JP4494566B2 - Negative electrode active material for alkaline secondary battery and method for producing the same - Google Patents

Negative electrode active material for alkaline secondary battery and method for producing the same Download PDF

Info

Publication number
JP4494566B2
JP4494566B2 JP35407999A JP35407999A JP4494566B2 JP 4494566 B2 JP4494566 B2 JP 4494566B2 JP 35407999 A JP35407999 A JP 35407999A JP 35407999 A JP35407999 A JP 35407999A JP 4494566 B2 JP4494566 B2 JP 4494566B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
composite oxide
electrode active
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35407999A
Other languages
Japanese (ja)
Other versions
JP2001176514A (en
Inventor
享男 江坂
裕樹 坂口
忠俊 室田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Corp
Original Assignee
Santoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku Corp filed Critical Santoku Corp
Priority to JP35407999A priority Critical patent/JP4494566B2/en
Publication of JP2001176514A publication Critical patent/JP2001176514A/en
Application granted granted Critical
Publication of JP4494566B2 publication Critical patent/JP4494566B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高容量でサイクル寿命に優れたアルカリ2次電池を提供することができるアルカリ2次電池用負極活物質、その製造方法及び該負極活物質を備えたアルカリ2次電池に関する。
【0002】
【従来の技術】
近年、ニッケル−カドミウム2次電池に代わる高容量の電池として、希土類金属−ニッケル合金をはじめとする水素吸蔵合金を負極活物質とする金属水素化物2次電池(以下MH電池という)が注目されている。MH電池では、充放電サイクルの繰返しにより、負極を構成する水素吸蔵合金又は水素化物が酸化されて性能が劣化するという問題がある。この問題を解決するために、例えば、希土類酸化物等の化合物を負極など電池内部に添加することによって、前記性能の劣化を抑制しようという試みがなされている(特開平6−215765号公報、特開平8−222210号公報、特開平8−329934号公報、特開平10−106550号公報等)。
しかし、上述のような方法では、負極活物質中に水素吸蔵能力を示さない添加物を混合することになるため、負極活物質の単位質量当たりの容量が低下するという問題がある。
【0003】
【発明が解決しようとする課題】
従って、本発明の目的は、電池容量の低下と水素吸蔵合金の劣化とを抑制することができる、高容量でサイクル寿命に優れたアルカリ2次電池が提供できる負極活物質及びその製造方法を提供することにある。
本発明の別の目的は、高容量でサイクル寿命に優れたアルカリ2次電池を提供することにある。
【0004】
【課題を解決するための手段】
本発明によれば、水素吸蔵合金とプロトン伝導性複合酸化物とを含み、該プロトン伝導性複合酸化物が、AB 1-X X 3- α(AはCa、Sr、Ba及びこれらの混合物からなる群より選択される1種又は2種以上を示し、BはCeを示し、Mは希土類元素を示す。ただしB≠Mである。Xは、0<X≦0.5であり、αは酸素欠損量を示す。)で表されることを特徴とするアルカリ2次電池用負極活物質が提供される。
また本発明によれば、水素吸蔵合金とプロトン伝導性複合酸化物を混合した後、メカニカルミリングを行うことを特徴とする上記アルカリ2次電池用負極活物質の製造方法が提供される。
【0005】
【発明の実施の形態】
以下、本発明をさらに詳細に説明する。
本発明のアルカリ2次電池用負極活物質(以下、本発明の負極活物質と略すことがある)は、水素吸蔵合金を主成分とする負極活物質が、プロトン伝導性複合酸化物を含むことを特徴とする。
前記水素吸蔵合金としては、アルカリ2次電池の負極に使用しうる組成であれば特に限定されず、例えば、AB5型、AB2型、AB型、A2B型等の水素吸蔵合金を適宜選択して使用することができる。
【0006】
前記プロトン伝導性複合酸化物は、AB1-XX3-α(AはCa、Sr、Ba及びこれらの混合物からなる群より選択される1種又は2種以上を示し、BはCeを示し、Mは希土類元素を示す。ただしB≠Mである。Xは、0X≦0.5であり、αは酸素欠損量を示す。)で表され、プロトン伝導性を示すものであれば特に限定されない。好ましくは、SrCeYbO系、BaCeYO系やBaCeGdO系のプロトン伝導性複合酸化物等が挙げられる。上記式中のXは、B元素をM元素で置換する際の置換量に当たるが、Xは0X≦0.5、好ましくは0X≦0.3、さらに好ましくは0X≦0.1である。Xが0.5を超える場合にはプロトン伝導性が低下するため好ましくない。
プロトン伝導性複合酸化物を調製するには、公知の方法で行なうことができ、例えば、上記式で示される組成に調製した酸化物原料粉末を、所望形状に成形し、焼成した後粉砕する方法等により得ることができる。
【0007】
本発明の負極活物質において、プロトン伝導性複合酸化物の含有割合は、水素吸蔵合金及びプロトン伝導性複合酸化物の合計量に対して0.1質量%以上が好ましい。含有割合が0.1質量%未満では、添加の効果が得られ難く、また10質量%を超えると容量が低下する恐れがあるので0.1〜10質量%が好ましく、さらに好ましくは0.1〜5質量%である。
本発明の負極活物質は、通常、水素吸蔵合金表面にプロトン伝導性複合酸化物が付着した状態であれば所望の効果を得ることができるが、さらなる効果の向上を望む場合は、プロトン伝導性複合酸化物が水素吸蔵合金表面に一部埋没した状態が好ましく、更にはプロトン伝導性複合酸化物が水素吸蔵合金表面において傾斜材料的に複合化された状態であることが望ましい。このような状態の確認は、例えば、TEM、ESCA、XRD等により行うことができる。
【0008】
本発明の負極活物質の製造方法では、水素吸蔵合金とプロトン伝導性複合酸化物とを混合した後、メカニカルミリングを行うことを特徴とする。
本発明の製造方法に用いるプロトン伝導性複合酸化物は、上記組成を有するプロトン伝導性複合酸化物であって、好ましくは、比表面積の大きなものがよい。好ましい比表面積としては、1m2/g以上、より好ましくは5m2/g以上である。これらの比表面積を得る手段としては、プロトン伝導性複合酸化物調製時の粉砕をメカニカルミリングにより行う方法等が1例として挙げられる。
【0009】
本発明の製造方法において、水素吸蔵合金とプロトン伝導性複合酸化物との混合割合は、得られる負極活物質中のプロトン伝導性複合酸化物の含有割合が、上記配合割合となるように適宜選択して配合することができる。
【0010】
本発明の製造方法において、水素吸蔵合金とプロトン伝導性複合酸化物との混合物に対してメカニカルミリングを行うには、例えば、遊星ボールを用いた遊星ボールミル等を用いて行うことができる。この際、メカニカルミリングの条件は、水素吸蔵合金とプロトン伝導性複合酸化物が均一に混合されるだけでなく、水素吸蔵合金表面にプロトン伝導性複合酸化物が一様に付着した状態となるような条件を適宜設定して行うことが好ましい。通常、水素吸蔵合金表面にプロトン伝導性複合酸化物が付着した状態であれば所望の効果を得ることができるが、さらなる効果の向上を望む場合は、プロトン伝導性複合酸化物が水素吸蔵合金表面に一部埋没した状態となる条件を選択することがが好ましい。更にはプロトン伝導性複合酸化物が水素吸蔵合金表面において傾斜材料的に複合化される条件を選択することが望ましい。
【0011】
メカニカルミリングを行う際の雰囲気は特に限定されないが、得られる合金の酸化防止や表面修飾を目的として、希ガス、水蒸気、酸素、窒素、水素、二酸化炭素又はこれらの混合物等の雰囲気が好ましい。
【0012】
本発明のアルカリ2次電池は、負極に本発明の負極活物質を含んでおれば良く、他の構成は、公知の構成等を適宜組合せたもので良く、特に限定されない。負極材料の調製も、例えば、通常用いる導電助剤や結着剤を用いて公知の方法等により行うことができる。
【0013】
【発明の効果】
本発明のアルカリ2次電池用負極活物質は、水素吸蔵合金を主成分とする負極活物質がプロトン伝導性複合酸化物を含むので、アルカリ2次電池用負極に用いることによって電池容量及びサイクル寿命を向上させることができ、これを用いたアルカリ2次電池は、サイクル寿命に優れると共に、高い電池容量が維持される。また、本発明の製造方法では、このような負極活物質を容易に得ることができる。
【0014】
【実施例】
以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれらに限定されるものではない。
合成例1(プロトン伝導性複合酸化物の合成)
SrCO3、CeO2、Yb23をモル比で1:0.95:0.05となるように混合し、ペレット状に成形した後1400℃で20時間焼成した。得られたペレットを乳鉢で粉砕し再び成形し1530℃で10時間焼成後、乳鉢で粉砕してSrCe0.95Yb0.053粉末を得た。得られた複合酸化物をステンレスボールと共にステンレスのポットに入れ、遊星ボールミル中で10時間ボールミリングを行った。これを酸化物Aとする。
BaCO3、CeO2、Y23をモル比で1:0.90:0.05となるように混合し、ペレット状に成形した後1400℃で20時間焼成した。得られたペレットを乳鉢で粉砕し再び成形し1530℃で10時間焼成後、乳鉢で紛砕して、BaCe0.900.053粉末を得た。得られた複合酸化物をステンレスボールと共にステンレスのポットに入れ、遊星ボールミル中で10時間ボールミリングを行った。これを酸化物Bとする。
酸化物A及びBについて、ICP発光分光分析装置により組成分析、X線回折の測定を行い組成式どおりの化合物であることを確認した。また、BET法により比表面積を測定したところ、酸化物Aは5.3m2/g、酸化物Bは5.8m2/gであった。更に、これらの1000℃におけるプロトン伝導率を測定したところ、酸化物Aは1.8×10-2S/cm2、酸化物Bは2.0×10-2S/cm2であった。
【0015】
合成例2(水素吸蔵合金の作成)
ミッシュメタル、ニッケル、コバルト、アルミニウム、マンガンを元素比で1:3.4:0.8:0.2:0.6となるように混合し高周波溶解炉で溶解した。次いで、溶解物を金型に鋳込んで水素吸蔵合金を作製した。水素吸蔵合金を乳鉢にて粉砕し、水素吸蔵合金粉未を得た。
【0016】
実施例1
合成例1で調製した酸化物A 5gと、合成例2で調製した水素吸蔵合金495gとをステンレスボールと共にステンレスのポットに入れ、遊星ボールミル中で20時間ボールミリングを行い、負極活物質を得た。得られた負極活物質は、TEMにより測定したところ、水素吸蔵合金と酸化物Aとが傾斜機能材料的に接合していることが確認された。ここで、傾斜機能材料的とは、接合部位に、水素吸蔵合金からなる層と、水素吸蔵合金及び酸化物Aが入り混じった層と、酸化物Aからなる層とが段階的に観察されることを言う。
次いで、得られた負極活物質2gに導電助剤としてニッケル粉末2g、結着剤としてPTFE0.2gを添加し、乳鉢で混合することにより負極を作成した。得られた負極と、セパレータとしてのポリプロピレン不織布と、正極としての水酸化ニッケルと、電解液としての6Nの水酸化カリウムとを用いて電池を作成した。作成した電池について負極容量と、500サイクルにおける容量維持率とを測定した。結果を表1に示す。
【0017】
実施例2
酸化物Aの代わりに酸化物Bを用いた他は実施例1と同様の操作を行い負極活物質及び電池を得、各測定を行った。結果を表1に示す。
【0018】
比較例1
酸化物を用いず、合成例2で調製した水素吸蔵合金を500g用いた他は実施例1と同様の操作を行い電池を得、各測定を行った。結果を表1に示す。
【0019】
比較例2
酸化物Aの代わりに酸化イットリウムを用いた他は実施例1と同様の操作を行い電池を得、各測定を行った。結果を表1に示す。
【0020】
【表1】

Figure 0004494566
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a negative electrode active material for an alkaline secondary battery capable of providing an alkaline secondary battery having a high capacity and excellent cycle life, a method for producing the same, and an alkaline secondary battery including the negative electrode active material.
[0002]
[Prior art]
In recent years, metal hydride secondary batteries (hereinafter referred to as MH batteries) using a hydrogen storage alloy such as a rare earth metal-nickel alloy as a negative electrode active material have attracted attention as high-capacity batteries replacing nickel-cadmium secondary batteries. Yes. In the MH battery, there is a problem that the performance is deteriorated due to oxidation of the hydrogen storage alloy or hydride constituting the negative electrode due to repeated charge and discharge cycles. In order to solve this problem, for example, an attempt has been made to suppress the deterioration of the performance by adding a compound such as a rare earth oxide to the inside of the battery, such as a negative electrode (Japanese Patent Laid-Open No. Hei 6-215765, Japanese Patent Application Laid-Open No. 6-215765). (Kaihei 8-222210, JP-A-8-329934, JP-A-10-106550, etc.).
However, the method as described above has a problem in that the capacity per unit mass of the negative electrode active material is reduced because an additive that does not exhibit hydrogen storage capacity is mixed in the negative electrode active material.
[0003]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a negative electrode active material capable of suppressing a decrease in battery capacity and deterioration of a hydrogen storage alloy and capable of providing an alkaline secondary battery having a high capacity and excellent cycle life, and a method for producing the same. There is to do.
Another object of the present invention is to provide an alkaline secondary battery having high capacity and excellent cycle life.
[0004]
[Means for Solving the Problems]
According to the present invention, seen containing a hydrogen storage alloy and a proton-conductive composite oxide, said proton-conductive composite oxide, AB 1-X M X O 3- α (A is Ca, Sr, Ba and their 1 or 2 or more selected from the group consisting of a mixture of the following: B represents Ce, M represents a rare earth element, B ≠ M, X is 0 <X ≦ 0.5 , Α represents an oxygen deficiency amount), and a negative electrode active material for an alkaline secondary battery is provided.
Moreover, according to this invention, after mixing a hydrogen storage alloy and a proton conductive composite oxide, the manufacturing method of the said negative electrode active material for alkaline secondary batteries characterized by performing mechanical milling is provided.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
The negative electrode active material for an alkaline secondary battery of the present invention (hereinafter may be abbreviated as the negative electrode active material of the present invention) is that the negative electrode active material mainly composed of a hydrogen storage alloy contains a proton conductive composite oxide. It is characterized by.
The hydrogen storage alloy is not particularly limited as long as it is a composition that can be used for a negative electrode of an alkaline secondary battery. For example, a hydrogen storage alloy such as AB 5 type, AB 2 type, AB type, A 2 B type or the like is appropriately used. You can select and use.
[0006]
The proton-conductive composite oxide is AB 1-X M X O 3- α (A is one or more selected from the group consisting of Ca, Sr, Ba and mixtures thereof, and B is Ce are shown, M is. However B ≠ M showing a dilute Doruimoto iodine. X is 0 <X ≦ 0.5, alpha is expressed amount of oxygen vacancies in the shown to.), proton conductivity If it shows, it will not specifically limit. Preferably, SrCeYbO-based, BaCeYO-based, BaCeGdO-based proton conductive composite oxides, and the like can be used. X in the above formula corresponds to the substitution amount when the B element is substituted with the M element. X is 0 < X ≦ 0.5, preferably 0 < X ≦ 0.3, more preferably 0 < X ≦ 0. .1. When X exceeds 0.5, proton conductivity is lowered, which is not preferable.
The proton conductive composite oxide can be prepared by a known method. For example, the oxide raw material powder prepared in the composition represented by the above formula is formed into a desired shape, baked and then pulverized. Etc. can be obtained.
[0007]
In the negative electrode active material of the present invention, the content ratio of the proton conductive composite oxide is preferably 0.1% by mass or more with respect to the total amount of the hydrogen storage alloy and the proton conductive composite oxide. If the content is less than 0.1% by mass, the effect of addition is difficult to obtain, and if it exceeds 10% by mass, the capacity may decrease, so 0.1 to 10% by mass is preferable, and more preferably 0.1% by mass. ˜5 mass%.
The negative electrode active material of the present invention can usually obtain a desired effect as long as the proton conductive composite oxide is attached to the surface of the hydrogen storage alloy, but if further improvement of the effect is desired, the proton conductivity can be obtained. A state in which the composite oxide is partially buried in the surface of the hydrogen storage alloy is preferable, and further, it is desirable that the proton conductive composite oxide is in a state of being compounded as a gradient material on the surface of the hydrogen storage alloy. Such confirmation of the state can be performed by, for example, TEM, ESCA, XRD, or the like.
[0008]
In the method for producing a negative electrode active material of the present invention, mechanical milling is performed after mixing a hydrogen storage alloy and a proton conductive composite oxide.
The proton conductive composite oxide used in the production method of the present invention is a proton conductive composite oxide having the above composition, and preferably has a large specific surface area. The specific surface area is preferably 1 m 2 / g or more, more preferably 5 m 2 / g or more. Examples of means for obtaining these specific surface areas include a method in which pulverization at the time of preparing the proton conductive composite oxide is performed by mechanical milling.
[0009]
In the production method of the present invention, the mixing ratio of the hydrogen storage alloy and the proton conductive composite oxide is appropriately selected so that the content ratio of the proton conductive composite oxide in the obtained negative electrode active material becomes the above blending ratio. Can be blended.
[0010]
In the production method of the present invention, mechanical milling can be performed on a mixture of a hydrogen storage alloy and a proton conductive composite oxide using, for example, a planetary ball mill using a planetary ball. At this time, the mechanical milling conditions are such that not only the hydrogen storage alloy and the proton conductive composite oxide are uniformly mixed, but also the proton conductive composite oxide is uniformly attached to the surface of the hydrogen storage alloy. It is preferable to carry out by appropriately setting various conditions. Usually, the desired effect can be obtained as long as the proton conductive composite oxide is attached to the surface of the hydrogen storage alloy. However, when further improvement of the effect is desired, the proton conductive composite oxide is used on the surface of the hydrogen storage alloy. It is preferable to select a condition that results in a partially buried state. Furthermore, it is desirable to select conditions under which the proton conductive composite oxide is compounded like a gradient material on the surface of the hydrogen storage alloy.
[0011]
Although the atmosphere at the time of performing mechanical milling is not particularly limited, an atmosphere of a rare gas, water vapor, oxygen, nitrogen, hydrogen, carbon dioxide, or a mixture thereof is preferable for the purpose of preventing oxidation and surface modification of the obtained alloy.
[0012]
The alkaline secondary battery of the present invention only needs to contain the negative electrode active material of the present invention in the negative electrode, and other configurations may be appropriately combined with known configurations and the like, and are not particularly limited. The negative electrode material can also be prepared, for example, by a known method or the like using a commonly used conductive additive or binder.
[0013]
【The invention's effect】
In the negative electrode active material for alkaline secondary batteries of the present invention, since the negative electrode active material mainly composed of a hydrogen storage alloy contains a proton conductive composite oxide, battery capacity and cycle life can be obtained by using the negative electrode active material for alkaline secondary batteries. The alkaline secondary battery using the same has excellent cycle life and maintains a high battery capacity. Moreover, in the manufacturing method of this invention, such a negative electrode active material can be obtained easily.
[0014]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these.
Synthesis Example 1 ( Synthesis of proton conductive composite oxide)
SrCO 3 , CeO 2 and Yb 2 O 3 were mixed at a molar ratio of 1: 0.95: 0.05, formed into a pellet, and then fired at 1400 ° C. for 20 hours. The obtained pellets were pulverized in a mortar and molded again, baked at 1530 ° C. for 10 hours, and then pulverized in a mortar to obtain SrCe 0.95 Yb 0.05 O 3 powder. The obtained composite oxide was put into a stainless steel pot together with a stainless ball, and ball milling was performed in a planetary ball mill for 10 hours. This is oxide A.
BaCO 3 , CeO 2 , and Y 2 O 3 were mixed at a molar ratio of 1: 0.90: 0.05, formed into a pellet, and then fired at 1400 ° C. for 20 hours. The obtained pellets were pulverized in a mortar and molded again, fired at 1530 ° C. for 10 hours, and then pulverized in a mortar to obtain BaCe 0.90 Y 0.05 O 3 powder. The obtained composite oxide was put into a stainless steel pot together with a stainless ball, and ball milling was performed in a planetary ball mill for 10 hours. This is oxide B.
About oxide A and B, the composition analysis and the X-ray-diffraction measurement were performed with the ICP emission-spectral-analysis apparatus, and it confirmed that it was a compound according to a composition formula. Further, when the specific surface area was measured by the BET method, the oxide A was 5.3 m 2 / g, and the oxide B was 5.8 m 2 / g. Furthermore, when the proton conductivity at 1000 ° C. was measured, the oxide A was 1.8 × 10 −2 S / cm 2 , and the oxide B was 2.0 × 10 −2 S / cm 2 .
[0015]
Synthesis example 2 ( Preparation of hydrogen storage alloy)
Misch metal, nickel, cobalt, aluminum, and manganese were mixed at an element ratio of 1: 3.4: 0.8: 0.2: 0.6 and dissolved in a high-frequency melting furnace. Next, the melt was cast into a mold to produce a hydrogen storage alloy. The hydrogen storage alloy was pulverized in a mortar to obtain no hydrogen storage alloy powder.
[0016]
Example 1
5 g of oxide A prepared in Synthesis Example 1 and 495 g of the hydrogen storage alloy prepared in Synthesis Example 2 were placed in a stainless steel pot together with a stainless steel ball, and ball milling was performed in a planetary ball mill for 20 hours to obtain a negative electrode active material. . When the obtained negative electrode active material was measured by TEM, it was confirmed that the hydrogen storage alloy and the oxide A were joined in a functionally gradient material. Here, in terms of functionally graded material, a layer made of a hydrogen storage alloy, a layer mixed with the hydrogen storage alloy and the oxide A, and a layer made of the oxide A are observed in stages at the bonding site. Say that.
Next, 2 g of nickel powder as a conductive additive and 0.2 g of PTFE as a binder were added to 2 g of the obtained negative electrode active material, and mixed in a mortar to prepare a negative electrode. A battery was prepared using the obtained negative electrode, a polypropylene nonwoven fabric as a separator, nickel hydroxide as a positive electrode, and 6N potassium hydroxide as an electrolytic solution. The produced battery was measured for negative electrode capacity and capacity retention rate at 500 cycles. The results are shown in Table 1.
[0017]
Example 2
A negative electrode active material and a battery were obtained in the same manner as in Example 1 except that oxide B was used instead of oxide A, and each measurement was performed. The results are shown in Table 1.
[0018]
Comparative Example 1
A battery was obtained by performing the same operation as in Example 1 except that 500 g of the hydrogen storage alloy prepared in Synthesis Example 2 was used without using an oxide, and each measurement was performed. The results are shown in Table 1.
[0019]
Comparative Example 2
A battery was obtained in the same manner as in Example 1 except that yttrium oxide was used instead of oxide A, and each measurement was performed. The results are shown in Table 1.
[0020]
[Table 1]
Figure 0004494566

Claims (5)

水素吸蔵合金とプロトン伝導性複合酸化物とを含み、該プロトン伝導性複合酸化物が、AB 1-X X 3- α(AはCa、Sr、Ba及びこれらの混合物からなる群より選択される1種又は2種以上を示し、BはCeを示し、Mは希土類元素を示す。ただしB≠Mである。Xは、0<X≦0.5であり、αは酸素欠損量を示す。)で表されることを特徴とするアルカリ2次電池用負極活物質。 Look containing a hydrogen storage alloy and a proton-conductive composite oxide, said proton-conductive composite oxide, AB 1-X M X O 3- α (A is Ca, Sr, from the group consisting of Ba, and mixtures thereof 1 or 2 or more selected, B represents Ce, M represents a rare earth element, where B ≠ M, X is 0 <X ≦ 0.5, and α is the amount of oxygen deficiency A negative active material for an alkaline secondary battery, characterized by: プロトン伝導性複合酸化物の含有割合が、水素吸蔵合金及びプロトン伝導性複合酸化物の合計量に対して0.1質量%以上であることを特徴とする請求項記載のアルカリ2次電池用負極活物質。Content of the proton-conductive composite oxide is, for alkaline secondary battery of claim 1, wherein the the total amount of the hydrogen storage alloy and a proton-conductive composite oxide is 0.1 mass% or more Negative electrode active material. 水素吸蔵合金とプロトン伝導性複合酸化物を混合した後、メカニカルミリングを行うことを特徴とする請求項1に記載のアルカリ2次電池用負極活物質の製造方法。  The method for producing a negative electrode active material for an alkaline secondary battery according to claim 1, wherein mechanical milling is performed after mixing the hydrogen storage alloy and the proton conductive composite oxide. メカニカルミリングを希ガス、水蒸気、水素、酸素、窒素、二酸化炭素又はこれらの混合物の雰囲気中で行うことを特徴とする請求項記載の製造方法。The method according to claim 3 , wherein the mechanical milling is performed in an atmosphere of a rare gas, water vapor, hydrogen, oxygen, nitrogen, carbon dioxide, or a mixture thereof. 請求項1又は2記載の負極活物質を含む負極を備えたことを特徴とするアルカリ2次電池。Alkaline secondary battery, characterized by comprising a negative electrode containing a negative active material of claim 1 or 2, wherein.
JP35407999A 1999-12-14 1999-12-14 Negative electrode active material for alkaline secondary battery and method for producing the same Expired - Fee Related JP4494566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35407999A JP4494566B2 (en) 1999-12-14 1999-12-14 Negative electrode active material for alkaline secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35407999A JP4494566B2 (en) 1999-12-14 1999-12-14 Negative electrode active material for alkaline secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001176514A JP2001176514A (en) 2001-06-29
JP4494566B2 true JP4494566B2 (en) 2010-06-30

Family

ID=18435157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35407999A Expired - Fee Related JP4494566B2 (en) 1999-12-14 1999-12-14 Negative electrode active material for alkaline secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP4494566B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6284008B2 (en) * 2014-02-07 2018-02-28 パナソニックIpマネジメント株式会社 Hydrogenation equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296365A (en) * 1986-06-16 1987-12-23 Matsushita Electric Ind Co Ltd Sealed alkaline storage battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3326197B2 (en) * 1992-06-10 2002-09-17 三洋電機株式会社 Hydrogen storage alloy electrode and method for producing the same
JPH0829376A (en) * 1994-07-12 1996-02-02 Tokyo Yogyo Co Ltd Sensor for measuring quantity of hydrogen dissolved in molten metal
JPH0952764A (en) * 1995-08-17 1997-02-25 Toyota Central Res & Dev Lab Inc Multiple oxide sintered compact and its manufacture
JP3927663B2 (en) * 1997-10-15 2007-06-13 松下電器産業株式会社 Mixed ion conductor
JPH11204112A (en) * 1998-01-12 1999-07-30 Furukawa Battery Co Ltd:The Nickel hydrogen battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296365A (en) * 1986-06-16 1987-12-23 Matsushita Electric Ind Co Ltd Sealed alkaline storage battery

Also Published As

Publication number Publication date
JP2001176514A (en) 2001-06-29

Similar Documents

Publication Publication Date Title
JP2013256435A (en) Method for producing garnet type lithium ion-conductive oxide
CN110233250A (en) A kind of preparation method of single crystal grain tertiary cathode material
CN105655605B (en) Solid oxide fuel cell cathod catalyst, composite cathode material and preparation method thereof
Kim et al. Crystal chemistry and electrochemical properties of Ln (Sr, Ca) 3 (Fe, Co) 3 O 10 intergrowth oxide cathodes for solid oxide fuel cells
CN110518209A (en) Method for preparing anode material and the positive electrode of preparation
CN115663173A (en) Sodium-rich layered oxide material and preparation method and application thereof
Gao et al. Preparation and characterization of La1− xSrxNiyFe1− yO3− δ cathodes for low-temperature solid oxide fuel cells
JP4997609B2 (en) Method for producing lithium manganese composite oxide
Niemczyk et al. Effective oxygen reduction on A-site substituted LaCuO 3− δ: toward air electrodes for SOFCs based on perovskite-type copper oxides
Sažinas et al. Silver modified cathodes for solid oxide fuel cells
JP2005190833A (en) Electrode for secondary battery
TWI309228B (en) Lithium containing complex oxide and manufacture thereof
JP5148781B2 (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
CN116779821A (en) Layered positive electrode material of sodium ion battery, preparation method of layered positive electrode material and sodium ion battery
JP4543156B2 (en) Lithium ferrite composite oxide and method for producing the same
JP4494566B2 (en) Negative electrode active material for alkaline secondary battery and method for producing the same
JPH07267748A (en) Porous sintered compact and its production
JP3057755B2 (en) Method for producing lithium manganese composite oxide and use thereof
JP2012048893A (en) Powder of air electrode material for solid oxide fuel cell and method of producing the same
Arias-Serrano et al. Oxygen-Deficient Nd0. 8Sr1. 2Ni0. 8M0. 2O4-δ (M= Ni, Co, Fe) Nickelates as Oxygen Electrode Materials for SOFC/SOEC
JPWO2018066633A1 (en) Titanium and / or germanium substituted lithium manganese based composite oxide and method for producing the same
CN112831838A (en) Preparation method of single crystal type nickel cobalt lithium aluminate anode material
US20030047717A1 (en) Multi-doped nickel oxide cathode material
JP2003007309A (en) Electrode material, solid electrolyte fuel cell and gas sensor
JP2000133265A (en) Positive active material of lithium secondary battery and manufacture of same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100408

R150 Certificate of patent or registration of utility model

Ref document number: 4494566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees