripheral surface, which can accurately measure the diameter of the deepest part of the concave groove.

本発明の円形の周面を有する部材の直径測定方法及び測定装置は、何れかの周面に、全周に亙って断面円弧形の凹溝を形成した円形の周面を有する部材の直径に関する寸法を、この凹溝の最深部で測定する方法及び装置である。
特に、請求項1に記載した円形の周面を有する部材の直径測定方法に於いては、単一の鉛直面内に存在する複数の接触子を上記凹溝の底面に押し付けた状態で、これら各接触子と上記円形の周面を有する部材との接触部に高周波振動を付加する。そして、これら各接触子と上記円形の周面を有する部材との接触部を上記凹溝の最深部に移動させてから、上記直径に関する寸法を測定する。
The method and apparatus for measuring the diameter of a member having a circular peripheral surface according to the present invention includes a member having a circular peripheral surface in which a concave groove having a circular arc cross section is formed on the entire periphery. This is a method and apparatus for measuring a diameter-related dimension at the deepest part of the groove.
In particular, in the method for measuring the diameter of a member having a circular peripheral surface according to claim 1, in a state where a plurality of contacts existing in a single vertical surface are pressed against the bottom surface of the groove, High frequency vibration is applied to the contact portion between each contact and the member having the circular peripheral surface. And the dimension regarding the said diameter is measured after moving the contact part of each of these contacts and the member which has the said circular surrounding surface to the deepest part of the said ditch | groove.

又、請求項2に記載した円形の周面を有する部材の直径測定装置は、複数の接触子と、押圧手段と、測定手段と、演算手段と、加振手段とを備える。
このうちの複数の接触子は、単一の鉛直面内に存在すると共に、これら各接触子のうちの少なくとも1個の接触子は、上記円形の周面を有する部材の直径方向に変位可能に支持されている。
又、上記押圧手段は、この円形の周面を有する部材の直径方向に変位可能に支持された接触子を上記凹溝の底面に向け押圧するものである。
又、上記測定手段は、上記円形の周面を有する部材の直径方向に変位可能に支持された接触子の、この直径方向に関する変位量を測定するものである。
又、上記演算手段は、上記測定手段が測定した上記変位量に基づいて、上記最深部での上記円形の周面を有する部材の直径を求めるものである。
更に、上記加振手段は、上記円形の周面を有する部材と上記各接触子とのうちの少なくとも一方に高周波振動等の適宜の振動を付加するものである。
According to a second aspect of the present invention, there is provided a diameter measuring device for a member having a circular peripheral surface, comprising a plurality of contacts, a pressing means, a measuring means, a computing means, and a vibrating means.
A plurality of contacts among them exist in a single vertical plane, and at least one of the contacts can be displaced in the diameter direction of the member having the circular peripheral surface. It is supported.
Further, the pressing means presses the contact member supported so as to be displaceable in the diameter direction of the member having the circular peripheral surface toward the bottom surface of the concave groove.
The measuring means measures a displacement amount of the contact member supported so as to be displaceable in the diameter direction of the member having the circular peripheral surface in the diameter direction.
The arithmetic means obtains the diameter of the member having the circular peripheral surface at the deepest part based on the displacement amount measured by the measuring means.
Further, the excitation means applies an appropriate vibration such as a high-frequency vibration to at least one of the member having the circular peripheral surface and each contactor.

上述の様に構成する本発明の円形の周面を有する部材の直径測定方法及び測定装置によれば、複数の接触子を被測定面に軽く当接させた状態で、これら各接触子を、この被測定面に存在する断面円弧形の凹溝の最深部に移動させる事ができる。即ち、上記各接触子をこの凹溝に向けて押圧しつつ、これら各接触子と上記円形の周面を有する部材との接触部に高周波振動を付加すると、これら各接触部の摩擦による拘束が解かれる。そして、上記各接触子と上記円形の周面を有する部材との接触部が、力学的に最も安定した位置、即ち、上記凹溝の最深部に向けて移動する。この場合に、上記各接触子を上記凹溝に向けて押圧する力は小さくて済む為、上記円形の周面を有する部材が弾性変形する事はないし、この力が小さくても、上記各接触子の位置は、上記凹溝の最深部に達した状態で安定する。そこで、この安定した状態での上記各接触子の位置に基づいて、上記凹溝の底部の直径を算出すれば、この凹溝の最深部の直径を正確に求める事ができる。   According to the diameter measuring method and measuring device for a member having a circular peripheral surface of the present invention configured as described above, in a state where a plurality of contacts are in light contact with the surface to be measured, It can be moved to the deepest part of the groove having a circular arc cross section existing on the surface to be measured. That is, if high frequency vibration is applied to the contact portion between each contactor and the member having the circular peripheral surface while pressing each contactor toward the concave groove, the frictional restriction of each contact portion is caused. It will be solved. Then, the contact portion between each contact and the member having the circular peripheral surface moves toward the most mechanically stable position, that is, toward the deepest portion of the concave groove. In this case, since the force for pressing each contact toward the concave groove is small, the member having the circular peripheral surface does not elastically deform. Even if this force is small, the contact The position of the child is stabilized in a state where it reaches the deepest part of the concave groove. Therefore, if the diameter of the bottom of the groove is calculated based on the position of each contact in the stable state, the diameter of the deepest part of the groove can be accurately obtained.

請求項2に記載した円形の周面を有する部材の直径測定装置を実施する場合に好ましくは、請求項3、4に記載した様に、円形の周面を有する部材を、内周面に深溝型の外輪軌道を形成した、或は外周面に深溝型の内輪軌道を形成した、ラジアル玉軸受を構成する外輪或は内輪とする。そして、各接触子を、それぞれが上記外輪軌道或は内輪軌道の断面形状の曲率半径の2倍よりも小さな直径を有する3個の玉とする。
これら3個の玉は、それぞれの中心を単一鉛直面上に配置すると共に、これら3個の玉のうちで上側或は下側の2個の玉を、同じ高さ位置に固定する。これに対して、残り1個の玉を、これら2個の玉の中心同士を結ぶ線分に関する垂直二等分線上を移動可能に、これら2個の玉の下方或は上方に支持する。そして、測定手段により、この垂直二等分線上での、上記1個の玉の変位量を測定する。
この様に構成すれば、ラジアル玉軸受を構成する外輪の内周面或は内輪の外周面に設けた、外輪軌道或は内輪軌道の直径を、その最深部で正確に測定できる。即ち、それぞれが接触子である上記各玉をこの外輪軌道或は内輪軌道に押し付ける力を小さく抑えても、これら各玉をこの外輪軌道或は内輪軌道の最深部に向け効率良く移動させて、この最深部の直径を、能率良く、正確に測定できる。
Preferably, when carrying out the diameter measuring device for a member having a circular peripheral surface according to claim 2, a member having a circular peripheral surface is formed as a deep groove on the inner peripheral surface as described in claims 3 and 4. An outer ring or an inner ring constituting a radial ball bearing in which a mold outer ring raceway is formed or a deep groove type inner ring raceway is formed on the outer peripheral surface. Each contact is made up of three balls each having a diameter smaller than twice the radius of curvature of the cross-sectional shape of the outer ring raceway or inner ring raceway.
These three balls have their centers arranged on a single vertical plane, and of these three balls, two upper or lower balls are fixed at the same height position. On the other hand, the remaining one ball is supported below or above the two balls so as to be movable on a vertical bisector with respect to a line segment connecting the centers of the two balls. Then, the measuring means measures the displacement amount of the one ball on the perpendicular bisector.
With this configuration, the diameter of the outer ring raceway or the inner ring raceway provided on the inner peripheral surface of the outer ring or the outer peripheral surface of the inner ring constituting the radial ball bearing can be accurately measured at the deepest portion. That is, even if each of the balls, each of which is a contact, is pressed to the outer ring raceway or the inner ring raceway, the balls are efficiently moved toward the deepest part of the outer ring raceway or the inner ring raceway, The diameter of the deepest part can be measured efficiently and accurately.

又、請求項2に記載した円形の周面を有する部材の直径測定装置を実施する場合に好ましくは、請求項5に記載した様に、加振手段が発生する高周波振動等の振動の周波数を、円形の周面を有する部材の共振周波数又は測定装置の共振周波数に一致させる。
この様に構成すれば、上記振動の振幅を小さく抑えても、上記各接触子と上記外輪軌道或は内輪軌道等の凹溝との接触部をこの凹溝の最深部に向け、能率良く移動させる事ができる。
更に、請求項2に記載した円形の周面を有する部材の直径測定装置を実施する場合に好ましくは、請求項6に記載した様に、加振手段をピエゾ素子とする。
ピエゾ素子は、各種周波数の振動を容易に得られるので、上記各接触子と上記外輪軌道或は内輪軌道等の凹溝との接触部の加振を効果的に行なって、これら各接触部をこの凹溝の最深部に向け、能率良く移動させる事ができる。
Further, when the diameter measuring device for a member having a circular peripheral surface described in claim 2 is implemented, preferably, the frequency of vibration such as high-frequency vibration generated by the vibrating means is set as described in claim 5. And the resonance frequency of a member having a circular peripheral surface or the resonance frequency of the measuring device.
According to this configuration, even if the amplitude of the vibration is kept small, the contact portion between each contact and the concave groove such as the outer ring raceway or the inner ring raceway is directed efficiently toward the deepest portion of the concave groove. You can make it.
Further, when the diameter measuring device for a member having a circular peripheral surface described in claim 2 is implemented, preferably, as described in claim 6, the vibration means is a piezo element.
Since the piezoelectric element can easily obtain vibrations of various frequencies, the contact portions between the contact elements and the concave grooves of the outer ring raceway or the inner ring raceway are effectively vibrated, and the contact portions are formed. It can be moved efficiently toward the deepest part of the groove.

図1〜2は、請求項1、2、3、5、6に対応する、本発明の実施例1を示している。本実施例は、本発明を、単列深溝型の玉軸受を構成する外輪1の内径を、深溝型の外輪軌道2の最深部で測定するのに適用した場合に就いて示している。先ず、この測定の為の外輪の内径測定装置の構成に就いて説明する。尚、上記外輪軌道2は、上記外輪1の内周面の軸方向中央部に形成されている。又、この外輪軌道2の曲率中心は、この外輪1の軸方向中央部に存在する。従って、この外輪軌道2の最深部は、この外輪1の軸方向中央部に存在し、この外輪1は、この最深部に関して軸方向対称な形状を有する。   1 and 2 show a first embodiment of the present invention corresponding to claims 1, 2, 3, 5, and 6. FIG. The present embodiment shows the case where the present invention is applied to measure the inner diameter of the outer ring 1 constituting the single row deep groove type ball bearing at the deepest part of the deep groove type outer ring raceway 2. First, the configuration of the inner diameter measuring device for the outer ring for this measurement will be described. The outer ring raceway 2 is formed at the axial center of the inner peripheral surface of the outer ring 1. In addition, the center of curvature of the outer ring raceway 2 exists in the central portion of the outer ring 1 in the axial direction. Therefore, the deepest part of the outer ring raceway 2 exists in the axially central part of the outer ring 1, and the outer ring 1 has an axially symmetric shape with respect to the deepest part.

この様な外輪1の内周面に形成した外輪軌道2の内径をその最深部で測定する、本実施例の内径測定装置は、それぞれが接触子である3個の玉7a、7bを備える。これら3個の玉7a、7bの直径(外径)は、内径を測定すべき上記外輪軌道2の断面形状の曲率半径の2倍よりも十分に小さな(例えば曲率半径の1〜1.5倍程度の)値としている。上記各玉7a、7bの直径が大き過ぎた場合には、これら各玉7a、7bの表面と上記外輪軌道2との接触面積が広く(接触楕円が大きく)なり過ぎて、この外輪軌道2の内径を最深部で測定しにくくなる。反対に、上記各玉7a、7bの直径が小さ過ぎた場合には、これら各玉7a、7bの表面と上記外輪軌道2との接触面積が狭く(接触楕円が小さく)なり過ぎて、測定時にこの外輪軌道2の部分的な弾性変形(上記各玉7a、7bの表面との接触部に生じる凹み)が無視できなくなる。そして、何れの場合でも、この外輪軌道2の最深部での内径測定を正確に行ないにくくなる。又、上記3個の玉7a、7bの直径は、厳密に(上記外輪軌道2の内径に関して要求される測定精度の10倍若しくはそれ以上の精度で)一致させている。   The inner diameter measuring device of this embodiment for measuring the inner diameter of the outer ring raceway 2 formed on the inner peripheral surface of the outer ring 1 at its deepest portion includes three balls 7a and 7b, each of which is a contact. The diameter (outer diameter) of these three balls 7a and 7b is sufficiently smaller than twice the radius of curvature of the cross-sectional shape of the outer ring raceway 2 whose inner diameter is to be measured (for example, 1 to 1.5 times the radius of curvature). Value). When the diameter of each of the balls 7a and 7b is too large, the contact area between the surface of each of the balls 7a and 7b and the outer ring raceway 2 is too large (the contact ellipse is large). It becomes difficult to measure the inner diameter at the deepest part. On the other hand, when the diameter of each of the balls 7a and 7b is too small, the contact area between the surface of each of the balls 7a and 7b and the outer ring raceway 2 is too narrow (the contact ellipse is too small), The partial elastic deformation of the outer ring raceway 2 (the dent generated at the contact portion with the surface of each of the balls 7a and 7b) cannot be ignored. In either case, it is difficult to accurately measure the inner diameter at the deepest portion of the outer ring raceway 2. Further, the diameters of the three balls 7a and 7b are strictly matched (with an accuracy of 10 times the accuracy required for the inner diameter of the outer ring raceway 2 or more).

この様な3個の玉7a、7bのうち、上側に存在する2個の玉7a、7aは、同じ高さ位置に設置している。言い換えれば、これら両玉7a、7aの中心同士を結ぶ線分を、水平方向に配置している。この為に本実施例の場合には、測定装置本体8の前面(図1の左面)上部に固定腕4aを突設し、この固定腕4aの上面両側部分に設けた支持凹部9、9部分に上記両玉7a、7aを、接着等により支持固定している。   Among such three balls 7a and 7b, the two balls 7a and 7a existing on the upper side are installed at the same height position. In other words, the line segment connecting the centers of these balls 7a, 7a is arranged in the horizontal direction. For this reason, in the case of the present embodiment, the fixing arm 4a protrudes from the upper part of the front surface (left surface in FIG. 1) of the measuring apparatus main body 8, and the supporting recesses 9 and 9 provided on both sides of the upper surface of the fixing arm 4a. The balls 7a and 7a are supported and fixed by adhesion or the like.

これに対して、残りの1個の玉7bは、上記両玉7a、7aの下方に、これら両玉7a、7aの中心同士を結ぶ線分に関する垂直二等分線上を移動可能に、鉛直方向の変位を可能とした状態で設けている。この為に本実施例の場合には、上記測定装置本体8の下部に設けた取付孔10の内側に可動腕5aを配置している。この可動腕5aはその基端部を、図示しない水平軸を中心とする揺動自在に支持している。上記1個の玉7bは、この様な可動腕5aの先端部下面に設けた支持凹部9a部分に、接着等により支持固定している。尚、上記水平軸から上記1個の玉7b迄の距離は、できるだけ大きくして、この水平軸を中心とする揺動運動に伴い、この玉7bが実質的に鉛直方向に変位する様にしている。言い換えれば、円弧運動に伴う前記外輪1の軸方向の変位を無視できる程度に抑えている。   On the other hand, the remaining one ball 7b can move on the vertical bisector of the line segment connecting the centers of the balls 7a and 7a below the balls 7a and 7a. It is provided in a state where it can be displaced. For this reason, in the case of the present embodiment, the movable arm 5 a is arranged inside the mounting hole 10 provided in the lower part of the measuring apparatus main body 8. The movable arm 5a supports the base end of the movable arm 5a so as to be swingable about a horizontal axis (not shown). The single ball 7b is supported and fixed to the support recess 9a provided on the lower surface of the tip of the movable arm 5a by bonding or the like. The distance from the horizontal axis to the single ball 7b is made as large as possible so that the ball 7b is displaced in the vertical direction along with the swinging motion around the horizontal axis. Yes. In other words, the axial displacement of the outer ring 1 due to the arc motion is suppressed to a negligible level.

又、上記1個の玉7bの鉛直方向の変位量を、測定器6aにより測定する様に構成している。この為に本実施例の場合には、上記可動腕5aの中間部上面に、上記測定器6aの端子11を当接させている。上記1個の玉7bの鉛直方向の変位量は、この測定器6aの測定値と、上記可動腕5aの基端部を枢支した水平軸から上記玉7b迄の距離と、同じく上記端子11の当接位置までの距離とに基づいて求める。上記可動腕5aは、自重によりその先端部を下方に変位させる傾向にあり、上記1個の玉7bは、自身の質量及び上記可動腕5aの自重により下方に変位する傾向になる。従って、本実施例の場合には、上記1個の玉7b自身の質量及び上記可動腕5aの自重が、この玉7bを前記外輪軌道2に向けて押圧する為の押圧手段を構成する。尚、これら質量及び自重では、上記玉7bを上記外輪軌道2に向けて押圧する力が不足する場合には、上記測定装置本体8と上記可動腕5aとの間にばね等の弾性部材を設け、上記玉7bを上記外輪軌道2に向けて弾性的に押圧しても良い。何れにしても、この玉7bをこの外輪軌道2に向けて押圧する力は、上記外輪1を弾性変形させない程度の、小さな値に抑える。   The vertical displacement of the single ball 7b is measured by the measuring device 6a. Therefore, in the case of the present embodiment, the terminal 11 of the measuring device 6a is brought into contact with the upper surface of the intermediate portion of the movable arm 5a. The vertical displacement of the single ball 7b is the measured value of the measuring instrument 6a, the distance from the horizontal axis pivotally supporting the proximal end of the movable arm 5a to the ball 7b, and the terminal 11 as well. And the distance to the contact position. The movable arm 5a tends to displace its tip portion downward due to its own weight, and the one ball 7b tends to be displaced downward due to its own mass and its own weight. Therefore, in the case of the present embodiment, the mass of the one ball 7b itself and the weight of the movable arm 5a constitute a pressing means for pressing the ball 7b toward the outer ring raceway 2. Note that when the force for pressing the balls 7b toward the outer ring raceway 2 is insufficient with these masses and dead weights, an elastic member such as a spring is provided between the measuring device body 8 and the movable arm 5a. The ball 7b may be elastically pressed toward the outer ring raceway 2. In any case, the force that presses the balls 7b toward the outer ring raceway 2 is suppressed to a small value that does not cause the outer ring 1 to be elastically deformed.

更に、上記測定装置本体8の一部に、加振手段であるピエゾ素子12を添設すると共に、駆動回路13によりこのピエゾ素子12に、所望の周期で所望の電圧を印加する様にしている。周知の様にこのピエゾ素子12は、電圧を印加される事で伸縮するので、上記駆動回路13によりこのピエゾ素子12に高周波等、適宜の周波数で変化する電圧を印加すれば、このピエゾ素子12がこの電圧変化と同じ周波数で振動し、上記測定装置本体8を振動させる。尚、上記加振手段は、ピエゾ素子12を使用する事が、簡単な構成で高周波振動等、所望の振動を得易い事から好ましいが、電気信号に基づいて所望の振動を得られるものであれば、ソレノイド等、ピエゾ素子以外のものも使用可能である。   Further, a piezo element 12 as a vibration means is attached to a part of the measuring apparatus main body 8, and a desired voltage is applied to the piezo element 12 by a drive circuit 13 at a desired cycle. . As is well known, the piezo element 12 expands and contracts when a voltage is applied. Therefore, if a voltage that changes at an appropriate frequency such as a high frequency is applied to the piezo element 12 by the drive circuit 13, the piezo element 12. Vibrates at the same frequency as this voltage change, and vibrates the measuring apparatus body 8. In addition, it is preferable to use the piezo element 12 as the above-mentioned vibration means because it is easy to obtain a desired vibration such as a high-frequency vibration with a simple configuration. However, it is possible to obtain a desired vibration based on an electric signal. For example, a device other than a piezo element such as a solenoid can be used.

上述の様に構成する外輪の内径測定装置により、上記外輪軌道2の内径を、最も内径が大きくなったその最深部で測定する作業は、次の様にして行なう。
先ず、前記上側に存在する2個の玉7a、7aに上記外輪1を、これら両玉7a、7aの一部表面と上記外輪軌道2とを当接させた状態で引っ掛ける。言い換えれば、上記外輪1を上記両玉7a、7aに吊り下げる。この際、上記可動腕5aの先端部を上昇させて、これら両玉7a、7aと残り1個の玉7bとを加えた3個の玉7a、7bの外接円の直径を、上記外輪1の最小内径よりも小さくしておく。上記可動腕5aの先端部は、この外輪1を上記両玉7a、7aに吊り下げた後に下降させて、上記残り1個の玉7bの一部表面に関しても、上記外輪軌道2に当接させる。この状態で、この1個の玉7bの一部表面とこの外輪軌道2とは、上記可動腕5aの自重と、前記測定器6aの端子11をこの可動腕5aに押し付ける為の弾性とに見合う圧力で当接する。又、上記両玉7a、7aの一部表面と上記外輪軌道2とは、上記1個の玉7bによる押し付け力に上記外輪1の重量を加えた力に見合う圧力で当接する。
The operation of measuring the inner diameter of the outer ring raceway 2 at the deepest part where the inner diameter is the largest with the outer ring inner diameter measuring device configured as described above is performed as follows.
First, the outer ring 1 is hooked on the two balls 7a, 7a existing on the upper side in a state where a part of the surfaces of the balls 7a, 7a and the outer ring raceway 2 are in contact with each other. In other words, the outer ring 1 is suspended from the balls 7a and 7a. At this time, the diameter of the circumscribed circle of the three balls 7a and 7b obtained by raising the tip of the movable arm 5a and adding both the balls 7a and 7a and the remaining one ball 7b is set to Keep smaller than the minimum inner diameter. The distal end of the movable arm 5a is lowered after the outer ring 1 is suspended from the balls 7a and 7a, and a part of the surface of the remaining one ball 7b is brought into contact with the outer ring raceway 2 as well. . In this state, the partial surface of the single ball 7b and the outer ring raceway 2 are commensurate with the weight of the movable arm 5a and the elasticity for pressing the terminal 11 of the measuring instrument 6a against the movable arm 5a. Abut with pressure. The partial surfaces of the balls 7a and 7a and the outer ring raceway 2 abut against each other with a pressure commensurate with the force obtained by adding the weight of the outer ring 1 to the pressing force of the one ball 7b.

次いで、上記駆動回路13により上記ピエゾ素子12を駆動し、上記測定装置本体8を振動させる。この振動は、前記固定腕4aから上記上側に存在する2個の玉7a、7aに伝わり、更にこれら両玉7a、7aに吊り下げられた上記外輪1にも伝わる。この結果、それぞれが上記外輪軌道2の内径を測定する為の接触子である上記各玉7a、7bの一部表面とこの外輪軌道2との接触部が振動する。これら各玉7a、7bはこの外輪軌道2に、軽く当接している為、この振動に伴ってこれら各玉7a、7bと外輪軌道2との当接部が、この外輪軌道2の最深部に向けて移動する。   Next, the piezo element 12 is driven by the drive circuit 13 to vibrate the measurement apparatus main body 8. This vibration is transmitted from the fixed arm 4a to the two balls 7a, 7a existing on the upper side, and further transmitted to the outer ring 1 suspended by these balls 7a, 7a. As a result, a contact portion between the outer ring raceway 2 and a part of the surface of each of the balls 7a and 7b, each of which is a contact for measuring the inner diameter of the outer ring raceway 2, vibrates. Since these balls 7a and 7b are in light contact with the outer ring raceway 2, the contact portions between the balls 7a and 7b and the outer ring raceway 2 come into contact with the outer ring raceway 2 at the deepest part of the outer ring raceway 2. Move towards.

即ち、上記各玉7a、7bをこの外輪軌道2に向けて押圧しつつ、これら各玉7a、7bと外輪軌道2との接触部に振動を付加すると、これら各接触部の摩擦による拘束が解かれる。そして、上記各玉7a、7bと上記外輪軌道2との接触部が、力学的に最も安定した位置、即ち、この外輪軌道2の最深部に向けて移動する。この場合に、上記各玉7a、7bをこの外輪軌道2に向けて押圧する力は小さくて済む為、上記外輪1が弾性変形する事はないし、この力が小さくても、上記各玉7a、7bの位置は、上記外輪軌道2の最深部に達した状態で安定する。そこで、実験的に求めた、安定するまでに要する時間に、余裕時間を足した(安全率を加えた)時間だけ、上記ピエゾ素子12を駆動した後、このピエゾ素子12を停止してから、上記各玉7a、7bの位置に基づいて、上記外輪軌道2の底部の直径(内径)を算出する。この状態では、これら各玉7a、7bがこの外輪軌道2の最深部に移動しており、又、これら各玉7a、7bの位置が振動により微小変位する事もないので、上記外輪軌道2の最深部の内径を正確に求める事ができる。   That is, if the balls 7a and 7b are pressed toward the outer ring raceway 2 and vibration is applied to the contact portions between the balls 7a and 7b and the outer ring raceway 2, the frictional restraints of these contact portions are released. It is burned. Then, the contact portions between the balls 7 a and 7 b and the outer ring raceway 2 move toward the most mechanically stable position, that is, toward the deepest part of the outer ring raceway 2. In this case, since the force for pressing the balls 7a and 7b toward the outer ring raceway 2 is small, the outer ring 1 is not elastically deformed. Even if the force is small, the balls 7a, The position 7b is stable in a state where it reaches the deepest part of the outer ring raceway 2. Therefore, after driving the piezo element 12 for a time obtained by adding the margin time (added safety factor) to the time required to stabilize, which was obtained experimentally, after stopping the piezo element 12, Based on the positions of the balls 7a and 7b, the diameter (inner diameter) of the bottom of the outer ring raceway 2 is calculated. In this state, the balls 7a and 7b are moved to the deepest part of the outer ring raceway 2, and the positions of the balls 7a and 7b are not slightly displaced by vibration. The inner diameter of the deepest part can be obtained accurately.

上記各玉7a、7bの位置に基づいて上記外輪軌道2の底部の内径Rを算出するには、数学的手法により、これら各玉7a、7bの外接円の直径を求めれば良い。本実施例の場合、上側に存在する2個の玉7a、7aの中心同士を結ぶ線分が水平方向に配置されており、残り1個の玉7bが、この線分の垂直二等分線上で変位する。従って、上記内径Rは、これら3個の玉7a、7bの中心を結ぶ二等辺三角形の外接円の直径Dと、各玉の外径dとの和(D+d)として求められる。又、この二等辺三角形の外接円の直径Dは、この二等辺三角形の底辺の長さ(上記線分の長さ)Lと、高さHとから、D=H+L2 /4Hで求められる。このうちの底辺の長さLは既知であり、高さHは測定器6aの測定値から求められる。従って、上記外輪軌道2の底部の直径Rは、R=H+L2 /4H+dで求められる。尚、この式の右辺中、高さH以外の、既知の値である、上記線分の長さL及び上記各玉7a、7bの外径dは、厳密に(上記外輪軌道2の内径Rに関して要求される測定精度の10倍若しくはそれ以上の精度で)規制している。 In order to calculate the inner diameter R of the bottom of the outer ring raceway 2 based on the positions of the balls 7a and 7b, the diameter of the circumscribed circle of the balls 7a and 7b may be obtained by a mathematical method. In the case of this embodiment, the line segment connecting the centers of the two balls 7a, 7a existing on the upper side is arranged in the horizontal direction, and the remaining one ball 7b is on the vertical bisector of this line segment. Displace at. Therefore, the inner diameter R is obtained as the sum (D + d) of the diameter D of the circumscribed circle of the isosceles triangle connecting the centers of the three balls 7a and 7b and the outer diameter d of each ball. The diameter D of the circumscribed circle of the isosceles triangle is obtained from the length L of the base of the isosceles triangle (the length of the line segment) L and the height H by D = H + L 2 / 4H. Among these, the length L of the base is known, and the height H is obtained from the measured value of the measuring device 6a. Therefore, the diameter R of the bottom of the outer ring raceway 2 is obtained by R = H + L 2 / 4H + d. Note that the length L of the line segment and the outer diameter d of each of the balls 7a and 7b, which are known values other than the height H in the right side of this expression, are strictly (the inner diameter R of the outer ring raceway 2). With a precision of 10 times or more of the required measurement accuracy).

尚、上記各玉7a、7bと上記外輪軌道2との接触部に振動を付加する為のピエゾ素子12の数及び配置、更にはこのピエゾ素子12に印加する駆動信号の波形並びに周期は、これら各接触部を効果的に振動させる面から実験的或は設計的に決定する。この場合に、上記ピエゾ素子12の振動周波数を、前記測定装置本体8を含む測定装置の共振周波数、或は被測定物である前記外輪1の共振周波数と一致させる事が、上記各玉7a、7bと上記外輪軌道2との接触部の摩擦による拘束を確実に解いて、これら各接触部をこの外輪軌道2の最深部に向けて移動させる面から好ましい。   The number and arrangement of the piezoelectric elements 12 for applying vibration to the contact portions between the balls 7a, 7b and the outer ring raceway 2, and the waveform and period of the drive signal applied to the piezoelectric elements 12 are as follows. It is determined experimentally or design from the surface that effectively vibrates each contact portion. In this case, it is possible to match the vibration frequency of the piezo element 12 with the resonance frequency of the measuring device including the measuring device main body 8 or the resonance frequency of the outer ring 1 as the object to be measured. This is preferable from the viewpoint of reliably releasing the restraint caused by the friction of the contact portion between the outer ring raceway 2 and the outer ring raceway 2 and moving each contact portion toward the deepest portion of the outer ring raceway 2.

この様な目的で、上記共振周波数を求める為には、例えば、図3に示す様な、ディジタル的に変化する方形波(インパルス波形)の駆動信号、或は、図4に示す様な、アナログ式に変化する正弦波の駆動信号の周波数を変動(スイープ)させる事が考えられる。駆動信号の周波数を変動させれば、変動の過程で、上記測定装置又は上記外輪1が共振するので、その時点で駆動信号の周波数を固定し、上記各接触部を上記外輪軌道2の最深部に移動させる。尚、上記駆動信号の周波数変動を緩徐に行なわせれば、必ずしも上記測定装置又は上記外輪1が共振した時点で上記駆動信号の周波数を固定する必要はない。この場合には、共振周波数を通過する過程で上記各接触部が上記外輪軌道2の最深部に移動し切る。これら各接触部がこの最深部に移動した後は、上記駆動信号の周波数が共振周波数から外れたとしても、上記各接触部が上記最深部からずれ動く事はない。   For this purpose, in order to obtain the resonance frequency, for example, a digitally changing square wave (impulse waveform) drive signal as shown in FIG. 3 or an analog signal as shown in FIG. It is conceivable to change (sweep) the frequency of the sinusoidal drive signal that changes into an equation. If the frequency of the drive signal is changed, the measuring device or the outer ring 1 resonates in the process of the change, so that the frequency of the drive signal is fixed at that time, and each contact portion is the deepest part of the outer ring track 2. Move to. If the frequency variation of the drive signal is performed slowly, it is not always necessary to fix the frequency of the drive signal when the measuring device or the outer ring 1 resonates. In this case, in the process of passing through the resonance frequency, each of the contact portions has completely moved to the deepest portion of the outer ring raceway 2. After the contact portions move to the deepest portion, the contact portions do not move from the deepest portion even if the frequency of the drive signal deviates from the resonance frequency.

但し、上記各接触部を上記外輪軌道2の最深部に短時間で移動させるべく、上記ピエゾ素子12による加振の振幅を大きくした場合には、このピエゾ素子12の振動を停止する際に注意が必要である。即ち、上記振幅を大きくして上記各接触部を大きく振動させた状態のまま、上記ピエゾ素子12への駆動信号の送り込みを急に停止した場合には、停止した瞬間の振動方向によっては、上記各接触部がずれ動く可能性がある。このずれ動きの方向及び大きさによっては(何れかの接触部が、上記外輪軌道2の最深部から無視できない程ずれ動いた場合には)、この外輪軌道2の内径の測定値に、無視できない程の誤差が生じる可能性がある。この様な原因で測定誤差が生じる可能性をなくす為には、図5に示す様に、上記ピエゾ素子12に送り込む駆動信号を段階的に小さくする事が好ましい。図5には、方形波の駆動信号に就いて示したが、正弦波の駆動信号に就いても同様である。   However, when the amplitude of the excitation by the piezo element 12 is increased in order to move the contact parts to the deepest part of the outer ring raceway 2 in a short time, attention should be paid when stopping the vibration of the piezo element 12. is required. That is, in the case where the driving signal is suddenly stopped while the amplitude is increased and the contact portions are vibrated greatly, depending on the vibration direction at the moment of stopping, There is a possibility that each contact portion moves. Depending on the direction and magnitude of this displacement movement (when any contact portion is displaced so as not to be ignored from the deepest part of the outer ring raceway 2), the measured inner diameter of the outer ring raceway 2 cannot be ignored. Some errors may occur. In order to eliminate the possibility of a measurement error due to such a cause, it is preferable to reduce the drive signal sent to the piezo element 12 in a stepwise manner as shown in FIG. Although FIG. 5 shows a square-wave drive signal, the same applies to a sine-wave drive signal.

尚、上述の説明は、上記測定装置や上記外輪1の共振周波数が不明である場合であるが、これら測定装置や外輪1の共振周波数は予め分かっている場合が多い。この場合には、上記駆動信号を、初めからこの共振周波数に一致させる(駆動信号の周波数を固定する)。これに対して、それまでと異なる仕様の外輪1に関して外輪軌道2の内径を測定する場合の様に、上記測定装置或はこの外輪1を共振させられる条件が不明の場合で、上記ピエゾ素子12の振幅或は振動周波数をこれら測定装置或は外輪1を共振させられる値にする為には、このピエゾ素子12に送り込む駆動信号の強度或は周波数を、図6或は図7に示す様に変化させる事も効果がある。このうちの図6に示した駆動信号は、スイープ時間{電圧が降下してから再び立ち上がる迄の(電圧が0である)時間}を一定としたまま電圧を変化させて上記ピエゾ素子12を一定の周波数で振動させつつ、その振動の振幅を変化させるものである。又、図7に示した駆動信号は、スイープ時間或はデューティ比(1周期中での電圧の立ち上がり時間と非立ち上がり時間との比)も合わせて変化させたものである。何れの駆動信号を採用するか、或は両方の駆動信号を組み合わせて使用するかは、被測定物である上記外輪1の大きさ、形状に合わせて適宜選択する。駆動信号が正弦波信号である場合も、基本的には同じ様に考える事ができる。   In addition, although the above-mentioned description is a case where the resonant frequency of the said measuring apparatus or the said outer ring 1 is unknown, the resonant frequency of these measuring apparatuses or the outer ring 1 is often known beforehand. In this case, the drive signal is matched with this resonance frequency from the beginning (the frequency of the drive signal is fixed). On the other hand, when the inner diameter of the outer ring raceway 2 is measured with respect to the outer ring 1 having a different specification from that of the former, the measurement device or the condition where the outer ring 1 is caused to resonate is unknown. In order to set the amplitude or vibration frequency of the sensor to a value that can resonate the measuring device or the outer ring 1, the intensity or frequency of the drive signal sent to the piezo element 12 is set as shown in FIG. 6 or FIG. Changing it is also effective. Of these, the drive signal shown in FIG. 6 has a constant sweeping time {the time from when the voltage drops until it rises again (the time when the voltage is 0)}, and the voltage is changed to keep the piezoelectric element 12 constant. The amplitude of the vibration is changed while vibrating at the frequency. Further, the drive signal shown in FIG. 7 is obtained by changing the sweep time or the duty ratio (ratio of voltage rise time and non-rise time in one cycle). Which drive signal is used or which drive signal is used in combination is appropriately selected according to the size and shape of the outer ring 1 as the object to be measured. When the drive signal is a sine wave signal, the same can be basically considered.

図8〜9は、本発明の実施例2を示している。本実施例は、本発明を、単列深溝型の玉軸受を構成する内輪14の外径を、深溝型の内輪軌道15の最深部で測定するのに適用した場合に就いて示している。この内輪軌道15は、上記内輪14の外周面の軸方向中央部に形成されている。又、この内輪軌道15の曲率中心は、この内輪14の軸方向中央部に存在する。従って、この内輪軌道15の最深部は、この内輪14の軸方向中央部に存在し、この内輪14は、この最深部に関して軸方向対称な形状を有する。   8 to 9 show Example 2 of the present invention. This embodiment shows a case where the present invention is applied to measure the outer diameter of the inner ring 14 constituting the single row deep groove type ball bearing at the deepest part of the deep groove type inner ring raceway 15. The inner ring raceway 15 is formed at the axially central portion of the outer peripheral surface of the inner ring 14. Further, the center of curvature of the inner ring raceway 15 exists in the central portion of the inner ring 14 in the axial direction. Therefore, the deepest part of the inner ring raceway 15 exists in the center part of the inner ring 14 in the axial direction, and the inner ring 14 has an axially symmetrical shape with respect to the deepest part.

この様な内輪14の外周面に形成した内輪軌道15の外径をその最深部で測定する、本実施例の外径測定装置は、それぞれが接触子である3個の玉7c、7dを備える。これら3個の玉7c、7dのうち、下側に存在する2個の玉7c、7cは、同じ高さ位置に設置している。言い換えれば、これら両玉7c、7cの中心同士を結ぶ線分を、水平方向に配置している。この為に本実施例の場合には、測定装置本体8aの前面(図8の左面)下部に固定腕4bを突設し、この固定腕4bの上面両側部分に設けた支持凹部9b、9b部分に、上記両玉7c、7cを、接着等により支持固定している。   The outer diameter measuring device according to the present embodiment, which measures the outer diameter of the inner ring raceway 15 formed on the outer peripheral surface of the inner ring 14 at the deepest portion thereof, includes three balls 7c and 7d, each of which is a contact. . Of these three balls 7c and 7d, the two balls 7c and 7c existing on the lower side are installed at the same height position. In other words, the line segment connecting the centers of these balls 7c, 7c is arranged in the horizontal direction. For this reason, in the case of the present embodiment, the fixed arm 4b protrudes from the lower part of the front surface (left surface in FIG. 8) of the measuring apparatus main body 8a, and the support concave portions 9b and 9b provided on both sides of the upper surface of the fixed arm 4b In addition, the balls 7c and 7c are supported and fixed by adhesion or the like.

これに対して、残りの1個の玉7dは、上記両玉7c、7cの上方に、これら両玉7c、7cの中心同士を結ぶ線分に関する垂直二等分線上を移動可能に、鉛直方向の変位を可能とした状態で設けている。この為に本実施例の場合には、上記測定装置本体8aの上部に設けた取付孔10aの内側に可動腕5bを配置している。この可動腕5bはその基端部を、図示しない水平軸を中心とする揺動自在に支持している。上記1個の玉7dは、この様な可動腕5bの先端部下面に設けた支持凹部9c部分に、接着等により支持固定している。   On the other hand, the remaining one ball 7d is movable in the vertical direction above the balls 7c and 7c so as to be movable on a vertical bisector relating to a line connecting the centers of the balls 7c and 7c. It is provided in a state where it can be displaced. For this reason, in the case of the present embodiment, the movable arm 5b is arranged inside the mounting hole 10a provided in the upper part of the measuring apparatus main body 8a. The movable arm 5b supports the base end of the movable arm 5b so that it can swing around a horizontal axis (not shown). The single ball 7d is supported and fixed by bonding or the like to the supporting recess 9c provided on the lower surface of the distal end of the movable arm 5b.

又、上記1個の玉7dの鉛直方向の変位量を、測定器6bにより測定する様に構成している。この為に本実施例の場合には、上記可動腕5bの中間部上面に、上記測定器6bの端子11aを当接させている。
更に、上記測定装置本体8aの一部で上記固定腕4bの基端部分に、加振手段であるピエゾ素子12を添設すると共に、駆動回路13によりこのピエゾ素子12に、所望の周期で所望の電圧を印加する様にしている。
Further, the vertical displacement of the single ball 7d is measured by the measuring device 6b. Therefore, in the case of the present embodiment, the terminal 11a of the measuring device 6b is brought into contact with the upper surface of the intermediate portion of the movable arm 5b.
Further, a piezo element 12 as a vibration means is attached to a base end portion of the fixed arm 4b in a part of the measuring apparatus main body 8a, and a desired frequency is provided to the piezo element 12 by a drive circuit 13. The voltage is applied.

上述の様に構成する内輪の外径測定装置により、前記内輪軌道15の外径を、最も外径が小さくなったその最深部で測定する作業は、次の様にして行なう。
先ず、上記下側に存在する2個の玉7c、7cに前記内輪14を、これら両玉7c、7cの一部表面と上記内輪軌道15とを当接させた状態で載置する。この際、上記可動腕5bの先端部を上昇させて、これら両玉7c、7cと残り1個の玉7dとを加えた3個の玉7c、7dの内接円の直径を、上記内輪14の最大外径よりも大きくしておく。上記可動腕5bの先端部は、この内輪14を上記両玉7c、7cに載置した後に下降させて、上記残り1個の玉7dの一部表面に関しても、上記内輪軌道15に当接させる。
The operation of measuring the outer diameter of the inner ring raceway 15 at the deepest part where the outer diameter is the smallest with the inner ring outer diameter measuring device configured as described above is performed as follows.
First, the inner ring 14 is placed on the two balls 7c, 7c existing on the lower side in a state where a part of the surfaces of the balls 7c, 7c and the inner ring raceway 15 are in contact with each other. At this time, the tip of the movable arm 5b is raised, and the diameter of the inscribed circle of the three balls 7c, 7d obtained by adding both the balls 7c, 7c and the remaining one ball 7d is set to the inner ring 14 It should be larger than the maximum outer diameter. The tip of the movable arm 5b is lowered after the inner ring 14 is placed on the balls 7c, 7c so that the partial surface of the remaining one ball 7d also contacts the inner ring track 15. .

次いで、上記駆動回路13により上記ピエゾ素子12を駆動し、上記測定装置本体8を高周波振動させて、上記各玉7c、7dと上記内輪軌道15との当接部を、この内輪軌道15の最深部に向けて移動させる。そして、上記各玉7c、7dの位置に基づいて、上記内輪軌道15の底部の直径(外径)を算出する。本実施例の場合、下側に存在する2個の玉7c、7cの中心同士を線分が水平方向に配置されており、残り1個の玉7dが、この線分の垂直二等分線上で変位する。従って、上記直径は、これら3個の玉7c、7dの中心を結ぶ二等辺三角形の外接円の直径Dと、各玉の外径dとの差(D−d)として求められる。その他の構成及び作用は、前述した実施例1と同様であるから、重複する説明は省略する。   Next, the driving circuit 13 drives the piezo element 12 to vibrate the measuring device main body 8 at high frequency, so that the contact portions between the balls 7 c and 7 d and the inner ring raceway 15 are the deepest of the inner ring raceway 15. Move towards the department. Based on the positions of the balls 7c and 7d, the diameter (outer diameter) of the bottom of the inner ring raceway 15 is calculated. In the case of the present embodiment, the center of the two balls 7c, 7c existing on the lower side is arranged in the horizontal direction, and the remaining one ball 7d is on the vertical bisector of this line segment. Displace at. Therefore, the diameter is obtained as a difference (D−d) between the diameter D of the circumscribed circle of the isosceles triangle connecting the centers of the three balls 7c and 7d and the outer diameter d of each ball. Other configurations and operations are the same as those of the first embodiment described above, and thus redundant description is omitted.

本発明のうちの、請求項1に記載した円形の周面を有する部材の直径測定方法は、円形の周面を有する部材の周面に形成した凹溝の直径そのものを、その最深部で測定する場合に限らず、この直径の変化に対応して変化する寸法を測定する事もできる。例えば、前述の特許文献3に記載された発明をラジアル玉軸受に適用して、このラジアル玉軸受の内部隙間を測定する場合に適用して、この内部隙間を正確に測定できる。この場合には、上記ラジアル玉軸受を、その中心軸を水平方向に配置した状態で、このラジアル玉軸受を構成する内輪と外輪とのうちの一方を固定し、他方を昇降させて、その昇降量(ラジアル方向の変位量)を測定する。測定に先立って上記ラジアル玉軸受を高周波振動させれば、このラジアル玉軸受を構成する複数の玉の転動面が、外輪軌道及び内輪軌道の最深部に当接する状態となって、上記内部隙間を正確に求められる。
更に、上記請求項1に記載した円形の周面を有する部材の直径測定方法は、玉軸受を構成する外輪の内径や内輪の外径に限らず、ボールねじ、リニアガイド等の、周面に断面円弧形の凹溝を有する部材の径方向寸法を、この凹溝の最深部で測定する場合に適用する事もできる。
In the present invention, the diameter measuring method for a member having a circular peripheral surface described in claim 1 measures the diameter of the concave groove formed on the peripheral surface of the member having a circular peripheral surface at the deepest portion. However, the dimensions that change in response to the change in diameter can be measured. For example, the invention described in Patent Document 3 described above can be applied to a radial ball bearing, and the internal clearance of the radial ball bearing can be measured to accurately measure the internal clearance. In this case, the radial ball bearing is fixed with one of the inner ring and the outer ring constituting the radial ball bearing in a state where the central axis thereof is disposed in the horizontal direction, and the other is lifted and lowered. Measure the amount (radial displacement). If the radial ball bearing is vibrated at a high frequency prior to measurement, the rolling surfaces of a plurality of balls constituting the radial ball bearing come into contact with the deepest part of the outer ring raceway and the inner ring raceway, and the internal gap Is required accurately.
Further, the diameter measuring method of the member having a circular peripheral surface described in claim 1 is not limited to the inner diameter of the outer ring and the outer diameter of the inner ring constituting the ball bearing, but the peripheral surface such as a ball screw or a linear guide. The present invention can also be applied to the case where the radial dimension of a member having a groove having an arc cross section is measured at the deepest portion of the groove.

本発明の実施例1を示す部分縦断側面図。1 is a partially longitudinal side view showing Embodiment 1 of the present invention. 図1の左方から見た図。The figure seen from the left side of FIG. ピエゾ素子に送り込む駆動信号の第1例を示す線図。The diagram which shows the 1st example of the drive signal sent into a piezo element. 同第2例を示す線図。The diagram which shows the 2nd example. 同第3例を示す線図。The diagram which shows the 3rd example. 同第4例を示す線図。The diagram which shows the 4th example. 同第5例を示す線図。The diagram which shows the 5th example. 本発明の実施例2を示す部分縦断側面図。The partial longitudinal section side view showing Example 2 of the present invention. 図8の左方から見た図。The figure seen from the left of FIG. 従来構造の1例を示す縦断側面図。The vertical side view which shows an example of the conventional structure. 一部を省略して示す、図10のA−A断面図。FIG. 11 is a cross-sectional view taken along the line AA in FIG.

符号の説明Explanation of symbols

1 外輪
2 外輪軌道
3a、3b、3c 玉
4、4a、4b 固定腕
5、5a、5b 可動腕
6、6a、6b 測定器
7a、7b、7c、7d 玉
8、8a 測定装置本体
9、9a、9b、9c 支持凹部
10、10a 取付孔
11、11a 端子
12 ピエゾ素子
13 駆動回路
14 内輪
15 内輪軌道
DESCRIPTION OF SYMBOLS 1 Outer ring 2 Outer ring raceway 3a, 3b, 3c Ball 4, 4a, 4b Fixed arm 5, 5a, 5b Movable arm 6, 6a, 6b Measuring instrument 7a, 7b, 7c, 7d Ball 8, 8a Measuring device main body 9, 9a, 9b, 9c Support recess 10, 10a Mounting hole 11, 11a Terminal 12 Piezo element 13 Drive circuit 14 Inner ring 15 Inner ring track

Claims (6)

何れかの周面に、全周に亙って断面円弧形の凹溝を形成した、円形の周面を有する部材の直径に関する寸法を、この凹溝の最深部で測定する方法であって、単一の鉛直面内に存在する複数の接触子を上記凹溝の底面に押し付けた状態で、これら各接触子と上記円形の周面を有する部材との接触部に高周波振動を付加する事により、これら各接触子と上記円形の周面を有する部材との接触部を上記凹溝の最深部に移動させてから、上記直径に関する寸法を測定する事を特徴とする円形の周面を有する部材の直径測定方法。   A method of measuring a diameter of a member having a circular peripheral surface, in which a concave groove having a circular arc cross section is formed on any peripheral surface at the deepest portion of the concave groove. In a state where a plurality of contacts existing in a single vertical plane are pressed against the bottom surface of the concave groove, high-frequency vibration is applied to the contact portion between each contact and the member having the circular peripheral surface. By moving the contact portion between each of the contacts and the member having the circular peripheral surface to the deepest portion of the concave groove, and then measuring the dimension related to the diameter, the circular peripheral surface is provided. Method for measuring the diameter of a member. 何れかの周面に、全周に亙って断面円弧形の凹溝を形成した円形の周面を有する部材の直径に関する寸法を、この凹溝の最深部で測定する装置であって、複数の接触子と、押圧手段と、測定手段と、演算手段と、加振手段とを備え、
このうちの複数の接触子は、単一の鉛直面内に存在すると共に、これら各接触子のうちの少なくとも1個の接触子は、上記円形の周面を有する部材の直径方向に変位可能に支持されており、
上記押圧手段は、この円形の周面を有する部材の直径方向に変位可能に支持された接触子を上記凹溝の底面に向け押圧するものであり、
上記測定手段は、上記円形の周面を有する部材の直径方向に変位可能に支持された接触子の、この直径方向に関する変位量を測定するものであり、
上記演算手段は、上記測定手段が測定した上記変位量に基づいて上記最深部での上記円形の周面を有する部材の直径を求めるものであり、
上記加振手段は、上記円形の周面を有する部材と上記各接触子とのうちの少なくとも一方に振動を付加するものである
円形の周面を有する部材の直径測定装置。
An apparatus for measuring a dimension related to the diameter of a member having a circular peripheral surface formed with a concave groove having a circular arc cross section over the entire circumference on any peripheral surface at the deepest portion of the concave groove, A plurality of contacts, pressing means, measuring means, computing means, and vibration means,
A plurality of contacts among them exist in a single vertical plane, and at least one of the contacts can be displaced in the diameter direction of the member having the circular peripheral surface. Supported,
The pressing means presses the contact supported so as to be displaceable in the diameter direction of the member having the circular peripheral surface toward the bottom surface of the concave groove,
The measuring means measures a displacement amount in the diameter direction of a contact supported so as to be displaceable in the diameter direction of the member having the circular peripheral surface,
The calculation means obtains the diameter of the member having the circular peripheral surface at the deepest part based on the displacement amount measured by the measurement means,
The vibrating means applies vibration to at least one of the member having the circular peripheral surface and each contactor. Diameter measuring apparatus for a member having a circular peripheral surface.
円形の周面を有する部材が、内周面に深溝型の外輪軌道を形成した、ラジアル玉軸受を構成する外輪であり、各接触子が、それぞれがこの外輪軌道の断面形状の曲率半径の2倍よりも小さな直径を有する3個の玉であって、これら3個の玉の中心が単一鉛直面上に配置されると共に、これら3個の玉のうちで上側の2個の玉が同じ高さ位置に固定されており、残り1個の玉が、これら2個の玉の中心同士を結ぶ線分に関する垂直二等分線上を移動可能に、これら2個の玉の下方に支持されており、測定手段が、この垂直二等分線上での上記1個の玉の変位量を測定する、請求項2に記載した円形の周面を有する部材の直径測定装置。   A member having a circular peripheral surface is an outer ring constituting a radial ball bearing in which a deep groove type outer ring raceway is formed on the inner peripheral surface, and each contactor has a radius of curvature of 2 in the cross-sectional shape of the outer ring raceway. Three balls having a diameter smaller than double, the centers of these three balls are arranged on a single vertical plane, and the upper two balls of these three balls are the same It is fixed at the height position, and the remaining one ball is supported below the two balls so that it can move on the vertical bisector of the line connecting the centers of these two balls. The diameter measuring device for a member having a circular peripheral surface according to claim 2, wherein the measuring means measures the amount of displacement of the one ball on the perpendicular bisector. 円形の周面を有する部材が、外周面に深溝型の内輪軌道を形成した、ラジアル玉軸受を構成する内輪であり、各接触子が、それぞれがこの内輪軌道の断面形状の曲率半径の2倍よりも小さな直径を有する3個の玉であって、これら3個の玉の中心が単一鉛直面上に配置されると共に、これら3個の玉のうちで下側の2個の玉が同じ高さ位置に固定されており、残り1個の玉が、これら2個の玉の中心同士を結ぶ線分に関する垂直二等分線上を移動可能に、これら2個の玉の上方に支持されており、測定手段が、この垂直二等分線上での上記1個の玉の変位量を測定する、請求項2に記載した円形の周面を有する部材の直径測定装置。   A member having a circular peripheral surface is an inner ring constituting a radial ball bearing in which a deep groove type inner ring raceway is formed on the outer peripheral surface, and each contactor is twice the radius of curvature of the cross-sectional shape of the inner ring raceway. Three balls having a smaller diameter, the center of these three balls being arranged on a single vertical plane, and the lower two balls of these three balls being the same It is fixed at the height position, and the remaining one ball is supported above these two balls so that it can move on the vertical bisector of the line connecting the centers of these two balls. The diameter measuring device for a member having a circular peripheral surface according to claim 2, wherein the measuring means measures the amount of displacement of the one ball on the perpendicular bisector. 加振手段が発生する高周波振動の周波数が、円形の周面を有する部材の共振周波数又は測定装置の共振周波数に一致する、請求項2〜4の何れかに記載した円形の周面を有する部材の直径測定装置。   The member having a circular peripheral surface according to any one of claims 2 to 4, wherein the frequency of the high-frequency vibration generated by the vibration means coincides with a resonance frequency of a member having a circular peripheral surface or a resonance frequency of a measuring device. Diameter measuring device. 加振手段がピエゾ素子である、請求項2〜5の何れかに記載した円形の周面を有する部材の直径測定装置。
The diameter measuring apparatus for a member having a circular peripheral surface according to any one of claims 2 to 5, wherein the excitation means is a piezo element.
JP2004227122A 2004-08-03 2004-08-03 Method and apparatus for measuring diameter of member having circular peripheral surface Expired - Fee Related JP4496879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004227122A JP4496879B2 (en) 2004-08-03 2004-08-03 Method and apparatus for measuring diameter of member having circular peripheral surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004227122A JP4496879B2 (en) 2004-08-03 2004-08-03 Method and apparatus for measuring diameter of member having circular peripheral surface

Publications (2)

Publication Number Publication Date
JP2006047060A JP2006047060A (en) 2006-02-16
JP4496879B2 true JP4496879B2 (en) 2010-07-07

Family

ID=36025782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004227122A Expired - Fee Related JP4496879B2 (en) 2004-08-03 2004-08-03 Method and apparatus for measuring diameter of member having circular peripheral surface

Country Status (1)

Country Link
JP (1) JP4496879B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5629974B2 (en) * 2009-02-13 2014-11-26 日本精工株式会社 Apparatus and method for measuring groove diameter of bearing ring for ball bearing
CN101907435A (en) * 2009-06-03 2010-12-08 上海莱必泰精密机电有限公司 Full-automatic bearing outboard detector
CN103033114A (en) * 2012-12-20 2013-04-10 常熟长城轴承有限公司 Rotating plate ball track central diameter measuring device
CN103913106A (en) * 2014-03-12 2014-07-09 安徽利达汽车轴承制造有限公司 Automatic detection device for turned ball bearing finished products
CN105571457A (en) * 2015-12-15 2016-05-11 洛阳轴研科技股份有限公司 Ball bearing outer ring groove bottom diameter measurement device and measurement method
CN107677177B (en) * 2017-09-27 2020-03-17 界首市皖俊轴承有限公司 Bearing outer ring measuring device and measuring method thereof
CN111811372B (en) * 2020-06-05 2022-10-18 上海航天设备制造总厂有限公司 Special measurement tool and measurement method for valve shell sealing groove
CN112525135B (en) * 2020-12-31 2021-08-10 郑州科技学院 Detection device for intelligent manufacturing
CN113483631B (en) * 2021-07-20 2023-05-09 人本股份有限公司 Inner diameter detection device of solid needle roller retainer
CN116399279B (en) * 2023-03-23 2024-01-23 山东智研连合轴承有限公司 Angular contact ball bearing inner ring contact diameter measuring device and application method thereof
CN117450982B (en) * 2023-12-25 2024-04-26 泰州市勤峰物资有限公司 Bicycle rim roundness testing machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579412U (en) * 1992-03-30 1993-10-29 エヌティエヌ株式会社 Ring-shaped groove diameter measuring device
JPH0814874A (en) * 1994-06-27 1996-01-19 Tosok Corp Measuring device
JPH1194849A (en) * 1997-09-22 1999-04-09 Olympus Optical Co Ltd Table apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579412U (en) * 1992-03-30 1993-10-29 エヌティエヌ株式会社 Ring-shaped groove diameter measuring device
JPH0814874A (en) * 1994-06-27 1996-01-19 Tosok Corp Measuring device
JPH1194849A (en) * 1997-09-22 1999-04-09 Olympus Optical Co Ltd Table apparatus

Also Published As

Publication number Publication date
JP2006047060A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
JP4496879B2 (en) Method and apparatus for measuring diameter of member having circular peripheral surface
US6690101B2 (en) Vibratory motors and methods of making and using same
US7503216B2 (en) Device and method for evaluating rigidity of bearing device, device and method for manufacturing bearing device, and bearing device
US9285201B2 (en) Form measuring instrument
EP2251635B1 (en) Probe for three-dimensional shape measuring apparatus and three-dimensional shape measuring apparatus.
JP4852264B2 (en) Stylus type step gauge for surface shape measurement and its needle pressure correction method
JP2002062124A (en) Length measuring device
JP2002119074A (en) Drive using electromechanical sensing element
JP2008026128A (en) Surface following measuring device
JPH0814874A (en) Measuring device
JP2008232926A (en) Device for measuring of traveling amount of rolling motion object
JP4041925B2 (en) Method for evaluating swing characteristics of rolling bearing device
JP2005164369A (en) Abrasion tester
JP2004320990A (en) Method and apparatus for measuring motor
JP6277820B2 (en) Head for impact test, hammer for impact test, impact test apparatus and impact test method
JPH0886728A (en) Tester for evaluating strength reliability
JP4995767B2 (en) Positioning device and scanning probe microscope using the same
RU2194244C2 (en) Method and device for measuring hole parameters
RU2731039C1 (en) Device for measuring surface relief parameters and mechanical properties of materials
JP2001186783A (en) Guiding device using ultrasonic motor as driving source of movable body
JP2008298506A (en) Shape measuring device
JP2005147786A (en) Inspection apparatus and inspection method for rotational operation type electronic components
JP5483112B2 (en) Viscometer
JP5344885B2 (en) Wheel stiffness measuring device and wheel stiffness measuring method
JP2513709Y2 (en) Cyclic fatigue test equipment

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070412

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4496879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees