JP4493202B2 - Oil-cooled screw two-stage compressor - Google Patents

Oil-cooled screw two-stage compressor Download PDF

Info

Publication number
JP4493202B2
JP4493202B2 JP2000366748A JP2000366748A JP4493202B2 JP 4493202 B2 JP4493202 B2 JP 4493202B2 JP 2000366748 A JP2000366748 A JP 2000366748A JP 2000366748 A JP2000366748 A JP 2000366748A JP 4493202 B2 JP4493202 B2 JP 4493202B2
Authority
JP
Japan
Prior art keywords
pressure
stage
compressor
space
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000366748A
Other languages
Japanese (ja)
Other versions
JP2002168187A (en
Inventor
潤一 金井
新一郎 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKUETSU INDUSTRIES CO., LTD.
Original Assignee
HOKUETSU INDUSTRIES CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKUETSU INDUSTRIES CO., LTD. filed Critical HOKUETSU INDUSTRIES CO., LTD.
Priority to JP2000366748A priority Critical patent/JP4493202B2/en
Publication of JP2002168187A publication Critical patent/JP2002168187A/en
Application granted granted Critical
Publication of JP4493202B2 publication Critical patent/JP4493202B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、スクリュ2段圧縮機における中間段通路内圧力の異常上昇を防止するレリーフバルブを内蔵した油冷式スクリュ2段圧縮機に関する。
【0002】
【従来の技術】
従来の油冷式スクリュ2段圧縮機としては特開平9−53583号公報が公知である。この圧縮機は、図7に示すように駆動ギヤ101を内蔵するギヤケース102を図示しない駆動原動機と連結し、その一側側面に低圧段圧縮機本体103と高圧段圧縮機本体104を上下方向に連結配置して前記各段圧縮機103,104を駆動するように構成されている。
【0003】
そして、低圧段圧縮機本体103のシリンダ105の上方には空気の吸入口106を設け、その下方一側には圧縮空気の吐出口107を設け、該吐出口から中間段通路113(図7)を介してギヤケース102内に形成した内部空間109と連通すると共に、該内部空間の下方に開口する高圧段圧縮機本体104の吸入口108と連通している。また、前記高圧段圧縮機本体104の下方一側には高圧吐出口110を設け、該吐出口を吐出配管111によりレシーバタンク(図示せず)に接続している。
【0004】
さらに、ギヤケース102の中央近傍にはレリーフバルブ112(図8)を固定し、該レリーフバルブの排出口には内部空間109内の圧力が所定圧力を超えたときに低圧段圧縮機本体103から吐出された圧縮空気を前記レシーバタンクにバイパスさせるための配管(図示せず)を接続している。
【0005】
このレリーフバルブ112は、万一高圧段圧縮機本体104に何らかの異常が発生した場合に作用することを目的として備えてあるもので、例えば高圧段圧縮機本体104が何らかの原因で空気の吸入を停止もしくは圧縮作用を果たさなくなった場合、低圧段圧縮機本体103のみので圧縮作用を行うことになるため、ギヤケース102の内部空間109に低圧段圧縮機本体103から吐出された圧縮空気が溜まり、この状態で圧縮作用を継続すると、低圧段圧縮機本体103内や内部空間109の圧力が設計圧力を超えて上昇し、低圧段圧縮機本体103やギヤケース102の破裂など重大事故を誘発する虞があり、レリーフバルブ112は高圧段圧縮機本体104の異常時に低圧段圧縮機本体103から吐出された圧縮空気を直接レシーバタンク内にバイパスさせて供給することにより誘発される各種重大事故を未然に防止する。
【0006】
【発明が解決しようとする課題】
従来の油冷式スクリュ2段圧縮機のレリーフバルブは、圧縮機本体の一部であるギヤケースに装着し、その排出口側を配管でレシーバタンクに接続している。
【0007】
ところが、圧縮機本体は駆動ギヤならびにスクリュロータ等の回転体を内蔵しているのに対し、レシーバタンクは振動体を有さないが圧縮機本体から圧送される圧縮空気の脈動に伴って微振動が生ずるなど、両者は自ずと振動系が異なっている。
【0008】
そのため、鋼管等で強固に配管接続すると、前記圧縮機本体とレシーバタンクとの配管接続部が振動に伴う応力集中で疲労破壊を生ずるなどの不具合が生ずる。
【0009】
この対策として、前記鋼管に代えて両振動体からの振動を吸収しうるフレキシブルパイプ(ゴムホースまたはフレキシブルメタルパイプ等)を用いているのが普通である。ところが、前記フレキシブルパイプを接続するための接続用ジョイント類が多数必要となるなど全体として多くの部品を必要とするだけでなく、装置全体が配管で複雑となる問題がある。
【0010】
また、上記フレキシブルパイプならびにその接続用ジョイントは鋼管と比較し高価であると共に配管のための組立工数も多く必要とし、よって装置全体が高価となる問題もある。
【0011】
さらに、前記レリーフバルブと圧縮機本体の固定部ならびに前記配管の接続部は、長時間使用する過程で次第に弛みが生じ圧縮空気や油等の漏洩を生ずる等の問題を内在する。
【0012】
また、圧縮機本体の停止状態では機内を循環する潤滑油が最下段側の高圧段圧縮機本体の吸入口近傍に流下して滞留するため、この状態で圧縮機本体を始動すると前記高圧段圧縮機の吸入口から流下し滞留した油を吸入し圧縮しようとするいわゆるオイルロック現象を生ずる。
【0013】
この現象は、非圧縮性の油を圧縮しようとするものであり、大きな動力が要求されることになる。これにより駆動原動機の始動渋滞を引き起すだけでなく、圧縮機各部の損傷や破壊を招くこととなる。
【0014】
したがって、本発明は上述レリーフバルブとその配管系統を簡素化して組立工数を低減すること。ならびに配管接続部を削除して漏洩防止を図ること、さらにはオイルロック現象に伴う始動渋滞を解消するなど各種問題点を解消して、信頼性の高い安価なスクリュ2段圧縮機を提供することを目的とする。
【0015】
【課題を解決するための手段】
上記目的を達成するために、本発明油冷式スクリュ2段圧縮機にあっては、おす・めす一対のスクリュロータの噛み合い回転により吸入空気を圧縮する油冷式スクリュ2段圧縮機において、高圧段吸入口よりも下方に低圧段吐出口から高圧段吸入口までの中間段流路と連通する空間を形成し、該空間と高圧段圧縮機の吐出通路との間に隔壁を設け、該隔壁には前記空間と吐出通路間を連通可能にバイパス開口を設け、該バイパス開口には前記空間内の圧力に対応してバイパス開口を開放するレリーフバルブを設けたことを特徴とする(請求項1)。
【0016】
また、前記レリーフバルブは、前記中間段流路に連通する空間内の圧力が所定圧力を超えたときに前記バイパス開口を開放するように構成することもできる(請求項2)。これにより、万一高圧段圧縮機の異常により圧縮作用をしなくなった場合でも中間段流路内および空間内の圧力の異常上昇を抑えることができ、しかも圧縮機周辺の配管を簡素化して安価に構成することができる。
【0017】
また、前記レリーフバルブは、前記中間段流路に連通する空間内の圧力が高圧段圧縮機の吐出通路内の圧力を超えたときに前記バイパス開口を開放するように構成することもできる(請求項3)。
【0018】
このようにすると、圧縮機の始動時ギヤケース底部に滞留する油をバイパス開口から吐出通路に排出するので高圧段圧縮機の高圧段吸入口から前記油を吸い込まない。
【0019】
また、前記レリーフバルブにはスプリングの付勢により摺動自在なピストンを有し、該ピストンの摺動により前記バイパス開口を開閉するように構成してもよく(請求項4)、あるいは前記レリーフバルブにはスプリングの付勢により回動自在な開閉弁を有し、該開閉弁の回動により前記バイパス開口を開閉するように構成してもよい(請求項5)。
【0020】
このようにすると、圧縮機本体の通常運転中はバイパス開口を閉じ、万一高圧段圧縮機の異常により中間段流路内および空間内の圧力が異常上昇したときは該バイパス開口を速やかに開放して前記異常上昇を防止できる。
【0021】
また、おす・めす一対のスクリュロータの噛み合い回転により吸入空気を圧縮する油冷式スクリュ2段圧縮機において、高圧段吸入口よりも下方であって高圧段圧縮機のおす・めす一対のスクリュロータを収納する高圧段シリンダの下方に、低圧段吐出口から駆動ギヤを収納配置するギヤケース内の連通路を介して高圧段吸入口までの中間段流路と連通する空間を形成し、前記ギヤケース内の底部を高圧段吸入口および前記中間段流路と連通する空間と連通し、さらに前記空間と高圧段圧縮機の吐出通路とを隔壁を介して隣接させると共に、該隔壁にはバイパス開口を設け前記空間内の圧力が高圧段圧縮機の吐出通路内の圧力を超えたときにバイパス開口を開放するレリーフバルブを設けるようにすることもできる(請求項6)。
【0022】
このようにすると、圧縮機の始動時ギヤケース底部に滞留する油を吐出通路に排出するので高圧段圧縮機の高圧段吸入口に多量の油が流入することもない。
【0023】
【発明の実施の形態】
以下、本発明の第1実施形態を図1及び図2により説明する。図1は、本発明油冷式スクリュ2段圧縮機本体(以下圧縮機本体という)の縦断面図で、図2は該圧縮機本体を図1中左方向からみた側面図である。
【0024】
圧縮機本体1の一側にはギヤケース2が配置しており、該ギヤケースには図示しない駆動原動機によって動力伝達される増速ギヤ装置3を内蔵している。他方、ギヤケース2の左側側面の上方には低圧段圧縮機4の低圧段シリンダ5が装着すると共に、その下側には高圧段圧縮機6の高圧段シリンダ7が装着し、その軸心を相互に並列させて取り付けられている。
【0025】
また、前記各段圧縮機には、おす・めす一対の低圧段スクリュロータ8(以下低圧段ロータという)ならびに高圧段スクリュロータ16(以下高圧段ロータという)が格納され、増速ギヤ装置3の駆動によってそれぞれ圧縮作用を行うようになっている。
【0026】
また、低圧段圧縮機4の上方には低圧段吸入口9が設けられており、大気中の空気は、この低圧段吸入口9から流入後低圧段ロータ8の回転によって低圧段作用空間10内で所定圧力まで圧縮された後、低圧段シリンダ5の一側に開口する低圧段吐出口11から該低圧段シリンダの下方に内部通路で形成する低圧段吐出通路12を介してギヤケース2内の連通路13を流通するようになっている。
【0027】
この連通路13は、ギヤケース2内に形成する空間全体が低圧段圧縮機4から吐出された圧縮空気の流通路となっているもので、ここに流入した低圧の圧縮空気はその後ギヤケース2下方の底部と連通する高圧段圧縮機の高圧段吸入口14から高圧段作用空間15内に流入して、高圧段ロータ16の回転によって定格圧力まで圧縮される。
【0028】
なお、高圧段吸入口14は高圧段シリンダ7の吸入側端面(図中右側)の大半を連通路13と接しており、これにより前記圧縮空気は高圧段ロータ軸24を挟んで形成する吸入側端面の上方および下方から吸入されるようになっている。
【0029】
そして、前記圧縮空気は高圧段吐出口17から吐出通路18,吐出配管19を経て別配置のレシーバタンク(図示せず)に圧送される。
【0030】
一方、ギヤケース2に内蔵する増速ギヤ装置3の駆動原動機側(図中右側)の主軸20外周部は、ギヤケース2に嵌着する軸封装置21によって該ギヤケース内と外部間を封止している。さらに、低圧段圧縮機4の低圧段ロータ軸22に対しても同様に軸封23が嵌着し、ギヤケース2内と低圧作用空間10間を封止している。これにより、圧縮機本体1の運転中ギヤケース2内は低圧段圧縮機4から吐出された圧縮空気の圧力と同圧となっている。
【0031】
ギヤケース2の底部25は、図3に示すように高圧段圧縮機6の高圧段シリンダ7下部に形成する空間26と連通している。この空間26は、高圧段シリンダ7の隔壁27を挟んで吐出通路18と連通する空間と隣接しており、該隔壁にはバイパス開口28が穿設して、後述するレリーフバルブ29のピストン30の摺動によって開閉可能となっている。また、この空間26は、前述した低圧段吐出口11から該低圧段シリンダの下方に内部通路で形成する低圧段吐出通路12、ギヤケース2内の連通路13を介して高圧段吸入口14までの中間段流路に連通している。
【0032】
レリーフバルブ29は、高圧段シリンダ7下方に穿設した穴31に沿って摺動自在なピストン30と、該ピストンをバイパス開口28に着座させる方向に付勢するスプリング32と、該スプリングの一方を着座させて支持するカバー33とにより構成されている。また、カバー33は高圧段シリンダ7下方に形成するフランジ34にボルト35止めされていて、前記ピストン30とカバー33間に形成される空隙37と吐出通路18とを逃がし通路36で連通し、前記空隙37と吐出通路18とが同圧となるようになっている。前記スプリング32は前記バイパス開口28を平時は閉塞状態に保持する程度の張力に設定されていて、前記空間26内の圧力が吐出通路18の圧力を超えるとピストン30を図中下方に摺動移動させてバイパス開口28を開放し、前記空間26内の圧力が吐出通路18の圧力を下まわると前記スプリング32の付勢によりピストン30を図中上方に摺動移動させてバイパス開口28を閉塞するようになっている。
【0033】
したがって、ピストン30の開弁によりパイパス開口28が連通すると、低圧段圧縮機4で圧縮された圧縮空気は空間26からバイパス開口28を介して隣接する吐出通路18に圧送される。
【0034】
このレリーフバルブ29は、例えば高圧段圧縮機6に何らかの異常が発生した場合に作用するもので、例えば高圧段圧縮機内の高圧段ロータ16の破損または駆動部の破損等致命的な損傷によって圧縮作用を果たさなくなった場合、低圧段圧縮機4のみによって最終吐出圧力(定格圧力)まで圧縮作用を行うこととなる。
【0035】
これに対して、低圧段圧縮機4は吸入された空気を第1段目となる所定の低圧圧力で圧縮するように強度設計されているものであるから、1段目で一挙に最終吐出圧力までの圧縮を継続すると、該圧縮機の各部(軸受,ギヤケースその他)を破壊する虞があり、ひいてはさらなる重大事故を誘発する危険性を有している。したがって、このような事故を未然防止するために用意されたものである。
【0036】
次に本実施形態の作用について説明する。まず、図示しない駆動原動機が始動し増速ギヤ装置3からの動力伝達により低圧段圧縮機4の低圧段ロータ8が回転すると、大気中の空気は低圧段吸入口9から吸入され低圧段作用空間10内で第1の所定の圧力まで圧縮された後低圧段吐出口11から吐出される。
【0037】
吐出された圧縮空気は、低圧段吐出通路12,ギヤケース2の連通路13を介して高圧段圧縮機6の高圧段吸入口14に圧送され、該吸入口から吸入された後高圧段作用空間15を形成する高圧段ロータ16の回転によって定格圧力まで昇圧され、高圧段吐出口17から吐出される。その後、吐出通路18に圧送されて吐出配管19を介して図示しないレシーバタンクから消費側に供給される。
【0038】
このとき、高圧段圧縮機6の隔壁27を挟んで隣接する空間26と高圧段圧力側となる吐出通路18間のバイパス開口28は、レリーフバルブ29のピストン30によって閉鎖している。
【0039】
そして、圧縮機本体1の運転中何らかの理由により高圧段圧縮機6の駆動が停止した場合、該高圧段圧縮機6は連通路13ならびに空間26内の圧縮空気の吸入が停止する一方、低圧段圧縮機4はそのまま圧縮作用を継続するため、低圧段吐出通路12ならびにギヤケース2内の連通路13,空間26内は所定の圧力(以下中間圧力という)を超えて次第に昇圧する。
【0040】
すると、吐出通路18内は高圧段圧縮機6から圧縮空気の吐出がないために圧力が低下する。そして空間26内の圧力が吐出通路18内の圧力を超えるとピストン30が図中下方に摺動移動してバイパス開口28を開き、これにより、空間26内の圧縮空気が吐出通路18内にバイパスして流通し、その後吐出配管19からレシーバタンク内に圧送される。
【0041】
このようにして、万一高圧段圧縮機が圧縮作用を果たさない状態に陥った場合でも前記レリーフバルブの作用によって重大事故が回避される。
【0042】
また、この状態で圧縮機本体1を停止した場合、前記レリーフバルブのピストン30はスプリング32の付勢によってバイパス開口28を閉鎖し、レシーバタンクからの逆流空気が低圧段圧縮機本体4内に流入することを防止する。
【0043】
この場合、レシーバタンク内の圧力が決められた圧力に達するまでバイパス開口が開いているというわけではなく、気温や油の溜まり具合など諸処の事情によりバイパス開口の開放時間が決まってくる。
【0044】
例えば、通常運転時であっても圧縮機本体1の始動直後は吐出通路18内の圧力に比べて空間26側の圧力が上回ることがあり、前記双方の圧力がスプリング32の張力などによって定まる一定の圧力差を超えると、ピストン30がバイパス開口28を開き、ギヤケース下方に溜まった潤滑油を吐出通路18に排出するので、高圧段圧縮機6の吸入側である作用空間15内に流入することもない。
【0045】
また、圧縮機本体1の始動時レシーバタンク内が所定の圧力に達するまでは空間26内の方が高圧となっていることにより、その圧力によりピストン30が開弁してバイパス開口28を一時的に開くことにより該空間26中に残留する潤滑油を前記パイパス開口から吐出通路に排出するため、圧縮機始動時のオイルロック現象をも防止できる。
【0046】
なお、本実施形態におけるレリーフバルブ29は、図4に示すとおり前記ピストン30とカバー33間に形成される空隙37と吐出通路18とを連通する逃がし通路36を廃止する代わりに、カバー33の略中央にピストン30の空隙37と大気間とを連通する大気開放穴39を穿設し、ピストン30の外周に密封用のO―リング38を装着するようにしてもよい。
【0047】
このように構成したときのスプリング32の張力は、低圧段吐出通路12から空間26に至る間の圧力が所定圧力以上となったときに、前記スプリング32の付勢に抗してピストン30を図中下方に摺動移動させてパイパス開口28を開弁するようにその張力が設定されている。
【0048】
これにより、圧縮機本体1の運転中何らかの理由により高圧段圧縮機6の駆動が停止した場合、低圧段吐出通路12から空間26に至る間の圧力が次第に昇圧し、前記スプリング32の付勢に抗する圧力に達するとピストン30が図中下方に摺動移動してバイパス開口28を開弁する。そして、空間26内の圧縮空気が吐出通路18内にバイパスして流通し、低圧段圧縮機4をはじめとしてギヤケース2その他の機器の損傷が回避される。
【0049】
図5は本発明の第2実施形態で、高圧段圧縮機6を高圧段ロータ16の軸線に対して直角に切断した場合の縦断面図を示しており、レリーフバルブ29を高圧段ロータ16の軸線に対して略直角方向でしかも略水平方向に配置したものである。
【0050】
以下、第1実施形態で説明した部材と同一部材は同一符号を用いて説明する。高圧段圧縮機6の下方には、隔壁27aを挟んで図中左側に連通路13(図1)と連通する空間26aが形成されると共に、その右側には吐出通路18aが形成されている。
【0051】
吐出通路18a側の高圧段シリンダ7a下方には、レリーフバルブ29が配置し、隔壁27aに形成されたバイパス開口28aにピストン30の一側が当接し、スプリング32の付勢により該バイパス開口を閉じている。一方、ピストン30の他側はカバー33によって外部と遮断している。
【0052】
本第2実施形態は以上のように構成されており、万一高圧段圧縮機6が何らかの異常により機能せず空間26a内の圧力が異常上昇したときは、スプリング32の付勢に抗してピストン30を図中右方向に摺動移動させてバイパス開口28aを開く。
【0053】
これにより、中間段流路側の圧縮空気はバイパス開口28aを介して吐出通路18a、吐出配管19(図1)へ圧送され、よって低圧段圧縮機4をはじめとしてギヤケース2その他の機器の損傷が回避される。
【0054】
図6は本発明の第3実施形態で、レリーフバルブの構造をスイング式バルブとしたものである。以下、第2実施形態と異なる部分のみを説明する。
【0055】
高圧段シリンダ7a下方の吐出通路18b側にはスイング式のレリーフバルブ40が配置し、隔壁27bに形成されたバイパス開口28bのバルブシート41に対してスイング弁42のシート部43が当接し、中間段流路側に連通する空間26bと吐出通路18b側間を遮蔽している。
【0056】
スイング弁42は、枢止ピン44によって図中反時計方向(A方向)に回動自在となっており、通常の運転中は捻りコイルばね45の付勢によりバイパス開口側のバルブシート41とスイング弁側のシート部43とが当接し、空間26bと吐出通路18b間の遮蔽を保持している。
【0057】
そして、万一高圧段圧縮機6の異常により空間26b内の圧力が異常上昇した場合、第1実施形態で説明したと同様に所定の中間段圧力を超えたときに捻りコイルばね45の付勢に抗してスイング弁42を回動させて、バイパス開口28bを開き吐出通路18a、吐出配管19(図1)へ圧縮空気を圧送する。
【0058】
よって低圧段圧縮機4をはじめとしてギヤケース2その他の機器の損傷が回避される。
【0059】
【発明の効果】
以上説明したように、本発明はおす・めす一対のスクリュロータの噛み合い回転により吸入空気を圧縮する油冷式スクリュ2段圧縮機において、高圧段吸入口よりも下方に低圧段吐出口から高圧段吸入口までの中間段流路と連通する空間を形成し、該空間と高圧段圧縮機の吐出通路との間に隔壁を設け、該隔壁には前記空間と吐出通路間を連通可能にバイパス開口を設け、該バイパス開口には前記空間内の圧力に対応してバイパス開口を開放するレリーフバルブを設けたので、万一高圧段圧縮機が何らかの異常により圧縮作用しなくなった場合でも中間段圧力の異常上昇を抑えると共に、圧縮機本体の再始動時の始動渋滞を防止でき、しかも圧縮機周辺の配管を簡素化して安価に構成することができる。
【図面の簡単な説明】
【図1】本発明油冷式スクリュ2段圧縮機本体の縦断面図である。
【図2】第1実施形態の圧縮機本体を左方向からみた側面図である
【図3】第1実施形態におけるレリーフバルブの装着断面図である。
【図4】第1実施形態におけるレリーフバルブの他の実施例である。
【図5】第2実施形態におけるレリーフバルブの装着断面図である。
【図6】第3実施形態におけるレリーフバルブの装着断面図である。
【図7】従来の油冷式スクリュ2段圧縮機本体の縦断面図である。
【図8】従来の圧縮機本体を左方向からみた側面図である
【符号の説明】
1 圧縮機本体
2 ギヤケース
3 増速ギヤ装置
4 低圧段圧縮機
6 高圧段圧縮機
8 低圧段ロータ
9 低圧段吸入口
11 低圧段吐出口
12 低圧段吐出通路
13 連通路
16 高圧段ロータ
18 吐出通路
26 空間
27 隔壁
28 バイパス開口
29 レリーフバルブ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an oil-cooled screw two-stage compressor having a built-in relief valve for preventing an abnormal increase in pressure in an intermediate-stage passage in the screw two-stage compressor.
[0002]
[Prior art]
Japanese Unexamined Patent Publication No. 9-53583 is known as a conventional oil-cooled screw two-stage compressor. In this compressor, as shown in FIG. 7, a gear case 102 containing a drive gear 101 is connected to a drive motor (not shown), and a low-pressure stage compressor body 103 and a high-pressure stage compressor body 104 are vertically arranged on one side surface thereof. The stage compressors 103 and 104 are connected to each other and driven.
[0003]
An air suction port 106 is provided above the cylinder 105 of the low-pressure stage compressor main body 103, and a compressed air discharge port 107 is provided on the lower side thereof, from which an intermediate stage passage 113 (FIG. 7) is provided. And communicates with the suction port 108 of the high-pressure compressor main body 104 that opens below the inner space. Further, a high-pressure discharge port 110 is provided on the lower side of the high-pressure compressor main body 104, and the discharge port is connected to a receiver tank (not shown) by a discharge pipe 111.
[0004]
Further, a relief valve 112 (FIG. 8) is fixed in the vicinity of the center of the gear case 102, and the relief valve discharges from the low-pressure stage compressor body 103 when the pressure in the internal space 109 exceeds a predetermined pressure. A pipe (not shown) for bypassing the compressed air thus made to the receiver tank is connected.
[0005]
The relief valve 112 is provided for the purpose of acting in the event that something abnormal occurs in the high-pressure stage compressor body 104. For example, the high-pressure stage compressor body 104 stops inhaling air for some reason. Alternatively, when the compression action is no longer achieved, the compression action is performed only by the low-pressure stage compressor body 103, so that the compressed air discharged from the low-pressure stage compressor body 103 accumulates in the internal space 109 of the gear case 102, and this state If the compression action is continued, the pressure in the low-pressure stage compressor body 103 or the internal space 109 increases beyond the design pressure, which may cause a serious accident such as the bursting of the low-pressure stage compressor body 103 or the gear case 102, The relief valve 112 directly receives the compressed air discharged from the low-pressure stage compressor body 103 when the high-pressure stage compressor body 104 is abnormal. Prevent various serious accident induced by supplying by bypassed to the tank in advance.
[0006]
[Problems to be solved by the invention]
A relief valve of a conventional oil-cooled screw two-stage compressor is mounted on a gear case that is a part of the compressor body, and the discharge port side is connected to a receiver tank by piping.
[0007]
However, the compressor body contains a rotating body such as a drive gear and a screw rotor, while the receiver tank does not have a vibrating body, but slightly vibrates due to the pulsation of compressed air fed from the compressor body. Both have different vibration systems.
[0008]
For this reason, when the pipe is firmly connected with a steel pipe or the like, the pipe connecting portion between the compressor main body and the receiver tank causes a problem such as fatigue failure due to stress concentration caused by vibration.
[0009]
As a countermeasure, it is common to use a flexible pipe (such as a rubber hose or a flexible metal pipe) that can absorb vibrations from both vibrating bodies instead of the steel pipe. However, not only a large number of parts are required as a whole, such as the need for a large number of connecting joints for connecting the flexible pipe, but there is a problem that the entire apparatus is complicated by piping.
[0010]
In addition, the flexible pipe and its connecting joint are expensive as compared with a steel pipe and require a large number of assembling steps for the piping, so that there is a problem that the entire apparatus becomes expensive.
[0011]
Furthermore, the fixing part of the relief valve and the compressor main body and the connecting part of the pipe have problems such as loosening gradually during the long-term use and leakage of compressed air, oil, and the like.
[0012]
In addition, when the compressor body is stopped, the lubricating oil circulating in the machine flows down and stays in the vicinity of the suction port of the high-pressure stage compressor body on the lowermost stage side. Therefore, when the compressor body is started in this state, the high-pressure stage compression is performed. This causes a so-called oil lock phenomenon in which the oil that has flowed down from the suction port of the machine and sucks up the remaining oil is compressed.
[0013]
This phenomenon is intended to compress non-compressible oil and requires a large amount of power. This not only causes start-up congestion of the drive motor, but also causes damage and destruction of each part of the compressor.
[0014]
Therefore, the present invention simplifies the relief valve and its piping system and reduces the number of assembly steps. In addition, to eliminate leaks by eliminating piping connections, and to solve various problems such as eliminating start-up congestion associated with oil lock phenomenon, to provide a highly reliable and inexpensive screw two-stage compressor With the goal.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, in the oil-cooled screw two-stage compressor of the present invention, in the oil-cooled screw two-stage compressor that compresses intake air by meshing rotation of a pair of male and female screw rotors, A space communicating with the intermediate stage flow path from the low pressure stage discharge port to the high pressure stage suction port is formed below the stage suction port, and a partition wall is provided between the space and the discharge passage of the high pressure stage compressor. A bypass opening is provided to allow communication between the space and the discharge passage, and a relief valve for opening the bypass opening corresponding to the pressure in the space is provided in the bypass opening. ).
[0016]
The relief valve may be configured to open the bypass opening when a pressure in a space communicating with the intermediate-stage flow path exceeds a predetermined pressure (Claim 2). As a result, even if the compression action stops due to an abnormality in the high-pressure stage compressor, it is possible to suppress an abnormal increase in pressure in the intermediate stage flow path and space, and the piping around the compressor is simplified and inexpensive. Can be configured.
[0017]
Further, the relief valve can be configured to open the bypass opening when the pressure in the space communicating with the intermediate-stage flow path exceeds the pressure in the discharge passage of the high-pressure compressor (claim). Item 3).
[0018]
If it does in this way, since the oil which stays in the gear case bottom part at the time of a start of a compressor will be discharged to a discharge passage from a bypass opening, the oil will not be sucked in from a high-pressure stage suction port of a high-pressure stage compressor.
[0019]
Further, the relief valve may have a piston that is slidable by urging of a spring, and the bypass opening may be opened and closed by sliding of the piston (Claim 4), or the relief valve. It may be configured to have an open / close valve that is rotatable by the bias of a spring, and the bypass opening is opened and closed by the rotation of the open / close valve.
[0020]
In this way, the bypass opening is closed during normal operation of the compressor body, and if the pressure in the intermediate stage flow path and space rises abnormally due to an abnormality in the high pressure compressor, the bypass opening is quickly opened. Thus, the abnormal rise can be prevented.
[0021]
Also, in the oil-cooled screw two-stage compressor that compresses intake air by meshing rotation of a pair of male and female screw rotors, a pair of male and female screw rotors below the high-pressure stage suction port and below the high-pressure stage suction port A space communicating with the intermediate stage flow path from the low pressure stage discharge port to the high pressure stage suction port via the communication path in the gear case accommodating and arranging the drive gear is formed below the high pressure stage cylinder for housing the inside of the gear case. The bottom of the chamber communicates with a space communicating with the high-pressure stage suction port and the intermediate-stage flow path, and the space and the discharge passage of the high-pressure stage compressor are adjacent to each other via a partition wall, and a bypass opening is provided in the partition wall. A relief valve that opens the bypass opening when the pressure in the space exceeds the pressure in the discharge passage of the high-pressure compressor may be provided.
[0022]
In this way, the oil staying at the bottom of the gear case at the start of the compressor is discharged to the discharge passage, so that a large amount of oil does not flow into the high-pressure stage suction port of the high-pressure stage compressor.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a longitudinal sectional view of an oil-cooled screw two-stage compressor body of the present invention (hereinafter referred to as a compressor body), and FIG. 2 is a side view of the compressor body as viewed from the left in FIG.
[0024]
A gear case 2 is disposed on one side of the compressor body 1, and a speed increasing gear device 3 that transmits power by a drive motor (not shown) is built in the gear case. On the other hand, the low-pressure stage cylinder 5 of the low-pressure stage compressor 4 is mounted above the left side surface of the gear case 2, and the high-pressure stage cylinder 7 of the high-pressure stage compressor 6 is mounted on the lower side thereof. It is attached in parallel.
[0025]
Each stage compressor stores a pair of male and female low pressure stage screw rotors 8 (hereinafter referred to as low pressure stage rotors) and a high pressure stage screw rotor 16 (hereinafter referred to as high pressure stage rotors). Each of them is compressed by driving.
[0026]
Further, a low-pressure stage suction port 9 is provided above the low-pressure stage compressor 4, and air in the atmosphere flows into the low-pressure stage working space 10 by the rotation of the low-pressure stage rotor 8 after flowing in from the low-pressure stage suction port 9. After being compressed to a predetermined pressure, the communication within the gear case 2 is performed from a low-pressure stage discharge port 11 opened to one side of the low-pressure stage cylinder 5 through a low-pressure stage discharge passage 12 formed as an internal passage below the low-pressure stage cylinder. It circulates through the passage 13.
[0027]
The communication passage 13 is a flow passage for compressed air discharged from the low-pressure compressor 4 in the entire space formed in the gear case 2, and the low-pressure compressed air that has flowed into the communication passage 13 is then below the gear case 2. It flows into the high-pressure stage working space 15 from the high-pressure stage inlet 14 of the high-pressure stage compressor communicating with the bottom, and is compressed to the rated pressure by the rotation of the high-pressure stage rotor 16.
[0028]
The high-pressure stage suction port 14 is in contact with most of the suction-side end face (right side in the drawing) of the high-pressure stage cylinder 7 with the communication passage 13, whereby the compressed air is formed on the suction side across the high-pressure stage rotor shaft 24. Inhalation is performed from above and below the end face.
[0029]
The compressed air is pumped from the high-pressure stage discharge port 17 to the receiver tank (not shown) arranged separately via the discharge passage 18 and the discharge pipe 19.
[0030]
On the other hand, the outer periphery of the main shaft 20 on the drive motor side (right side in the figure) of the speed increasing gear device 3 built in the gear case 2 is sealed between the inside and outside of the gear case by a shaft seal device 21 fitted to the gear case 2. Yes. Further, a shaft seal 23 is similarly fitted to the low-pressure stage rotor shaft 22 of the low-pressure stage compressor 4 to seal the gap between the gear case 2 and the low-pressure working space 10. Thereby, the inside of the gear case 2 during the operation of the compressor body 1 is the same pressure as the pressure of the compressed air discharged from the low-pressure compressor 4.
[0031]
As shown in FIG. 3, the bottom 25 of the gear case 2 communicates with a space 26 formed in the lower portion of the high-pressure stage cylinder 7 of the high-pressure stage compressor 6. The space 26 is adjacent to a space communicating with the discharge passage 18 with a partition wall 27 of the high-pressure cylinder 7 interposed therebetween, and a bypass opening 28 is formed in the partition wall so that a piston 30 of a relief valve 29 described later is formed. It can be opened and closed by sliding. The space 26 extends from the low-pressure stage discharge port 11 to the high-pressure stage suction port 14 through the low-pressure stage discharge passage 12 formed as an internal passage below the low-pressure stage cylinder and the communication passage 13 in the gear case 2. It communicates with the intermediate stage flow path.
[0032]
The relief valve 29 includes a piston 30 that is slidable along a hole 31 formed below the high-pressure stage cylinder 7, a spring 32 that biases the piston in a direction in which the piston is seated on the bypass opening 28, and one of the springs. The cover 33 is supported by being seated. The cover 33 is fastened with a bolt 35 to a flange 34 formed below the high-pressure stage cylinder 7. The gap 37 formed between the piston 30 and the cover 33 communicates with the discharge passage 18 through the passage 36. The gap 37 and the discharge passage 18 have the same pressure. The spring 32 is set to a tension that keeps the bypass opening 28 closed during normal times, and when the pressure in the space 26 exceeds the pressure in the discharge passage 18, the piston 30 slides downward in the figure. The bypass opening 28 is opened, and when the pressure in the space 26 falls below the pressure of the discharge passage 18, the piston 30 is slid upward in the figure by the bias of the spring 32 to close the bypass opening 28. It is like that.
[0033]
Accordingly, when the bypass opening 28 communicates with the opening of the piston 30, the compressed air compressed by the low-pressure compressor 4 is pumped from the space 26 to the adjacent discharge passage 18 via the bypass opening 28.
[0034]
The relief valve 29 acts when, for example, some abnormality occurs in the high-pressure stage compressor 6. For example, the relief valve 29 is compressed due to fatal damage such as breakage of the high-pressure stage rotor 16 in the high-pressure stage compressor or breakage of the drive unit. If this is not achieved, the compression action is performed only to the final discharge pressure (rated pressure) by the low-pressure stage compressor 4 alone.
[0035]
On the other hand, since the low pressure compressor 4 is designed to compress the sucked air at a predetermined low pressure that is the first stage, the final discharge pressure is batched at the first stage. If the compression up to is continued, each part (bearing, gear case, etc.) of the compressor may be destroyed, and there is a risk of inducing a further serious accident. Therefore, it is prepared to prevent such an accident.
[0036]
Next, the operation of this embodiment will be described. First, when a driving motor (not shown) is started and the low-pressure stage rotor 8 of the low-pressure stage compressor 4 is rotated by the power transmission from the speed increasing gear device 3, air in the atmosphere is sucked from the low-pressure stage inlet 9 and the low-pressure stage working space. After being compressed to a first predetermined pressure within 10, the gas is discharged from the low-pressure stage discharge port 11.
[0037]
The discharged compressed air is pumped to the high-pressure stage suction port 14 of the high-pressure stage compressor 6 via the low-pressure stage discharge path 12 and the communication path 13 of the gear case 2, and is then sucked from the suction port and then the high-pressure stage working space 15 The pressure is increased to the rated pressure by the rotation of the high-pressure stage rotor 16 forming the gas and discharged from the high-pressure stage discharge port 17. After that, it is pumped to the discharge passage 18 and supplied from the receiver tank (not shown) to the consumption side via the discharge pipe 19.
[0038]
At this time, the bypass opening 28 between the space 26 adjacent to the high pressure stage compressor 6 across the partition wall 27 and the discharge passage 18 on the high pressure stage pressure side is closed by the piston 30 of the relief valve 29.
[0039]
When the driving of the high-pressure compressor 6 is stopped for some reason during the operation of the compressor body 1, the high-pressure compressor 6 stops the suction of the compressed air in the communication passage 13 and the space 26, while the low-pressure compressor Since the compressor 4 continues the compression action as it is, the pressure in the low-pressure stage discharge passage 12, the communication passage 13 in the gear case 2, and the space 26 gradually increases beyond a predetermined pressure (hereinafter referred to as intermediate pressure).
[0040]
Then, since the compressed air is not discharged from the high pressure compressor 6 in the discharge passage 18, the pressure is lowered. When the pressure in the space 26 exceeds the pressure in the discharge passage 18, the piston 30 slides downward in the figure to open the bypass opening 28, whereby the compressed air in the space 26 bypasses into the discharge passage 18. Then, it is circulated and then pumped from the discharge pipe 19 into the receiver tank.
[0041]
In this way, even if the high-pressure stage compressor falls into a state where it does not perform the compression action, a serious accident is avoided by the action of the relief valve.
[0042]
Further, when the compressor main body 1 is stopped in this state, the relief valve piston 30 closes the bypass opening 28 by the bias of the spring 32, and the backflow air from the receiver tank flows into the low pressure stage compressor main body 4. To prevent.
[0043]
In this case, the bypass opening is not opened until the pressure in the receiver tank reaches a predetermined pressure, and the opening time of the bypass opening is determined depending on various circumstances such as temperature and oil accumulation.
[0044]
For example, even during normal operation, immediately after the compressor body 1 is started, the pressure on the space 26 side may exceed the pressure in the discharge passage 18, and both pressures are constant determined by the tension of the spring 32. The piston 30 opens the bypass opening 28 and the lubricating oil accumulated below the gear case is discharged to the discharge passage 18 so that it flows into the working space 15 on the suction side of the high-pressure compressor 6. Nor.
[0045]
Further, since the pressure in the space 26 is higher until the receiver tank reaches a predetermined pressure when the compressor body 1 is started, the piston 30 is opened by the pressure and the bypass opening 28 is temporarily opened. Since the lubricating oil remaining in the space 26 is discharged from the bypass opening to the discharge passage by opening the cover to the opening 26, an oil lock phenomenon at the time of starting the compressor can be prevented.
[0046]
The relief valve 29 in the present embodiment is an abbreviation of the cover 33 instead of eliminating the relief passage 36 that communicates the gap 37 formed between the piston 30 and the cover 33 and the discharge passage 18 as shown in FIG. An air opening hole 39 for communicating between the air gap 37 of the piston 30 and the atmosphere may be formed in the center, and a sealing O-ring 38 may be attached to the outer periphery of the piston 30.
[0047]
The tension of the spring 32 when configured in this way causes the piston 30 to resist the bias of the spring 32 when the pressure from the low-pressure stage discharge passage 12 to the space 26 exceeds a predetermined pressure. The tension is set so that the bypass opening 28 is opened by sliding it in the middle and downward direction.
[0048]
Thereby, when the driving of the high-pressure compressor 6 is stopped for some reason during the operation of the compressor body 1, the pressure from the low-pressure discharge passage 12 to the space 26 gradually increases, and the spring 32 is biased. When the resisting pressure is reached, the piston 30 slides downward in the figure to open the bypass opening 28. Then, the compressed air in the space 26 bypasses and flows into the discharge passage 18, and damage to the gear case 2 and other devices including the low-pressure stage compressor 4 is avoided.
[0049]
FIG. 5 is a longitudinal sectional view of the second embodiment of the present invention when the high-pressure compressor 6 is cut at right angles to the axis of the high-pressure rotor 16, and the relief valve 29 is connected to the high-pressure rotor 16. They are arranged in a direction substantially perpendicular to the axis and in a substantially horizontal direction.
[0050]
Hereinafter, the same members as those described in the first embodiment will be described using the same reference numerals. Below the high-pressure compressor 6, a space 26a communicating with the communication passage 13 (FIG. 1) is formed on the left side of the drawing with the partition wall 27a interposed therebetween, and a discharge passage 18a is formed on the right side thereof.
[0051]
A relief valve 29 is arranged below the high-pressure stage cylinder 7a on the discharge passage 18a side. One side of the piston 30 abuts on the bypass opening 28a formed in the partition wall 27a, and the bypass opening is closed by the bias of the spring 32. Yes. On the other hand, the other side of the piston 30 is blocked from the outside by a cover 33.
[0052]
The second embodiment is configured as described above, and in the unlikely event that the high-pressure compressor 6 does not function due to some abnormality and the pressure in the space 26a rises abnormally, it resists the bias of the spring 32. The piston 30 is slid in the right direction in the figure to open the bypass opening 28a.
[0053]
As a result, the compressed air on the intermediate stage flow path side is pumped to the discharge passage 18a and the discharge pipe 19 (FIG. 1) via the bypass opening 28a, thereby avoiding damage to the gear case 2 and other equipment including the low pressure stage compressor 4. Is done.
[0054]
FIG. 6 shows a third embodiment of the present invention, in which the relief valve is a swing valve. Only the parts different from the second embodiment will be described below.
[0055]
A swing-type relief valve 40 is disposed on the discharge passage 18b side below the high-pressure stage cylinder 7a, and the seat portion 43 of the swing valve 42 abuts against the valve seat 41 of the bypass opening 28b formed in the partition wall 27b. The space 26b communicating with the step flow path side is shielded from the discharge passage 18b side.
[0056]
The swing valve 42 is pivotable counterclockwise (A direction) in the figure by a pivot pin 44, and swings with the valve seat 41 on the bypass opening side by the bias of the torsion coil spring 45 during normal operation. The valve-side seat portion 43 is in contact with it, and the shielding between the space 26b and the discharge passage 18b is maintained.
[0057]
In the unlikely event that the pressure in the space 26b rises abnormally due to an abnormality in the high-pressure compressor 6, the biasing of the torsion coil spring 45 is performed when a predetermined intermediate-stage pressure is exceeded, as described in the first embodiment. Against this, the swing valve 42 is rotated, the bypass opening 28b is opened, and the compressed air is pumped to the discharge passage 18a and the discharge pipe 19 (FIG. 1).
[0058]
Therefore, damage to the gear case 2 and other devices including the low-pressure compressor 4 is avoided.
[0059]
【The invention's effect】
As described above, the present invention is an oil-cooled screw two-stage compressor that compresses intake air by meshing rotation of a pair of male and female screw rotors, from a low-pressure stage outlet to a high-pressure stage. A space communicating with the intermediate stage flow path to the suction port is formed, and a partition wall is provided between the space and the discharge passage of the high-pressure compressor, and the partition wall has a bypass opening that allows communication between the space and the discharge passage. And a relief valve for opening the bypass opening corresponding to the pressure in the space is provided at the bypass opening, so that even if the high pressure compressor is not compressed due to some abnormality, the intermediate stage pressure can be reduced. While suppressing an abnormal rise, it is possible to prevent start-up congestion at the time of restarting the compressor main body, and it is possible to simplify the piping around the compressor and to make it inexpensive.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an oil-cooled screw two-stage compressor body of the present invention.
FIG. 2 is a side view of the compressor body according to the first embodiment as viewed from the left side. FIG. 3 is a mounting cross-sectional view of the relief valve according to the first embodiment.
FIG. 4 is another example of the relief valve in the first embodiment.
FIG. 5 is a mounting cross-sectional view of a relief valve in a second embodiment.
FIG. 6 is a mounting cross-sectional view of a relief valve in a third embodiment.
FIG. 7 is a longitudinal sectional view of a conventional oil-cooled screw two-stage compressor body.
FIG. 8 is a side view of a conventional compressor body viewed from the left side.
DESCRIPTION OF SYMBOLS 1 Compressor body 2 Gear case 3 Speed increasing gear device 4 Low pressure stage compressor 6 High pressure stage compressor 8 Low pressure stage rotor 9 Low pressure stage inlet 11 Low pressure stage outlet 12 Low pressure stage discharge passage 13 Communication passage 16 High pressure stage rotor 18 Discharge passage 26 Space 27 Partition 28 Bypass opening 29 Relief valve

Claims (6)

おす・めす一対のスクリュロータの噛み合い回転により吸入空気を圧縮する油冷式スクリュ2段圧縮機において、高圧段吸入口よりも下方に低圧段吐出口から高圧段吸入口までの中間段流路と連通する空間を形成し、該空間と高圧段圧縮機の吐出通路との間に隔壁を設け、該隔壁には前記空間と吐出通路間を連通可能にバイパス開口を設け、該バイパス開口には前記空間内の圧力に対応してバイパス開口を開放するレリーフバルブを設けたことを特徴とする油冷式スクリュ2段圧縮機。In an oil-cooled screw two-stage compressor that compresses intake air by meshing rotation of a pair of male and female screw rotors, an intermediate stage flow path from a low-pressure stage outlet to a high-pressure stage inlet is provided below the high-pressure stage inlet. A communication space is formed, a partition is provided between the space and the discharge passage of the high-pressure compressor, a bypass opening is provided in the partition so as to allow communication between the space and the discharge passage, An oil-cooled screw two-stage compressor provided with a relief valve that opens a bypass opening corresponding to the pressure in the space. 前記レリーフバルブは、前記中間段流路に連通する空間内の圧力が所定圧力を超えたときに前記バイパス開口を開放するように構成したことを特徴とする請求項1記載の油冷式スクリュ2段圧縮機。2. The oil-cooled screw 2 according to claim 1, wherein the relief valve is configured to open the bypass opening when a pressure in a space communicating with the intermediate stage flow path exceeds a predetermined pressure. Stage compressor. 前記レリーフバルブは、前記中間段流路に連通する空間内の圧力が高圧段圧縮機の吐出通路内の圧力を超えたときに前記バイパス開口を開放するように構成したことを特徴とする請求項1記載の油冷式スクリュ2段圧縮機。The relief valve is configured to open the bypass opening when a pressure in a space communicating with the intermediate-stage flow path exceeds a pressure in a discharge passage of a high-pressure compressor. The oil-cooled screw two-stage compressor according to claim 1. 前記レリーフバルブにはスプリングの付勢により摺動自在なピストンを有し、該ピストンの摺動により前記バイパス開口を開閉するように構成したことを特徴とする請求項1〜3の何れか1項記載の油冷式スクリュ2段圧縮機。4. The relief valve according to any one of claims 1 to 3, wherein the relief valve has a slidable piston by urging of a spring, and the bypass opening is opened and closed by sliding of the piston. The oil-cooled screw two-stage compressor described. 前記レリーフバルブにはスプリングの付勢により回動自在な開閉弁を有し、該開閉弁の回動により前記バイパス開口を開閉するように構成したことを特徴とする請求項1〜3の何れか1項記載の油冷式スクリュ2段圧縮機。4. The relief valve according to claim 1, wherein the relief valve has an open / close valve that can be rotated by a biasing force of a spring, and the bypass opening is opened / closed by the rotation of the open / close valve. 2. An oil-cooled screw two-stage compressor according to item 1. おす・めす一対のスクリュロータの噛み合い回転により吸入空気を圧縮する油冷式スクリュ2段圧縮機において、高圧段吸入口よりも下方であって高圧段圧縮機のおす・めす一対のスクリュロータを収納する高圧段シリンダの下方に、低圧段吐出口から駆動ギヤを収納配置するギヤケース内の連通路を介して高圧段吸入口までの中間段流路と連通する空間を形成し、前記ギヤケース内の底部を高圧段吸入口および前記中間段流路と連通する空間と連通し、さらに前記空間と高圧段圧縮機の吐出通路とを隔壁を介して隣接させると共に、該隔壁にはバイパス開口を設け前記空間内の圧力が高圧段圧縮機の吐出通路内の圧力を超えたときにバイパス開口を開放するレリーフバルブを設けたことを特徴とする油冷式スクリュ2段圧縮機。In a two-stage oil-cooled screw compressor that compresses intake air by meshing rotation of a pair of male and female screw rotors, it houses a pair of male and female screw rotors below the high-pressure stage inlet and below the high-pressure stage inlet. A space communicating with the intermediate stage flow path from the low pressure stage discharge port to the high pressure stage suction port through the communication path in the gear case accommodating and arranging the drive gear is formed below the high pressure stage cylinder. Is communicated with a space communicating with the high-pressure stage suction port and the intermediate-stage flow path, and the space and the discharge passage of the high-pressure stage compressor are adjacent to each other via a partition wall, and the partition wall is provided with a bypass opening. An oil-cooled screw two-stage compressor provided with a relief valve that opens a bypass opening when the internal pressure exceeds the pressure in the discharge passage of the high-pressure compressor.
JP2000366748A 2000-12-01 2000-12-01 Oil-cooled screw two-stage compressor Expired - Lifetime JP4493202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000366748A JP4493202B2 (en) 2000-12-01 2000-12-01 Oil-cooled screw two-stage compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000366748A JP4493202B2 (en) 2000-12-01 2000-12-01 Oil-cooled screw two-stage compressor

Publications (2)

Publication Number Publication Date
JP2002168187A JP2002168187A (en) 2002-06-14
JP4493202B2 true JP4493202B2 (en) 2010-06-30

Family

ID=18837316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000366748A Expired - Lifetime JP4493202B2 (en) 2000-12-01 2000-12-01 Oil-cooled screw two-stage compressor

Country Status (1)

Country Link
JP (1) JP4493202B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20110360U1 (en) * 2001-06-22 2002-10-31 Ghh Rand Schraubenkompressoren Two-stage screw compressor
KR100829665B1 (en) * 2005-07-06 2008-05-16 가부시키가이샤 고베 세이코쇼 Two stage type screw compressor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3349872B2 (en) * 1995-08-10 2002-11-25 北越工業株式会社 Oil-cooled screw two-stage compressor
JPH11230070A (en) * 1998-02-10 1999-08-24 Sanyo Electric Co Ltd Compressor

Also Published As

Publication number Publication date
JP2002168187A (en) 2002-06-14

Similar Documents

Publication Publication Date Title
CA1267395A (en) Rotary compressor relief valve
AU766172B2 (en) Scroll compressor discharge muffler
EP1696128B1 (en) Scroll machine
US8567057B2 (en) Motor-compressor unit mounting arrangement for compressors
US5772415A (en) Scroll machine with reverse rotation sound attenuation
CA2618414A1 (en) Scroll compressor with a refrigerant injection system
KR20060099379A (en) Dual horizontal scroll machine
JP4493202B2 (en) Oil-cooled screw two-stage compressor
US20060159579A1 (en) Motor-compressor unit mounting arrangement for compressors
CN113631816A (en) Scroll compressor having a discharge port
EP1201927B1 (en) Vacuum pump
JP2009127524A (en) Scroll compressor
US8206132B2 (en) Slide valve actuation for overpressure safety
JP6779712B2 (en) Scroll compressor
JP2019105195A (en) Compressor
JP3045898B2 (en) Scroll compressor
JP3499178B2 (en) Oil-cooled screw compressor
WO2014106233A1 (en) Compressor control for reverse rotation failure
JP6749183B2 (en) Scroll compressor
WO1996023976A1 (en) Protection device for a high side co-rotating scroll compressor
KR20220152465A (en) Scroll compressor
CA2630107C (en) Motor-compressor unit mounting arrangement for compressors
JP2001295779A (en) Scroll type fluid machine
JPH06346876A (en) Hermetic screw compressor
JPH11223192A (en) Oil-cooled screw compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100318

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4493202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160416

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term