JP4493276B2 - Manufacturing method of chip-shaped ceramic parts - Google Patents

Manufacturing method of chip-shaped ceramic parts Download PDF

Info

Publication number
JP4493276B2
JP4493276B2 JP2003021201A JP2003021201A JP4493276B2 JP 4493276 B2 JP4493276 B2 JP 4493276B2 JP 2003021201 A JP2003021201 A JP 2003021201A JP 2003021201 A JP2003021201 A JP 2003021201A JP 4493276 B2 JP4493276 B2 JP 4493276B2
Authority
JP
Japan
Prior art keywords
ceramic
chip
manufacturing
sintered body
barrel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003021201A
Other languages
Japanese (ja)
Other versions
JP2004235372A (en
Inventor
秀徳 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003021201A priority Critical patent/JP4493276B2/en
Publication of JP2004235372A publication Critical patent/JP2004235372A/en
Application granted granted Critical
Publication of JP4493276B2 publication Critical patent/JP4493276B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coils Or Transformers For Communication (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はチップ状セラミック電子部品用のセラミック部品及びその製造方法に関するものである。
【0002】
【従来の技術】
セラミック電子部品、例えばチップコイル、チップインダクタにおいては、図3に示す巻き線タイプと、図4に示す非巻き線タイプがある。ともに両端にフランジ部を有するチップ状セラミック部品をコアとして用いており、稜部やコーナー部を曲面状とすることにより、欠け、チッピングやワレの不良発生を低減させるセラミック部品が必要とされている。
【0003】
そこで従来より、回転ポット内に多数のセラミック焼結体を導入し、該回転ポットを回転させて焼結体のコーナー部分を研磨し、丸める方法が採用されていた。
具体的には、回転ポット内に全内容積の20〜40容量%程度の割合の複数個のセラミック焼結体と、全内容積の90〜95%容量%程度の割合緩衝剤としての水を入れ、しかる後ポットを密閉し、所定の回転速度で数時間程度回転させる。この回転により、セラミック焼結体同士を衝突させ、セラミック焼結体のコーナー部分に丸みを付けていた。
【0004】
特許文献1では、セラミック焼結体を用意すると工程と、回転ポット内に、緩衝剤として内容積の25〜50容量%の平均粒径100μm以下の無機粉末及び水を入れ、該回転ポット内に、複数個のセラミック焼結体を投入して回転させる工程とを備えるセラミック部品の製造方法が示されているが、所望でない部分における欠け、チッピングやワレが発生した不良品も発生する。
【0005】
特許文献2では、セラミック焼結体を用意する工程と、複数のセラミック焼結体と、該セラミック焼結体よりも低硬度の研磨材と、緩衝液とを研磨容器内に投入して研磨する工程とを備える、セラミック部品の製造方法が示されている。
【0006】
特許文献3では、全ての稜部及び角部に曲率半径0.02〜0.2mmの曲面を有するチップ状電子部品用セラミック基板が示されている。これは、セラミックグリーンシートをチップ状電子部品の単体サイズに切断した後、成形体の状態、仮焼後、またはいずれかの段階でバレル研磨を行うことを特徴とするものである。その具体的な実施例として、バレル研磨の条件としては、内寸法が直径25cm×30cmの円筒型ポットの中に焼結体と直径5mmのアルミナボールとをそれぞれ1:10:10の体積比で投入し、ポット内の空間率を50%とし、このポットを毎分15回転のスピードで120時間回転させバレル研磨を行った後に流水中で洗浄し乾燥するものであった。
【0007】
【特許文献1】
特開平7−22271号公報
【特許文献2】
特開平7−37751号公報
【特許文献3】
特願平7−14813号公報
【0008】
【発明が解決しようとする課題】
セラミック焼結体の稜部及びコーナー部分を丸めるための従来の研磨方法では、研磨量を増大させるためには、ポットバレルの回転数を高めたり研磨時間を延長したりしていた。研磨剤としてセラミック焼結体より硬度が高い材料を用いた場合は、焼結体と研磨剤の衝突によりセラミック焼結体にチッピングが発生してしまう。セラミック焼結体より低硬度の研磨材を用いた場合は、稜部及びコーナー部のバリが完全に除去できない問題がある。
【0009】
特許文献3の方法についても、特に両端にフランジを有するセラミック部品においてカケの発生を抑えて、ての稜部及び部に曲面を形成することは困難であった。
【0010】
また、図4に示すような非巻き線タイプのチップセラミック部品においては、均一な表面粗さが必用とされ稜部及びコーナー部を丸めると同時に表面粗さも均一になるように管理が必用である。セラミック焼結体のバリについては、各稜部及び各コーナー部の全てに均一に存在しているわけではないため、従来の研磨方法では、部分的にバリ残りがあったり、必要以上に丸みを帯びたり均一な仕上がりは難しく、安定した品質に問題があった。
【0012】
また、本発明は両端にフランジ部を有するチップ状セラミック部品の製造方法において、原料粉末を乾式加圧成形した後、成形体を30℃〜60℃で8H以上放置し乾燥させた後にバレル研磨してバリを除去し、焼成した後でバレル研磨を行うことによりチップ状セラミック部品を製造するようにした。
【0013】
【発明の実施の形態】
以下、本発明の実施形態を説明する。
【0014】
図1に示すように、両端にフランジ部を有するチップ状セラミック部品1は、例えば1.0×0.5×0.5mmの大きさであり、全ての稜部1aとコーナー部1bに曲率半径0.01〜0.2mmの曲面を有しているとともに、表面1cの算術平均粗さ(Ra)を1μm以下としてある。
【0015】
ここで、曲率半径を0.01〜0.2mmとしたのは、0.01mm未満ではカケを防止する効果に乏しいこと、及び巻き線タイプ、銅メッキタイプともに断線が発生する危険性もあり、一方0.2mmを越えるとチップコイルとしてフランジ部の幅が狭くなるため、実装の段階でマウント強度が弱くなる。
【0016】
表面1aの算術平均粗さ(Ra)を1μm以下としたのは、1μmを超えるとCuメッキタイプにおいて、メッキ層が不均一になり品質特性が不安定になるためである。
【0017】
本発明のセラミック部品の材質は特に限定されるものでなく、アルミナ、ステアタイト、フォルステライト、フェライト等、使用目的に応じて広く使用される。
【0018】
この両端にフランジ部を有するチップ状セラミック部品の製造方法については、原料粉末を乾式加圧成形した後、成形体を30℃〜60℃で8H以上放置し乾燥させた後にバレル研磨してバリを除去し、焼成した後でバレル研磨を行うことを特徴とする。
【0019】
以下、チップ状セラミック部品1の製造方法を詳細に説明する。
【0020】
セラミック粉体(アルミナ)を乾式加圧成形する時、金型の上下面側に発生する成形体のバリを焼結する前の段階でメッシュを用いた成形体のバレル研磨を行い、原料付着・割れ等の発生なく除去したものを焼成して、得られた焼結体にバレル研磨を行う。
【0021】
このとき、成形後すぐにバリ取り作業を行わず、30℃〜60℃で8H以上放置し乾燥させる。この目的は、バリ取り作業時に、バリを取れやすくするためである。また、除去されたバリが成形体に付着するのを防止するためである。乾燥しない状態でバリ取り作業するとバリ部の粒子の結合が乾燥したものより強くバリが取れにくい、また、成形体に付着し、除去しにくくなる。
【0022】
バレル処理工程について、従来の方法では、プラスチック製の網を用いていたが、本発明では、取手付きステンレス製網ザルの内壁にプラスチック(実施例として、ポリエチレン、ナイロン)製の成形体より小さいサイズの網[例えば40目の網(線径244μm、オープニング503〜550μm)]を貼り、バリ取りを行う。
【0023】
この取手付き固定網ザルに、数十万個のチップコイル用セラミック成形体を入れ、こぼれ落ちることがないように上下に振り、成形体同士を衝突させることにより、バリを除去する。ステンレスの網は、プラスチックの網より大きいサイズの網を用いる。これは、数十万個の成形体を入れて、振っても網の形状が変形しないためである。
【0024】
また、プラスチックの網を内壁に用いるのは、成形体を入れ振ってバリ取りする際、プラスチックの摩耗が考えられるが、この摩耗分は、焼成時に消失し製品に影響しない。もし、金属の網を内壁に用いると、摩耗したものが、成形体に付き、焼成後、変色、異物不良の原因となるためである。
【0025】
成形体バレル処理後の後処理については、固定網ザルにて、成形体からバリを取った後、網ザル中あるいは成形体に付着した原料粉(バリとなっていた粉体)を、局所排気装置(集塵機)に繋がっている集塵ダクト上で、エアーガンを用いて吹き飛ばし、網ザル中のバリによる粉体を除去する。
【0026】
こうして得られた成形体を焼成用治具にのせ、連続トンネル炉を用いて約1400℃の酸化雰囲気中にて焼成する。
【0027】
次に得られた焼結体に図2に示すバレル研磨を行い、各稜部、コーナー部に曲面加工を行う。
【0028】
本発明では、内寸法が220mm×240mmの円筒型回転ポット2内に、複数個の焼結体2bと内容積の50〜90容量%の平均粒径3mmのセラミックボール2c、セラミック粉末(粒径100μm以下)2d、水2aを含む研磨剤及び緩衝剤が投入されている。この組み合わせにより、表面粗さ及びコーナーRの要求特性が同時にえられ、かつ、セラミック焼結体のチッピング(欠け)不良の発生率を最小限に抑えることができる。このポットを毎分45回転のスピードで6時間回転させバレル研磨を行った後に流水中で洗浄して乾燥する。
【0029】
その結果、図1に示すように全ての稜部1aとコーナー部1bに曲率半径0.01〜0.1mmの曲面を有しているとともに、表面1aの算術平均粗さ(Ra)が1μm以下である両端にフランジ部を有するチップ状セラミック部品を得ることができる。
【0030】
使用する回転ポットは従来よりセラミック電子部品の製造方法等において用いられている適宜の構造のものを採用することができる。また、ポットの回転速度及び回転時間についても、投入されるセラミック焼結体の形状及び寸法等に応じて適宜定め得る。
【0031】
また、本発明の製造方法によれば、特に小型成形品であるチップインダクタ用セラミックにおいて、数百万個から数億個に大増産することができ、大量の製品(成形体)を効率良く、バリ取りを行い、焼結後のバレル研磨工程において、ワレ、欠け、チッピングの発生がなく、かつ、各稜部及び各コーナー部の均一な曲率半径と、焼結体における表面粗さを同時に得ることが可能となるまた、バリによる品質問題はなくなり、作業効率の改善により、従来の方法では、一度に1万〜2万個単位でバリ取り作業を行っていたが、本発明により、数十万個(10万〜30万個)単位でバリ取りが出来るようになる。
【0032】
処理時間も従来と変わらない。処理時間は、金型の摩耗に依存しており、新しい金型で5分、摩耗しているもので15から20分間である。
【0033】
そして、このセラミック部品をコア部として図3に示すように電極3b、コイル3c、樹脂キャップ3dを形成すれば巻き線型チップコイルとなる。また、図4に示すように銅メッキ4aを形成し、レーザーでコイル状にメッキを剥がして、電極4cを形成すれば非巻き線型チップコイルとなる。
【0034】
【実施例】
本発明実施例として、上記に示す成形体のバレル研磨を行いバリ取りを行ったものを、回転ポットによるセラミック焼結体の後処理に際し、内寸法が250×300mmの円筒型回転ポット2内に、内容積の50〜90容量%の平均粒径3mmのセラミックボール2c、セラミック粉末(粒径100μm以下)2d、水2aとを含む研磨剤及び緩衝剤を投入した。該回転ポット内に、複数個のセラミックの焼結体を投入して回転させた。3φセラミックボールはセラミック焼結体より若干硬度が低いもの(酸化アルミニウム+二酸化ケイ素が主成分)を用い、重量(比重1.6〜2.4)による応力でセラミック焼結体の稜線部及びコーナー部を研削して曲面加工(R付け)を行う。球体であるためセラミック焼結体のチッピングの発生を抑え、かつ曲面加工のバラツキが少なく均一な加工を得ることができる。
【0035】
セラミック粉末(100μm以下)はセラミック焼結体より硬度が高く(酸化アルミニウム99%以上)、セラミック焼結体とセラミック焼結体またはセラミックボールとの間に介在し応力を受けて、セラミック焼結体の表面を研削する。粒度構成が細かく、かつ研削力が優れているため、セラミック焼結体表面をムラがなく均一に処理できる。水は緩衝剤として機能し、かつ均一な仕上がりを得るために働く。この組み合わせがポイントであり、全てが機能するためには上記の構成比率が不可欠な要素である。
【0036】
表1に、チップコイルのバレル研磨時間とコーナ部の曲率半径の関係を示す。なお、曲率半径の測定個所は図5の通である。この結果より、バレル処理時間によってコーナー部の曲率半径Rを調整することができ、最適は6時間のバレル処理であるが、曲率半径を大きくしたい場合は時間を長くすれば良い。
【0037】
【表1】

Figure 0004493276
【0038】
表2は、本発明実施例のチッピング発生数を示す。サンプルやロットが異なっても、チッピング発生率は85ppm以下と極めて低いことが判る。なお、チッピングの有無は、双眼顕微鏡を用いて倍率20倍で0.03×0.03mm以上のチッピング発生率を調査した。
【0039】
【表2】
Figure 0004493276
【0040】
さらに、表面粗さを測定した結果を表3に示すように、磁器(セラミック)素材の表面粗さ(Ra)は0.2〜0.5μm、Cuメッキ品の表面粗さ(Ra)は0.03〜0.06μmと低く、かつそのバラツキも少ないことがわかる。
【0041】
【表3】
Figure 0004493276
【0043】
また、本発明の製造方法によれば、チップコイル、チップインダクタのセラミック部品製造工程において、バレル研磨の最適条件により磁器の欠け、チッピングや割れの不良発生を低減させることができる。しかも、コーナーR及び表面粗度を管理することにより、巻き線タイプでは、稜及びコーナーの曲率半径を最適条件で管理することにより、コイルの断線を改善でき、非巻き線タイプ(メッキ処理レーザー加工タイプ)では、稜及びコーナーの曲率半径を最適条件で管理することにより、断線を改善でき、かつ、表面粗さを最適条件で均一な仕上がりに管理することにより、メッキ強度が向上すると共にメッキ層が均一になり品質特性が安定する。
【図面の簡単な説明】
【図1】 本発明のチップ状セラミック部品を示す斜視図である。
【図2】 本発明のチップ状セラミック部品の製造方法を説明するための図である。
【図3】 本発明のセラミック部品を用いた巻き線型チップコイルの説明図である。
【図4】 本発明のセラミック部品を用いた非巻き線型チップコイルの説明図である。
【図5】 本発明実施例におけるコーナー部の測定個所を示す説明図である。
【符号の説明】
1: セラミック部品
1a:稜部
1b:コーナー部
1c;表面
2;回転ポット本体
2 a;水
2 b;セラミック部品
2 c;セラミックボール
2 d;セラミック粉末
3 a;セラミック部品
3 b:電極(メタライズ)
3 c;コイル
3 d;樹脂キャップ
4 a;銅メッキ
4 b;セラミック部品
4 c;電極(メタライズ)
5 a;R測定個所
5 b;R測定個所
5 c;R測定個所
5d; R測定個所
5 e;セラミック部品
5 f;セラミック部品コア部断面[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ceramic component for a chip-shaped ceramic electronic component and a manufacturing method thereof.
[0002]
[Prior art]
Ceramic electronic components such as a chip coil and a chip inductor include a winding type shown in FIG. 3 and a non-winding type shown in FIG. Both use chip-shaped ceramic parts with flanges at both ends as the core, and there is a need for ceramic parts that reduce the occurrence of chipping, chipping and cracking defects by making the ridges and corners curved. .
[0003]
Therefore, conventionally, a method has been employed in which a large number of ceramic sintered bodies are introduced into a rotating pot, and the rotating pot is rotated to polish and round the corner portion of the sintered body.
Specifically, a plurality of ceramic sintered bodies having a ratio of about 20 to 40% by volume of the total internal volume in the rotating pot and water as a buffering agent at a ratio of about 90 to 95% by volume of the total internal volume. After that, the pot is sealed and rotated at a predetermined rotation speed for several hours. Due to this rotation, the ceramic sintered bodies collided with each other, and the corner portions of the ceramic sintered bodies were rounded.
[0004]
In Patent Document 1, when a ceramic sintered body is prepared, an inorganic powder having an average particle diameter of 100 μm or less and an inner volume of 25 to 50% by volume as a buffering agent is placed in the rotating pot. Although the manufacturing method of the ceramic component and a step of rotating by introducing a plurality of the ceramic sintered body is shown, chipping, even defectives chip ping or cracking occurs to generate in the portion not desired.
[0005]
In Patent Document 2, a process of preparing a ceramic sintered body, a plurality of ceramic sintered bodies, an abrasive having a hardness lower than that of the ceramic sintered body, and a buffer solution are put into a polishing container and polished. A method of manufacturing a ceramic component comprising the steps is shown.
[0006]
Patent Document 3 discloses a ceramic substrate for chip-shaped electronic components having curved surfaces with a curvature radius of 0.02 to 0.2 mm at all ridges and corners. This is characterized in that after the ceramic green sheet is cut into a single size of a chip-shaped electronic component, barrel polishing is performed in the state of the formed body, after calcination, or at any stage. As a specific example, the barrel polishing conditions are as follows: a sintered body and an alumina ball having a diameter of 5 mm in a cylindrical pot having an inner dimension of 25 cm × 30 cm in a volume ratio of 1:10:10, respectively. The pot was made to have a space ratio in the pot of 50%, and the pot was rotated at a speed of 15 revolutions per minute for 120 hours, barrel polished, washed in running water, and dried.
[0007]
[Patent Document 1]
JP 7-22271 A [Patent Document 2]
JP-A-7-37751 [Patent Document 3]
Japanese Patent Application No. 7-14813 [0008]
[Problems to be solved by the invention]
In the conventional polishing method for rounding the ridges and corners of the ceramic sintered body, the number of rotations of the pot barrel is increased or the polishing time is extended in order to increase the polishing amount. When a material having a higher hardness than the ceramic sintered body is used as the abrasive, chipping occurs in the ceramic sintered body due to collision between the sintered body and the abrasive. When a polishing material having a hardness lower than that of the ceramic sintered body is used, there is a problem that burrs at the ridges and corners cannot be completely removed.
[0009]
For a method of Patent Document 3, in particular by suppressing the occurrence of chipping in the ceramic component having flanges at both ends, it is difficult to form a curved surface on ridge and corner of the entire hand.
[0010]
In addition, in the non-wound type chip ceramic component as shown in FIG. 4, uniform surface roughness is required, and management is necessary so that the surface roughness becomes uniform at the same time that the ridges and corners are rounded. . Since burrs of ceramic sintered bodies do not exist uniformly at all the ridges and corners, the conventional polishing method has partial burrs or rounds more than necessary. It was difficult to obtain a uniform finish, and there was a problem with stable quality.
[0012]
Further, the present invention provides a method for manufacturing a chip-shaped ceramic part having flange portions at both ends, and after dry pressing the raw material powder, the molded body is allowed to stand at 30 ° C. to 60 ° C. for 8 hours or more and dried, followed by barrel polishing. Te deburring, was to produce a chip-shaped ceramic components by performing Device barrels polishing after firing.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0014]
As shown in FIG. 1, the chip-shaped ceramic component 1 having flange portions at both ends has a size of, for example, 1.0 × 0.5 × 0.5 mm, and has a curvature at all the ridge portions 1a and corner portions 1b. While having a curved surface with a radius of 0.01 to 0.2 mm, the arithmetic average roughness (Ra) of the surface 1c is 1 μm or less.
[0015]
Here, the curvature radius of 0.01 to 0.2 mm is less than 0.01 mm, and there is a risk that breakage may occur in both the winding type and the copper plating type, and the effect of preventing cracks is poor. On the other hand, if it exceeds 0.2 mm, the width of the flange portion as a chip coil becomes narrow, so that the mounting strength becomes weak at the stage of mounting.
[0016]
The reason why the arithmetic average roughness (Ra) of the surface 1a is 1 μm or less is that when it exceeds 1 μm, in the Cu plating type, the plating layer becomes non-uniform and the quality characteristics become unstable.
[0017]
The material of the ceramic component of the present invention is not particularly limited, and is widely used according to the purpose of use, such as alumina, steatite, forsterite, and ferrite.
[0018]
About the manufacturing method of the chip-shaped ceramic component which has this flange part at both ends, after carrying out dry press molding of the raw material powder, the molded body is allowed to stand at 30 ° C. to 60 ° C. for 8 hours or more and dried, and then barrel-polished to remove burrs. removed, and performs Device barrels polishing after firing.
[0019]
Hereinafter, the manufacturing method of the chip-shaped ceramic component 1 will be described in detail.
[0020]
When ceramic powder (alumina) is dry-pressure molded, barrel molding of the molded body using mesh is performed before sintering the burrs of the molded body generated on the upper and lower surfaces of the mold. What was removed without generation of cracks or the like is fired, and the obtained sintered body is subjected to barrel polishing.
[0021]
At this time, the deburring operation is not performed immediately after the molding, and it is allowed to stand at 30 ° C. to 60 ° C. for 8 H or more and dried. The purpose is to facilitate deburring during deburring. Moreover, it is for preventing the removed burr | flash adhering to a molded object. If the deburring operation is performed in a dry state, the bonding of the particles in the burr portion is stronger than that in the dried state, and it is difficult to remove the burrs.
[0022]
Regarding the barrel treatment process, in the conventional method, a plastic net was used, but in the present invention, the inner wall of a stainless steel net with a handle has a smaller size than a plastic (polyethylene, nylon, for example) molded body. [For example, a 40 mesh (wire diameter: 244 μm, opening: 503 to 550 μm)] is applied and deburring is performed.
[0023]
Bury is removed by putting hundreds of thousands of ceramic molded bodies for chip coils into this fixed net with a handle, swinging up and down so as not to spill, and causing the molded bodies to collide with each other. The stainless steel mesh uses a mesh larger than the plastic mesh. This is because the shape of the net is not deformed even if hundreds of thousands of molded bodies are put and shaken.
[0024]
In addition, the use of a plastic net for the inner wall may be due to wear of the plastic when the molded product is put in and shaken to deburr, but this wear disappears during firing and does not affect the product. If a metal net is used for the inner wall, the worn material will adhere to the molded body and cause discoloration and foreign matter defects after firing.
[0025]
For post-processing after the molded body barrel treatment, after removing burrs from the molded body in the fixed net colander, the raw material powder adhering to the molded colander or the molded body (powdered powder) is locally exhausted. On the dust collection duct connected to the device (dust collector), it is blown off with an air gun to remove burrs in the net.
[0026]
The molded body thus obtained is placed on a firing jig and fired in an oxidizing atmosphere at about 1400 ° C. using a continuous tunnel furnace.
[0027]
Next, barrel polishing shown in FIG. 2 is performed on the obtained sintered body, and curved surface processing is performed on each ridge and corner .
[0028]
In the present invention, in a cylindrical rotary pot 2 having an inner dimension of 220 mm × 240 mm, a plurality of sintered bodies 2b, ceramic balls 2c having an average particle diameter of 3 to 50% of an inner volume of 50 to 90% by volume, ceramic powder (grains) An abrasive and a buffer containing 2d and water 2a (diameter of 100 μm or less) are charged. By this combination, the required characteristics of the surface roughness and corner R can be obtained at the same time, and the occurrence rate of chipping (chip) defects of the ceramic sintered body can be minimized. The pot is rotated for 6 hours at a speed of 45 revolutions per minute, barrel polished, washed in running water and dried.
[0029]
As a result, has a curved surface of radius of curvature 0.01~0.1mm to all of the ridges 1a and corner portions 1b as shown in FIG. 1, the arithmetic mean roughness of the surface 1a (Ra) is 1μm Chip-shaped ceramic parts having flange portions at both ends as described below can be obtained.
[0030]
As the rotary pot to be used, one having an appropriate structure conventionally used in a method of manufacturing a ceramic electronic component or the like can be adopted. Further, the rotation speed and the rotation time of the pot can be appropriately determined according to the shape and size of the ceramic sintered body to be charged.
[0031]
In addition, according to the manufacturing method of the present invention, particularly in a ceramic for chip inductor which is a small molded product, the production can be greatly increased from several million to several hundred million, and a large amount of product (molded product) can be efficiently produced. Deburring is performed, and there is no cracking, chipping or chipping in the barrel polishing step after sintering, and a uniform curvature radius of each ridge and corner and surface roughness of the sintered body are obtained simultaneously. It becomes possible . In addition, the quality problem due to burrs is eliminated, and due to the improvement of work efficiency, the conventional method performs deburring work in units of 10,000 to 20,000 pieces at a time. Deburring can be done in units of ~ 300,000).
[0032]
Processing time is the same as before. The treatment time depends on the wear of the mold, 5 minutes for the new mold and 15 to 20 minutes for the worn one.
[0033]
Then, if this ceramic part is used as a core part and an electrode 3b, a coil 3c, and a resin cap 3d are formed as shown in FIG. 3, a wound chip coil is obtained. Further, as shown in FIG. 4, when a copper plating 4a is formed, and the plating is peeled off in a coil shape by a laser to form an electrode 4c, a non-winding chip coil is obtained.
[0034]
【Example】
As an embodiment of the present invention, the above-described molded body barrel-polished and deburred is placed in a cylindrical rotating pot 2 having an inner dimension of 250 × 300 mm when post-processing the ceramic sintered body with the rotating pot. An abrasive and a buffer containing ceramic balls 2c having an average particle size of 3 to 50% by volume of the internal volume, ceramic balls 2c, ceramic powder (particle size of 100 μm or less) 2d, and water 2a were added. A plurality of ceramic sintered bodies were put into the rotating pot and rotated. The 3φ ceramic balls have a slightly lower hardness than the ceramic sintered body (aluminum oxide + silicon dioxide is the main component), and the ridges and corners of the ceramic sintered body are stressed by the weight (specific gravity 1.6 to 2.4) The surface is ground and curved surface processing (R attachment) is performed. Since it is a sphere, the occurrence of chipping of the ceramic sintered body can be suppressed, and uniform processing can be obtained with less variation in curved surface processing.
[0035]
Ceramic powder (100 μm or less) has higher hardness than ceramic sintered body (aluminum oxide 99% or more), and is interposed between ceramic sintered body and ceramic sintered body or ceramic ball, and receives stress, and ceramic sintered body Grind the surface. Since the particle size configuration is fine and the grinding force is excellent, the surface of the ceramic sintered body can be uniformly treated without unevenness. Water acts as a buffer and works to obtain a uniform finish. This combination is the point, and the above composition ratio is an indispensable element for everything to function.
[0036]
Table 1 shows the relationship between the barrel polishing time of the chip coil and the radius of curvature of the corner portion. Note that the measurement points of the radius of curvature are as shown in FIG. From this result, the radius of curvature R of the corner can be adjusted according to the barrel processing time, and the optimum barrel processing is 6 hours. However, if it is desired to increase the radius of curvature, the time may be lengthened.
[0037]
[Table 1]
Figure 0004493276
[0038]
Table 2 shows the number of chipping occurrences in the embodiment of the present invention. It can be seen that even if the samples and lots are different, the chipping occurrence rate is as low as 85 ppm or less. In addition, the presence or absence of chipping was investigated using a binocular microscope for a chipping occurrence rate of 0.03 × 0.03 mm or more at a magnification of 20 times.
[0039]
[Table 2]
Figure 0004493276
[0040]
Furthermore, as shown in Table 3, the results of measuring the surface roughness are as follows. The surface roughness (Ra) of the porcelain (ceramic) material is 0.2 to 0.5 μm, and the surface roughness (Ra) of the Cu plated product is 0.03 to 0.06 μm. It is low and there is little variation.
[0041]
[Table 3]
Figure 0004493276
[0043]
Further, according to the manufacturing method of the present invention, in the ceramic component manufacturing process of the chip coil and the chip inductor, the occurrence of chipping, chipping and cracking defects can be reduced under the optimum conditions for barrel polishing. Moreover, by managing the corner R and surface roughness, the winding type, by managing the curvature radius of the ridge portion and the corner portion under optimum conditions, can improve breakage of the coil, the non-winding type (plating in laser processing type), by managing the curvature radius of the ridge portion and the corner portion under optimum conditions, can be improved disconnection, and by managing the surface roughness uniform finish optimum, improved plating strength In addition, the plating layer becomes uniform and the quality characteristics are stabilized.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a chip-shaped ceramic component of the present invention.
FIG. 2 is a diagram for explaining a method of manufacturing a chip-shaped ceramic component according to the present invention.
FIG. 3 is an explanatory diagram of a wound chip coil using the ceramic component of the present invention.
FIG. 4 is an explanatory diagram of a non-winding chip coil using the ceramic component of the present invention.
FIG. 5 is an explanatory diagram showing measurement points of a corner portion in an embodiment of the present invention.
[Explanation of symbols]
1: Ceramic part 1a: Ridge part 1b: Corner part 1c; Surface 2; Rotary pot body 2a; Water 2b; Ceramic part 2c; Ceramic ball 2d; Ceramic powder 3a; Ceramic part 3b: Electrode (metallized) )
3 c; coil 3 d; resin cap 4 a; copper plating 4 b; ceramic component 4 c; electrode (metallized)
5 a; R measurement location 5 b; R measurement location 5 c; R measurement location 5 d; R measurement location 5 e; Ceramic component 5 f;

Claims (2)

両端にフランジ部を有するチップ状セラミック部品の製造方法において、原料粉末を乾式加圧成形した後、成形体を30℃〜60℃で8H以上放置し乾燥させた後にバレル研磨してバリを除去し、焼成した後でバレル研磨を行うことを特徴とするチップ状セラミック部品の製造方法。  In the manufacturing method of chip-shaped ceramic parts having flange portions at both ends, after the raw material powder is dry-pressure-molded, the molded body is left to dry at 30 ° C to 60 ° C for 8H or more and then barrel-polished to remove burrs. A method for producing a chip-shaped ceramic component, comprising performing barrel polishing after firing. 上記焼成した後のバレル研磨は、研磨剤として平均粒径が3mmのセラミックボールと、平均粒径が100μm以下のセラミック粉末とを用い、緩衝剤として水を用い、これらを回転ポット内に内容積の50〜90容量%の範囲で投入して行うことを特徴とする請求項1記載のチップ状セラミック部品の製造方法。Barrel polishing after the firing, and an average particle size of 3mm ceramic balls as an abrasive, using a following ceramic powder having an average particle diameter of 100 [mu] m, using water as a buffer, the internal volume of these in the rotational pot The method for producing a chip-shaped ceramic component according to claim 1, wherein the method is performed in a range of 50 to 90% by volume.
JP2003021201A 2003-01-29 2003-01-29 Manufacturing method of chip-shaped ceramic parts Expired - Fee Related JP4493276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003021201A JP4493276B2 (en) 2003-01-29 2003-01-29 Manufacturing method of chip-shaped ceramic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003021201A JP4493276B2 (en) 2003-01-29 2003-01-29 Manufacturing method of chip-shaped ceramic parts

Publications (2)

Publication Number Publication Date
JP2004235372A JP2004235372A (en) 2004-08-19
JP4493276B2 true JP4493276B2 (en) 2010-06-30

Family

ID=32950593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003021201A Expired - Fee Related JP4493276B2 (en) 2003-01-29 2003-01-29 Manufacturing method of chip-shaped ceramic parts

Country Status (1)

Country Link
JP (1) JP4493276B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026365A (en) * 2003-06-30 2005-01-27 Tdk Corp Drum core
JP6477592B2 (en) * 2016-05-13 2019-03-06 株式会社村田製作所 Ceramic core, wire wound electronic component, and method for manufacturing ceramic core
JP6708162B2 (en) * 2017-04-25 2020-06-10 株式会社村田製作所 Inductor
JP6720914B2 (en) 2017-04-25 2020-07-08 株式会社村田製作所 Inductor
JP7140085B2 (en) 2019-09-26 2022-09-21 株式会社村田製作所 Methods of manufacturing inductor components and cores for inductor components

Also Published As

Publication number Publication date
JP2004235372A (en) 2004-08-19

Similar Documents

Publication Publication Date Title
JP5865916B2 (en) Gas nozzle, plasma apparatus using the same, and method for manufacturing gas nozzle
JP4667263B2 (en) Silicon wafer manufacturing method
JP4493276B2 (en) Manufacturing method of chip-shaped ceramic parts
CN112238392B (en) Centrifugal barrel polishing mechanical pre-polishing method for copper cavity substrate
CN108161586A (en) A kind of workpiece surface treatment process
KR100473705B1 (en) Quartz glass article having sand blast-treated surface and method for cleaning the same
JP3921946B2 (en) Manufacturing method of ceramic electronic component
CN110253414A (en) A kind of copper product processing polished polishing process
JP2005026365A (en) Drum core
JP3853197B2 (en) Ceramic ball base ball and method for manufacturing the same
JP5419173B2 (en) Super abrasive wheel and grinding method using the same
JP3843545B2 (en) Polishing molded body, polishing surface plate and polishing method using the same
JP2012185891A (en) Method for manufacturing glass substrate for magnetic recording medium, and glass substrate for magnetic recording medium
JP4877351B2 (en) Manufacturing method of electronic parts
CN107263687B (en) The cutting-off method of honeycomb formed article and the manufacturing method of honeycomb structure
JP2835076B2 (en) Jig for ceramic firing and method of manufacturing the same
JP6338950B2 (en) Dust core manufacturing method, dust core, and coil component
CN110405572A (en) A kind of abrasive wheel and wafer polishing apparatus
JP2001038630A (en) Superfine abrasive grain tool, and its manufacture
JP3380703B2 (en) Manufacturing method of ceramic ball
CN108857587B (en) Grinding method of ceramic rod
JPH09266123A (en) Manufacture of ferrite core
JP2005327929A (en) Method for manufacturing semiconductor ceramic electronic component
JP2007254190A (en) Aluminum nitride sintered compact, method of manufacturing aluminum nitride, and member
JPH06224076A (en) Tubular feedthrough capacitor and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees