JP4493601B2 - Distributed management transmission line - Google Patents

Distributed management transmission line Download PDF

Info

Publication number
JP4493601B2
JP4493601B2 JP2006004714A JP2006004714A JP4493601B2 JP 4493601 B2 JP4493601 B2 JP 4493601B2 JP 2006004714 A JP2006004714 A JP 2006004714A JP 2006004714 A JP2006004714 A JP 2006004714A JP 4493601 B2 JP4493601 B2 JP 4493601B2
Authority
JP
Japan
Prior art keywords
dispersion
transmission
dqpsk
compensator
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006004714A
Other languages
Japanese (ja)
Other versions
JP2007189403A (en
Inventor
寛和 久保田
宮本  裕
英二 吉田
明秀 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2006004714A priority Critical patent/JP4493601B2/en
Publication of JP2007189403A publication Critical patent/JP2007189403A/en
Application granted granted Critical
Publication of JP4493601B2 publication Critical patent/JP4493601B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、大容量光通信用伝送路の分散マネージメントに関する。   The present invention relates to dispersion management of a transmission line for large-capacity optical communication.

10Gb(Gbit)/s(sec)/ch(channel)以上の大容量光伝送においては、伝送路の波長分散によって信号波形が歪むため、光を電気信号に直して中継する3R中継点、および受信部において分散補償を行っている。   In large-capacity optical transmission of 10 Gb (Gbit) / s (sec) / ch (channel) or higher, the signal waveform is distorted due to the chromatic dispersion of the transmission path. Dispersion compensation is performed in the part.

伝送路の累積分散が大きい場合には歪みによる劣化を補償できなくなるため、光増幅器を使用した1R中継点においても分散補償を施す分散マネージメント伝送路が使用される。   Since the deterioration due to distortion cannot be compensated when the accumulated dispersion of the transmission line is large, a dispersion management transmission line that performs dispersion compensation is used even at the 1R relay point using the optical amplifier.

例えば、特許文献1に開示されている技術では、複数の異なる長さと複数の異なる分散値とを有する光ファイバをシリアルに接続するときに、ソリトン通信を可能にするため、その群速度分散の値の距離による平均値が異常分散となるように、前記光ファイバの組み合わせを選択している。   For example, in the technique disclosed in Patent Document 1, when serially connecting optical fibers having a plurality of different lengths and a plurality of different dispersion values, the value of the group velocity dispersion is used to enable soliton communication. The combination of the optical fibers is selected so that the average value according to the distance becomes anomalous dispersion.

また、例えば、特許文献2に開示されている技術では、光ファイバを用いて構成される光ソリトン伝送路において、全伝送距離に対して求めた光ファイバの群速度分散の平均値が異常分散となるように、複数の光ファイバのピースによって光ファイバを構成している。   Further, for example, in the technique disclosed in Patent Document 2, in an optical soliton transmission line configured using an optical fiber, the average value of the group velocity dispersion of the optical fiber obtained over the entire transmission distance is anomalous dispersion. In this way, an optical fiber is constituted by a plurality of optical fiber pieces.

また、例えば、特許文献3に開示されている技術では、伝送路(伝送用光ファイバおよび分散補償器)では非線形光学効果を利用しない線形伝送方式(平均分散値が零)を用い、この伝送用光ファイバとは別にN=1ソリトンを発生する分散値を持ったソリトン用光ファイバを配置し、このソリトン用光ファイバで非線形光学効果を利用した非線形伝送方式を集中的に行う構成としている。   In addition, for example, in the technique disclosed in Patent Document 3, a linear transmission method (average dispersion value is zero) that does not use the nonlinear optical effect is used in the transmission path (transmission optical fiber and dispersion compensator). In addition to the optical fiber, a soliton optical fiber having a dispersion value that generates N = 1 soliton is arranged, and a nonlinear transmission method using a nonlinear optical effect is concentrated on the soliton optical fiber.

また、送信側において反対符号の前置分散補償を与え、伝送後の累積分散を低減する方法も行われている。例えば、特許文献4に開示されている技術では、送信部におけるプリチャープ周波数偏移量を、自己位相変調を無視したときの周波数偏移量に対し、減少または増大させる。あるいは、周波数偏移方向を逆にし、増大または減少させる。   There is also a method of giving pre-dispersion compensation with an opposite sign on the transmission side to reduce the accumulated dispersion after transmission. For example, in the technique disclosed in Patent Document 4, the pre-chirp frequency shift amount in the transmission unit is reduced or increased with respect to the frequency shift amount when self-phase modulation is ignored. Alternatively, the frequency shift direction is reversed and increased or decreased.

特開平8−146472号公報JP-A-8-146472 特開平8−286219号公報JP-A-8-286219 特開2001−160779号公報Japanese Patent Laid-Open No. 2001-160779 特開平5−183512号公報JP-A-5-183512 ELECTRONICS LETTERS,1st April 2004,Vol40,No.7,p444−445ELECTRONICS LETTERS, 1st April 2004, Vol. 7, p444-445 ELECTRONICS LETTERS,28th October 2004,Vol40,No.22,p1443−1444ELECTRONICS LETTERS, 28th October 2004, Vol. 22, p 1443-1444

光ファイバを用いた伝送路における累積分散が±400ps/nmを越えると、その後の1伝送区間だけでも大きな劣化が生じる。また、従来は、累積分散が大きくならなければよいと考えられていたが、前置分散補償量を変えて数値解析を行ったところ、例えば、図2に示すように累積分散がゼロ付近でも劣化が大きくなり、最適な累積分散範囲が存在することがわかった。すなわち、前置分散補償のみによって最適な累積分散範囲が存在しない伝送路を構成することは困難であり、例えば、前置分散補償と分散マネージメントとを組み合わせるといったことを行わないと、伝送特性の劣化の少ない伝送路を構成できないことがわかった。   When the cumulative dispersion in the transmission line using the optical fiber exceeds ± 400 ps / nm, a large deterioration occurs only in one subsequent transmission section. Conventionally, it was thought that it would be better if the accumulated dispersion did not increase. However, when numerical analysis was performed by changing the amount of pre-dispersion compensation, for example, as shown in FIG. It became clear that there was an optimal cumulative dispersion range. In other words, it is difficult to configure a transmission line that does not have an optimal cumulative dispersion range only by pre-dispersion compensation. For example, unless pre-dispersion compensation and dispersion management are combined, transmission characteristics deteriorate. It was found that a transmission line with few lines could not be constructed.

本発明は、このような背景の下に行われたものであって、所期の伝送特性を満足させることができる前置分散補償と分散マネージメントとを組み合わせた分散マネージメント伝送路を提供することを目的とする。   The present invention has been made under such a background, and provides a dispersion management transmission line combining pre-dispersion compensation and dispersion management that can satisfy the intended transmission characteristics. Objective.

本発明は、前置分散補償量と分散マネージメントとの組み合わせの中から、伝送特性の劣化の少ない組み合わせを導出する発明である。   The present invention is an invention for deriving a combination with little deterioration in transmission characteristics from a combination of a pre-dispersion compensation amount and dispersion management.

分散補償量は伝送路の分散値のばらつき、分散補償ファイバの分散値のばらつき、温度変動などによりランダムにばらつくため、多中継伝送においては各中継地点の送信端における累積分散を最適な累積分散に抑えることが好ましい。   The amount of dispersion compensation varies randomly due to dispersion in the dispersion value of the transmission line, dispersion in the dispersion compensation fiber, temperature fluctuation, etc., so in multi-relay transmission, the accumulated dispersion at the transmission end of each relay point is changed to the optimum accumulated dispersion. It is preferable to suppress.

様々な伝送路において、このように個別の分散を整えることができない場合には、次善の方策として送信端の前置分散補償量のみを設定することでも効果がある。   If the individual dispersion cannot be adjusted in this way in various transmission paths, it is also effective to set only the pre-dispersion compensation amount at the transmitting end as a second best measure.

分散スロープ補償率が100%の場合はすべての波長で100%の分散補償を行うことができる。分散シフトファイバの分散スロープは典型的には0.07ps/km/nm2であるため、85kmの伝送路を考えた場合には、分散スロープ補償率が90%の場合は中心波長から±15nmずれた波長においては±9ps/nm/km、70%の場合は±27ps/nmの分散補償のずれとなる。波長多重伝送においては、このずれも考慮し、任意の波長で累積分散を当該値に収めることが必要である。 When the dispersion slope compensation rate is 100%, 100% dispersion compensation can be performed at all wavelengths. Since the dispersion slope of the dispersion-shifted fiber is typically 0.07 ps / km / nm 2 , when a transmission path of 85 km is considered, when the dispersion slope compensation rate is 90%, the deviation is ± 15 nm from the center wavelength. The dispersion compensation deviation is ± 9 ps / nm / km at 70 nm and ± 27 ps / nm at 70%. In wavelength division multiplex transmission, it is necessary to take this deviation into consideration and to keep the accumulated dispersion at this value at an arbitrary wavelength.

すなわち、本発明は、DQPSK送信部と、DQPSK受信部と、前記DQPSK送信部と前記DQPSK受信部との間に設けられた分散シフト光ファイバによる30km以上の伝送路と、前記DQPSK送信部の送信信号を入力とする前置分散補償器と、前記DQPSK受信部の受信信号を入力とする受信端分散補償器とを備えた分散マネージメント伝送路である。   That is, the present invention relates to a DQPSK transmission unit, a DQPSK reception unit, a transmission path of 30 km or more by a dispersion-shifted optical fiber provided between the DQPSK transmission unit and the DQPSK reception unit, and transmission of the DQPSK transmission unit A dispersion management transmission line includes a pre-dispersion compensator that receives a signal and a reception-end dispersion compensator that receives a reception signal of the DQPSK receiver.

ここで、本発明の特徴とするところは、前記前置分散補償器の前置分散補償量が−300ps/nmないし−120ps/nmあるいは30ps/nmないし350ps/nmであるところにある。   Here, the present invention is characterized in that the amount of pre-dispersion compensation of the pre-dispersion compensator is −300 ps / nm to −120 ps / nm or 30 ps / nm to 350 ps / nm.

あるいは、本発明は、DQPSK送信部と、DQPSK受信部と、前記DQPSK送信部と前記DQPSK受信部との間に設けられた分散シフト光ファイバによる伝送路と、この伝送路の途中に挿入された線形中継器および分散補償器と、前記DQPSK送信部の送信信号を入力とする前置分散補償器と、前記DQPSK受信部の受信信号を入力とする受信端分散補償器とを備え、前記前置分散補償器と前記線形中継器との間または前記線形中継器相互間の各伝送区間の伝送後に当該伝送区間に設けられた前記線形中継器により分散の概略を補償し、前記受信端分散補償器により残留分散を補償する分散マネージメント伝送路である。   Alternatively, in the present invention, a DQPSK transmission unit, a DQPSK reception unit, a transmission line using a dispersion-shifted optical fiber provided between the DQPSK transmission unit and the DQPSK reception unit, and inserted in the middle of the transmission line A linear repeater and dispersion compensator; a pre-dispersion compensator that receives the transmission signal of the DQPSK transmission unit; and a reception-end dispersion compensator that receives the reception signal of the DQPSK reception unit. After the transmission in each transmission section between the dispersion compensator and the linear repeater or between the linear repeaters, an outline of dispersion is compensated by the linear repeater provided in the transmission section, and the reception end dispersion compensator This is a dispersion management transmission line that compensates for residual dispersion.

ここで、本発明の特徴とするところは、各中継地点の送信端における累積分散量が−300ps/nmないし−120ps/nmあるいは30ps/nmないし350ps/nmであるところにある。   Here, the feature of the present invention is that the accumulated dispersion amount at the transmission end of each relay point is -300 ps / nm to -120 ps / nm or 30 ps / nm to 350 ps / nm.

あるいは、本発明は、DQPSK送信部と、DQPSK受信部と、前記DQPSK送信部と前記DQPSK受信部との間に設けられた分散シフト光ファイバによる伝送路と、この伝送路の途中に挿入された線形中継器および分散補償器と、前記DQPSK送信部の送信信号を入力とする前置分散補償器と、前記DQPSK受信部の受信信号を入力とする受信端分散補償器とを備え、前記前置分散補償器と前記線形中継器との間または前記線形中継器相互間の各伝送区間の伝送後に当該伝送区間に設けられた前記線形中継器により分散の概略を補償し、前記受信端分散補償器により残留分散を補償する分散マネージメント伝送路である。   Alternatively, in the present invention, a DQPSK transmission unit, a DQPSK reception unit, a transmission line using a dispersion-shifted optical fiber provided between the DQPSK transmission unit and the DQPSK reception unit, and inserted in the middle of the transmission line A linear repeater and dispersion compensator; a pre-dispersion compensator that receives the transmission signal of the DQPSK transmission unit; and a reception-end dispersion compensator that receives the reception signal of the DQPSK reception unit. After the transmission in each transmission section between the dispersion compensator and the linear repeater or between the linear repeaters, an outline of dispersion is compensated by the linear repeater provided in the transmission section, and the reception end dispersion compensator This is a dispersion management transmission line that compensates for residual dispersion.

ここで、本発明の特徴とするところは、前記前置分散補償器の前置分散補償量が−270ps/nmないし−120ps/nmあるいは80ps/nmないし300ps/nmであるところにある。   Here, the present invention is characterized in that the pre-dispersion compensation amount of the pre-dispersion compensator is −270 ps / nm to −120 ps / nm or 80 ps / nm to 300 ps / nm.

また、前記各伝送区間の距離が概略30km未満の区間は前置分散補償量の制約を解除することが望ましい。   In addition, it is desirable that the restriction on the amount of pre-dispersion compensation be lifted in a section where the distance between the transmission sections is less than about 30 km.

また、複数の前記DQPSK送信部と、この複数の前記DQPSK送信部の送信信号を波長多重する波長多重化装置と、複数の前記DQPSK受信部と、この複数の前記DQPSK受信部向けの波長多重された受信信号を波長毎に分離する波長多重分離装置とを備え、前記前置分散補償器は、前記波長多重化装置から出力される波長多重された送信信号を入力として一つ設けられ、前記受信端分散補償器は、前記波長多重分離装置から複数の前記DQPSK受信部向けにそれぞれ出力される波長毎の受信信号を入力として複数設けられた構成とすることもできる。この場合には、例えば、前記前置分散補償器による前置分散補償量が−200ps/nmまたは+200ps/nmである。   A plurality of DQPSK transmitters, a wavelength multiplexing device for wavelength-multiplexing transmission signals of the plurality of DQPSK transmitters, a plurality of DQPSK receivers, and a wavelength-multiplexed unit for the plurality of DQPSK receivers. A wavelength demultiplexer that separates the received signal for each wavelength, and the pre-dispersion compensator is provided with one wavelength-multiplexed transmission signal output from the wavelength multiplexer as an input, The edge dispersion compensator may be configured to have a plurality of reception signals for each wavelength output from the wavelength multiplexing / demultiplexing device to the plurality of DQPSK reception units. In this case, for example, the amount of pre-dispersion compensation by the pre-dispersion compensator is −200 ps / nm or +200 ps / nm.

このような前置分散補償を与える手段として、分散スロープを持たない分散媒質または分散スロープが一般の光ファイバと比較して1/10以下である分散媒質を用いることができる。   As a means for providing such pre-dispersion compensation, a dispersion medium having no dispersion slope or a dispersion medium having a dispersion slope of 1/10 or less as compared with a general optical fiber can be used.

本発明によれば、所期の伝送特性を満足させることができる前置分散補償と分散マネージメントとを組み合わせた分散マネージメント伝送路を実現できる。   According to the present invention, it is possible to realize a dispersion management transmission line that combines pre-dispersion compensation and dispersion management that can satisfy desired transmission characteristics.

(第一実施例)
第一実施例を図1および図2を参照して説明する。第一実施例は、DQPSK伝送方式(例えば、非特許文献1または2参照)であり無中継伝送の場合の例である。図1に本実施例の説明で用いる伝送システムの模式図を示す。1はDQPSK送信部、2はDQPSK受信部、3は前置分散補償器(DCT)、4は伝送路(分散シフトファイバ)、5、5’は分散補償器、6は線形中継器、7は受信端分散補償器であり、第一実施例は、無中継伝送の実施例であるから図1中の分散補償器5および線形中継器6は使用しない。
(First Example)
A first embodiment will be described with reference to FIGS. The first embodiment is an example of a DQPSK transmission method (see, for example, Non-Patent Document 1 or 2) and relayless transmission. FIG. 1 shows a schematic diagram of a transmission system used in the description of this embodiment. 1 is a DQPSK transmitter, 2 is a DQPSK receiver, 3 is a pre-dispersion compensator (DCT), 4 is a transmission path (dispersion shifted fiber), 5 is a dispersion compensator, 6 is a linear repeater, and 7 is This is a receiving end dispersion compensator. Since the first embodiment is an embodiment of non-relay transmission, the dispersion compensator 5 and the linear repeater 6 in FIG. 1 are not used.

また、受信端分散補償器7の直前にある分散補償器5’は累積分散の大きさによっては省略することができる。DQPSK伝送方式は主として40Gb/s/ch以上の大容量伝送に用いられる。   Further, the dispersion compensator 5 ′ immediately before the reception end dispersion compensator 7 can be omitted depending on the magnitude of the accumulated dispersion. The DQPSK transmission system is mainly used for large capacity transmission of 40 Gb / s / ch or more.

図2は、伝送速度43Gb/s/ch、伝送路4の距離を85km、群速度分散を1ps/km/nmおよび4ps/km/nm、伝送路4の入力における信号強度を+1dBmとして前置分散補償量(DCT)を変化させた計算結果であり、横軸に前置分散補償量(DCT)をとり、縦軸に劣化量(dB)をとる。なお、図2における黒丸(●)で示したグラフは1ps/km/nmを表し、三角(△)で示したグラフは4ps/km/nmを表す。DQPSK送信部1、DQPSK受信部2は最適動作点に調整されているものとし、前置分散補償量(DCT)を−500ps/nmから+500ps/nmまで変化させ、受信端分散補償器7を調整した場合の伝送特性をQ値(信号のばらつき具合を表す量)で評価し、伝送によるQ値の劣化量を描いてある。   FIG. 2 shows a pre-dispersion with a transmission rate of 43 Gb / s / ch, a transmission line distance of 85 km, a group velocity dispersion of 1 ps / km / nm and 4 ps / km / nm, and a signal strength at the input of the transmission line of +1 dBm. The calculation results are obtained by changing the compensation amount (DCT). The horizontal axis represents the pre-dispersion compensation amount (DCT), and the vertical axis represents the deterioration amount (dB). In addition, the graph shown by the black circle (●) in FIG. 2 represents 1 ps / km / nm, and the graph shown by a triangle (Δ) represents 4 ps / km / nm. The DQPSK transmitter 1 and the DQPSK receiver 2 are adjusted to the optimum operating point, and the pre-dispersion compensation amount (DCT) is changed from −500 ps / nm to +500 ps / nm to adjust the receiving end dispersion compensator 7. The transmission characteristics in this case are evaluated by the Q value (a quantity indicating the degree of signal variation), and the deterioration amount of the Q value due to transmission is depicted.

ここでは、前置分散補償(DCT)量が最適である場合に比べて劣化が2倍以内であるDCTの範囲を良好な伝送特性が得られる範囲と定義する。群速度分散が1ps/km/nmないし4ps/km/nmにおいて前置分散補償(DCT)量が−300ps/nmないし−120ps/nmあるいは30ps/nmないし350ps/nmである場合に劣化が少なく、良好な伝送特性が得られることがわかる(図2の⇔で示した範囲)。   Here, the range of DCT in which deterioration is within twice that in the case where the amount of pre-dispersion compensation (DCT) is optimum is defined as a range in which good transmission characteristics can be obtained. When the group velocity dispersion is 1 ps / km / nm to 4 ps / km / nm and the amount of pre-dispersion compensation (DCT) is -300 ps / nm to -120 ps / nm or 30 ps / nm to 350 ps / nm, the deterioration is small. It can be seen that good transmission characteristics can be obtained (range shown by ⇔ in FIG. 2).

信号強度はこの値以外でも同様の特性を示す。伝送システムにおいては受信回路の特性あるいは伝送路の損失などに応じて適切な値を設定すればよい。   The signal intensity exhibits the same characteristics other than this value. In the transmission system, an appropriate value may be set according to the characteristics of the receiving circuit or the loss of the transmission path.

(第二実施例)
第二実施例を図1および図2を参照して説明する。第二実施例では、DQPSK伝送方式による多中継伝送を考える。伝送システムの模式図は図1であり、第一実施例と同様であるが伝送路4が複数区間あり、その間に分散補償器5および線形中継器6を使用する。
(Second embodiment)
A second embodiment will be described with reference to FIGS. In the second embodiment, multi-relay transmission using the DQPSK transmission system is considered. A schematic diagram of the transmission system is shown in FIG. 1, which is the same as in the first embodiment, but has a plurality of transmission lines 4 between which a dispersion compensator 5 and a linear repeater 6 are used.

多中継伝送の場合には分散補償器5を通過後の累積分散が、各線形中継器6の出力点における前置分散量と考えることができる。よって、第一実施例で説明したように、群速度分散が1ps/km/nmないし4ps/km/nmにおいて前置分散補償(DCT)量が−300ps/nmないし−120ps/nmあるいは30ps/nmないし350ps/nmである場合に劣化が少なく、良好な伝送特性が得られることがわかる。   In the case of multi-relay transmission, the accumulated dispersion after passing through the dispersion compensator 5 can be considered as a pre-dispersion amount at the output point of each linear repeater 6. Therefore, as explained in the first embodiment, when the group velocity dispersion is 1 ps / km / nm to 4 ps / km / nm, the amount of pre-dispersion compensation (DCT) is -300 ps / nm to -120 ps / nm or 30 ps / nm. It can be seen that there is little deterioration and good transmission characteristics can be obtained when it is 350 ps / nm.

図2の計算結果から演繹すると、各中継地点の送信端における累積分散の絶対値が50ps/nmないし350ps/nmであることが好ましいことがわかる。   From the calculation result of FIG. 2, it can be seen that the absolute value of the cumulative dispersion at the transmission end of each relay point is preferably 50 ps / nm to 350 ps / nm.

(第三実施例)
第三実施例を図3および図4を参照して説明する。第三実施例は、DQPSK伝送方式であり多中継伝送の場合の例であり、5中継(伝送路4を6区間使用)の例である。伝送システムの模式図は図1であり、第一実施例と同様である。
(Third embodiment)
A third embodiment will be described with reference to FIGS. The third embodiment is an example in the case of the DQPSK transmission method and multi-relay transmission, and is an example of 5 relays (using 6 sections of the transmission path 4). A schematic diagram of the transmission system is shown in FIG. 1, which is the same as in the first embodiment.

図3は、伝送速度43Gb/s/ch、伝送路4の距離を各々85km、群速度分散を1.5ps/km/nmおよび4.5ps/km/nm、伝送路4の入力における信号強度を各々+1dBmとして前置分散補償量(DCT)を変化させた計算結果であり、横軸に前置分散補償量(DCT)をとり、縦軸に劣化量(dB)をとる。なお、図3における黒丸(●)で示したグラフは1.5ps/km/nmを表し、三角(△)で示したグラフは4.5ps/km/nmを表す。   FIG. 3 shows the signal strength at the input of the transmission line 4 with a transmission speed of 43 Gb / s / ch, a transmission line distance of 85 km, a group velocity dispersion of 1.5 ps / km / nm and 4.5 ps / km / nm. The calculation results are obtained by changing the pre-dispersion compensation amount (DCT) as +1 dBm, and the pre-dispersion compensation amount (DCT) is taken on the horizontal axis and the deterioration amount (dB) is taken on the vertical axis. In addition, the graph shown by the black circle (●) in FIG. 3 represents 1.5 ps / km / nm, and the graph shown by the triangle (Δ) represents 4.5 ps / km / nm.

第一実施例と同様に、DQPSK送信部1、DQPSK受信部2は最適動作点に調整されているものとし、前置分散補償量(DCT)を−500ps/nmから+500ps/nmまで変化させ、受信端分散補償器7を調整した場合の伝送特性をQ値(信号のばらつき具合を表す量)で評価し、伝送によるQ値の劣化量を描いてある。   As in the first embodiment, it is assumed that the DQPSK transmission unit 1 and the DQPSK reception unit 2 are adjusted to the optimum operating point, and the pre-dispersion compensation amount (DCT) is changed from −500 ps / nm to +500 ps / nm, The transmission characteristics when the receiving end dispersion compensator 7 is adjusted are evaluated by the Q value (a quantity representing the degree of signal variation), and the amount of deterioration of the Q value due to transmission is depicted.

また、図4は、伝送路4の距離を各々40kmとした場合に図3を描いたときと同様の解析を行ったものである。図3とほぼ同様の範囲において良好な伝送特性が得られることがわかる。   FIG. 4 shows the same analysis as when FIG. 3 was drawn when the distance of the transmission line 4 was 40 km. It can be seen that good transmission characteristics can be obtained within the same range as in FIG.

これより、群速度分散が1.5ps/km/nmおよび4.5ps/km/nmの範囲において、前置分散補償(DCT)量が−270ps/nmないし−120ps/nmあるいは80ps/nmないし300ps/nmである場合に劣化が少なく、良好な伝送特性が得られることがわかる(図3および図4の⇔で示した範囲)。   Thus, when the group velocity dispersion is in the range of 1.5 ps / km / nm and 4.5 ps / km / nm, the amount of pre-dispersion compensation (DCT) is -270 ps / nm to -120 ps / nm or 80 ps / nm to 300 ps. It can be seen that there is little deterioration when it is / nm, and good transmission characteristics can be obtained (the range indicated by ⇔ in FIGS. 3 and 4).

本発明は非線形光学効果による伝送特性劣化を軽減するものであるため、伝送距離がおよそ30km以上(ファイバ損失にして約7dB、光の強度が1/5程度に減衰する)である場合には、距離によらずに適用できる。   Since the present invention reduces transmission characteristic deterioration due to the nonlinear optical effect, when the transmission distance is about 30 km or more (fiber loss is about 7 dB, light intensity is attenuated to about 1/5), Applicable regardless of distance.

信号強度はこの値以外でも、同様の特性を示す。伝送システムにおいては受信回路の特性、伝送路の損失などに応じて適切な値を設定すればよい。   The signal strength exhibits the same characteristics other than this value. In the transmission system, an appropriate value may be set according to the characteristics of the receiving circuit, the loss of the transmission path, and the like.

(第四実施例)
多中継伝送においては、各伝送路4の入力における累積分散は設計値を中心としてばらついてしまう。このとき、ある1区間の劣化が激しくても、他の区間の劣化が少ない場合には全体としての伝送特性を良好な状態に保つことができる。
(Fourth embodiment)
In the multi-relay transmission, the cumulative dispersion at the input of each transmission path 4 varies around the design value. At this time, even if the degradation in one section is severe, the transmission characteristics as a whole can be maintained in a good state if the degradation in other sections is small.

すなわち、個別の分散を整えることができない場合にも送信端の前置分散補償量の設計により効果を得ることができる。設計値は第三実施例と同じであるので、許容範囲も第三実施例と同様とすることが合理的である。   That is, even when individual dispersion cannot be adjusted, an effect can be obtained by designing the pre-dispersion compensation amount at the transmitting end. Since the design value is the same as that of the third embodiment, it is reasonable that the allowable range is the same as that of the third embodiment.

(第五実施例)
第五実施例は、波長多重伝送についての実施例であり、第五実施例の説明に用いるパラメータは群速度分散(GVD、単位:ps/km/nm)であり、例えば、約0.07ps/km/nm2の分散スロープを持つ通常の分散シフト光ファイバでは、1ps/km/nmの群速度分散は約15nm(1/0.07)の波長差に対応する。
(Fifth embodiment)
The fifth embodiment is an embodiment for wavelength division multiplexing transmission, and the parameter used to explain the fifth embodiment is group velocity dispersion (GVD, unit: ps / km / nm), for example, about 0.07 ps / In a normal dispersion shifted optical fiber with a dispersion slope of km / nm 2 , a group velocity dispersion of 1 ps / km / nm corresponds to a wavelength difference of about 15 nm (1 / 0.07).

波長多重伝送の場合の模式構成を図5に示す。多中継の場合を示しているが、無中継の場合には、図中の分散補償器5、線形中継器6は使用しない。波長の異なる送信部を波長多重装置8でまとめ、1本の光ファイバ中を同時に伝搬させ、波長多重分離装置9により波長毎に分離して受信する。   A schematic configuration in the case of wavelength multiplexing transmission is shown in FIG. Although the case of multi-relay is shown, in the case of non-relay, the dispersion compensator 5 and the linear repeater 6 in the figure are not used. Transmitters having different wavelengths are collected by the wavelength division multiplexer 8 and propagated simultaneously through one optical fiber, and are separated and received by the wavelength division multiplexer 9 for each wavelength.

分散補償器5において分散スロープ補償率が100%の場合は任意の波長で100%の分散補償を行うことができるため、第一ないし第三実施例で記載した条件はそれらと同様にして実現できる。   In the dispersion compensator 5, when the dispersion slope compensation rate is 100%, dispersion compensation of 100% can be performed at an arbitrary wavelength. Therefore, the conditions described in the first to third embodiments can be realized in the same manner. .

分散シフトファイバの分散スロープは典型的には0.07ps/km/nm2であるため、85kmの伝送路を考えた場合には、分散スロープ補償率が90%の場合は中心波長から±15nmずれた波長においては±9ps/nm/km、70%の場合は±27ps/nmの分散補償のずれとなる。 Since the dispersion slope of the dispersion-shifted fiber is typically 0.07 ps / km / nm 2 , when a transmission path of 85 km is considered, when the dispersion slope compensation rate is 90%, the deviation is ± 15 nm from the center wavelength. The dispersion compensation deviation is ± 9 ps / nm / km at 70 nm and ± 27 ps / nm at 70%.

波長多重伝送においては、このずれも考慮し、任意の波長で累積分散を当該値に収めることが必要である。図1および図2の記載の85kmの無中継伝送を例にとると、分散スロープ補償率が90%の場合で、30nm(中心から±15nm)の帯域を使用する波長多重伝送においては−291ps/nmないし−129ps/nmあるいは39ps/nmないし341ps/nmであればよいことになる。   In wavelength division multiplex transmission, it is necessary to take this deviation into consideration and to keep the accumulated dispersion at this value at an arbitrary wavelength. Taking the 85 km repeaterless transmission described in FIGS. 1 and 2 as an example, in the case of wavelength multiplex transmission using a band of 30 nm (± 15 nm from the center) when the dispersion slope compensation rate is 90%, −291 ps / It is sufficient that the thickness is from nm to -129 ps / nm or from 39 ps / nm to 341 ps / nm.

他の補償率、伝送距離、帯域幅の場合あるいは多中継伝送の場合も同様に考えればよい。ただし、これを満たす領域がない場合にも前置分散補償量をこれらの概略の中心値である−200ps/nmもしくは+200ps/nmに設定することで劣化を最小に抑えることができる。   The same applies to other compensation rates, transmission distances, bandwidths, and multi-relay transmissions. However, even when there is no region satisfying this, the pre-dispersion compensation amount can be set to the approximate central value of −200 ps / nm or +200 ps / nm to suppress the deterioration to the minimum.

これらの実施例およびその他の実施形態において、多中継伝送において30km未満の伝送距離の区間がある場合に、該当区間の送信出力を低減することにより非線形光学効果による劣化を低減した場合には、その区間はこれまで述べた前置分散補償の制約条件から除外することができる。送信出力を低減しない場合には同様の制約条件を科す。   In these examples and other embodiments, when there is a section with a transmission distance of less than 30 km in multi-relay transmission, if the degradation due to the nonlinear optical effect is reduced by reducing the transmission output of the section, The interval can be excluded from the pre-dispersion compensation constraints described above. Similar restrictions are imposed when the transmission output is not reduced.

本発明においては、前置分散補償量は各波長で等しいことが好ましく、そのためには前置分散補償に用いる分散媒質は分散スロープが少ない(例えば、一般の光ファイバと比較して1/10)もしくは分散スロープを持たないことが好ましい。VIPAや分散スロープ補償を施した分散補償ファイバなどを用いることができる。   In the present invention, the amount of pre-dispersion compensation is preferably equal for each wavelength. For this purpose, the dispersion medium used for pre-dispersion compensation has a small dispersion slope (for example, 1/10 compared with a general optical fiber). Or it is preferable not to have a dispersion slope. It is possible to use a VIPA or a dispersion compensating fiber subjected to dispersion slope compensation.

本発明によれば、所期の伝送特性を満足させることができる前置分散補償と分散マネージメントとを組み合わせた分散マネージメント伝送路を実現できるので、光伝送路設計の自由度を高めることができる。   According to the present invention, it is possible to realize a dispersion management transmission line that combines pre-dispersion compensation and dispersion management that can satisfy the desired transmission characteristics, so that the degree of freedom in designing an optical transmission line can be increased.

第一〜第四実施例の説明で用いる伝送システムの模式図。The schematic diagram of the transmission system used by description of a 1st-4th Example. 前置分散補償量(DCT)を変化させた計算結果を示す図。The figure which shows the calculation result which changed the amount of pre-dispersion compensation (DCT). 85km×5中継(6区間)の数値解析結果を示す図。The figure which shows the numerical analysis result of 85kmx5 relay (six sections). 40km×5中継(6区間)の数値解析結果を示す図。The figure which shows the numerical analysis result of 40kmx5 relay (six sections). 第五実施例の説明で用いる波長多重伝送を用いた伝送システムの模式図。The schematic diagram of the transmission system using the wavelength division multiplexing transmission used by description of a 5th Example.

符号の説明Explanation of symbols

1、1’ DQPSK送信部
2、2’ DQPSK受信部
3 前置分散補償器(DCT)
4 伝送路(分散シフト光ファイバ)
5、5’ 分散補償器
6 線形中継器
7、7’ 受信端分散補償器
8 波長多重化装置
9 波長多重分離装置
1, 1 'DQPSK transmission unit 2, 2' DQPSK reception unit 3 Pre-dispersion compensator (DCT)
4 Transmission path (dispersion shifted optical fiber)
5, 5 ′ dispersion compensator 6 linear repeater 7, 7 ′ receiving end dispersion compensator 8 wavelength multiplexing device 9 wavelength multiplexing demultiplexing device

Claims (6)

DQPSK送信部と、DQPSK受信部と、前記DQPSK送信部と前記DQPSK受信部との間に設けられた分散シフト光ファイバによる30km以上の伝送路と、前記DQPSK送信部の送信信号を入力とする前置分散補償器と、前記DQPSK受信部の受信信号を入力とする受信端分散補償器とを備えた分散マネージメント伝送路において、
前記前置分散補償器の前置分散補償量が−300ps/nmないし−120ps/nmあるいは30ps/nmないし350ps/nmであることを特徴とする分散マネージメント伝送路。
Before a DQPSK transmitter, a DQPSK receiver, a transmission path of 30 km or more by a dispersion-shifted optical fiber provided between the DQPSK transmitter and the DQPSK receiver, and a transmission signal of the DQPSK transmitter are input In a dispersion management transmission line comprising a position dispersion compensator and a reception-end dispersion compensator that receives a received signal of the DQPSK receiver,
The dispersion management transmission line, wherein the amount of pre-dispersion compensation of the pre-dispersion compensator is -300 ps / nm to -120 ps / nm or 30 ps / nm to 350 ps / nm.
DQPSK送信部と、DQPSK受信部と、前記DQPSK送信部と前記DQPSK受信部との間に設けられた分散シフト光ファイバによる伝送路と、この伝送路の途中に挿入された線形中継器および分散補償器と、前記DQPSK送信部の送信信号を入力とする前置分散補償器と、前記DQPSK受信部の受信信号を入力とする受信端分散補償器とを備え、
前記前置分散補償器と前記線形中継器との間または前記線形中継器相互間の各伝送区間の伝送後に当該伝送区間に設けられた前記線形中継器により分散の概略を補償し、前記受信端分散補償器により残留分散を補償する分散マネージメント伝送路において、
各中継地点の送信端における累積分散量が−300ps/nmないし−120ps/nmあるいは30ps/nmないし350ps/nmであることを特徴とする分散マネージメント伝送路。
DQPSK transmission unit, DQPSK reception unit, transmission path using dispersion-shifted optical fiber provided between DQPSK transmission unit and DQPSK reception unit, linear repeater and dispersion compensation inserted in the middle of this transmission path A pre-dispersion compensator that receives the transmission signal of the DQPSK transmission unit, and a reception-end dispersion compensator that receives the reception signal of the DQPSK reception unit,
After the transmission of each transmission section between the pre-dispersion compensator and the linear repeater or between the linear repeaters, the linear repeater provided in the transmission section compensates for the outline of dispersion, and the receiving end In a dispersion management transmission line that compensates for residual dispersion with a dispersion compensator,
A dispersion management transmission line characterized in that a cumulative dispersion amount at a transmission end of each relay point is -300 ps / nm to -120 ps / nm or 30 ps / nm to 350 ps / nm.
DQPSK送信部と、DQPSK受信部と、前記DQPSK送信部と前記DQPSK受信部との間に設けられた分散シフト光ファイバによる伝送路と、この伝送路の途中に挿入された線形中継器および分散補償器と、前記DQPSK送信部の送信信号を入力とする前置分散補償器と、前記DQPSK受信部の受信信号を入力とする受信端分散補償器とを備え、
前記前置分散補償器と前記線形中継器との間または前記線形中継器相互間の各伝送区間の伝送後に当該伝送区間に設けられた前記線形中継器により分散の概略を補償し、前記受信端分散補償器により残留分散を補償する分散マネージメント伝送路において、
前記前置分散補償器の前置分散補償量が−270ps/nmないし−120ps/nmあるいは80ps/nmないし300ps/nmであることを特徴とする分散マネージメント伝送路。
DQPSK transmission unit, DQPSK reception unit, transmission path using dispersion-shifted optical fiber provided between DQPSK transmission unit and DQPSK reception unit, linear repeater and dispersion compensation inserted in the middle of this transmission path A pre-dispersion compensator that receives the transmission signal of the DQPSK transmission unit, and a reception-end dispersion compensator that receives the reception signal of the DQPSK reception unit,
After the transmission of each transmission section between the pre-dispersion compensator and the linear repeater or between the linear repeaters, the linear repeater provided in the transmission section compensates for the outline of dispersion, and the receiving end In a dispersion management transmission line that compensates for residual dispersion with a dispersion compensator,
A dispersion management transmission line, wherein a pre-dispersion compensation amount of the pre-dispersion compensator is −270 ps / nm to −120 ps / nm or 80 ps / nm to 300 ps / nm.
複数の前記DQPSK送信部と、この複数の前記DQPSK送信部の送信信号を波長多重する波長多重化装置と、複数の前記DQPSK受信部と、この複数の前記DQPSK受信部向けの波長多重された受信信号を波長毎に分離する波長多重分離装置とを備え、
前記前置分散補償器は、前記波長多重化装置から出力される波長多重された送信信号を入力として一つ設けられ、前記受信端分散補償器は、前記波長多重分離装置から複数の前記DQPSK受信部向けにそれぞれ出力される波長毎の受信信号を入力として複数設けられた
請求項1ないしのいずれかに記載の分散マネージメント伝送路。
A plurality of DQPSK transmitters, a wavelength multiplexing device that wavelength-multiplexes transmission signals of the plurality of DQPSK transmitters, a plurality of DQPSK receivers, and a wavelength-multiplexed reception for the plurality of DQPSK receivers A wavelength demultiplexing device that separates the signal for each wavelength,
The pre-dispersion compensator is provided with one wavelength-multiplexed transmission signal output from the wavelength multiplexing device as input, and the receiving-end dispersion compensator receives a plurality of DQPSK reception signals from the wavelength demultiplexing device. The dispersion management transmission line according to any one of claims 1 to 3 , wherein a plurality of reception signals for each wavelength respectively output to a part are provided as inputs.
前記前置分散補償器による前置分散補償量が−200ps/nmまたは+200ps/nmである請求項記載の分散マネージメント伝送路。 The dispersion management transmission line according to claim 4, wherein a pre-dispersion compensation amount by the pre-dispersion compensator is −200 ps / nm or +200 ps / nm. 前記前置分散補償として、分散スロープを持たない分散媒質または分散スロープが分散シフトファイバと比較して1/10以下である分散媒質を用いる請求項1ないしのいずれかに記載の分散マネージメント伝送路。 Wherein as a pre-dispersion compensator, the dispersion managed transmission according to any one of claims 1 using a dispersion medium dispersing medium or dispersion slope is compared to 1/10 or less as dispersion-shifted fiber does not have a dispersion slope 5 Road.
JP2006004714A 2006-01-12 2006-01-12 Distributed management transmission line Active JP4493601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006004714A JP4493601B2 (en) 2006-01-12 2006-01-12 Distributed management transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006004714A JP4493601B2 (en) 2006-01-12 2006-01-12 Distributed management transmission line

Publications (2)

Publication Number Publication Date
JP2007189403A JP2007189403A (en) 2007-07-26
JP4493601B2 true JP4493601B2 (en) 2010-06-30

Family

ID=38344282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006004714A Active JP4493601B2 (en) 2006-01-12 2006-01-12 Distributed management transmission line

Country Status (1)

Country Link
JP (1) JP4493601B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9178641B2 (en) * 2011-07-06 2015-11-03 Infinera Corporation Suppression of non-linear effects in low dispersion optical fibers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001036468A (en) * 1999-07-19 2001-02-09 Nippon Telegr & Teleph Corp <Ntt> Wavelength multiplex transmission system
JP2003032195A (en) * 2001-07-11 2003-01-31 Nec Corp Optical fiber transmission line
JP2005079826A (en) * 2003-08-29 2005-03-24 Nippon Telegr & Teleph Corp <Ntt> Wdm transmission system and wdm transmission method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001036468A (en) * 1999-07-19 2001-02-09 Nippon Telegr & Teleph Corp <Ntt> Wavelength multiplex transmission system
JP2003032195A (en) * 2001-07-11 2003-01-31 Nec Corp Optical fiber transmission line
JP2005079826A (en) * 2003-08-29 2005-03-24 Nippon Telegr & Teleph Corp <Ntt> Wdm transmission system and wdm transmission method

Also Published As

Publication number Publication date
JP2007189403A (en) 2007-07-26

Similar Documents

Publication Publication Date Title
US5559910A (en) Wavelength division multiplexed optical fiber transmission equiptment
US7751706B2 (en) Chromatic dispersion compensating apparatus
US6731877B1 (en) High capacity ultra-long haul dispersion and nonlinearity managed lightwave communication systems
JP5088191B2 (en) Optical transmission system and dispersion compensation method thereof
US7991295B2 (en) Method and system for compensating for optical dispersion in an optical signal
US7457546B2 (en) Dispersion-managed optical transmission system
US6567577B2 (en) Method and apparatus for providing chromatic dispersion compensation in a wavelength division multiplexed optical transmission system
US7376353B2 (en) Method and apparatus for dispersion management in optical mesh networks
JP4280665B2 (en) Dispersion compensation method and compensation node device
JPH11103286A (en) Wavelength multiplexed light transmitting device
US7697802B2 (en) Optical bypass method and architecture
US7151880B2 (en) Dispersion-managed optical soliton transmission system
JP2004274615A (en) Wavelength dispersion compensation system
JP4259186B2 (en) Optical transmission system
US20060067704A1 (en) Method and apparatus for dispersion management in optical communication systems
JP4493601B2 (en) Distributed management transmission line
US6920277B2 (en) Optical bypass method and architecture
JP3756354B2 (en) WDM transmission system
US6744989B2 (en) Optical transmission system, its method, and optical amplification transmission line
JP2009188835A (en) Optical transmission line and light transmission system
Chen et al. 1-Tb/s (40-Gb/s/spl times/25 ch) WDM transmission experiment over 342 km of TrueWave (R)(non-zero dispersion) fiber
JPH08237222A (en) Optical transmission system
EP1883172A1 (en) Dispersion management in WDM optical networks
Farbert et al. Requirements for flexible 40 Gbit/s Interfaces
Nakamura et al. 43-Gbit/s/spl times/40 ch transmission over 1,600 km of conventional single-mode fiber in NRZ modulation scheme

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071029

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20090602

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090602

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100406

R150 Certificate of patent or registration of utility model

Ref document number: 4493601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350