JP2004235372A - Chip type ceramic component and its manufacturing method - Google Patents

Chip type ceramic component and its manufacturing method Download PDF

Info

Publication number
JP2004235372A
JP2004235372A JP2003021201A JP2003021201A JP2004235372A JP 2004235372 A JP2004235372 A JP 2004235372A JP 2003021201 A JP2003021201 A JP 2003021201A JP 2003021201 A JP2003021201 A JP 2003021201A JP 2004235372 A JP2004235372 A JP 2004235372A
Authority
JP
Japan
Prior art keywords
chip
ceramic
ceramic component
shaped ceramic
barrel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003021201A
Other languages
Japanese (ja)
Other versions
JP4493276B2 (en
Inventor
Hidenori Maeda
秀徳 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003021201A priority Critical patent/JP4493276B2/en
Publication of JP2004235372A publication Critical patent/JP2004235372A/en
Application granted granted Critical
Publication of JP4493276B2 publication Critical patent/JP4493276B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a chip type ceramic component from having burs and chipping. <P>SOLUTION: The chip type ceramic component having flanges at both ends has curved surfaces of 0.01 to 2.0 mm in radius of curvature on all ridges and corners, and the mathematical mean roughness (Ra) of the surfaces is ≤1 μm. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はチップ状セラミック電子部品用のセラミック部品及びその製造方法に関するものである。
【0002】
【従来の技術】
セラミック電子部品、例えばチップコイル、チップインダクタにおいては、図3に示す巻き線タイプと、図4に示す非巻き線タイプがある。ともに両端にフランジ部を有するチップ状セラミック部品をコアとして用いており、稜部やコーナー部を曲面状とすることにより、欠け、チッピングやワレの不良発生を低減させるセラミック部品が必要とされている。
【0003】
そこで従来より、回転ポット内に多数のセラミック焼結体を導入し、該回転ポットを回転させて焼結体のコーナー部分を研磨し、丸める方法が採用されていた。具体的には、回転ポット内に全内容積の20〜40容量%程度の割合の複数個のセラミック焼結体と、全内容積の90〜95%容量%程度の割合緩衝剤としての水を入れ、しかる後ポットを密閉し、所定の回転速度で数時間程度回転させる。この回転により、セラミック焼結体同士を衝突させ、セラミック焼結体のコーナー部分に丸みを付けていた。
【0004】
特許文献1では、セラミック焼結体を用意すると工程と、回転ポット内に、緩衝剤として内容積の25〜50容量%の平均粒径100μm以下の無機粉末及び水を入れ、該回転ポット内に、複数個のセラミック焼結体を投入して回転させる工程とを備えるセラミック部品の製造方法が示されているが、所望でない部分における欠け、チィッピングやワレが発生した不良品も発生する。
【0005】
特許文献2では、セラミック焼結体を用意する工程と、複数のセラミック焼結体と、該セラミック焼結体よりも低硬度の研磨材と、緩衝液とを研磨容器内に投入して研磨する工程とを備える、セラミック部品の製造方法が示されている。
【0006】
特許文献3では、全ての稜部及び角部に曲率半径0.02〜0.2mmの曲面を有するチップ状電子部品用セラミック基板が示されている。これは、セラミックグリーンシートをチップ状電子部品の単体サイズに切断した後、成形体の状態、仮焼後、またはいずれかの段階でバレル研磨を行うことを特徴とするものである。その具体的な実施例として、バレル研磨の条件としては、内寸法が直径25cm×30cmの円筒型ポットの中に焼結体と直径5mmのアルミナボールとをそれぞれ1:10:10の体積比で投入し、ポット内の空間率を50%とし、このポットを毎分15回転のスピードで120時間回転させバレル研磨を行った後に流水中で洗浄し乾燥するものであった。
【0007】
【特許文献1】
特開平7−22271号公報
【特許文献2】
特開平7−37751号公報
【特許文献3】
特願平7−14813号公報
【0008】
【発明が解決しようとする課題】
セラミック焼結体の稜部及びコーナー部分を丸めるための従来の研磨方法では、研磨量を増大させるためには、ポットバレルの回転数を高めたり研磨時間を延長したりしていた。研磨剤としてセラミック焼結体より硬度が高い材料を用いた場合は、焼結体と研磨剤の衝突によりセラミック焼結体にチッピングが発生してしまう。セラミック焼結体より低硬度の研磨材を用いた場合は、稜部及びコーナー部のバリが完全に除去できない問題がある。
【0009】
特許文献3の方法についても、特に両端にフランジを有するセラミック部品においてカケの発生を抑えて、すべての稜部及び各部に曲面を形成することは困難であった。
【0010】
また、図4に示すような非巻き線タイプのチップセラミック部品においては、均一な表面粗さが必用とされ稜部及びコーナー部を丸めると同時に表面粗さも均一になるように管理が必用である。セラミック焼結体のバリについては、各稜部各コーナー部の全てに均一に存在しているわけではないため、従来の研磨方法では、部分的にバリ残りがあったり、必要以上に丸みを帯びたり均一な仕上がりは難しく、安定した品質に問題があった。
【0011】
【課題を解決するための手段】
本発明は、両端にフランジ部を有するチップ状セラミック部品図1において、全ての稜部及び角部に曲率半径0.01〜2.0mmの曲面を有するとともに、表面の算術平均粗さ(Ra)が1μm以下であることを特徴とする。
【0012】
また、本発明は両端にフランジ部を有するチップ状セラミック部品の製造方法において、原料粉末を乾式加圧成形した後、成形体をバレル研磨してバリを除去し、焼成した後で再度バレル研磨を行うことによりチップ状セラミック部品を製造するようにした。
【0013】
【発明の実施の形態】
以下、本発明の実施形態を説明する。
【0014】
図1に示すように、両端にフランジ部を有するチップ状セラミック部品1は、例えば1.0×0.5×0.5mmの大きさであり、全ての稜部1aと角部1bに曲率半径0.01〜0.2mmの曲面を有しているとともに、表面1cの算術平均粗さ(Ra)を1μm以下としてある。
【0015】
ここで、曲率半径を0.01〜0.2mmとしたのは、0.01mm未満ではカケを防止する効果に乏しいこと、及び巻き線タイプ、銅メッキタイプともに断線が発生する危険性もあり、一方0.2mmを越えるとチップコイルとしてフランジ部の幅が狭くなるため、実装の段階でマウント強度が弱くなる。
【0016】
表面1aの算術平均粗さ(Ra)を1μm以下としたのは、1μmを超えるとCuメッキタイプにおいて、メッキ層が不均一になり品質特性が不安定になるためである。
【0017】
本発明のセラミック部品の材質は特に限定されるものでなく、アルミナ、ステアタイト、フォルステライト、フェライト等、使用目的に応じて広く使用される。
【0018】
この両端にフランジ部を有するチップ状セラミック部品の製造方法については、原料粉末を乾式加圧成形した後、成形体をバレル研磨してバリを除去し、焼成した後で再度バレル研磨を行うことを特徴とする。
【0019】
以下、チップ状セラミック部品1の製造方法を詳細に説明する。
【0020】
セラミック粉体(アルミナ)を乾式加圧成形する時、金型の上下面側に発生する成形体のバリを焼結する前の段階でメッシュを用いた成形体のバレル研磨を行い、原料付着・割れ等の発生なく除去したものを焼成して、得られた焼結体にバレル研磨を行う。
【0021】
このとき、成形後すぐにバリ取り作業を行わず、30℃〜60℃で8H以上放置し乾燥させる。この目的は、バリ取り作業時に、バリを取れやすくするためである。また、除去されたバリが成形体に付着するのを防止するためである。乾燥しない状態でバリ取り作業するとバリ部の粒子の結合が乾燥したものより強くバリが取れにくい、また、成形体に付着し、除去しにくくなる。
【0022】
バレル処理工程について、従来の方法では、プラスチック製の網を用いていたが、本発明では、取手付きステンレス製網ザルの内壁にプラスチック(実施例として、ポリエチレン、ナイロン)製の成形体より小さいサイズの網[例えば40目の網(線径244μm、オープニング503〜550μm)]を貼り、バリ取りを行う。
【0023】
この取手付き固定網ザルに、数十万個のチップコイル用セラミック成形体を入れ、こぼれ落ちることがないように上下に振り、成形体同士を衝突させることにより、バリを除去する。ステンレスの網は、プラスチックの網より大きいサイズの網を用いる。これは、数十万個の成形体を入れて、振っても網の形状が変形しないためである。
【0024】
また、プラスチックの網を内壁に用いるのは、成形体を入れ振ってバリ取りする際、プラスチックの摩耗が考えられるが、この摩耗分は、焼成時に消失し製品に影響しない。もし、金属の網を内壁に用いると、摩耗したものが、成形体に付き、焼成後、変色、異物不良の原因となるためである。
【0025】
成形体バレル処理後の後処理については、固定網ザルにて、成形体からバリを取った後、網ザル中あるいは成形体に付着した原料粉(バリとなっていた粉体)を、局所排気装置(集塵機)に繋がっている集塵ダクト上で、エアーガンを用いて吹き飛ばし、網ザル中のバリによる粉体を除去する。
【0026】
こうして得られた成形体を焼成用治具にのせ、連続トンネル炉を用いて約1400℃の酸化雰囲気中にて焼成する。
【0027】
次に得られた焼結体に図2に示すバレル研磨を行い、各稜部、各角部に曲面加工を行う。
【0028】
本発明では、内寸法が220mm×240mmの円筒型回転ポット2内に、複数個の焼結体2bと内容積の50〜90容量%の平均粒径直径3mmのセラミックボール2c、セラミック粉末(粒径100μm以下)2d、水2aを含む研磨剤及び緩衝剤が投入されている。この組み合わせにより、表面粗さ及びコーナーRの要求特性が同時にえられ、かつ、セラミック焼結体のチッピング(欠け)不良の発生率を最小限に抑えることができる。このポットを毎分45回転のスピードで6時間回転させバレル研磨を行った後に流水中で洗浄して乾燥する。
【0029】
その結果、図1に示すように全ての稜部1aと角部1bに曲率半径0.01〜0.1mmの曲面を有しているとともに、表面1aの算術平均粗さ(Ra)が1μm以下である両端にフランジ部を有するチップ状セラミック部品を得ることができる。
【0030】
使用する回転ポットは従来よりセラミック電子部品の製造方法等において用いられている適宜の構造のものを採用することができる。また、ポットの回転速度及び回転時間についても、投入されるセラミック焼結体の形状及び寸法等に応じて適宜定め得る。
【0031】
また、本発明の製造方法によれば、特に小型成形品であるチップインダクタ用セラミックにおいて、数百万個から数億個に大増産することができ、大量の製品(成形体)を効率良く、バリ取りを行い、焼結後のバレル研磨工程において、ワレ、欠け、チッピングの発生がなく、かつ、各稜部及び各コーナー部の均一な曲率半径と、焼結体における表面粗さを同時に得ることが可能となる
また、バリによる品質問題はなくなり、作業効率の改善により、従来の方法では、一度に1万〜2万個単位でバリ取り作業を行っていたが、本発明により、数十万個(10万〜30万個)単位でバリ取りが出来るようになる。
【0032】
処理時間も従来と変わらない。処理時間は、金型の摩耗に依存しており、新しい金型で5分、摩耗しているもので15から20分間である。
【0033】
そして、このセラミック部品をコア部として図3に示すように電極3b、コイル3c、樹脂キャップ3dを形成すれば巻き線型チップコイルとなる。また、図4に示すように銅メッキ4aを形成し、レーザーでコイル状にメッキを剥がして、電極4cを形成すれば非巻き線型チップコイルとなる。
【0034】
【実施例】
本発明実施例として、上記に示す成形体のバレル研磨を行いバリ取りを行ったものを、回転ポットによるセラミック焼結体の後処理に際し、内寸法が250×300mmの円筒型回転ポット2内に、内容積の50〜90容量%の平均粒径直径3mmのセラミックボール2c、セラミック粉末(粒径100μm以下)2d、水2aとを含む研磨剤及び緩衝剤を投入した。該回転ポット内に、複数個のセラミックの焼結体を投入して回転させた。3φセラミックボールはセラミック焼結体より若干硬度が低いもの(酸化アルミニウム+二酸化ケイ素が主成分)を用い、重量(比重1.6〜2.4)による応力でセラミック焼結体の稜線部及びコーナー部を研削して曲面加工(R付け)を行う。球体であるためセラミック焼結体のチッピングの発生を抑え、かつ曲面加工のバラツキが少なく均一な加工を得ることができる。
【0035】
セラミック粉末(100μm以下)はセラミック焼結体より硬度が高く(酸化アルミニウム99%以上)、セラミック焼結体とセラミック焼結体またはセラミックボールとの間に介在し応力を受けて、セラミック焼結体の表面を研削する。粒度構成が細かく、かつ研削力が優れているため、セラミック焼結体表面をムラがなく均一に処理できる。水は緩衝剤として機能し、かつ均一な仕上がりを得るために働く。この組み合わせがポイントであり、全てが機能するためには上記の構成比率が不可欠な要素である。
【0036】
表1に、チップコイルのバレル研磨時間とコーナ部の曲率半径の関係を示す。なお、曲率半径の測定個所は図5の通である。この結果より、バレル処理時間によってコーナー部の曲率半径Rを調整することができ、最適は6時間のバレル処理であるが、曲率半径を大きくしたい場合は時間を長くすれば良い。
【0037】
【表1】

Figure 2004235372
【0038】
表2は、本発明実施例のチッピング発生数を示す。サンプルやロットが異なっても、チッピング発生率は85ppm以下と極めて低いことが判る。なお、チッピングの有無は、双眼顕微鏡を用いて倍率20倍で0.03×0.03mm以上のチッピング発生率を調査した。
【0039】
【表2】
Figure 2004235372
【0040】
さらに、表面粗さを測定した結果を表3に示すように、磁器(セラミック)素材の表面粗さ(Ra)は0.2〜0.5μm、Cuメッキ品の表面粗さ(Ra)は0.03〜0.06μmと低く、かつそのバラツキも少ないことがわかる。
【0041】
【表3】
Figure 2004235372
【0042】
【発明の効果】
本発明によれば、両端にフランジ部を有するチップ状セラミック部品において、全ての稜部及び角部に曲率半径0.01〜2.0mmの曲面を有するとともに、表面の算術平均粗さ(Ra)を1μm以下としたことによって、欠けの発生が極めて少ないことから、電極強度を向上し、セラミック屑等による実装不良を改善できるため実装品質を向上できるとともに、バルク供給時の実装機の稼働率を上げられる。
【0043】
また、本発明の製造方法によれば、チップコイル、チップインダクタのセラミック部品製造工程において、バレル研磨の最適条件により磁器の欠け、チッピングや割れの不良発生を低減させることができる。しかも、コーナーR及び表面粗度を管理することにより、巻き線タイプでは、稜線及びコーナーの曲率半径を最適条件で管理することにより、コイルの断線を改善でき、非巻き線タイプ(メッキ処理レーザー加工タイプ)では、稜線及びコーナーの曲率半径を最適条件で管理することにより、断線を改善でき、かつ、表面粗さを最適条件で均一な仕上がりに管理することにより、メッキ強度が向上すると共にメッキ層が均一になり品質特性が安定する。
【図面の簡単な説明】
【図1】本発明のチップ状セラミック部品を示す斜視図である。
【図2】本発明のチップ状セラミック部品の製造方法を説明するための図である。
【図3】本発明のセラミック部品を用いた巻き線型チップコイルの説明図である。
【図4】本発明のセラミック部品を用いた非巻き線型チップコイルの説明図である。
【図5】本発明実施例におけるコーナー部の測定個所を示す説明図である。
【符号の説明】
1: セラミック部品
1a:稜部
1b:コーナー部
1c;表面
2;回転ポット本体
2 a;水
2 b;セラミック部品
2 c;セラミックボール
2 d;無機粉末
3 a;セラミック部品
3 b:電極(メタライズ)
3 c;コイル
3 d;樹脂キャップ
4 a;銅メッキ
4 b;セラミック部品
4 c;電極(メタライズ)
5 a;R測定個所
5 b;R測定個所
5 c;R測定個所
5d; R測定個所
5 e;セラミック部品
5 f;セラミック部品コア部断面[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a ceramic component for a chip-shaped ceramic electronic component and a method for manufacturing the same.
[0002]
[Prior art]
Ceramic electronic components such as a chip coil and a chip inductor include a winding type shown in FIG. 3 and a non-winding type shown in FIG. Both use a chip-shaped ceramic component having a flange portion at both ends as a core, and a ceramic component that reduces the occurrence of chipping, chipping and cracking defects by forming ridges and corners as curved surfaces is required. .
[0003]
Therefore, conventionally, a method has been adopted in which a large number of ceramic sintered bodies are introduced into a rotating pot, and the rotating pot is rotated to grind and round corner portions of the sintered body. Specifically, a plurality of ceramic sintered bodies having a ratio of about 20 to 40% by volume of the total internal volume and water as a buffering agent having a ratio of about 90 to 95% by volume of the total internal volume are placed in a rotating pot. Then, the pot is sealed and rotated at a predetermined rotation speed for about several hours. Due to this rotation, the ceramic sintered bodies collided with each other, and the corners of the ceramic sintered bodies were rounded.
[0004]
In Patent Literature 1, when a ceramic sintered body is prepared, a step and, in a rotating pot, an inorganic powder having an average particle diameter of 100 μm or less and water having a mean particle size of 25 to 50% by volume as a buffer are put into a rotating pot. A method of manufacturing a ceramic component comprising the steps of charging and rotating a plurality of ceramic sintered bodies is shown, but a defective product having chipping or cracking in an undesired portion also occurs.
[0005]
In Patent Document 2, a step of preparing a ceramic sintered body, a plurality of ceramic sintered bodies, an abrasive having a lower hardness than the ceramic sintered body, and a buffer solution are put into a polishing container and polished. And a method for manufacturing a ceramic component.
[0006]
Patent Literature 3 discloses a ceramic substrate for a chip-shaped electronic component having a curved surface with a radius of curvature of 0.02 to 0.2 mm on all ridges and corners. This is characterized in that after a ceramic green sheet is cut into a single size of a chip-shaped electronic component, barrel polishing is performed in a state of a molded body, after calcining, or in any stage. As a specific example, the conditions of barrel polishing are as follows: a sintered body and an alumina ball having a diameter of 5 mm were placed in a cylindrical pot having an inner size of 25 cm × 30 cm in a volume ratio of 1:10:10. The pot was charged, the porosity in the pot was set to 50%, the pot was rotated at a speed of 15 revolutions per minute for 120 hours, barrel polishing was performed, and then the pot was washed and dried.
[0007]
[Patent Document 1]
JP-A-7-22271 [Patent Document 2]
JP-A-7-37751 [Patent Document 3]
Japanese Patent Application No. Hei 7-14813
[Problems to be solved by the invention]
In the conventional polishing method for rounding the ridges and corners of the ceramic sintered body, in order to increase the polishing amount, the rotation speed of the pot barrel is increased or the polishing time is extended. When a material having higher hardness than the ceramic sintered body is used as the abrasive, chipping occurs in the ceramic sintered body due to collision between the sintered body and the abrasive. When an abrasive having a hardness lower than that of the ceramic sintered body is used, there is a problem that burrs at ridges and corners cannot be completely removed.
[0009]
Also with the method of Patent Document 3, it has been difficult to form a curved surface on all the ridges and each part by suppressing the generation of chips, particularly in a ceramic part having flanges at both ends.
[0010]
Further, in a non-wound type chip ceramic component as shown in FIG. 4, uniform surface roughness is required, and management is required so that the ridges and corners are rounded and the surface roughness is also uniform. . Since the burrs of the ceramic sintered body are not uniformly present at all of the ridges and corners, the conventional polishing method has burrs remaining partially or becomes unnecessarily rounded. It was difficult to obtain a uniform finish, and there was a problem with stable quality.
[0011]
[Means for Solving the Problems]
The present invention provides a chip-shaped ceramic part having flanges at both ends. In FIG. 1, all ridges and corners have curved surfaces with a radius of curvature of 0.01 to 2.0 mm, and the surface has an arithmetic average roughness (Ra). Is 1 μm or less.
[0012]
Further, the present invention provides a method of manufacturing a chip-shaped ceramic component having a flange portion at both ends, after dry-press-molding the raw material powder, removing the burr by barrel-polishing the molded body, barrel-polishing again after firing. By doing so, a chip-shaped ceramic component was manufactured.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0014]
As shown in FIG. 1, a chip-shaped ceramic component 1 having flange portions at both ends has a size of, for example, 1.0 × 0.5 × 0.5 mm, and has a radius of curvature on all ridges 1a and corners 1b. It has a curved surface of 0.01 to 0.2 mm, and the arithmetic average roughness (Ra) of the surface 1c is 1 μm or less.
[0015]
Here, the reason why the radius of curvature is set to 0.01 to 0.2 mm is that if the radius is less than 0.01 mm, the effect of preventing chipping is poor, and there is a risk of disconnection occurring in both the winding type and the copper plating type. On the other hand, if it exceeds 0.2 mm, the width of the flange portion becomes narrow as a chip coil, so that the mounting strength becomes weak at the stage of mounting.
[0016]
The reason why the arithmetic average roughness (Ra) of the surface 1a is set to 1 μm or less is that if it exceeds 1 μm, in the Cu plating type, the plating layer becomes uneven and the quality characteristics become unstable.
[0017]
The material of the ceramic component of the present invention is not particularly limited, and is widely used depending on the purpose of use, such as alumina, steatite, forsterite, and ferrite.
[0018]
Regarding the method of manufacturing the chip-shaped ceramic component having the flange portions at both ends, after the raw material powder is dry-press molded, the molded body is barrel-polished to remove burrs, fired, and then barrel-polished again. Features.
[0019]
Hereinafter, a method for manufacturing the chip-shaped ceramic component 1 will be described in detail.
[0020]
When ceramic powder (alumina) is dry-press molded, barrel polishing of the molded body using a mesh is performed at the stage before sintering the burr of the molded body generated on the upper and lower surfaces of the mold to adhere the raw material. The sintered body that has been removed without generating cracks or the like is fired, and the obtained sintered body is subjected to barrel polishing.
[0021]
At this time, immediately after molding, deburring operation is not performed, and the substrate is left to dry at 30 ° C. to 60 ° C. for 8 hours or more. This purpose is to make it easier to remove burrs during the deburring operation. It is also to prevent the removed burrs from adhering to the molded body. If a deburring operation is performed in a state where the burr is not dried, the particles in the burr portion are more strongly bonded to each other than the dried one, and it is difficult to remove the burr.
[0022]
In the conventional method, a plastic net was used for the barrel treatment step. However, in the present invention, the inner wall of a stainless steel net with handle has a smaller size than a plastic (eg, polyethylene or nylon) molded body. [For example, a 40th mesh (wire diameter 244 μm, opening 503 to 550 μm)] is applied, and deburring is performed.
[0023]
Hundreds of thousands of ceramic moldings for chip coils are put into the fixed netting with handle, and the ceramic moldings are shaken up and down so as not to spill, and the moldings collide with each other to remove burrs. The mesh of stainless steel is larger than that of plastic mesh. This is because the shape of the net is not deformed even when hundreds of thousands of molded bodies are put and shaken.
[0024]
The use of a plastic net for the inner wall may be caused by abrasion of the plastic when the molded body is shaken and deburred, but this abrasion disappears during firing and does not affect the product. If a metal net is used for the inner wall, the abraded material may adhere to the molded body and cause discoloration and foreign matter defects after firing.
[0025]
For post-processing after the barrel treatment of the molded body, after removing burrs from the molded body in a fixed netting monkey, the raw material powder (powder that had become burrs) adhering to the netted monkey or the molded body was locally exhausted. The dust is blown off using an air gun on the dust collection duct connected to the device (dust collector) to remove powder due to burrs in the net monkey.
[0026]
The compact thus obtained is placed on a firing jig and fired in an oxidizing atmosphere at about 1400 ° C. using a continuous tunnel furnace.
[0027]
Next, the obtained sintered body is subjected to barrel polishing shown in FIG. 2, and each ridge and each corner are subjected to a curved surface processing.
[0028]
In the present invention, a plurality of sintered bodies 2b, 50 to 90% by volume of the internal volume, ceramic balls 2c having an average particle diameter of 3 mm, and ceramic powder (particles) are placed in a cylindrical rotary pot 2 having an inner size of 220 mm × 240 mm. An abrasive and a buffer containing 2d and water 2a are charged. By this combination, the required characteristics of the surface roughness and the corner R can be obtained at the same time, and the occurrence rate of chipping (chip) defects of the ceramic sintered body can be minimized. The pot is rotated at a speed of 45 revolutions per minute for 6 hours, barrel-polished, washed in running water and dried.
[0029]
As a result, as shown in FIG. 1, all the ridges 1a and the corners 1b have curved surfaces with a radius of curvature of 0.01 to 0.1 mm, and the arithmetic average roughness (Ra) of the surface 1a is 1 μm or less. Thus, a chip-shaped ceramic component having flange portions at both ends can be obtained.
[0030]
The rotating pot to be used may have an appropriate structure conventionally used in a method of manufacturing a ceramic electronic component or the like. In addition, the rotation speed and rotation time of the pot can be appropriately determined according to the shape and dimensions of the ceramic sintered body to be charged.
[0031]
Further, according to the manufacturing method of the present invention, especially in the case of chip inductor ceramics which are small molded products, it is possible to greatly increase the production from millions to hundreds of millions, and to efficiently produce a large number of products (molded bodies). Deburring is performed, and in the barrel polishing process after sintering, cracks, chips, chipping do not occur, and a uniform radius of curvature of each ridge and each corner and a surface roughness of the sintered body are simultaneously obtained. In addition, the quality problem due to burrs is eliminated, and in the conventional method, the deburring operation is performed in units of 10,000 to 20,000 pieces at a time due to the improvement of the working efficiency. Deburring can be performed in units of 10,000 (100,000 to 300,000).
[0032]
The processing time is the same as before. The processing time depends on the wear of the mold, 5 minutes for a new mold and 15 to 20 minutes for a worn one.
[0033]
Then, by forming the electrode 3b, the coil 3c, and the resin cap 3d as shown in FIG. 3 using the ceramic component as a core, a wound chip coil is obtained. Further, as shown in FIG. 4, a copper coil 4a is formed, the plating is peeled off in a coil shape by a laser, and an electrode 4c is formed.
[0034]
【Example】
As an example of the present invention, the above-described molded body subjected to barrel polishing and deburring is subjected to post-treatment of a ceramic sintered body by a rotating pot, and is placed in a cylindrical rotating pot 2 having an inner size of 250 × 300 mm. An abrasive and a buffer containing 50 to 90% by volume of the internal volume, a ceramic ball 2c having an average particle diameter of 3 mm, a ceramic powder (particle diameter of 100 μm or less) 2d, and water 2a were charged. A plurality of ceramic sintered bodies were put into the rotating pot and rotated. The 3φ ceramic balls are slightly lower in hardness than the ceramic sintered body (mainly aluminum oxide + silicon dioxide), and are subjected to the stress by the weight (specific gravity 1.6 to 2.4) to obtain the ridge and corner of the ceramic sintered body. The part is ground to perform curved surface processing (R attachment). Since it is a sphere, it is possible to suppress the occurrence of chipping of the ceramic sintered body and to obtain uniform processing with less variation in the curved surface processing.
[0035]
The ceramic powder (100 μm or less) has a higher hardness (99% or more of aluminum oxide) than the ceramic sintered body, and is interposed between the ceramic sintered body and the ceramic sintered body or the ceramic ball to receive a stress, thereby causing a ceramic sintered body. Grinding surface. Since the grain size is fine and the grinding power is excellent, the surface of the ceramic sintered body can be uniformly processed without unevenness. Water acts as a buffer and serves to obtain a uniform finish. This combination is the point, and the above composition ratio is an indispensable element for all to function.
[0036]
Table 1 shows the relationship between the barrel polishing time of the chip coil and the radius of curvature of the corner portion. The measurement points of the radius of curvature are as shown in FIG. From this result, the radius of curvature R at the corner can be adjusted by the barrel processing time, and the barrel processing is optimal for 6 hours. However, if the radius of curvature is to be increased, the time may be increased.
[0037]
[Table 1]
Figure 2004235372
[0038]
Table 2 shows the number of occurrences of chipping in the examples of the present invention. It can be seen that even if the samples and lots are different, the chipping occurrence rate is extremely low at 85 ppm or less. In addition, the presence or absence of chipping was investigated by using a binocular microscope at a magnification of 20 times at a chipping occurrence rate of 0.03 × 0.03 mm or more.
[0039]
[Table 2]
Figure 2004235372
[0040]
Further, as shown in Table 3, the surface roughness was measured, and the surface roughness (Ra) of the porcelain (ceramic) material was 0.2 to 0.5 μm, and the surface roughness (Ra) of the Cu-plated product was 0. It can be seen that the variation is as low as 0.03 to 0.06 μm and the variation is small.
[0041]
[Table 3]
Figure 2004235372
[0042]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, in the chip-shaped ceramic component which has a flange part at both ends, while having a curved surface with a curvature radius of 0.01-2.0 mm in all the ridges and corners, the arithmetic average roughness (Ra) of the surface Is set to 1 μm or less, the occurrence of chipping is extremely small, so that the electrode strength can be improved, and mounting defects due to ceramic chips can be improved, so that the mounting quality can be improved, and the operating rate of the mounting machine during bulk supply can be improved. Can be raised.
[0043]
Further, according to the manufacturing method of the present invention, chipping, chipping and cracking defects can be reduced under the optimal conditions of barrel polishing in the process of manufacturing ceramic components for chip coils and chip inductors. Moreover, by controlling the corner R and the surface roughness, in the winding type, by controlling the curvature radii of the ridges and corners under the optimum conditions, the breaking of the coil can be improved, and the non-winding type (plating laser processing) In the type), by controlling the radius of curvature of ridges and corners under optimal conditions, breakage can be improved, and by controlling the surface roughness to a uniform finish under optimal conditions, plating strength is improved and plating layers are improved. And the quality characteristics are stabilized.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a chip-shaped ceramic component of the present invention.
FIG. 2 is a view for explaining a method for manufacturing a chip-shaped ceramic component of the present invention.
FIG. 3 is an explanatory diagram of a wire-wound chip coil using the ceramic component of the present invention.
FIG. 4 is an explanatory view of a non-winding type chip coil using the ceramic component of the present invention.
FIG. 5 is an explanatory view showing a measurement point at a corner in the embodiment of the present invention.
[Explanation of symbols]
1: Ceramic part 1a: Ridge part 1b: Corner part 1c; Surface 2: Rotating pot body 2a; Water 2b; Ceramic part 2c; Ceramic ball 2d; Inorganic powder 3a; Ceramic part 3b: Electrode (metallized) )
3c; coil 3d; resin cap 4a; copper plating 4b; ceramic component 4c; electrode (metallized)
5a; R measurement location 5b; R measurement location 5c; R measurement location 5d; R measurement location 5e; ceramic component 5f; ceramic component core section

Claims (4)

両端にフランジ部を有するチップ状セラミック部品において、全ての稜部及び角部に曲率半径0.01〜2.0mmの曲面を有するとともに、表面の算術平均粗さ(Ra)が1μm以下であることを特徴とするチップ状セラミック部品。In a chip-shaped ceramic part having flanges at both ends, all ridges and corners have a curved surface with a curvature radius of 0.01 to 2.0 mm, and the arithmetic average roughness (Ra) of the surface is 1 μm or less. A chip-shaped ceramic part characterized by the above-mentioned. チップコイルのコアとして用いることを特徴とする請求項1記載のチップ状セラミック部品。The chip-shaped ceramic component according to claim 1, wherein the chip-shaped ceramic component is used as a core of a chip coil. 両端にフランジ部を有するチップ状セラミック部品の製造方法において、原料粉末を乾式加圧成形した後、成形体をバレル研磨してバリを除去し、焼成した後で再度バレル研磨を行うことを特徴とするチップ状セラミック部品の製造方法。In the method for manufacturing a chip-shaped ceramic component having a flange portion at both ends, after dry-press-molding the raw material powder, the molded body is barrel-polished to remove burrs, and fired again to be barrel-polished. Of manufacturing chip-shaped ceramic parts. 上記焼成後のバレル研磨は、研磨剤として平均粒径3mmのセラミックボールと、平均粒径100μm以下のセラミック粉末を用い、緩衝剤として水を用い、これらを回転ポット内に内容積の50〜90容量%の範囲で投入して行うことを特徴とする請求項3記載のチップ状セラミック部品の製造方法。In the barrel polishing after the above firing, ceramic balls having an average particle diameter of 3 mm and ceramic powder having an average particle diameter of 100 μm or less are used as abrasives, water is used as a buffer, and these are placed in a rotary pot in an amount of 50 to 90%. 4. The method for producing a chip-shaped ceramic component according to claim 3, wherein the process is performed by charging the mixture within a range of% by volume.
JP2003021201A 2003-01-29 2003-01-29 Manufacturing method of chip-shaped ceramic parts Expired - Fee Related JP4493276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003021201A JP4493276B2 (en) 2003-01-29 2003-01-29 Manufacturing method of chip-shaped ceramic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003021201A JP4493276B2 (en) 2003-01-29 2003-01-29 Manufacturing method of chip-shaped ceramic parts

Publications (2)

Publication Number Publication Date
JP2004235372A true JP2004235372A (en) 2004-08-19
JP4493276B2 JP4493276B2 (en) 2010-06-30

Family

ID=32950593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003021201A Expired - Fee Related JP4493276B2 (en) 2003-01-29 2003-01-29 Manufacturing method of chip-shaped ceramic parts

Country Status (1)

Country Link
JP (1) JP4493276B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026365A (en) * 2003-06-30 2005-01-27 Tdk Corp Drum core
US20170330672A1 (en) * 2016-05-13 2017-11-16 Murata Manufacturing Co., Ltd. Ceramic core, wire-wound electronic component, and method for producing ceramic core
JP2018186157A (en) * 2017-04-25 2018-11-22 株式会社村田製作所 Inductor
JP2018186158A (en) * 2017-04-25 2018-11-22 株式会社村田製作所 Inductor
JP2021052133A (en) * 2019-09-26 2021-04-01 株式会社村田製作所 Core for inductor component, inductor component, manufacturing method of core

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026365A (en) * 2003-06-30 2005-01-27 Tdk Corp Drum core
US20170330672A1 (en) * 2016-05-13 2017-11-16 Murata Manufacturing Co., Ltd. Ceramic core, wire-wound electronic component, and method for producing ceramic core
JP2017204596A (en) * 2016-05-13 2017-11-16 株式会社村田製作所 Ceramic core, wound type electronic component, and method for manufacturing ceramic core
US10867739B2 (en) 2016-05-13 2020-12-15 Murata Manufacturing Co., Ltd. Ceramic core, wire-wound electronic component, and method for producing ceramic core
JP2018186157A (en) * 2017-04-25 2018-11-22 株式会社村田製作所 Inductor
JP2018186158A (en) * 2017-04-25 2018-11-22 株式会社村田製作所 Inductor
US11043327B2 (en) 2017-04-25 2021-06-22 Murata Manufacturing Co., Ltd. Inductor component
US11139104B2 (en) 2017-04-25 2021-10-05 Murata Manufacturing Co., Ltd. Inductor component
JP2021052133A (en) * 2019-09-26 2021-04-01 株式会社村田製作所 Core for inductor component, inductor component, manufacturing method of core
JP7140085B2 (en) 2019-09-26 2022-09-21 株式会社村田製作所 Methods of manufacturing inductor components and cores for inductor components
US11862376B2 (en) 2019-09-26 2024-01-02 Murata Manufacturing Co., Ltd. Core for inductor component, inductor component, and method of manufacturing core

Also Published As

Publication number Publication date
JP4493276B2 (en) 2010-06-30

Similar Documents

Publication Publication Date Title
JP5865916B2 (en) Gas nozzle, plasma apparatus using the same, and method for manufacturing gas nozzle
JP4667263B2 (en) Silicon wafer manufacturing method
WO2007060907A1 (en) Tungsten alloy particles, machining process with the same, and process for production thereof
JP4493276B2 (en) Manufacturing method of chip-shaped ceramic parts
TWI643700B (en) Cartridge grinding medium and manufacturing method thereof
JP2005026365A (en) Drum core
JP3853197B2 (en) Ceramic ball base ball and method for manufacturing the same
JP3380703B2 (en) Manufacturing method of ceramic ball
KR100729542B1 (en) Alumina sintered body and process for producing the same
JP6338950B2 (en) Dust core manufacturing method, dust core, and coil component
CN115820131B (en) Pug for grinding and polishing ultrathin-wall die and grinding and polishing method
US20210380843A1 (en) Production process of polishing stone and polishing stone
JP2003282343A (en) Ferrite core and manufacturing method thereof
JP2534951B2 (en) Truing material for cBN wheels
JP5259476B2 (en) Capstan
JPS58132447A (en) Method of machining molded ceramic piece
JP2891988B1 (en) Ceramic roll for rolling and surface processing method thereof
JPH07108463A (en) Vitrified bond grinding wheel with high grinding ratio
JP2835076B2 (en) Jig for ceramic firing and method of manufacturing the same
JP4554799B2 (en) Polishing tool based on fluororesin
JPH0369664B2 (en)
JPH09266123A (en) Manufacture of ferrite core
JPH0818316B2 (en) Method for processing outer surface of β-alumina tube formed body or calcined body and polishing tool used therefor
JP2004203956A (en) Abrasive grain for magnetic polishing
JP2005327929A (en) Method for manufacturing semiconductor ceramic electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080624

A131 Notification of reasons for refusal

Effective date: 20090519

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20090717

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20100309

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100406

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20130416

LAPS Cancellation because of no payment of annual fees