JP4491955B2 - Impact energy absorbing member made of fiber reinforced plastic - Google Patents

Impact energy absorbing member made of fiber reinforced plastic Download PDF

Info

Publication number
JP4491955B2
JP4491955B2 JP2000334479A JP2000334479A JP4491955B2 JP 4491955 B2 JP4491955 B2 JP 4491955B2 JP 2000334479 A JP2000334479 A JP 2000334479A JP 2000334479 A JP2000334479 A JP 2000334479A JP 4491955 B2 JP4491955 B2 JP 4491955B2
Authority
JP
Japan
Prior art keywords
energy absorbing
fiber
absorbing member
lattice
impact energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000334479A
Other languages
Japanese (ja)
Other versions
JP2001208120A5 (en
JP2001208120A (en
Inventor
知行 篠田
琢也 唐木
等 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2000334479A priority Critical patent/JP4491955B2/en
Publication of JP2001208120A publication Critical patent/JP2001208120A/en
Publication of JP2001208120A5 publication Critical patent/JP2001208120A5/ja
Application granted granted Critical
Publication of JP4491955B2 publication Critical patent/JP4491955B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、例えば自動車や電車等の輸送体の技術分野に用いられる衝撃エネルギー吸収部材に関し、詳しくはこれらの輸送体の衝突、追突時において、乗員や輸送体の損傷を低減・保護するための繊維強化プラスチック製衝撃エネルギー吸収部材の改良に関する。
【0002】
【従来の技術】
従来の繊維強化プラスチック製衝撃エネルギー吸収部材としては、構成材料が繊維強化樹脂からなるエネルギー吸収部材を、例えば図1に示すように自動車1のバンパー2部分に円筒状の衝撃エネルギー吸収部材3を取り付けたものが知られている(例えば特開平6-300068号公報)。
【0003】
この吸収部材3は、衝撃エネルギーを良好に吸収することの他、自動車に取り付けるために軽量、高剛性であることが要求され、その構成材質として繊維強化樹脂製のものが適しているとしている。また、この吸収部材3は、衝突時に効率よくエネルギーを吸収できるようにするため、荷重の作用端側に破壊の開始(トリガー)となるテーパ部を形成することにより、逐次破壊が生じるように工夫されているものもある(例えば特開平8-219215号公報)。
【0004】
しかし、これらFRP製の衝撃吸収部材は、輸送体に働く衝撃力が多方向に亘る場合には、多方向に複数の衝撃吸収体を配置させる必要がある。また、輸送体が自動車の場合、スピンして衝突するケースも多く、予期せぬ方向に衝撃力が加わった場合には逐次破壊が起こらず、吸収部材のエネルギー吸収量が十分に発現しないという問題があった。
【0005】
このように従来のFRP製エネルギー吸収体は、エネルギー吸収部材が逐次破壊して所定のエネルギー吸収特性が発現するものではあったが、一方向からの衝撃に対処するもので、多方向からの衝撃に対しては考慮がなされていないものであった。
【0006】
【発明が解決しようとする課題】
本発明は上記従来技術の問題点を解消し、多方向からの衝撃に対しても衝撃エネルギーを効果的に吸収することができるとともに、破壊の開始条件となる上記テーパー部分が不要で、例えば自動車のような移動体がスピンしながら衝突しても、輸送体や建造物等の損傷を極力低減し、輸送体中の乗員を保護できる衝撃エネルギー吸収部材を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を達成するために、本発明は以下の構成からなる。
【0009】
すなわち、吸収部材の表面に、少なくとも3つの格子点から形成される格子形状平面を有するエネルギー吸収部を備えてなり、格子点の繊維含有率が、格子点以外の部位の繊維含有率と異なるとともに、前記エネルギー吸収部のボイド量は、2〜6vol%の範囲内である繊維強化プラスチック製衝撃エネルギー吸収部材である。
【0010】
上記繊維含有率が異なる部位としては、部材の形状にもよるが柱状体の断面において、厚みが変化する部分、すなわち、格子状の場合交差部と非交差部(図2参照)とが該当し、この部分で1.2倍から3.0倍の範囲内で異ならせるのが好ましい。吸収部材内に繊維を交差させる部位を設けることで、破壊が安定的に進行してエネルギー吸収量も大きくなる。具体的には、表面に少なくとも3つの格子点から形成される格子形状平面のエネルギー吸収部を設けることである。ここで、少なくとも3つの格子点を必要とする理由は、3つの格子点により一つの格子形状平面のエネルギー吸収部を備えたエネルギー吸収部材が形成されるからである。このような構成にすると、格子点の一つ一つが従来技術の柱状、円筒状などの衝撃吸収体と同様の衝撃エネルギー低減の作用効果を果たし、しかもそれぞれの格子における格子点は、マトリクス樹脂中の補強繊維が交差して積層構成をしているために、繊維含有率が他の部位より高くなり、その結果剛性が高くエネルギー吸収効率が高い作用効果を有する。また、それぞれのエネルギー吸収部における格子点は、立体的形状をしており、かつ複数存在するので、幅広い方向からの衝撃に対して衝撃エネルギーを効果的に吸収することができる。また、独立したもう一つの有効手段として、部材中に逐次破壊のトリガーとなるボイドを有することで、斜め方向からの衝撃に対しても良好にエネルギー吸収させることが可能となる。
【0011】
【発明の実施の形態】
以下、本発明の好ましい実施態様をその一実施例を示した図面に基づいて詳細に説明する。
【0012】
図2〜図5は、いずれも本発明に係る衝撃エネルギー吸収部材の一実施例の斜視図であり、図2は外形が井桁状の格子点を有するエネルギー吸収部4を示しており、格子点6が4個の例である。これら格子点では補強繊維の量が他の部位より多く強度が不均一となっている。このため、斜め方向からの衝撃力に対して部材は全体破壊せず、逐次破壊して高いエネルギー吸収特性を呈する。すなわち、補強繊維の少ない箇所が破壊のトリガーとなり、補強繊維の多い箇所が逐次破壊してエネルギー吸収するというメカニズムを有する。本発明では、エネルギー吸収の高い後述の連続繊維を使用して部材を製造したいという観点から、格子点で補強繊維を交差させて格子点の繊維含有率を大きくすることを必要とする。
【0014】
図3は田の字状の格子点を有する吸収部8、図4は格子形状が矩形状でなく曲線形状のものが多数ランダムに集合してなる吸収部9、図5は1個が矩形状の筒状体を複数個集合させて一体化させて格子点を形成させた吸収部10である。
【0015】
各図に示したように格子点としては、井桁状、田の字状、曲線状、集合体状と種々のものがあるがこれらは一例であり、図2の態様でいうと衝撃エネルギー吸収部4としては、要は移動体の進行方向(図中の矢印方向)に突起部5が突出し、集合して格子点6(突起部5の交差点)を複数個形成し、格子形状平面を形成していればよい。なお、吸収部4は、図示は省略したが前述の図1のバンパー2や専用のベース体等に固定されて本発明の衝撃エネルギー吸収部材を構成している。
【0016】
ここで、一つの格子7の平面積、すなわち4個の格子点6で包囲される部分の平面積としては、1〜1000cm2の範囲内であるのが好ましい。衝撃エネルギーを効果的に吸収し、製造コストを考慮するとより好ましくは5〜500cm2である。格子面積が1cm2未満では製造コストが高く、また格子点間距離が小さいために逐次破壊したFRPが格子内に入り込むため逐次破壊がし難くなり、効率良く衝撃エネルギーを吸収できないなどの問題があり、1000cm2を越えると一定の補強繊維使用量において該部材が剛性不足となって、エネルギー吸収効果を十分に発揮できないことがある。
【0017】
また、突起部5の厚さ()は0.1〜50mmの範囲内が好ましい。その理由は、0.1mm未満では剛性不足となり、かつ格子点6も小さくなり十分な衝撃エネルギー吸収ができない。一方50mmを越えると繊維量が多いため製造コストが高く、重量も大きくなるため輸送体などへの設置が困難となるからである。製造コストと単位重量あたりの衝撃吸収エネルギーの点を考慮すると、より好ましくは3〜30mmの範囲内である。一つの格子7の平面積は、前述したとおりであるが、一辺の長さの具体的寸法としては10〜300mmの範囲が好ましい。より好ましくは30〜200mmである。図2のような吸収部はドアや側壁などの広い面積のものに取り付けるのに適している。
【0018】
図3の田の字状の柱状吸収部8の場合も一辺の長さは10〜300mmの範囲が好ましい。より好ましくは30mm〜200mmである。
【0019】
柱状の吸収部8は輸送体前後に位置するバンパーなどの比較的方向性が高く、大きな衝撃エネルギー吸収が求められる箇所への取付けに適している。
【0020】
図4のような曲線状の突起部10を有する吸収部9の場合は、格子の平面積は1〜1000cm2の範囲内が好ましい。より好ましくは5〜500cm2である。この態様のものは、輸送体の外壁や前後に位置するバンパーなどのように意匠性が求められ、図2、図3のような吸収部4、8の設置が困難な場所への取付けに適している。
【0021】
これら格子の平面積7および突起部の厚さt、すなわち格子の大きさは、吸収すべき衝撃エネルギーの大きさと、取付面積によって決まる。各エネルギー吸収部は、格子点における高さ()と格子点の隣接辺の幅(L)との比(H/L)が、1/2以上のボード状のものであるのが好ましい。また、当然に吸収部4は、格子を成す格子点6がその内部に存在する強化繊維(詳細後述)の積層構成により剛性が高くなるので、エネルギー吸収率が高い。よって、格子点6が多い方が吸収エネルギーは大きくなる。すなわち、発明者の知見によれば、格子面積Aを小さくして、格子点6の数を多くすることにより単位面積あたりの吸収エネルギーを大きくすることができるのである。一方、格子を小さくすると基材のレイアップが複雑になるから製造コストが高くなる。格子の大きさは求める吸収エネルギーと設置面積、製造コストなどによって調節する。このようにエネルギー吸収部材は、格子形状を有しない場合に比べ、単位面積あたりの吸収エネルギー量を大きくすることができ、また、格子点の数を適宜調節することによりエネルギー吸収量を調節することができる。具体的には、発明者の知見によれば単位面積あたりの吸収エネルギーでは90J/cm以上、重量あたりの吸収エネルギーでは40J/g以上であるものが好ましい。単位面積あたりの吸収エネルギーが90J/cm以下、重量あたりの吸収エネルギーが40J/g以下であると所定の衝撃エネルギーを吸収するのに、体積が大きくなり、また重量も重くなることになる。
【0022】
図5の吸収部10は、柱状の衝撃エネルギー吸収部を寄せ集めて一体化することにより格子状としたものである。全体の大きさがそれぞれ異なる図2〜図4の吸収エネルギー部4、8、9を多種類作製するには、金型の準備や基材のプリフォームなどの製造が面倒であり、一体成形が困難である場合が多いが、図5に示した集合タイプの吸収部10の場合は製造が格段に容易化される。なお、以上のどのタイプのものでも吸収部を構成する格子の形状や大きさ、厚さ、高さ等は一定である必要はなく、部分的に異なったり、取り付ける箇所の形状に合わせて異なっていても構わない。
【0023】
図6は、以上に述べた各種衝撃エネルギー吸収部4、8、9、10の取付例であり、図では自動車1のバンパー2に図5の態様の吸収部10を、ドアー11に図4の態様の吸収部4を取り付けたものである。 すなわち、ボード状にして固定することにより、鉄道車両や飛行機の側壁、自動車のドアなどの側壁やバンパーなど大面積である構造物の表面を容易に覆うことができる。また、構造物が多角形や曲面を含むような通常取付が困難と思われるものの場合でも大面積の格子状吸収部材から所定の小片に複数個切り出し、これらを適宜集合させることにより、所望形状の吸収部材を容易に得ることができる。また、小片化することで、衝撃により部材が損傷した場合の取り替え面積を最小限に押さえることができるというメリットもある。さらに、構造物が凹凸を有する場合でも、簡単な機械加工により、格子の長さを調節して構造物に添わすことができる。また、吸収部材の格子内に発泡フォーム材など高分子材料からなる緩衝材や発泡モルタル、セメントなどのセラミックからなる緩衝材、発泡アルミやアルミハニカム等の金属からなる緩衝材を格子内の一部または全体に充填しても差し支えない。また、格子の一部、片面、あるいは両面を上記の高分子材料やセラミック材料のボードなどで覆うことにより、様々な方向からの衝撃を均一に、もしくは広範囲に伝搬することができる。すなわち、これらエネルギー吸収部の軸方向(衝突方向)の上部、下部、または上下部に、上記有機または無機材料のボードを貼り付けたものを被設置体に接着剤などで簡単に取り付けることができる。
【0024】
上述した本発明に係る吸収体は、いずれも強化繊維とマトリクス樹脂とから構成されている。
【0025】
強化繊維としては、特に限定しないが炭素繊維、ガラス繊維、アルミナ繊維、窒化珪素繊維などの無機繊維や、アラミド繊維などの有機繊維が使用できる。
【0026】
無機繊維としては、炭素繊維はPAN(ポリアクリルニトリル)系、ピッチ系のいずれでもかまわないが、中でもPAN系の炭素繊維は圧縮特性にもすぐれるので好ましい。ガラス繊維としては、好ましいのは汎用品で価格が安く、成形性、衝撃エネルギー吸収量などの理由により目付が20〜400g/m2の範囲内ものである。
【0027】
有機繊維としては、具体的にはポリアミド系合成繊維、ポリオレフィン系合成繊維、ポリエステル系合成繊維、ポリフェニルスルフォン繊維、ポリベンゾオキサジン繊維、アセテート、アクリロニトリル系合成繊維、モダクリル繊維、ポリ塩化ビニル系合合成繊維、ポリ塩化ビニリデン系合成繊維、ポリビニルアルコール系合成繊維、ポリウレタン繊維、ポリクラール繊維、タンパク−アクリロニトリル共重合系繊維、フッ素系繊維、ポリグリコール酸繊維、フェノール繊維、パラ系アラミド繊維などである。これらの中でも本発明の吸収部材用としては、繊維引張強度が1.0GPa以上、引張弾性率が70Gpa以上の特性を有するものが好ましい。更に該吸収部材を輸送体に取り付けることを考慮すれば、重量に対する比強度、比弾性が大きい方がよく、具体的には比強度が1.1以上、比弾性が30以上の炭素繊維、ガラス繊維、アラミド繊維が好ましい。
【0028】
これら強化繊維の形態としては、長繊維、短繊維、織物状、マット状、不織布状にしたものやこれら形態の混合物などをマトリクス樹脂中に規則的または不規則的に配置させて繊維強化樹脂を形成したものが好ましい。最も好ましいのは高エネルギー吸収であること、成形が容易であることの理由から、長繊維形態のものであり、その配列方向はあらゆる方向にランダムに配列されているものが好ましい。また、樹脂との相性を向上させるために強化繊維表面には、油剤、カップリング剤、サイジング剤、平滑剤などの表面仕上げ剤が塗布されていてもかまわない。
【0029】
マトリクス樹脂としては、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、フェノール樹脂、ベンゾオキサジン樹脂などの熱硬化性樹脂、あるいは、ポリエチレン、ポリプロピレン樹脂、ポリアミド樹脂、ABS樹脂、ポチブチレンテレフタレート樹脂、ポリアセタール樹脂、ポリフェニレンサルファイド樹脂、ポリカーボネート等の樹脂などの熱可塑性樹脂、及びこれら樹脂をアロイ化した変性樹脂が挙げられる。なかでも耐薬品性、耐候性などに優れるエポキシ樹脂、ポリエステル樹脂、ビニルエステル樹脂およびこれら樹脂の変性樹脂が好ましい。上記樹脂には、例えば、リン酸エステル、ハロゲン化炭化水素、酸化アンチモンやホウ酸亜鉛、含リンポリオール、含臭素ポリオール、四塩化無水フタル酸、四臭化無水フタル酸のような公知の難燃剤を配合して難燃性を付与してもよい。吸収部全体に対する補強繊維の混合割合としては、樹脂に対して重量比で10〜70%の範囲内であることが好ましい。10%を下回ると衝撃吸収性能が十分ではなくなる場合があり、70%を越えると樹脂の含浸が難しくなり、やはり衝撃エネルギー吸収が十分でなくなる可能性があるからである。ボイド量(体積含有率)は、2〜6%であることが重要である。ボイドは通常1%未満が機械物性上好ましいとされているが、本発明においては、ボイドがある程度存在することで、斜め方向からの衝撃に対してもボイドがトリガーの役割を果たして逐次破壊がスムースに進行する。ボイドの測定法は、JIS K7053又はK7075に準ずるが、顕微鏡で任意の50断面(面積は10×10cm)の断面写真を撮り、その平均面積から求めてもよい。尚、ボイドとは、格子の開口部ではなく、Engineered Material Handbook. Vol.1,"Composites", ASM International, 1987等に記載さている通り、樹脂内部に包含されている空孔のことであり、球形をしたものが多い。ボイドの大きさとしては、体積が0.4mm〜5mmの範囲内のものが逐次破壊のトリガーとして作用する上で好ましい。体積がこれ以上であると部材の強度が低下して逐次破壊しにくくなる場合があり、本範囲以下であると、斜めからの低エネルギーの衝撃に対し、逐次破壊のトリガーとして作用しにくくなる可能性があるからである。全ボイドにめる上記体積が0.4mm〜5mmの範囲内のボイド量は70%以上であるとさらに好ましい。
【0030】
尚、ボイドを本範囲内とする製造方法として、マトリックスとして使用する樹脂を空気や窒素雰囲気中で高速で混錬、あるいは攪拌して気体を溶解させる方法、発泡剤を使用する方法などがある。また、樹脂の硬化条件は、従来のオートクレーブなどのように高圧力下で行うと気泡が樹脂に溶解するので、ボイドのサイズを上記範囲としたい場合には常圧付近の圧力下で成形することが好ましい。また、ボイドの量は、界面活性剤や消泡剤を添加することでも調整することができる。具体的には、消泡剤を添加するとボイドの量が少なくなり、添加量を上げていくとボイドの量が少なくなる。これら消泡剤や界面活性剤、上記の発泡剤は、樹脂に直接混入するだけでなく、繊維にあらかじめ付着させておいても差し支えない。さらに、ボイドの量は、繊維の形態にも影響される。具体的には、繊維の径とともに、ボイドのサイズは大きくなるので、補強繊維の径は、5〜20ミクロンの範囲が好ましい。また、繊維に撚りを入れることでボイド量を多くすることができる。クロス(織物)や組み紐材は、縦糸と横糸の交点などの繊維が屈曲する部分でボイドを形成しやすく、好ましい形態である。
【0031】
最後に、ボイドによるトリガーに加え、従来同様、格子状部材の先端にテーパー部を設けても一向に差し支えない。
【0032】
なお、本発明のFRP製衝撃吸収部材の成形法としては、ハンドレイアップ法、プルトルージョン法(引き抜き成形法)、レジントランスファーモールディング(RTM)法、SCRIMP法、プルワインド法、フィラメントワインド法、プリプレグレイアップ法等、公知のあらゆる成形技術を用いることができる。中でも、繊維束を樹脂を含浸させながら一体成形する、引き抜き(プルトルージョン)成形法を用いることが性能発現上好ましい。少量の生産や複雑/特殊な構造に対しては、ハンドレイアップ法が適している。特に、格子状の衝撃吸収部に於いては、前記のハンドレイアップ法で繊維を格子状の型溝内に配列して、型溝内に樹脂を流し込むと作業効率よく所望の格子形状を有する繊維強化吸収部材が得られて好ましい。また、常圧で成型する方が、前記したボイドを形成する上でも、コスト的にも好ましい。
【0033】
【実施例および比較例】
実施例1
以下、本発明に係る衝撃エネルギー吸収部材の実施例について説明する。
【0034】
図2に示したエネルギー吸収部4として、マトリクス樹脂に不飽和ポリエステル樹脂を使用し、強化繊維にガラス繊維を用いて井桁状の吸収部材(平均繊維含有率は30%、格子点の繊維含有率は56%)を作成した。
【0035】
具体的寸法は、一片40mm、高さ40mm、厚さ3mmの4つの格子点をもつ柱状吸収部である。上記吸収部材をインストロン−1128を用い、ロードセルは30トン、クロスヘッドスピード2mm/minで圧縮試験を行った。
【0036】
その結果を吸収部材の加重−変位曲線を示す図9に示す。この曲線とx軸と囲む面積が吸収エネルギーである。面積から本吸収部材のエネルギー吸収量を求めると1800J、重量は35g、断面積は16cm2であるため、単位重量あたりの吸収エネルギー、単位面積あたりの吸収エネルギーはそれぞれ51.4J/g、410J/cm2である。なお、本部材のボイド量をJISK7053により測定したところ、3%であった。
【0037】
比較例1
比較のために繊維含有率が50%均一の円筒状吸収部材(図10)を同様に試験した結果、図11の曲線となり、単位重量あたりの吸収エネルギー、単位面積あたりの吸収エネルギーはそれぞれ42J/g、160J/cm2であり、上記実施例1のものよりも吸収エネルギーは低かった。すなわち、図2の実施例1の格子状吸収部材の方が単位重量、面積あたりの吸収エネルギーは高いことになる。
【0038】
実施例2
実施例1と同一構造の柱状部材をインストロン-1128を用い、ロードセルは30トン、クロスヘッドスピード2mm/minで部材の高さ方向に対し、斜め10°の方向から圧縮負荷試験を行った。
【0039】
その結果、部材は逐次破壊し、単位重量あたりの吸収エネルギー、単位面積あたりの吸収エネルギーはそれぞれ49.7J/g、396J/cm2であった。
【0040】
比較例2
比較例1と同一の円筒を、実施例2と同様、斜め10度の方向から圧縮試験した。その結果、円筒は剪断破壊して2つ割れし、単位重量あたりの吸収エネルギー、単位面積あたりの吸収エネルギーはそれぞれ8J/g、30J/cm2であった。
【0041】
実施例3〜5
図2に示したエネルギー吸収部4として、マトリックス樹脂に不飽和ポリエステル樹脂を使用し、強化繊維に1m当たり2ターンの撚りの入ったガラス繊維と炭素繊維(弾性率235GPa、伸度2%)を繊維比率1:1で用いて井桁状の部材(サイズは、一辺40mm、高さ50mm、厚さは5mm、平均繊維含有率は25%、格子点の繊維含有率は44%)をハンドレイアップ法(常圧)で製造した。本製造工程においては、不飽和ポリエステル樹脂を空気中で泡立つように混錬し、硬化温度を室温(25℃)、40℃、60℃、80℃と変えることでボイドの量を調整(温度が高いと樹脂の粘度が低下してボイド量が減る)して、表1に示すボイド量の異なる井桁状部材を3種類得た。尚、断面の顕微鏡観察の結果は、ボイドは球形で、サイズは0.5mm3〜2mm3のものが殆ど(7割以上)であった。これら井桁部材を実施例2と同様の装置で、斜め30℃の方向から圧縮試験した。結果は、表1の通りで、ボイド量が1.8%と6.1%のものが斜め衝突に対し最もエネルギー吸収量が高かった。以上の結果を纏めたのが次の表1である。
【0042】
【表1】

Figure 0004491955
【0043】
【発明の効果】
本発明に係る衝撃エネルギー吸収部材は、次のような顕著な作用効果を奏することができる。
【0044】
1)強化繊維とマトリクス樹脂とからなるFRP製の柱状エネルギー吸収部材において、繊維含有率を部材の部位毎に異ならせたので、多方向からの衝撃に対しても安定した破壊による高いエネルギー吸収が可能となるうえ、破壊の開始となる面取り等のトリガーが不要という効果を奏することができる。
【0045】
2)衝撃エネルギー吸収部を格子状形状としたことにより、格子点は強化繊維が交差した状態で立体的形状をなすので、多方向からの衝撃に対する剛性が高くエネルギー吸収効率が高い。よって、従来の吸収部材に比べ単位あたりの吸収エネルギーを大きくすることができる。
【0046】
3)上記したように格子点は強化繊維が交差しているので、剛性が高く、エネルギー吸収効率が高い。よって、この格子点の数およびその配置を調節することにより、吸収エネルギー量を使用目的に応じて調節することが可能となる。
【0047】
4)格子形状を平面状に配列させ、全体をボード状あるいは曲面状の衝撃吸収部材に固定することにより、幅広い方向からの衝撃に対して衝撃エネルギーを吸収することができる。
【図面の簡単な説明】
【図1】従来の衝撃エネルギー吸収部材の使用例を示す斜視図である。
【図2】本発明に係る衝撃エネルギー吸収部材の一実施例を示す斜視図である。
【図3】図2の吸収部材とは異なる実施態様の本発明に係る衝撃エネルギー吸収部材の斜視図である。
【図4】図2、3の吸収部材とは異なる実施態様の本発明に係る衝撃エネルギー吸収部材の斜視図である。
【図5】図2〜4の吸収部材とは異なる実施態様の本発明に係る衝撃エネルギー吸収部材の斜視図である。
【図6】本発明に係る衝撃エネルギー吸収部材の適用例を示す斜視図である。
【図7】本発明のエネルギー吸収部の取付例の正面図である。
【図8】図2の吸収部の寸法を示した斜視図である。
【図9】本発明のエネルギー吸収部の加重−変位曲線図である。
【図10】比較例における吸収部の斜視図である。
【図11】図10の吸収部材のエネルギー吸収部の加重−変位曲線図である。
【符号の説明】
1:自動車
2:バンパー
3:エネルギー吸収部
4:エネルギー吸収部
5:突起部
6:格子点
7:格子(格子形状平面)
8:吸収部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an impact energy absorbing member used in the technical field of transportation vehicles such as automobiles and trains, and more specifically, to reduce / protect damage to passengers and transportation vehicles at the time of collision and rear-end collision of these transportation vehicles. The present invention relates to an improvement of an impact energy absorbing member made of fiber reinforced plastic.
[0002]
[Prior art]
As a conventional impact energy absorbing member made of fiber reinforced plastic, an energy absorbing member whose constituent material is made of fiber reinforced resin, for example, a cylindrical impact energy absorbing member 3 is attached to a bumper 2 portion of an automobile 1 as shown in FIG. Are known (for example, JP-A-6-300068).
[0003]
The absorbing member 3 is required to be light and highly rigid in order to be attached to an automobile in addition to absorbing impact energy well, and a fiber reinforced resin is suitable as a constituent material. In addition, in order to efficiently absorb energy at the time of the collision, the absorbing member 3 is devised so that successive breakage occurs by forming a taper portion that starts breakage (trigger) on the working end side of the load. Some of them are disclosed (for example, JP-A-8-219215).
[0004]
However, these FRP shock absorbing members require a plurality of shock absorbers to be arranged in multiple directions when the impact force acting on the transport body extends in multiple directions. In addition, when the transport vehicle is an automobile, there are many cases where it collides by spinning, and when an impact force is applied in an unexpected direction, sequential destruction does not occur, and the energy absorption amount of the absorbing member is not sufficiently expressed. was there.
[0005]
As described above, the conventional energy absorber made of FRP is one in which the energy absorbing member is sequentially broken to exhibit a predetermined energy absorption characteristic, but it deals with an impact from one direction, and an impact from multiple directions. Was not taken into consideration.
[0006]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems of the prior art, can effectively absorb impact energy even from impacts from multiple directions, and does not require the tapered portion that is a starting condition for destruction. An object of the present invention is to provide an impact energy absorbing member that can reduce damage to a transport body, a building, and the like as much as possible and protect passengers in the transport body even if the mobile body collides while spinning.
[0007]
[Means for Solving the Problems]
To achieve the above object, the present invention provides the following configurations or Ranaru.
[0009]
That is, the surface of the absorbing member, it comprises an energy absorbing portion having a lattice shape plane formed from at least three lattice points, the fiber content of the lattice points is different with the fiber content of a site other than the lattice points The amount of voids in the energy absorbing portion is a fiber reinforced plastic impact energy absorbing member in the range of 2 to 6 vol% .
[0010]
The part having a different fiber content corresponds to a part where the thickness varies in the cross section of the columnar body, that is, depending on the shape of the member , that is, in the case of a lattice, an intersecting part and a non-intersecting part (see FIG. 2). In this part, it is preferable to make the difference within the range of 1.2 times to 3.0 times. By providing the site | part which cross | intersects a fiber in an absorption member, destruction progresses stably and energy absorption amount also becomes large. Specifically, an energy absorbing portion having a lattice shape plane formed from at least three lattice points is provided on the surface. Here, the reason why at least three lattice points are required is that an energy absorbing member including an energy absorbing portion having one lattice shape plane is formed by the three lattice points. With this configuration, each lattice point has the same effect of reducing impact energy as the conventional shock absorbers such as columnar and cylindrical, and the lattice points in each lattice are in the matrix resin. Since the reinforcing fibers cross each other and have a laminated structure, the fiber content is higher than that of other parts, and as a result, the rigidity and the energy absorption efficiency are high. Moreover, since the lattice point in each energy absorption part has a three-dimensional shape, and there are a plurality of lattice points, it is possible to effectively absorb impact energy against impacts from a wide range of directions. Further, as another independent effective means, by having a void as a trigger for sequential destruction in the member, it becomes possible to absorb energy satisfactorily even against an impact from an oblique direction.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the drawings illustrating an example thereof.
[0012]
2 to 5 are all perspective views of an embodiment of the impact energy absorbing member according to the present invention, and FIG. 2 shows the energy absorbing portion 4 having lattice points having a cross-shaped outer shape. 6 is an example of four pieces. At these lattice points, the amount of reinforcing fibers is larger than that of other parts, and the strength is not uniform. For this reason, the entire member does not break against the impact force from the oblique direction, but breaks up sequentially and exhibits high energy absorption characteristics. That is, there is a mechanism in which a portion having a small amount of reinforcing fiber serves as a trigger for destruction, and a portion having a large amount of reinforcing fiber is sequentially broken to absorb energy . In the present invention requires that the terms of desired to produce the member by using the continuous fibers described high energy absorption, crossed reinforcing fibers in lattice points to increase the fiber content of the lattice points.
[0014]
3 is an absorption part 8 having grid-shaped lattice points, FIG. 4 is an absorption part 9 in which a large number of curved shapes are gathered randomly, and FIG. 5 is a rectangular shape. This is an absorbing portion 10 in which a plurality of cylindrical bodies are assembled and integrated to form lattice points.
[0015]
As shown in each figure, there are various grid points such as a cross-girder shape, a rice field shape, a curved shape, and an aggregate shape, but these are merely examples, and in the aspect of FIG. 4 is that the protrusions 5 protrude in the moving direction of the moving body (in the direction of the arrow in the figure) and gather to form a plurality of lattice points 6 (intersections of the protrusions 5) to form a lattice-shaped plane. It only has to be. Although not shown, the absorber 4 is fixed to the above-described bumper 2 of FIG. 1, a dedicated base body, or the like, and constitutes an impact energy absorbing member of the present invention.
[0016]
Here, the plane area of one grid 7, that is, the plane area of the portion surrounded by the four grid points 6, is preferably in the range of 1 to 1000 cm 2. More preferably, the impact energy is absorbed and the production cost is taken into consideration. When the lattice area is less than 1 cm 2, the manufacturing cost is high, and since the distance between lattice points is small, the FRP that has been sequentially broken enters the lattice, making it difficult to sequentially break, and the impact energy cannot be absorbed efficiently. If it exceeds 1000 cm2, the member becomes insufficiently rigid at a certain amount of reinforcing fiber used, and the energy absorption effect may not be fully exhibited.
[0017]
The thickness ( H ) of the protrusion 5 is preferably in the range of 0.1 to 50 mm. The reason is that if the thickness is less than 0.1 mm, the rigidity is insufficient and the lattice point 6 is also small, so that sufficient impact energy cannot be absorbed. On the other hand, if it exceeds 50 mm, the amount of fibers is large, so that the production cost is high and the weight is also large, so that it is difficult to install on a transport body. Considering the production cost and the impact absorption energy per unit weight, it is more preferably in the range of 3 to 30 mm. The plane area of one lattice 7 is as described above, but the specific dimension of the length of one side is preferably in the range of 10 to 300 mm. More preferably, it is 30-200 mm. The absorption part as shown in FIG. 2 is suitable for mounting on a wide area such as a door or a side wall.
[0018]
Also in the case of the columnar absorption part 8 having a square shape in FIG. 3, the length of one side is preferably in the range of 10 to 300 mm. More preferably, it is 30 mm to 200 mm.
[0019]
The columnar absorption portion 8 has a relatively high directionality such as a bumper positioned before and after the transport body, and is suitable for attachment to a place where a large impact energy absorption is required.
[0020]
In the case of the absorbing portion 9 having the curved projection portion 10 as shown in FIG. 4, the plane area of the lattice is preferably in the range of 1 to 1000 cm 2. More preferably, it is 5-500 cm2. This embodiment is suitable for mounting in places where it is difficult to install the absorbers 4 and 8 as shown in FIGS. 2 and 3, such as the outer wall of the transport body and bumpers positioned in the front and rear. ing.
[0021]
The plane area 7 of the lattice and the thickness t of the protrusion, that is, the size of the lattice are determined by the magnitude of impact energy to be absorbed and the mounting area. Each energy absorbing portion is preferably in the form of a board having a ratio (H / L) of a height ( H ) at a lattice point to a width (L) of an adjacent side of the lattice point of 1/2 or more. Naturally, the absorber 4 has a high energy absorption rate because the rigidity is increased by the laminated structure of reinforcing fibers (details will be described later) in which lattice points 6 forming a lattice are present. Therefore, the absorbed energy increases as the number of lattice points 6 increases. That is, according to the inventors' knowledge, the absorbed energy per unit area can be increased by reducing the lattice area A and increasing the number of lattice points 6. On the other hand, if the lattice is made smaller, the layup of the base material becomes complicated, and thus the manufacturing cost increases. The size of the lattice is adjusted according to the required absorbed energy, installation area, manufacturing cost, and the like. As described above, the energy absorbing member can increase the amount of energy absorbed per unit area as compared with the case where it does not have a lattice shape, and can adjust the amount of energy absorption by appropriately adjusting the number of lattice points. Can do. Specifically, according to the inventor's knowledge, the absorption energy per unit area is preferably 90 J / cm 2 or more, and the absorption energy per weight is preferably 40 J / g or more. When the absorbed energy per unit area is 90 J / cm 2 or less and the absorbed energy per weight is 40 J / g or less, a predetermined impact energy is absorbed, but the volume increases and the weight also increases.
[0022]
The absorption part 10 of FIG. 5 is made into a lattice shape by collecting and integrating columnar impact energy absorption parts. In order to produce many kinds of absorbed energy parts 4, 8, and 9 shown in FIGS. 2 to 4 having different overall sizes, it is troublesome to prepare molds and manufacture preforms of the base material, and integral molding is required. In many cases, it is difficult, but in the case of the collective-type absorber 10 shown in FIG. In any of the above types, the shape, size, thickness, height, etc. of the lattice constituting the absorption part do not need to be constant, and may differ partially or in accordance with the shape of the mounting location. It doesn't matter.
[0023]
FIG. 6 is an example of attachment of the various impact energy absorbing parts 4, 8, 9, and 10 described above. In the figure, the bumper 2 of the automobile 1 is provided with the absorbing part 10 of the embodiment shown in FIG. The absorption part 4 of an aspect is attached. That is, by fixing in the form of a board, it is possible to easily cover the surface of a large-area structure such as a side wall of a railway vehicle or airplane, a side wall of an automobile door, or a bumper. In addition, even in the case where the structure is considered to be difficult to attach normally such as including a polygon or a curved surface, a plurality of predetermined small pieces are cut out from a large-area grid-like absorbent member, and these are appropriately assembled to obtain a desired shape. An absorption member can be obtained easily. Moreover, there is an advantage that the replacement area when the member is damaged due to the impact can be suppressed to the minimum by making it small. Furthermore, even when the structure has irregularities, the length of the lattice can be adjusted and attached to the structure by simple machining. In addition, a buffer material made of a polymer material such as foamed foam material, a buffer material made of ceramic such as foam mortar and cement, or a buffer material made of metal such as foamed aluminum or aluminum honeycomb is partly placed in the lattice of the absorbent member. Alternatively, the whole may be filled. In addition, by covering a part, one side, or both sides of the lattice with a board made of the above-mentioned polymer material or ceramic material, impacts from various directions can be propagated uniformly or over a wide range. That is, the above-mentioned organic or inorganic material board can be easily attached to an installation object with an adhesive or the like on the upper, lower, or upper and lower parts in the axial direction (collision direction) of these energy absorbing parts. .
[0024]
Each of the absorbent bodies according to the present invention described above is composed of reinforcing fibers and a matrix resin.
[0025]
The reinforcing fiber is not particularly limited, and inorganic fibers such as carbon fiber, glass fiber, alumina fiber, and silicon nitride fiber, and organic fibers such as aramid fiber can be used.
[0026]
As the inorganic fiber, the carbon fiber may be either a PAN (polyacrylonitrile) type or a pitch type. Among them, the PAN type carbon fiber is preferable because it has excellent compression characteristics. As a glass fiber, a general-purpose product is preferable and its price is low, and the basis weight is within a range of 20 to 400 g / m 2 for reasons such as moldability and impact energy absorption.
[0027]
Specific examples of organic fibers include polyamide synthetic fibers, polyolefin synthetic fibers, polyester synthetic fibers, polyphenylsulfone fibers, polybenzoxazine fibers, acetates, acrylonitrile synthetic fibers, modacrylic fibers, and polyvinyl chloride synthetic fibers. Examples thereof include fibers, polyvinylidene chloride synthetic fibers, polyvinyl alcohol synthetic fibers, polyurethane fibers, polyclar fibers, protein-acrylonitrile copolymer fibers, fluorine fibers, polyglycolic acid fibers, phenol fibers, and para aramid fibers. Among these, for the absorbent member of the present invention, those having a fiber tensile strength of 1.0 GPa or more and a tensile elastic modulus of 70 Gpa or more are preferable. Further, considering that the absorbent member is attached to the transporter, it is better that the specific strength and the specific elasticity with respect to the weight are large. Specifically, the carbon fiber or glass having a specific strength of 1.1 or more and a specific elasticity of 30 or more. Fiber and aramid fiber are preferred.
[0028]
As the form of these reinforcing fibers, long fiber, short fiber, woven fabric, matte, non-woven fabric, or a mixture of these configurations is regularly or irregularly arranged in the matrix resin to provide a fiber reinforced resin. Those formed are preferred. Most preferred is a long fiber form because of its high energy absorption and ease of molding, and the arrangement direction is preferably randomly arranged in any direction. In order to improve compatibility with the resin, a surface finishing agent such as an oil agent, a coupling agent, a sizing agent, and a smoothing agent may be applied to the surface of the reinforcing fiber.
[0029]
As matrix resin, thermosetting resin such as unsaturated polyester resin, vinyl ester resin, epoxy resin, phenol resin, benzoxazine resin, or polyethylene, polypropylene resin, polyamide resin, ABS resin, polybutylene terephthalate resin, polyacetal resin And thermoplastic resins such as resins such as polyphenylene sulfide resin and polycarbonate, and modified resins obtained by alloying these resins. Of these, epoxy resins, polyester resins, vinyl ester resins and modified resins of these resins that are excellent in chemical resistance and weather resistance are preferred. Examples of the resin include known flame retardants such as phosphate ester, halogenated hydrocarbon, antimony oxide and zinc borate, phosphorus-containing polyol, bromine-containing polyol, tetrachlorophthalic anhydride, and tetrabromide anhydrous phthalic acid. May be added to impart flame retardancy. The mixing ratio of the reinforcing fibers to the entire absorbent portion is preferably in the range of 10 to 70% by weight with respect to the resin. If it is less than 10%, the impact absorption performance may not be sufficient, and if it exceeds 70%, impregnation of the resin becomes difficult, and impact energy absorption may not be sufficient. It is important that the void amount (volume content) is 2 to 6%. In general, less than 1% of voids are preferable in terms of mechanical properties. However, in the present invention, the presence of voids to some extent allows the voids to act as triggers even when impacted from an oblique direction, and successive fractures are smooth. Proceed to . Measurement of volume id is equivalent to JIS K7053 or K7075, any 50 cross section (area 10 × 10 cm 2) take a photograph of a cross section of a microscope, may be obtained from the average area. In addition, a void is not the opening part of a grating | lattice, but the hole contained in the resin inside as described in Engineered Material Handbook. Vol.1, "Composites", ASM International, 1987 etc., Many are spherical. The size of the voids is preferable in a volume acts as the progressive failure of the trigger within the scope of 0.4 mm 3 to 5 mm 3. If the volume is larger than this, the strength of the member may decrease and it may be difficult to break sequentially, and if it is below this range, it may be difficult to act as a trigger for sequential breakage against a low-energy impact from an angle. Because there is sex. Void volume in the range which accounts the volume total voids of 0.4 mm 3 to 5 mm 3 is further preferably 70% or more.
[0030]
In addition, as a manufacturing method which makes a void within this range, there are a method in which a resin used as a matrix is kneaded at high speed in an air or nitrogen atmosphere, or a gas is dissolved by stirring, a method using a foaming agent, and the like. In addition, if the resin is cured under high pressure as in a conventional autoclave, the bubbles will dissolve in the resin. If you want the void size to be in the above range, mold it under a pressure around normal pressure. Is preferred. The amount of voids can also be adjusted by adding a surfactant or an antifoaming agent. Specifically, the amount of voids decreases when an antifoaming agent is added, and the amount of voids decreases as the amount added increases. These antifoaming agent, surfactant and the above-mentioned foaming agent are not only directly mixed into the resin, but may be pre-adhered to the fiber. Furthermore, the amount of voids is also affected by fiber morphology. Specifically, since the void size increases with the fiber diameter, the reinforcing fiber diameter is preferably in the range of 5 to 20 microns. Moreover, the amount of voids can be increased by twisting the fibers. A cloth (woven fabric) or braided material is a preferable form because a void is easily formed at a portion where a fiber is bent such as an intersection of warp and weft.
[0031]
Finally, in addition to the trigger by the void, it is possible to provide a tapered portion at the tip of the lattice-like member in the same way as in the past.
[0032]
The FRP impact absorbing member of the present invention may be molded by hand lay-up method, pultrusion method (pulling molding method), resin transfer molding (RTM) method, SCRIMP method, pull-wind method, filament wind method, prepreg gray Any known molding technique such as the up method can be used. Among these, it is preferable in view of performance to use a pultrusion molding method in which the fiber bundle is integrally molded while being impregnated with a resin. For low-volume production and complex / special structures, the hand lay-up method is suitable. In particular, in the lattice-shaped shock absorbing portion, when the fibers are arranged in the lattice-shaped mold groove by the above-described hand lay-up method, and the resin is poured into the mold groove, the desired lattice shape is obtained with high work efficiency. A fiber reinforced absorbent member is preferably obtained. Also, molding at normal pressure is preferable from the viewpoint of forming the above-mentioned voids.
[0033]
Examples and Comparative Examples
Example 1
Examples of the impact energy absorbing member according to the present invention will be described below.
[0034]
As the energy absorbing part 4 shown in FIG. 2, an unsaturated polyester resin is used as a matrix resin, and glass fibers are used as reinforcing fibers, and a cross-shaped absorbent member (average fiber content is 30%, fiber content at lattice points) 56%).
[0035]
A specific dimension is a columnar absorbent portion having four lattice points 6 each having a piece of 40 mm, a height of 40 mm, and a thickness of 3 mm. The absorption member was subjected to a compression test using Instron-1128, a load cell of 30 tons, and a crosshead speed of 2 mm / min.
[0036]
The result is shown in FIG. 9 which shows the load-displacement curve of an absorption member. The area enclosed by this curve and the x-axis is the absorbed energy. When the energy absorption amount of the present absorbent member is determined from the area, it is 1800 J, the weight is 35 g, and the cross-sectional area is 16 cm 2. Therefore, the absorbed energy per unit weight and the absorbed energy per unit area are 51.4 J / g and 410 J / g, respectively. cm 2 . In addition, it was 3% when the void amount of this member was measured by JISK7053.
[0037]
Comparative Example 1
For comparison, a cylindrical absorbent member (FIG. 10) having a uniform fiber content of 50% was tested in the same manner. As a result, the curve shown in FIG. 11 was obtained, and the absorbed energy per unit weight and the absorbed energy per unit area were 42 J / kg, respectively. g, 160 J / cm 2 , and the absorbed energy was lower than that of Example 1 above. In other words, the lattice-shaped absorbent member of Example 1 in FIG. 2 has higher absorbed energy per unit weight and area.
[0038]
Example 2
A columnar member having the same structure as in Example 1 was used, an Instron-1128 was used, and a compression load test was performed from a direction of 10 ° obliquely with respect to the height direction of the member at a load cell of 30 tons and a crosshead speed of 2 mm / min.
[0039]
As a result, the member was successively broken, and the absorbed energy per unit weight and the absorbed energy per unit area were 49.7 J / g and 396 J / cm 2 , respectively.
[0040]
Comparative Example 2
The same cylinder as that of Comparative Example 1 was subjected to a compression test in the same manner as in Example 2 from the direction of 10 degrees obliquely. As a result, the cylinder was sheared and broken into two, and the absorbed energy per unit weight and the absorbed energy per unit area were 8 J / g and 30 J / cm 2 , respectively.
[0041]
Examples 3-5
As the energy absorbing portion 4 shown in FIG. 2, an unsaturated polyester resin is used as a matrix resin, and glass fibers and carbon fibers (elastic modulus: 235 GPa, elongation: 2%) containing 2 turns per 1 m of reinforcing fibers. Hand lay-up of cross-shaped member (size is 40mm per side, height is 50mm, thickness is 5mm, average fiber content is 25%, fiber content of lattice points is 44%) using fiber ratio 1: 1 Manufactured by the method (normal pressure). In this manufacturing process, the unsaturated polyester resin is kneaded so as to foam in the air, and the amount of voids is adjusted by changing the curing temperature to room temperature (25 ° C.), 40 ° C., 60 ° C., and 80 ° C. When it is high, the viscosity of the resin is lowered and the amount of voids is reduced), and three types of cross-shaped members having different void amounts shown in Table 1 are obtained. Note that the result of the cross section of the microscopic observation, voids spherical, size those 0.5 mm 3 to 2 mm 3 was almost (more than 70%). These cross-girder members were subjected to a compression test in the same apparatus as in Example 2 from an oblique direction of 30 ° C. The results are as shown in Table 1, and the amount of energy absorption with respect to the oblique collision was highest when the void amount was 1.8% and 6.1%. The following results are summarized in Table 1 below.
[0042]
[Table 1]
Figure 0004491955
[0043]
【The invention's effect】
The impact energy absorbing member according to the present invention can exhibit the following remarkable effects.
[0044]
1) In the FRP columnar energy absorbing member made of reinforced fiber and matrix resin, the fiber content is made different for each part of the member, so that high energy absorption due to stable breakage even against impacts from multiple directions. In addition, it is possible to achieve an effect that a trigger such as chamfering for starting destruction is unnecessary.
[0045]
2) Since the impact energy absorbing portion has a lattice shape, the lattice points have a three-dimensional shape with the reinforcing fibers intersecting with each other, so that the rigidity against impact from multiple directions is high and the energy absorption efficiency is high. Therefore, the absorbed energy per unit can be increased as compared with the conventional absorbing member.
[0046]
3) Since the reinforcing fibers intersect at the lattice points as described above, rigidity is high and energy absorption efficiency is high. Therefore, the amount of absorbed energy can be adjusted according to the purpose of use by adjusting the number of lattice points and the arrangement thereof.
[0047]
4) By arranging the lattice shape in a plane and fixing the whole to a board-shaped or curved-shaped impact absorbing member, it is possible to absorb impact energy against impacts from a wide range of directions.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of use of a conventional impact energy absorbing member.
FIG. 2 is a perspective view showing an embodiment of an impact energy absorbing member according to the present invention.
FIG. 3 is a perspective view of an impact energy absorbing member according to the present invention in an embodiment different from the absorbing member of FIG. 2;
FIG. 4 is a perspective view of an impact energy absorbing member according to the present invention in a different embodiment from the absorbing member of FIGS.
FIG. 5 is a perspective view of an impact energy absorbing member according to the present invention in a different embodiment from the absorbing member of FIGS.
FIG. 6 is a perspective view showing an application example of an impact energy absorbing member according to the present invention.
FIG. 7 is a front view of a mounting example of the energy absorbing portion of the present invention.
FIG. 8 is a perspective view showing dimensions of the absorption part of FIG. 2;
FIG. 9 is a load-displacement curve diagram of the energy absorption unit of the present invention.
FIG. 10 is a perspective view of an absorbing portion in a comparative example.
11 is a weight-displacement curve diagram of the energy absorbing portion of the absorbing member of FIG.
[Explanation of symbols]
1: Automobile 2: Bumper 3: Energy absorption part 4: Energy absorption part 5: Projection part 6: Lattice point 7: Lattice (lattice shape plane)
8: Absorber

Claims (10)

吸収部材の表面に、少なくとも3つの格子点から形成される格子形状平面を有するエネルギー吸収部を備えてなり、格子点の繊維含有率が、格子点以外の部位の繊維含有率と異なるとともに、前記エネルギー吸収部のボイド量は、2〜6vol%の範囲内であることを特徴とする繊維強化プラスチック製衝撃エネルギー吸収部材。The surface of the absorbent member is provided with an energy absorbing portion having a lattice-shaped plane formed from at least three lattice points, and the fiber content of the lattice points is different from the fiber content of portions other than the lattice points , The impact energy absorbing member made of fiber reinforced plastic , wherein the void amount of the energy absorbing portion is in the range of 2 to 6 vol% . 体積が0.4mmVolume is 0.4mm 3 〜5mm~ 5mm 3 の範囲内にあるボイド量が全ボイド量の70%以上であることを特徴とする請求項1に記載の繊維強化プラスチック製衝撃エネルギー吸収部材。The impact energy absorbing member made of fiber-reinforced plastic according to claim 1, wherein the amount of voids in the range is 70% or more of the total void amount. 格子点の繊維含有率は、格子点以外の部位の繊維含有率よりも1.2〜3.0倍の範囲内で高い、請求項1または2に記載の繊維強化プラスチック製衝撃エネルギー吸収部材。The fiber-reinforced plastic impact energy absorbing member according to claim 1 or 2 , wherein the fiber content of lattice points is higher within a range of 1.2 to 3.0 times than the fiber content of portions other than the lattice points. 3つの格子点で形成される格子形状平面の面積は1〜1000cmの範囲内である、請求項1〜3のいずれかに記載の繊維強化プラスチック製衝撃エネルギー吸収部材。Area of the lattice-shaped plane formed by the three lattice points are within the scope of 1~1000cm 2, fiber-reinforced plastic impact energy absorbing member according to any one of claims 1-3. エネルギー吸収部の衝突方向の厚さは、0.1〜50mmの範囲内である、請求項1〜のいずれかに記載の繊維強化プラスチック製衝撃エネルギー吸収部材。The impact energy absorbing member made of fiber reinforced plastic according to any one of claims 1 to 4 , wherein a thickness of the energy absorbing portion in a collision direction is in a range of 0.1 to 50 mm. エネルギー吸収部は、格子点における高さ()と格子点の隣接辺の幅(L)との比(H/L)が、1/2以上のボード状のものである請求項1〜のいずれかに記載の繊維強化プラスチック製衝撃エネルギー吸収部材。Energy absorbing portion, the ratio between the height at the grid point (H) and the lattice point of the adjacent side width (L) (H / L) is, according to claim 1 is of the 1/2 or more shaped board 5 The impact energy absorbing member made of fiber reinforced plastic according to any one of the above. 格子内の一部またはすべてに、発泡フォームまたは発泡モルタルが充填されている、請求項1〜のいずれかに記載の繊維強化プラスチック製衝撃エネルギー吸収部材。The impact energy absorbing member made of fiber reinforced plastic according to any one of claims 1 to 6 , wherein a part or all of the lattice is filled with foamed foam or foamed mortar. エネルギー吸収部の軸方向の上部、下部、または上下部に、有機または無機材料のボードを貼り合わせてなる、請求項1〜のいずれかに記載の繊維強化プラスチック製衝撃エネルギー吸収部材。The impact energy absorbing member made of fiber reinforced plastic according to any one of claims 1 to 7 , wherein a board made of an organic or inorganic material is bonded to an upper portion, a lower portion, or an upper and lower portion in the axial direction of the energy absorbing portion. 強化繊維は、炭素繊維であって、その含有率が10〜70w%の範囲内である、請求項1〜のいずれかに記載の繊維強化プラスチック製衝撃エネルギー吸収部材。The fiber reinforced plastic impact energy absorbing member according to any one of claims 1 to 8 , wherein the reinforcing fiber is a carbon fiber and the content thereof is in a range of 10 to 70 w%. エネルギー吸収量は、40J/g以上である、請求項1〜9のいずれかに記載の繊維強化プラスチック製衝撃エネルギー吸収部材。The impact energy absorbing member made of fiber-reinforced plastic according to any one of claims 1 to 9, wherein the energy absorption amount is 40 J / g or more.
JP2000334479A 1999-11-02 2000-11-01 Impact energy absorbing member made of fiber reinforced plastic Expired - Lifetime JP4491955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000334479A JP4491955B2 (en) 1999-11-02 2000-11-01 Impact energy absorbing member made of fiber reinforced plastic

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-312190 1999-11-02
JP31219099 1999-11-02
JP2000334479A JP4491955B2 (en) 1999-11-02 2000-11-01 Impact energy absorbing member made of fiber reinforced plastic

Publications (3)

Publication Number Publication Date
JP2001208120A JP2001208120A (en) 2001-08-03
JP2001208120A5 JP2001208120A5 (en) 2007-09-06
JP4491955B2 true JP4491955B2 (en) 2010-06-30

Family

ID=26567061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000334479A Expired - Lifetime JP4491955B2 (en) 1999-11-02 2000-11-01 Impact energy absorbing member made of fiber reinforced plastic

Country Status (1)

Country Link
JP (1) JP4491955B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7842378B2 (en) * 2004-01-06 2010-11-30 Kabushiki Kaisha Toyota Jidoshokki Energy absorber and method for manufacturing the same
DE102004046240B3 (en) * 2004-09-22 2006-01-12 Faurecia Innenraum Systeme Gmbh Shock absorber made of a fiber material, in particular for a motor vehicle door
JP5092444B2 (en) * 2007-02-21 2012-12-05 トヨタ自動車株式会社 Manufacturing method of fiber reinforced composite material
JP5240556B2 (en) * 2008-06-27 2013-07-17 東レ株式会社 Impact energy absorber
JP5298910B2 (en) 2009-02-10 2013-09-25 トヨタ自動車株式会社 Shock absorption structure
FR2967740B1 (en) * 2010-11-22 2012-12-28 Faurecia Bloc Avant DEVICE FOR ENERGY ABSORPTION WITH FIBERS BORNE IN A PLASTIC MATERIAL, AND FRONT PANEL ASSOCIATED
CN103009640B (en) * 2012-12-28 2014-08-06 东南大学 Mould for preparing space lattices made of fiber reinforced composite materials and application method of mould
CN105324418B (en) 2013-06-12 2018-08-14 本田技研工业株式会社 Fiber-reinforced resin component
KR102452591B1 (en) 2014-06-16 2022-10-07 사빅 글로벌 테크놀러지스 비.브이. Method of making a laminate, an energy absorbing device, an energy absorbing device composition, and a forming tool
US10668935B2 (en) * 2014-11-28 2020-06-02 Hitachi Rail Italy S.P.A. Rail vehicle, particularly a tram comprising a bumper
KR102524446B1 (en) 2016-12-30 2023-04-21 사빅 글로벌 테크놀러지스 비.브이. Hybrid structure and its manufacturing method
EP4000441B1 (en) 2019-12-27 2023-09-20 ASICS Corporation Shoe sole comprising a shock absorber
JP7411410B2 (en) * 2019-12-27 2024-01-11 株式会社アシックス Cushioning materials, soles and shoes
JP7396892B2 (en) * 2019-12-27 2023-12-12 株式会社アシックス soles and shoes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0655893U (en) * 1993-01-09 1994-08-02 サカエ理研工業株式会社 Energy absorbing plastic bumper
JPH11173356A (en) * 1997-12-11 1999-06-29 Toray Ind Inc Shock absorbing member made of aluminum/fiber reinforced resin
JPH11269755A (en) * 1998-03-17 1999-10-05 Toyota Autom Loom Works Ltd Three-dimensional fiber structure
JPH11351306A (en) * 1998-06-12 1999-12-24 Toyobo Co Ltd Resinous shock absorber and shock absorbing method using the same
JP2000085495A (en) * 1998-09-10 2000-03-28 Nishikawa Kasei Co Ltd Bumper for vehicle and forming die for bumper

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0655893U (en) * 1993-01-09 1994-08-02 サカエ理研工業株式会社 Energy absorbing plastic bumper
JPH11173356A (en) * 1997-12-11 1999-06-29 Toray Ind Inc Shock absorbing member made of aluminum/fiber reinforced resin
JPH11269755A (en) * 1998-03-17 1999-10-05 Toyota Autom Loom Works Ltd Three-dimensional fiber structure
JPH11351306A (en) * 1998-06-12 1999-12-24 Toyobo Co Ltd Resinous shock absorber and shock absorbing method using the same
JP2000085495A (en) * 1998-09-10 2000-03-28 Nishikawa Kasei Co Ltd Bumper for vehicle and forming die for bumper

Also Published As

Publication number Publication date
JP2001208120A (en) 2001-08-03

Similar Documents

Publication Publication Date Title
JP4491955B2 (en) Impact energy absorbing member made of fiber reinforced plastic
WO2013080974A1 (en) Shock absorption member
KR101654951B1 (en) Structure for absorbing energy
EP3275769B1 (en) Resin structure and vehicle components
WO2000031344A1 (en) An energy absorber for absorbing energy during impact therewith by a moving object
KR20120089840A (en) Fibre-reinforced polyurethane moulded part comprising three-dimensional raised structures
JP7143588B2 (en) Structure and its manufacturing method
CN1328089C (en) Impact beam comprising elongated metal elements
US20140339036A1 (en) Shock Absorption Member
CA2363109C (en) Impact energy absorption member
EP3863910B1 (en) Safety cabin for a recreational or camper van with deformation elements, and manufacturing method for such a safety cabin
JP4583775B2 (en) Shock absorber for automobile
US20230102696A1 (en) Method for manufacturing fiber-reinforced resin structure
JP2007168122A (en) Fiber reinforced plastic structure
DE202020105789U1 (en) Safety cabin for a mobile home or motorhome with highly stable walls, which preferably comprise natural fibers
JP7428651B2 (en) Components for absorbing impact forces
JP2003090376A (en) Impact energy absorbing member
EP3587851A1 (en) Multilayer damping material
WO2023063057A1 (en) Impact-absorbing member
WO2023063058A1 (en) Impact-absorbing member
WO1991007315A1 (en) Aircraft seats
CN216579289U (en) Anti-collision energy-absorbing composite material and front end vehicle head
KR0158988B1 (en) Fiber reinforced plastic composite panel and car hood & roof using the composite panel
Obaid et al. Lightweight Thermoset Foams in Automotive Applications
Lam et al. Polymeric cellular textile composites for energy absorption

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070724

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100329

R151 Written notification of patent or utility model registration

Ref document number: 4491955

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

EXPY Cancellation because of completion of term