JP4494567B2 - Method of forming electrode on n-type gallium nitride compound semiconductor layer - Google Patents

Method of forming electrode on n-type gallium nitride compound semiconductor layer Download PDF

Info

Publication number
JP4494567B2
JP4494567B2 JP2000002326A JP2000002326A JP4494567B2 JP 4494567 B2 JP4494567 B2 JP 4494567B2 JP 2000002326 A JP2000002326 A JP 2000002326A JP 2000002326 A JP2000002326 A JP 2000002326A JP 4494567 B2 JP4494567 B2 JP 4494567B2
Authority
JP
Japan
Prior art keywords
layer
electrode
gallium nitride
compound semiconductor
gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000002326A
Other languages
Japanese (ja)
Other versions
JP2001196574A (en
Inventor
清輝 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2000002326A priority Critical patent/JP4494567B2/en
Publication of JP2001196574A publication Critical patent/JP2001196574A/en
Application granted granted Critical
Publication of JP4494567B2 publication Critical patent/JP4494567B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はn型窒化ガリウム系化合物半導体を用いた半導体素子の電極の形成方法に関する。
【0002】
【従来の技術】
GaN、GaAlN、InGaN、InGaAlNなどの窒化ガリウム(GaN)系化合物半導体は、組成を選択することでバンドギャップを広範囲に変化させることができ、特に他の組成で実現が困難である青系統の短波長発光を得ることが出来ることから、半導体発光ダイオードや半導体レーザなどの発光素子への応用が検討されている。また窒化ガリウム系化合物半導体は、高温での組成安定性に優れており、高温で動作可能なトランジスタなどの半導体材料として期待されている。
【0003】
これらの窒化ガリウム系材料を用いた半導体素子のn型電極は、多層電極あるいは合金電極とn型GaNコンタクト層により比較的低い接触抵抗のものが得られている。電極の例としては、TiとAlの合金またはTiとAlの多層膜がある。図3に従来例1の電極構造の断面図を示す。n型電極はn型GaNコンタクト層1表面に、Ti層2とAl層3を順に積層した構造になっている。この電極構造では電極蒸着後、400℃以上の温度の熱処理で良好なオーミック特性が得られている。
【0004】
また、従来例1の電極を改良した電極構造として、n型GaNコンタクト層1表面にTi層2とAl層3を順に積層した後、Alよりも高融点の金属を積層した電極構造が提案されている。Alよりも高融点の金属としては、Au、Ti、Ni、Pt、W、Mo、Cr、Cuが挙げられており、特にAu、Ti、Niがよいとされている。
【0005】
図4に従来例2のn型電極の構造を示す。図4において、n型電極はn型GaNコンタクト層1表面に順次積層されたTi層2、Al層3、Ni層4、Au層5とからなっている。この場合も従来例1の場合と同じく、400℃以上の温度の熱処理で良好なオーミック特性が得られる。
【0006】
【発明が解決しようとする課題】
我々の実験結果を以下に述べる。図6にn型電極構造の断面図を示す。n型GaNコンタクト層1表面にTi層2、Al層3、Au層5の順で電極を積層した。その後400℃以上で熱処理した。コンタクト特性(電流I−電圧V特性)を測定した結果を図9に示す。このようにオーミック特性を得ることは難しかった。
【0007】
【課題を解決するための手段】
従来の電極形成方法ではGaNコンタクト層1の上に、初めにTi層2を蒸着している。その後Al層3、Au層5の順に蒸着している。我々の実験結果でオーミック特性が再現性良く得られなかった原因として以下のことを考えた。
【0008】
酸化膜を除去する目的で前処理を行い、さらに蒸着は真空状態で行う。しかしながら、GaNコンタクト層1表面とTi層2の界面には、ある程度のTiの酸化物が生成する。熱処理工程後にTi酸化物はこの界面に残留し、これによりオーミック特性が再現性良く得られることを難しくしている。図5に酸化物生成の標準自由エネルギーの絶対値|△G|と温度との関係を示す(Richard A. Swalin "固体の熱力学",コロナ社(1965))。Ti酸化物とAl酸化物の標準生成自由エネルギーの絶対値を比較した場合、0℃〜1000℃の温度範囲でTiの酸化物の方が生成自由エネルギーは小さい。よってTiの酸化物の方が生成しやすい。すなわちn型GaNコンタクト層1表面と接触する第一層をAl層3とした方が、界面に残留する酸化物は減少する。
【0009】
熱処理をするとTiとAlは合金化するので、従来、電極蒸着時の積層順は問題としていなかった。今回我々は上記考察から、この電極蒸着時の積層順について注目し鋭意検討した。すなわち、従来例ではGaNコンタクト層1表面の上にTi層2を蒸着したが、本発明では初めにAl層3を蒸着することにした。その後Ti層2、Au層5の順番で蒸着することにした。
【0010】
本発明のn型電極の形成方法は、熱処理前の電極蒸着工程において、窒化ガリウム系化合物半導体のn型コンタクト層上にAl層3、Ti層2、Au層5の順に積層し、さらに前記電極金属を形成した後、熱処理を行う。また前記熱処理温度は、00℃未満であることを特徴とする。00℃以上では、GaN系化合物半導体膜の結晶性は悪くなり、半導体素子作成後の特性に悪影響を及ぼす。
【0012】
本発明では、前記電極金属を蒸着した後熱処理する際、前記電極金属を蒸着した後、熱処理する際、一段目として250℃〜400℃の温度下で保持した後、二段目として400℃〜900℃の温度下で保持し、かつ二段目は一段目よりも必ず温度が高いことを特徴とする。熱処理時間は一段目は15分以内、二段目は15分以内で十分である。一段目の熱処理では、n型GaNコンタクト層1表面とAl層3の間の界面にわずかに存在していたAlの酸化物が分解し、Alは窒素と結合し、酸化物は界面に存在しなくなる。分解して発生した酸素は電極外部へ拡散する。この段階でTi―Al合金をGaNコンタクト層表面に形成する。二段目の熱処理では、Auと前記Ti―Al合金の界面にAu―Ti―Al合金を形成し、これらの金属をなじませる効果をもつ。
【0014】
また、2段階の熱処理方法においては、まずAlとTiを蒸着した後、一段目の熱処理を行い、その後Au層5を蒸着した後、二段目の熱処理を行ってもよい。このような構成をとることにより、良好なオーミック特性が再現性よく得られ、本発明の目的を達成することができる。
【0015】
別の問題点として、高温で熱処理する場合、チップ状(数mm角レベル)では特に問題とならないが、直径2インチ以上のウエハ状になると、ウエハの割れ、そり等が発生するおそれがある。ウエハのそりが大きいとその後の半導体素子作成工程で、ウエハの真空吸着が出来ない等のトラブルが生じる。本発明によれば、熱処理温度を400℃以下に下げることができるので、上記問題に対しても効果がある。
【0016】
【発明の実施の形態】
本発明におけるn型窒化ガリウム系化合物半導体層への電極形成方法の実施形態では、熱処理開始前にn型GaNコンタクト層1表面とAl層3が接触している構造である。さらに本発明におけるn型窒化ガリウム系化合物半導体層への電極形成方法の実施形態では、熱処理温度が20℃〜900℃という広い温度範囲においても、再現性良く良好なオーミック特性を得ることが出来る。
【0017】
【実施例】
参考例1]本発明の実施形態の参考例1について図1を用いて説明する。図1は本発明の実施例および参考例に係るn型電極構造の断面図を示す。GaNコンタクト層1へまずAl層3を20nm真空蒸着する。次にTi層2を70nm真空蒸着する。更にその上にAu層5を1000nmスパッタ蒸着した。次に400℃で15分間熱処理した。このようにして作成した電極を用いて、nコンタクト層の特性を測定した。結果を図7に示す。良好なオーミック特性が再現性よく得られ、接触抵抗値は1×10 7Ωcm2と十分に低い値であった。
【0018】
参考例2]参考例2について以下に示す。n型電極蒸着までは上記参考例1と同じである。熱処理は100℃で30分とした。結果は良好なオーミック特性が再現性よく得られた。
【0019】
[実施例]本発明の実施形態の実施例について図2を用いて説明する。電極蒸着までは上記参考例1と同じである。図2に2段階の熱処理方法を示す。一段目の温度は400℃で15分、二段目の温度は850℃で5分とした。このようにして作成した電極を用いて、nコンタクト層の特性を測定した。結果を図8に示す。良好なオーミック特性が再現性よく得られ、コンタクト抵抗値は1×10 7Ωcm2と十分に低い値であった。
【0020】
[実施例]図10にGaN電界効果トランジスタ(FET)の電極形成プロセスを示す。まずガスソース分子線エピタキシャル成長法を用いてGaNの結晶成長を行った。成長室とパターニング室を有する超高真空装置を用いる。
【0021】
成長室においてまず、絶縁性のサファイア基板6上に、ラジカル化した窒素(3×10 6 Torr)とGa(5×10 7 Torr)を用いて分子線エピタキシャル成長法により、成長温度640℃で50nmの厚さのn-GaN バッファ層7を形成し、更にその上にGa(1×10 6 Torr)とアンモニア(5×10 5 Torr)を用い、成長温度850℃でアンドープのGaN アンドープ層8を1000nm成長した。次にその上に、Ga(1×10 7 Torr)とアンモニア(5×10 5 Torr)を用い、ドーパントとしてSi(1×10 9 Torr)を用いて、成長温度850℃でGaN n層9を200nm形成する。この層のキャリア濃度は2×1017cm 3となるようにあらかじめホール測定などを用いて設定した。次にその上にGa(1×10 7 Torr)とアンモニア(5×10 5 Torr)、Si(5×10 8 Torr)を用い、n型GaNコンタクト層1を形成した。このときのキャリア濃度は5×1018cm 3とした。
【0022】
次に、上述のGaNエピタキシャル膜を用いた電極作成プロセスを説明する。GaNエピ表面全面に保護膜としてSi2を熱化学堆積法で付けた。その後フォトリソグラフィを用いパターニングを行い、電極となる部分に沸酸を用い開口部を設けた。次に電極となるAl層3、Ti層2を真空蒸着装置で順次蒸着していく。まず、Al層3を20nm蒸着する。次にTi層2を70nm蒸着する。更にその上にAu層5を1000nmスパッタ蒸着する。次に400℃で15分熱処理して、Ti―Al系合金層13を形成した。更に850℃まで上げて5分間熱処理してAu―Ti―Al系合金層14を形成した。2段階の熱処理方法を図2に示す。こうして作成したソース電極11、ドレイン電極12は良好なオーミック特性であった。またGaNコンタクト層1とこれらの電極11、12との接触抵抗を測定した。その結果1×10 7Ωcm2と十分に低い接触抵抗であった。
【0023】
GaNの成長には有機金属気相化学堆積法(MOCVD)を用いても良い。GaN膜形成には、窒素源としてジメチルヒドラジン、モノメチルヒドラジン、アンモニア等を用いる。またGa源としてはトリエチルガリウム、トリメチルガリウムなどの有機金属ガスを用いる。又、n型ドーパントとしてモノシラン、ジシランなどを用いる。
【0024】
また、三層目の電極であるAu層5は、Ni、Pt、W、Mo、Cr、Cuにおいても同じ効果が得られる。
【0025】
また、GaN以外にもGaAlN、InGaN、InGaAlNなどの窒化ガリウム系半導体においても同じ効果が得られる。
【0026】
また、GaN電界効果トランジスタを実施例で示したが、発光ダイオード、レーザダイオード等で利用されるn型電極においても同じ効果が得られる。
【0027】
【比較例】
本発明の比較例について図6を用いて説明する。図6は比較例のn型電極構造の断面図を示す。GaNコンタクト層1表面上に、まずTi層2を20nm真空蒸着する。次にAl層3を70nm真空蒸着する。更にその上にAu層5を1000nmスパッタ蒸着した。次に400℃で15分間熱処理した。このようにして作成した電極を用いて、nコンタクト層の特性を測定した。結果を図9に示す。良好なオーミック特性が得られなかった。
【0028】
【発明の効果】
以上の説明で明らかなように、本発明の請求項1〜5に係るn型窒化ガリウム系化合物半導体層表面に電極を形成する方法において、n型GaNコンタクト層と電極との界面に残留する酸化物が抑制され、良好なオーミック特性が再現性良く得られ、接触抵抗は十分に小さい値が得られる。
【0029】
また、直径2インチ以上のウエハ上に電極を形成する場合、特に熱処理温度を低温領域に設定することことができ、ウエハのワレ、そり等のトラブルの発生を防止できる。
【図面の簡単な説明】
【図1】 本発明の参考例1,2に係るn型電極構造を示す断面図である。
【図2】 本発明の実施例に係る2段階の熱処理方法である。
【図3】 従来例1のn型電極構造を示す断面図である。
【図4】 従来例2のn型電極構造を示す断面図である。
【図5】 酸化物生成の標準自由エネルギーと温度との関係
【図6】 比較例のn型電極構造を示す断面図である。
【図7】 本発明の参考例1に係る電極の電流電圧特性を示す図である。
【図8】 本発明の参考例2に係る電極の電流電圧特性を示す図である。
【図9】 比較例1に係る電極の電流電圧特性を示す図である。
【図10】 GaN FETの電極形成プロセスを示す図である。
【符号の説明】
1 GaN コンタクト層
2 Ti層
3 Al層
4 Ni層
5 Au層
6 サファイア基板
7 GaN バッファ層
8 GaN アンドープ層
9 GaN n層
10 ゲート電極
11 ソース電極
12 ドレイン電極
13 Ti―Au系合金
14 Au−Ti―Al系合金
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for forming an electrode of a semiconductor device using an n-type gallium nitride compound semiconductor.
[0002]
[Prior art]
Gallium nitride (GaN) -based compound semiconductors such as GaN, GaAlN, InGaN, and InGaAlN can change the band gap over a wide range by selecting the composition. Since wavelength emission can be obtained, application to light-emitting elements such as semiconductor light-emitting diodes and semiconductor lasers has been studied. In addition, gallium nitride-based compound semiconductors have excellent composition stability at high temperatures, and are expected as semiconductor materials such as transistors that can operate at high temperatures.
[0003]
The n-type electrode of the semiconductor element using these gallium nitride-based materials has a relatively low contact resistance due to the multilayer electrode or alloy electrode and the n-type GaN contact layer. Examples of the electrode include an alloy of Ti and Al or a multilayer film of Ti and Al. FIG. 3 shows a sectional view of the electrode structure of Conventional Example 1. The n-type electrode has a structure in which a Ti layer 2 and an Al layer 3 are sequentially laminated on the surface of the n-type GaN contact layer 1. In this electrode structure, good ohmic characteristics are obtained by heat treatment at a temperature of 400 ° C. or higher after electrode deposition.
[0004]
Further, as an electrode structure obtained by improving the electrode of the conventional example 1, an electrode structure in which a Ti layer 2 and an Al layer 3 are sequentially laminated on the surface of the n-type GaN contact layer 1 and then a metal having a higher melting point than Al is laminated is proposed. ing. Examples of metals having higher melting points than Al include Au, Ti, Ni, Pt, W, Mo, Cr, and Cu, and Au, Ti, and Ni are particularly preferable.
[0005]
FIG. 4 shows the structure of the n-type electrode of Conventional Example 2. In FIG. 4, the n-type electrode is composed of a Ti layer 2, an Al layer 3, a Ni layer 4, and an Au layer 5 that are sequentially stacked on the surface of the n-type GaN contact layer 1. In this case, as in the case of Conventional Example 1, good ohmic characteristics can be obtained by heat treatment at a temperature of 400 ° C. or higher.
[0006]
[Problems to be solved by the invention]
The results of our experiment are described below. FIG. 6 shows a cross-sectional view of the n-type electrode structure. On the surface of the n-type GaN contact layer 1, electrodes were laminated in the order of the Ti layer 2, the Al layer 3, and the Au layer 5. Thereafter, heat treatment was performed at 400 ° C. or higher. The results of measuring contact characteristics (current I-voltage V characteristics) are shown in FIG. Thus, it was difficult to obtain ohmic characteristics.
[0007]
[Means for Solving the Problems]
In the conventional electrode forming method, a Ti layer 2 is first deposited on the GaN contact layer 1. Thereafter, the Al layer 3 and the Au layer 5 are deposited in this order. The following were considered as the reasons why the ohmic characteristics were not obtained with good reproducibility in our experimental results.
[0008]
Pretreatment is performed for the purpose of removing the oxide film, and vapor deposition is performed in a vacuum state. However, a certain amount of Ti oxide is generated at the interface between the surface of the GaN contact layer 1 and the Ti layer 2. Ti oxide remains at this interface after the heat treatment step, which makes it difficult to obtain ohmic characteristics with good reproducibility. FIG. 5 shows the relationship between the absolute value of the standard free energy of oxide formation | ΔG | and the temperature (Richard A. Swalin “Thermodynamics of Solid”, Corona (1965)). When the absolute values of the standard free energy of formation of Ti oxide and Al oxide are compared, the free oxide of Ti is smaller in the temperature range of 0 ° C. to 1000 ° C. Therefore, Ti oxide is easier to produce. That is, when the first layer in contact with the surface of the n-type GaN contact layer 1 is the Al layer 3, the oxide remaining at the interface is reduced.
[0009]
Since Ti and Al are alloyed by heat treatment, conventionally, the order of stacking during electrode deposition has not been a problem. This time, from the above consideration, we paid attention to the order of stacking during electrode deposition. That is, in the conventional example, the Ti layer 2 is deposited on the surface of the GaN contact layer 1, but in the present invention, the Al layer 3 is first deposited. Thereafter, the Ti layer 2 and the Au layer 5 were deposited in this order.
[0010]
In the method for forming an n-type electrode according to the present invention, an Al layer 3, a Ti layer 2, and an Au layer 5 are laminated in this order on an n-type contact layer of a gallium nitride compound semiconductor in an electrode vapor deposition step before heat treatment , and the electrode After forming the metal, heat treatment is performed . Also, the heat treatment temperature is, and less than 9 00 ° C.. The 9 00 ° C. or higher, crystallinity of the GaN-based compound semiconductor film is deteriorated, adversely affect the properties after creation semiconductor device.
[0012]
In the present invention, when the electrode metal is deposited and heat treated, the electrode metal is deposited and then heat treated. When the heat treatment is performed, the first stage is maintained at a temperature of 250 ° C. to 400 ° C., and the second stage is 400 ° C. to The temperature is kept at 900 ° C., and the second stage is always higher in temperature than the first stage. The heat treatment time is sufficient within 15 minutes for the first stage and within 15 minutes for the second stage. In the first heat treatment, the Al oxide slightly present at the interface between the surface of the n-type GaN contact layer 1 and the Al layer 3 is decomposed, Al is combined with nitrogen, and the oxide is present at the interface. Disappear. Oxygen generated by decomposition diffuses outside the electrode. At this stage, a Ti—Al alloy is formed on the surface of the GaN contact layer. In the second heat treatment, an Au—Ti—Al alloy is formed at the interface between Au and the Ti—Al alloy, and these metals are blended.
[0014]
In the two-stage heat treatment method, first, Al and Ti are vapor-deposited, then the first-stage heat treatment is performed, and then, after the Au layer 5 is vapor-deposited, the second-stage heat treatment may be performed. By adopting such a configuration, good ohmic characteristics can be obtained with good reproducibility, and the object of the present invention can be achieved.
[0015]
As another problem, when heat treatment is performed at a high temperature, there is no particular problem in the chip shape (several mm square level), but if the wafer shape has a diameter of 2 inches or more, the wafer may be cracked or warped. If the wafer warp is large, troubles such as the fact that the wafer cannot be vacuum-sucked occur in the subsequent semiconductor element fabrication process. According to the present invention, the heat treatment temperature can be lowered to 400 ° C. or lower, which is effective for the above problem.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
In the embodiment of the method for forming an electrode on the n-type gallium nitride compound semiconductor layer in the present invention, the surface of the n-type GaN contact layer 1 and the Al layer 3 are in contact before the start of heat treatment. Furthermore, in the embodiment of the method for forming an electrode on the n-type gallium nitride compound semiconductor layer in the present invention, good ohmic characteristics can be obtained with good reproducibility even in a wide temperature range of 20 ° C. to 900 ° C.
[0017]
【Example】
[ Reference Example 1] Reference Example 1 of the embodiment of the present invention will be described with reference to FIG. FIG. 1 shows a cross-sectional view of an n-type electrode structure according to an embodiment of the present invention and a reference example . First, an Al layer 3 is vacuum-deposited on the GaN contact layer 1 by 20 nm. Next, a Ti layer 2 is vacuum-deposited at 70 nm. Further thereon, an Au layer 5 was sputter deposited by 1000 nm. Next, heat treatment was performed at 400 ° C. for 15 minutes. The characteristics of the n contact layer were measured using the electrode thus prepared. The results are shown in FIG. Good ohmic characteristics are obtained with good reproducibility, the contact resistance is 1 × 10 - was 7 [Omega] cm 2 and sufficiently low.
[0018]
[ Reference Example 2] Reference Example 2 will be described below. The process up to the n-type electrode deposition is the same as in Reference Example 1 above. The heat treatment was performed at 100 ° C. for 30 minutes. As a result, good ohmic characteristics were obtained with good reproducibility.
[0019]
For Example 1 of an embodiment of Example 1 the present invention will be described with reference to FIG. The process up to electrode deposition is the same as in Reference Example 1 above. FIG. 2 shows a two-stage heat treatment method. The first stage temperature was 400 ° C. for 15 minutes, and the second stage temperature was 850 ° C. for 5 minutes. The characteristics of the n contact layer were measured using the electrode thus prepared. The results are shown in FIG. Good ohmic characteristics are obtained with good reproducibility, the contact resistance 1 × 10 - was 7 [Omega] cm 2 and sufficiently low.
[0020]
[Embodiment 2 ] FIG. 10 shows an electrode formation process of a GaN field effect transistor (FET). First, crystal growth of GaN was performed using a gas source molecular beam epitaxial growth method. An ultra-high vacuum apparatus having a growth chamber and a patterning chamber is used.
[0021]
First, in the growth chamber, on an insulating sapphire substrate 6, radicalized nitrogen (3 × 10 - 6 Torr) and Ga - by molecular beam epitaxy using (5 × 10 7 Torr), at a growth temperature 640 ° C. thickness of 50 nm n - to form a GaN buffer layer 7, further Ga thereon (1 × 10 - 6 Torr) and ammonia (5 × 10 - 5 Torr) using a undoped GaN undoped at a growth temperature 850 ° C. Layer 8 was grown 1000 nm. Next thereon, Ga using a - - (5 Torr 5 × 10 ), Si as a dopant (1 × 10 7 Torr) and ammonia - with (1 × 10 9 Torr), GaN n at a growth temperature of 850 ° C. Layer 9 is formed to 200 nm. The carrier concentration of this layer is 2 × 10 17 cm - was set by using a 3 become as previously hole measurement. Next thereon Ga (1 × 10 - 7 Torr ) and ammonia (5 × 10 - 5 Torr) , Si - using (5 × 10 8 Torr), the n-type GaN contact layer 1. The carrier concentration of this time 5 × 10 18 cm - was three.
[0022]
Next, an electrode creation process using the above-described GaN epitaxial film will be described. The S i O 2 as a protective film GaN epi entire surface marked by a thermal chemical deposition method. Thereafter, patterning was performed using photolithography, and an opening was formed using hydrofluoric acid in a portion to be an electrode. Next, the Al layer 3 and the Ti layer 2 to be electrodes are sequentially deposited by a vacuum deposition apparatus. First, the Al layer 3 is deposited by 20 nm. Next, a Ti layer 2 is deposited by 70 nm. Further, an Au layer 5 is sputter deposited by 1000 nm thereon. Next, heat treatment was performed at 400 ° C. for 15 minutes to form a Ti—Al based alloy layer 13. Furthermore, it heated up to 850 degreeC and heat-processed for 5 minutes, and the Au-Ti-Al type alloy layer 14 was formed. A two-stage heat treatment method is shown in FIG. The source electrode 11 and the drain electrode 12 thus prepared had good ohmic characteristics. Further, the contact resistance between the GaN contact layer 1 and these electrodes 11 and 12 was measured. Consequently 1 × 10 - was 7 [Omega] cm 2 and sufficiently low contact resistance.
[0023]
Metal organic chemical vapor deposition (MOCVD) may be used for the growth of GaN. For forming the GaN film, dimethylhydrazine, monomethylhydrazine, ammonia or the like is used as a nitrogen source. As the Ga source, an organic metal gas such as triethylgallium or trimethylgallium is used. Moreover, monosilane, disilane, etc. are used as an n-type dopant.
[0024]
Further, the same effect can be obtained with the Au layer 5 which is the third-layer electrode even when Ni, Pt, W, Mo, Cr and Cu are used.
[0025]
In addition to GaN, the same effect can be obtained in gallium nitride semiconductors such as GaAlN, InGaN, and InGaAlN.
[0026]
Moreover, although the GaN field effect transistor was shown in Example 2 , the same effect is acquired also in the n-type electrode utilized with a light emitting diode, a laser diode, etc.
[0027]
[Comparative example]
A comparative example of the present invention will be described with reference to FIG. FIG. 6 shows a cross-sectional view of a comparative n-type electrode structure. On the surface of the GaN contact layer 1, a Ti layer 2 is first vacuum-deposited by 20 nm. Next, the Al layer 3 is vacuum-deposited by 70 nm. Further thereon, an Au layer 5 was sputter deposited by 1000 nm. Next, heat treatment was performed at 400 ° C. for 15 minutes. The characteristics of the n contact layer were measured using the electrode thus prepared. The results are shown in FIG. Good ohmic characteristics could not be obtained.
[0028]
【The invention's effect】
As apparent from the above description, in the method for forming an electrode on the surface of the n-type gallium nitride compound semiconductor layer according to claims 1 to 5 of the present invention, the oxidation remaining at the interface between the n-type GaN contact layer and the electrode Things are suppressed, good ohmic characteristics can be obtained with good reproducibility, and a sufficiently small value of contact resistance can be obtained.
[0029]
In addition, when electrodes are formed on a wafer having a diameter of 2 inches or more, the heat treatment temperature can be set particularly in a low temperature region, and troubles such as cracking and warping of the wafer can be prevented.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an n-type electrode structure according to Reference Examples 1 and 2 of the present invention.
FIG. 2 is a two-stage heat treatment method according to Examples 1 and 2 of the present invention.
3 is a cross-sectional view showing an n-type electrode structure of Conventional Example 1. FIG.
4 is a cross-sectional view showing an n-type electrode structure of Conventional Example 2. FIG.
FIG. 5 is a cross-sectional view showing an n-type electrode structure of a comparative example.
7 is a graph showing current-voltage characteristics of an electrode according to Reference Example 1 of the present invention. FIG.
FIG. 8 is a diagram showing current-voltage characteristics of an electrode according to Reference Example 2 of the present invention.
9 is a graph showing current-voltage characteristics of an electrode according to Comparative Example 1. FIG.
FIG. 10 is a diagram showing an electrode formation process of a GaN FET.
[Explanation of symbols]
1 GaN contact layer 2 Ti layer 3 Al layer 4 Ni layer 5 Au layer 6 Sapphire substrate 7 GaN buffer layer 8 GaN undoped layer 9 GaN n layer 10 Gate electrode 11 Source electrode 12 Drain electrode 13 Ti—Au alloy 14 Au—Ti -Al alloy

Claims (1)

n型窒化ガリウム系化合物半導体層表面に電極を形成する方法において、前記電極はn型窒化ガリウム系化合物半導体層に接する側から順に、第一の薄膜としてはアルミニウム、第二の薄膜としてはチタン、第三の薄膜としてはアルミニウムよりも高融点の金属が、それぞれ積層されたn型窒化ガリウム系化合物半導体層を、一段目として250℃〜400℃の温度下で保持した後、二段目として400℃〜900℃の温度下で保持し、かつ二段目は一段目よりも必ず温度が高いことを特徴としたn型窒化ガリウム系化合物半導体層への電極形成方法。In the method of forming an electrode on the surface of the n-type gallium nitride compound semiconductor layer, the electrode is sequentially formed from the side in contact with the n-type gallium nitride compound semiconductor layer, aluminum as the first thin film, titanium as the second thin film, As a third thin film, an n-type gallium nitride compound semiconductor layer in which a metal having a melting point higher than that of aluminum is laminated is held at a temperature of 250 ° C. to 400 ° C. as a first stage, and then 400 as a second stage. A method of forming an electrode on an n-type gallium nitride compound semiconductor layer, characterized in that the second stage is always kept at a temperature higher than that of the first stage, and the temperature is always higher than that of the first stage .
JP2000002326A 2000-01-11 2000-01-11 Method of forming electrode on n-type gallium nitride compound semiconductor layer Expired - Lifetime JP4494567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000002326A JP4494567B2 (en) 2000-01-11 2000-01-11 Method of forming electrode on n-type gallium nitride compound semiconductor layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000002326A JP4494567B2 (en) 2000-01-11 2000-01-11 Method of forming electrode on n-type gallium nitride compound semiconductor layer

Publications (2)

Publication Number Publication Date
JP2001196574A JP2001196574A (en) 2001-07-19
JP4494567B2 true JP4494567B2 (en) 2010-06-30

Family

ID=18531447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000002326A Expired - Lifetime JP4494567B2 (en) 2000-01-11 2000-01-11 Method of forming electrode on n-type gallium nitride compound semiconductor layer

Country Status (1)

Country Link
JP (1) JP4494567B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4023121B2 (en) 2001-09-06 2007-12-19 豊田合成株式会社 N-type electrode, group III nitride compound semiconductor device, method for manufacturing n-type electrode, and method for manufacturing group III nitride compound semiconductor device
KR100519753B1 (en) * 2002-11-15 2005-10-07 삼성전기주식회사 Method for manufacturing light emitting device comprising compound semiconductor of GaN group
US20090029353A1 (en) 2003-12-08 2009-01-29 Maki Wusi C Molecular detector
CN100463243C (en) * 2004-06-14 2009-02-18 北京大学 Push-out light electrode and its production
CN100394560C (en) * 2004-08-09 2008-06-11 中国科学院微电子研究所 Al/Ti/Al/Ti/Au ohmic contact system adapted to GaN device
CN100367475C (en) * 2004-08-09 2008-02-06 中国科学院微电子研究所 Al/Ti/Al/Pt/Au ohmic contact system adapted to GaN device
CN100485886C (en) * 2004-08-09 2009-05-06 中国科学院微电子研究所 Al/Ti/Al/Ti/Pt/Au ohmic contact system adapted to GaN device
CN100481346C (en) * 2004-08-09 2009-04-22 中国科学院微电子研究所 Al/Ti/Al/Ni/Au ohmic contact system adapted to GaN device
US8766448B2 (en) 2007-06-25 2014-07-01 Sensor Electronic Technology, Inc. Chromium/Titanium/Aluminum-based semiconductor device contact
US9064845B2 (en) 2007-06-25 2015-06-23 Sensor Electronic Technology, Inc. Methods of fabricating a chromium/titanium/aluminum-based semiconductor device contact
JP2009124033A (en) * 2007-11-16 2009-06-04 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device, and its manufacturing method
JP6206159B2 (en) 2013-12-17 2017-10-04 三菱電機株式会社 Manufacturing method of semiconductor device
CN106972088B (en) * 2017-05-25 2019-03-08 合肥彩虹蓝光科技有限公司 A kind of LED metal electrode structure and preparation method thereof
CN108364864A (en) * 2018-03-02 2018-08-03 华南理工大学 The preparation method of AlGaN/GaN HEMT device Ohm contact electrodes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08274372A (en) * 1995-03-31 1996-10-18 Toyoda Gosei Co Ltd Group iii nitride semiconductor light emitting element
JPH10107316A (en) * 1996-10-01 1998-04-24 Toyoda Gosei Co Ltd Semiconductor light-emitting device of iii group nitride

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08274372A (en) * 1995-03-31 1996-10-18 Toyoda Gosei Co Ltd Group iii nitride semiconductor light emitting element
JPH10107316A (en) * 1996-10-01 1998-04-24 Toyoda Gosei Co Ltd Semiconductor light-emitting device of iii group nitride

Also Published As

Publication number Publication date
JP2001196574A (en) 2001-07-19

Similar Documents

Publication Publication Date Title
US6358770B2 (en) Method for growing nitride semiconductor crystals, nitride semiconductor device, and method for fabricating the same
Fan et al. Very low resistance multilayer Ohmic contact to n‐GaN
JP5099008B2 (en) Compound semiconductor device using SiC substrate and manufacturing method thereof
JP2803741B2 (en) Gallium nitride based compound semiconductor electrode forming method
US7001791B2 (en) GaN growth on Si using ZnO buffer layer
JP4494567B2 (en) Method of forming electrode on n-type gallium nitride compound semiconductor layer
JP5242156B2 (en) III-V nitride compound semiconductor device and electrode forming method
JP3365607B2 (en) GaN-based compound semiconductor device and method of manufacturing the same
JP2010522434A (en) Termination and contact structures for high voltage GaN based heterojunction transistors
JP4023121B2 (en) N-type electrode, group III nitride compound semiconductor device, method for manufacturing n-type electrode, and method for manufacturing group III nitride compound semiconductor device
US20030124877A1 (en) Method of heat-treating nitride compound semiconductor layer and method of producing semiconductor device
JPH11145518A (en) Manufacture of gallium nitride compound semiconductor
JPH11177134A (en) Manufacture of semiconductor element, semiconductor, manufacture of light emitting element, and light emitting element
JP3557791B2 (en) Group III nitride semiconductor electrode and device having the electrode
US8431936B2 (en) Method for fabricating a p-type semiconductor structure
EP0825652B1 (en) Ohmic electrode and method of forming the same
JP2001102565A (en) Method of manufacturing semiconductor device
JP2927768B1 (en) Semiconductor device and manufacturing method thereof
US20020004254A1 (en) Method for producing p-type gallium nitride-based compound semiconductor, method for producing gallium nitride-based compound semiconductor light-emitting device, and gallium nitride-based compound semiconductor light-emitting device
JP3497790B2 (en) Method for manufacturing p-type gallium nitride based semiconductor and light emitting device using p-type gallium nitride based semiconductor
JP3703975B2 (en) Gallium nitride compound semiconductor light emitting device
EP1172867A2 (en) Method for producing P-Type Gallium Nitride-Based compound semiconductor, method for producing Gallium Nitride-Based compound semiconductor light-emitting device, and gallium nitride-based compound semiconductor light-emitting device
US6774025B2 (en) Method for producing group III nitride compound semiconductor light-emitting element
JP3599592B2 (en) Method for forming electrode on group III-V nitride compound semiconductor
JP3642199B2 (en) Method for manufacturing gallium nitride compound semiconductor light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100318

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100408

R151 Written notification of patent or utility model registration

Ref document number: 4494567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

EXPY Cancellation because of completion of term