JP4491815B2 - Method for thermal crystallization of preform mouthpiece - Google Patents

Method for thermal crystallization of preform mouthpiece Download PDF

Info

Publication number
JP4491815B2
JP4491815B2 JP2004107254A JP2004107254A JP4491815B2 JP 4491815 B2 JP4491815 B2 JP 4491815B2 JP 2004107254 A JP2004107254 A JP 2004107254A JP 2004107254 A JP2004107254 A JP 2004107254A JP 4491815 B2 JP4491815 B2 JP 4491815B2
Authority
JP
Japan
Prior art keywords
thermal crystallization
temperature
preform
core
tube portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004107254A
Other languages
Japanese (ja)
Other versions
JP2005289447A (en
Inventor
幸夫 腰高
一彦 清水
敏正 田中
高雄 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshino Kogyosho Co Ltd
Original Assignee
Yoshino Kogyosho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshino Kogyosho Co Ltd filed Critical Yoshino Kogyosho Co Ltd
Priority to JP2004107254A priority Critical patent/JP4491815B2/en
Publication of JP2005289447A publication Critical patent/JP2005289447A/en
Application granted granted Critical
Publication of JP4491815B2 publication Critical patent/JP4491815B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Description

本発明は、口筒部を熱結晶化処理したポリエチレンテレフタレート(以下PETと記す)系樹脂製の2次延伸ブロー成形壜体プリフォーム口筒部の熱結晶化方法に関するものである。 The present invention relates to a method for thermal crystallization of a preform mouthpiece portion for a secondary stretch blow-molded casing made of polyethylene terephthalate (hereinafter referred to as PET) resin, in which the mouthpiece portion is thermally crystallized.

特許文献1には、高温での充填、あるいは殺菌等の熱処理工程を要する製品、たとえばお茶、果汁飲料用等に使用されるPET樹脂製2軸延伸ブロー成形壜体についての記載がある。このようにお茶、果汁飲料等のように高温(80〜90℃程度)での充填あるいは熱処理工程のある製品向けのPET樹脂製壜体では熱結晶化処理により耐熱変形性が改良された所謂耐熱口筒部が使用される。   Patent Document 1 describes a PET resin biaxially stretched blow molded casing used for products requiring heat treatment such as filling at high temperature or sterilization, such as tea and fruit juice beverages. Thus, in a PET resin casing for products with a high temperature (about 80 to 90 ° C.) or heat treatment process such as tea and fruit juice beverages, the so-called heat resistance is improved by heat crystallization treatment. A mouth tube is used.

そして、特許文献2には口筒部に収縮を規制するためのコアを挿入し、熱結晶化処理をして、口筒部の寸法精度を高くするための方法についての記載がある。
特開平10−058527号公報 特公昭61−24170
Patent Document 2 describes a method for increasing the dimensional accuracy of the tube portion by inserting a core for restricting shrinkage into the tube portion and performing a thermal crystallization process.
Japanese Patent Laid-Open No. 10-058527 Shoko 61-24170

近年においては上記PET樹脂製壜体は、130℃程度での高温殺菌処理を要するレトルト食品向けへも使用が検討されるようになってきており、130℃程度にも至る高温での口筒部の変形を抑制するためには、口筒部の熱結晶化処理を口筒部の表面温度で180℃程度の高温で実施する必要があるが、このような高温での処理では結晶化による収縮量が大きくなると共に、口筒部が楕円状になる等のいびつな変形も顕著になり、外観上の問題、キャップによる密封性が不良になる等の問題が発生する。   In recent years, the use of the PET resin casing for retort foods requiring high-temperature sterilization at about 130 ° C. has been studied, and the mouthpiece at a temperature as high as about 130 ° C. In order to suppress the deformation, it is necessary to carry out the thermal crystallization process of the mouthpiece part at a high temperature of about 180 ° C. at the surface temperature of the mouthpiece part. As the amount increases, irregular deformation such as an elliptical shape of the mouth tube portion becomes prominent, and problems such as appearance problems and poor sealing performance due to the cap occur.

ここで、楕円状になる等のいびつな変形を抑制するためには上記のコアを挿入して変形の態様を規制しながら熱処理する方法が有効ではあるが、レトルト処理用途向けにプリフォームの口筒部をコアを挿入した状態で180℃程度の高温で処理して、2軸延伸ブロー成形で壜体を製造、食品を充填、キャッピング後レトルト処理するような場合には口筒部の口径がかなり縮径変形し、シール機能が損なわれる等の問題が解決しない。   Here, in order to suppress the distorted deformation such as an elliptical shape, a method of performing heat treatment while inserting the above-mentioned core and restricting the deformation mode is effective. In the case where the cylinder part is processed at a high temperature of about 180 ° C. with the core inserted, and the casing is manufactured by biaxial stretch blow molding, the food is filled, and the retort process is performed after capping, the diameter of the cylinder part is Problems such as considerable diameter reduction and loss of sealing function cannot be solved.

そこで、本発明は、上記した従来技術における問題点を解消すべく創案されたもので、レトルト処理程度の高温処理における変形を抑制するための口筒部の熱結晶化処理方法の創出を技術的課題とし、もってレトルト処理程度の高温にも対応可能な高い耐熱性を有する口筒部を有するPET系樹脂製壜体を提供することを目的とする。   Therefore, the present invention was devised in order to solve the above-described problems in the prior art, and technically the creation of a thermal crystallization treatment method for the mouth tube portion for suppressing deformation in high-temperature treatment such as retort treatment. It is an object of the present invention to provide a PET resin casing having a mouth tube portion having high heat resistance that can cope with a high temperature as high as a retort treatment.

上記技術的課題を解決する第1の発明の手段は、
レトルト処理を必要とする食品向け用途に使用されるPET系樹脂製2軸延伸ブロー成形壜体用のプリフォームの口筒部を、所定温度で所定時間の熱結晶化処理し
この熱結晶化処理の直後に、内周面に対して0.02〜0.2mmの間隙を形成する外径を有した円柱状コアを挿入することを特徴とするプリフォーム口筒部の熱結晶化方法である。
The means of the first invention for solving the above technical problem is:
The mouthpiece part of the preform for the biaxially stretched blow molded casing made of PET resin used for food applications requiring retort treatment is subjected to thermal crystallization treatment at a predetermined temperature for a predetermined time ,
Immediately after the thermal crystallization treatment, a cylindrical core having an outer diameter that forms a gap of 0.02 to 0.2 mm with respect to the inner peripheral surface is inserted, and the heat of the preform mouthpiece portion is characterized. It is a crystallization method.

本願発明者らはレトルト処理向け用途に係るPET樹脂製壜体の改良検討をする中で、口筒部の表面温度が180℃程度の高温で口筒部を熱結晶化処理すると、結晶化による収縮量が大きいために、その結果冷却後においてコアによる規制により、いびつな変形は抑制されるものの、収縮変形が抑制され大きな歪みが内部に残留し、この残留歪みがレトルト処理時の高温状態で開放されて、大きな収縮が発生すること、そして、一方コアを挿入しないで自然に収縮させた場合には、口筒部がいびつな変形状態となるものの、残留歪みが小さく、レトルト処理による後収縮を抑制できることを見出し、上記発明に至った。   While the inventors of the present application are studying the improvement of a PET resin casing for use in retort processing, if the mouth tube portion is thermally crystallized at a high temperature of about 180 ° C., the crystallization is caused by crystallization. Since the amount of shrinkage is large, distorted deformation is suppressed by the regulation by the core after cooling as a result, but shrinkage deformation is suppressed and large strain remains inside, and this residual strain is in a high temperature state during retort processing. When opened, large shrinkage occurs. On the other hand, when it is naturally shrunk without inserting the core, the mouth tube part is deformed in an irregular shape, but the residual strain is small and the post-shrinkage by retort processing. Has been found to be able to be suppressed, and the present invention has been achieved.

上記第1の発明の方法により、所定温度で所定時間の熱結晶化処理においては、口筒部を自然収縮させることができ、残留歪みの発生を抑制することができると共に、この口筒部では熱結晶化処理直後においても冷却による後収縮により縮径が進行し、口筒部がコア外周面に外接するようになり、冷却後の形状は挿入したコアで規制されるので、いびつな形状のない、そして残留歪の小さい状態で熱結晶化された口筒部とすることができる。
この結果レトルト処理等の高温での厳しい条件下での殺菌処理等においても口筒部の変形を極く小さく抑制することが可能となる。
According to the method of the first invention, in the thermal crystallization process at a predetermined temperature for a predetermined time, the mouth tube portion can be naturally contracted, and the occurrence of residual strain can be suppressed. Immediately after the thermal crystallization treatment, the diameter shrinks due to post-shrinkage due to cooling, and the mouth tube part comes to circumscribe the outer peripheral surface of the core, and the shape after cooling is regulated by the inserted core. It is possible to obtain a mouth tube portion that is thermally crystallized with little residual strain.
As a result, deformation of the mouth tube portion can be suppressed to a very small level even in sterilization processing under severe conditions at high temperatures such as retort processing.

従来、PET系樹脂製壜体はレトルト向けの用途の使用は、特に口筒部の変形の問題で困難であったが、上記第1の発明の方法によりレトルト処理条件においても変形の小さい実用上問題のない口筒部を有する壜体を提供することができる。 Conventionally, it has been difficult to use a PET-based resin casing for retort due to the problem of deformation of the mouth tube portion. However, the method of the first invention is practically less deformed even under retort processing conditions. It is possible to provide a housing having a mouth tube portion without any problem.

間隙の大きさをどの程度小さくするかは、口筒部の口径が大きいほど、また熱結晶化処理温度が高温であるほど小口径とする等、試験等をしながら適宜に決めることができるが、その範囲は0.02mm〜0.2mmの範囲とするのが良い。   How much the size of the gap is to be reduced can be determined as appropriate while conducting a test or the like, such as increasing the diameter of the tube portion and decreasing the diameter as the temperature of the thermal crystallization treatment increases. The range is preferably 0.02 mm to 0.2 mm.

すなわち、この間隙が0.02mm未満の場合は、コアの挿入がスムーズに実施できなくなる。   That is, when the gap is less than 0.02 mm, the core cannot be smoothly inserted.

また、0.2mmを超える場合には、熱結晶化処理後の後収縮におけるコアによる変形規制の効果が十分でなくなり熱結晶化処理後のプリフォームの口筒部が楕円状等のいびつな形状となってしまう。   In addition, when the thickness exceeds 0.2 mm, the effect of the deformation restriction by the core in the post-shrinkage after the thermal crystallization treatment is not sufficient, and the mouth portion of the preform after the thermal crystallization treatment is an irregular shape such as an ellipse. End up.

第2の発明の方法は、第1の発明において、挿入したコアの温度を90〜130℃に温調すること、にある。 The method of 2nd invention exists in temperature-controlling the temperature of the inserted core to 90-130 degreeC in 1st invention .

第2の発明の方法により、90〜130℃の温度範囲は、PET系樹脂の軟化点以上の温度で、かつ熱結晶化が進行するためには低温である温度範囲であり、口筒部がコアに外接した状態で口筒部の内周面近傍を、結晶化の進行を抑えた状態でかつ軟化温度以上で比較的変形のしやすい軟化状態としておくことができ、コアによる変形規制効果が十分に発揮されると共に、後収縮による内部歪みの累積を抑制することができ、冷却固化状態における残留歪みをより効果的に抑制することが可能となる。 According to the method of the second invention , the temperature range of 90 to 130 ° C. is a temperature range above the softening point of the PET-based resin and a temperature range that is low for thermal crystallization to proceed. The vicinity of the inner peripheral surface of the mouth tube portion in a state of circumscribing the core can be in a softened state in which the progress of crystallization is suppressed and is relatively easy to deform above the softening temperature. While being fully exhibited, accumulation of internal strain due to post-shrinkage can be suppressed, and residual strain in the cooled and solidified state can be more effectively suppressed.

なお、本発明に使用するポリエチレンテレフタレート系樹脂としては、主としてPETが使用されるが、PET樹脂の本質が損なわれない限り、エチレンテレフタレート単位を主体として、他のポリエステル単位を含む共重合ポリエステルも使用できると共に、たとえば耐熱性を向上させるためにナイロン系樹脂、ポリエチレンテレナフタレート樹脂等の樹脂をブレンドして使用することもできる。共重合ポリエステル形成用の成分としては、たとえばイソフタル酸、ナフタレン2,6ジカルボン酸、アジピン酸等のジカルボン酸成分、プロピレングリコール、1,4ブタンジオール、テトラメチレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノール、ジエチレングリコール等のグリコール成分を挙げることができる。   As the polyethylene terephthalate resin used in the present invention, PET is mainly used. However, as long as the essence of the PET resin is not impaired, a copolymer polyester mainly containing ethylene terephthalate units and containing other polyester units is also used. In addition, for example, in order to improve heat resistance, a resin such as nylon resin and polyethylene terephthalate resin can be blended and used. Examples of the component for forming the copolyester include dicarboxylic acid components such as isophthalic acid, naphthalene 2,6 dicarboxylic acid, and adipic acid, propylene glycol, 1,4 butanediol, tetramethylene glycol, neopentyl glycol, cyclohexanedimethanol, Mention may be made of glycol components such as diethylene glycol.

さらには、本発明に記載されるPET系樹脂製壜体は、PET樹脂製壜体としての本質が損なわれない限り、たとえば耐熱性、ガスバリア性の向上のためにPET樹脂/ナイロン樹脂/PET樹脂のようにナイロン樹脂等の中間層を有したものであっても良い。
Further, the PET-based resin casing described in the present invention is not limited to PET resin / nylon resin / PET resin, for example, to improve heat resistance and gas barrier properties, as long as the essence as a PET resin casing is not impaired. It may have an intermediate layer such as nylon resin.

本発明は上記した構成であり、以下に示す効果を奏する。
第1の発明にあっては、口筒部を所定温度で所定時間の前記熱結晶化処理した直後に、内周面に対して0.02〜0.2mmの間隙を形成する外径を有した円柱状コアを挿入して形成することにより、レトルト処理条件においても変形の小さい実用上問題のない口筒部を有するPET系樹脂製壜体を提供することができる。
The present invention has the above-described configuration, and has the following effects.
In the first invention , immediately after the thermal crystallization treatment of the mouth tube portion at a predetermined temperature for a predetermined time, it has an outer diameter that forms a gap of 0.02 to 0.2 mm with respect to the inner peripheral surface. By inserting the formed cylindrical core, it is possible to provide a PET-based resin casing having a mouth tube portion that is small in deformation and has no practical problem even under retort processing conditions .

第2の発明にあっては、挿入したコアの温度を90〜130℃の範囲に温調することにより、よりゆがみのない、高い耐熱性を有した口筒部を有するPET系樹脂製壜体を提供することができる。
In the second invention , by adjusting the temperature of the inserted core in the range of 90 to 130 ° C., a PET-based resin casing having a mouth tube portion having higher heat resistance without distortion. Can be provided.

以下本発明の実施の形態を説明する。
図1は本発明のプリフォーム1口筒部2熱結晶化方法における装置の一例を示す説明図である。射出成形したプリフォーム1をホルダー4に挿入し、ネックリング3を含めた口筒部2を赤外線ヒータ5で加熱して熱結晶化処理を行なう。この際加熱を周方向に亘って均一にするためにホルダー4を回転させながら加熱を実施する。このようにして口筒部2を熱結晶化したプリフォーム1を用いて二軸延伸ブロー成形してPET系樹脂製壜体を得る。
Embodiments of the present invention will be described below.
Figure 1 is an explanatory diagram showing an example of a device in the thermal crystallization method of the preform 1-necked cylindrical portion 2 of the present invention. The injection-molded preform 1 is inserted into a holder 4, and the mouth tube portion 2 including the neck ring 3 is heated by an infrared heater 5 to perform a thermal crystallization process. At this time, heating is performed while rotating the holder 4 in order to make the heating uniform in the circumferential direction. Biaxial stretch blow molding is performed using the preform 1 in which the mouth tube portion 2 is thermally crystallized in this manner to obtain a PET-based resin casing.

上記、熱結晶化処理の条件は一般に150〜220℃の温度で、1〜3分間行うが、この条件は壜体1に要求される耐熱性(殺菌処理温度等)等を考慮して選択され、要求される耐熱性が高いほど加熱温度を高くする必要がある。たとえば一般的な果汁飲料等では80〜90℃の温度で高温充填されるが、熱処理条件は口筒部の表面温度で150℃、2分程度であり、レトルト食品向けの場合には口筒部の表面温度で180℃、2分程度の処理が必要となる。   The above-mentioned conditions for the thermal crystallization treatment are generally performed at a temperature of 150 to 220 ° C. for 1 to 3 minutes, and these conditions are selected in consideration of the heat resistance (such as the sterilization treatment temperature) required for the casing 1. The higher the required heat resistance, the higher the heating temperature must be. For example, in general fruit juice beverages and the like, high temperature filling is performed at a temperature of 80 to 90 ° C., but the heat treatment condition is 150 ° C. for about 2 minutes at the surface temperature of the mouth tube portion. At a surface temperature of about 180 ° C. for about 2 minutes.

所定温度で所定時間の熱結晶化処理はコア6を挿入しないで実施するので、赤外線ヒータ5による加熱により熱結晶化が進行すると、結晶化に伴なう体積収縮で口筒部が規制のない自由な状態で収縮する。   Since the thermal crystallization treatment at a predetermined temperature for a predetermined time is performed without inserting the core 6, when thermal crystallization proceeds by heating with the infrared heater 5, there is no restriction on the mouthpiece due to volume shrinkage accompanying crystallization. Shrink in a free state.

図2は本発明の熱結晶化方法を示す説明図であり、プリフォーム1の口筒部2にコア6を挿入した状態を示す。(a)は所定温度で所定時間の熱結晶化処理直後にコア6を挿入した状態、(b)は挿入後、冷却による後収縮により口筒部2が縮径してコア6に外接した状態を示す説明図である。(a)の状態では口筒部2内周面とコア6の外周面の間に間隙tが形成するようにしている。ここでコア6の温度は、高温の口筒部2に内接した状態においても、その温度が90〜130℃の範囲になるように冷却して調整しておく。 FIG. 2 is an explanatory view showing the thermal crystallization method of the present invention , and shows a state where the core 6 is inserted into the mouth tube portion 2 of the preform 1. (A) is a state in which the core 6 is inserted immediately after the thermal crystallization treatment at a predetermined temperature for a predetermined time, and (b) is a state in which the diameter of the mouth tube portion 2 is reduced by post-contraction due to cooling and circumscribed to the core 6 after insertion. It is explanatory drawing which shows. In the state (a), a gap t is formed between the inner peripheral surface of the mouth tube portion 2 and the outer peripheral surface of the core 6. Here, the temperature of the core 6 is cooled and adjusted so that the temperature is in the range of 90 to 130 ° C. even in the state inscribed in the high-temperature mouth tube portion 2.

図2(a)の状態で、間隙tをその範囲も含めてどの程度とするかは、口筒部2口径、熱結晶化処理温度等の条件を考慮し決める。具体的には予備的な試験をして、プリフォーム間によるバラツキ、1ケのプリフォームの口筒部内径の場所によるばらつき、熱結晶化処理による熱収縮量のバラツキ等も評価して、コア6の外径を決めることにより、0.02mm〜0.2mmの範囲内で適宜決めることができる。   In the state of FIG. 2A, the extent of the gap t including the range is determined in consideration of conditions such as the diameter of the mouthpiece 2 and the temperature of the thermal crystallization treatment. Specifically, a preliminary test was conducted to evaluate variations between preforms, variations due to the location of the inner diameter of a single preform, and variations in heat shrinkage due to thermal crystallization treatment. By determining the outer diameter of 6, it can be appropriately determined within the range of 0.02 mm to 0.2 mm.

実施例
射出成形により、PET樹脂製であり口筒部2の呼び径が28mmのプリフォーム1を成形し、このプリフォーム1を図1の装置で、口筒部の表面温度180℃で2分間熱結晶化処理を実施し、この処理の直後、間隙tが0.04〜0.15mmになるような外径のコア6を、その温度が100〜120℃になるように制御しながら口筒部2に挿入して冷却した。そして上記条件で口筒部2を熱結晶化処理したプリフォーム1を常法により二軸延伸ブロー成形して内容量500mlの実施例の壜体を得た。なお、本実施例において口筒部2の密度は1.398g/cmであった。
Example A preform 1 made of PET resin and having a nominal diameter of 28 mm was formed by injection molding, and this preform 1 was formed with the apparatus shown in FIG. 1 at a surface temperature of the mouthpiece of 180 ° C. for 2 minutes. A thermal crystallization process is performed, and immediately after this process, the outer diameter core 6 having a gap t of 0.04 to 0.15 mm is controlled while the temperature is controlled to be 100 to 120 ° C. Inserted into part 2 and cooled. Then, the preform 1 in which the mouth tube part 2 was thermally crystallized under the above conditions was biaxially stretched and blow molded by a conventional method to obtain a casing of an example having an internal volume of 500 ml. In the present example, the density of the mouthpiece portion 2 was 1.398 g / cm 3 .

比較例
実施例と同じプリフォーム1を用い、コア6をプリフォーム1の口筒部2に摺動状態で挿入後、実施例と同条件で熱結晶化処理を実施した。そしてこのプリフォーム1を常法により二軸延伸ブロー成形して内容量500mlの比較例の壜体を得た。なお、本比較例において口筒部2の密度は1.384g/cmであった。
Comparative Example Using the same preform 1 as in the example, the core 6 was inserted into the mouth tube part 2 of the preform 1 in a sliding state, and then thermal crystallization treatment was performed under the same conditions as in the example. The preform 1 was biaxially stretched and blow molded by a conventional method to obtain a comparative casing having an internal volume of 500 ml. In this comparative example, the density of the mouthpiece portion 2 was 1.384 g / cm 3 .

上記実施例と比較例の壜体に水を充填し、124℃、20分の条件で加圧水によるレトルト処理を実施し、その後室温でのレトルト処理前後における口径(内径と外径)の変化を測定した。   The casings of the above examples and comparative examples are filled with water, subjected to retort treatment with pressurized water under conditions of 124 ° C. for 20 minutes, and then the change in the diameter (inner diameter and outer diameter) before and after the retort treatment at room temperature is measured. did.

実施例において口筒部2の外径変化は−0.14mm、内径変化は−0.18mmであった。また比較例において口筒部2の外径変化は−0.41mm、内径変化は−0.42mmであった。ここで試験本数は各5本で、上記値は平均値でありマイナスは縮径していることを示す。   In the examples, the outer diameter change of the mouth tube portion 2 was −0.14 mm, and the inner diameter change was −0.18 mm. In the comparative example, the change in the outer diameter of the mouth tube portion 2 was -0.41 mm, and the change in the inner diameter was -0.42 mm. Here, the number of test pieces is 5, and the above values are average values, and minus indicates that the diameter is reduced.

上記結果からわかるように、レトルト処理により口径はいずれの場合も縮径しているが、実施例の壜体は、比較例の壜体に比較してその程度が略1/2〜1/3程度の大きさに抑制されており、キャップの螺合および螺脱性、シール性等実用的に全く問題のない範囲の変形(縮径)であった。一方比較例の壜体は、レトルト処理後キャップによるシール性に問題があるものとなった。   As can be seen from the above results, the diameter of the caliber is reduced in any case by the retort treatment, but the degree of the case of the example is about 1/2 to 1/3 compared to the case of the comparative example. The deformation (reduction in diameter) was within a range where there was no practical problem such as screwing and unscrewing of the cap and sealability. On the other hand, the casing of the comparative example has a problem in sealing performance by the cap after retort processing.

以上説明したように本発明のプリフォーム口筒部の熱結晶化方法はレトルト殺菌処理程度の高温の処理においても口筒部の変形を小さく抑えることができ、レトルト食品向け用途等に幅広い用途展開が期待される。 As described above, the thermal crystallization method of the preform mouthpiece part of the present invention can suppress the deformation of the mouthpiece part even in high-temperature processing such as retort sterilization treatment, and can be used in a wide range of applications such as for retort foods. There is expected.

プリフォーム口筒部の熱結晶化処理のための装置の一例を示す説明図である。It is explanatory drawing which shows an example of the apparatus for the thermal crystallization process of a preform mouthpiece part. 本発明の熱結晶化処理におけるプリフォームの口筒部へのコアの挿入状態を示し、(a)は所定温度で所定時間の熱結晶化処理した直後コアを挿入した状態、(b)は口筒部が後収縮してコアに外接した状態を示す説明図である。FIG. 2 shows a state of inserting a core into a mouthpiece portion of a preform in the thermal crystallization process of the present invention, (a) shows a state in which a core is inserted immediately after thermal crystallization treatment at a predetermined temperature for a predetermined time, and (b) shows a mouth. It is explanatory drawing which shows the state which the cylinder part shrunk | retracted and circumscribed the core.

1 ;プリフォーム
2 ;口筒部
3 ;ネックリング
4 ;ホルダー
5 ;赤外線ヒータ
6 ;コア
t ;間隙
DESCRIPTION OF SYMBOLS 1; Preform 2; Mouth part 3; Neck ring 4; Holder 5; Infrared heater 6; Core t;

Claims (2)

レトルト処理を必要とする食品向け用途に使用されるポリエチレンテレフタレート系樹脂製2軸延伸ブロー成形壜体用のプリフォームの口筒部を、所定温度で所定時間熱結晶化処理し
該熱結晶化処理の直後に、内周面に対して0.02〜0.2mmの間隙を形成する外径を有した円柱状コアを挿入することを特徴とするプリフォーム口筒部の熱結晶化方法。
Mouth tube portion of the preform for polyethylene terephthalate-based resin biaxial stretch blow molding the bottle to be used in food for applications requiring retort treatment, was treated predetermined time during thermal crystallization at a given temperature,
Immediately after the thermal crystallization treatment, a cylindrical core having an outer diameter that forms a gap of 0.02 to 0.2 mm with respect to the inner peripheral surface is inserted, and the heat of the preform mouth tube portion is characterized. Crystallization method.
挿入したコアの温度を90〜130℃に温調することを特徴とする請求項記載のプリフォーム口筒部の熱結晶化方法。
Preform mouth cylindrical portion thermal crystallization method according to claim 1, characterized in that the temperature control the temperature of the inserted core 90 to 130 ° C..
JP2004107254A 2004-03-31 2004-03-31 Method for thermal crystallization of preform mouthpiece Expired - Fee Related JP4491815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004107254A JP4491815B2 (en) 2004-03-31 2004-03-31 Method for thermal crystallization of preform mouthpiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004107254A JP4491815B2 (en) 2004-03-31 2004-03-31 Method for thermal crystallization of preform mouthpiece

Publications (2)

Publication Number Publication Date
JP2005289447A JP2005289447A (en) 2005-10-20
JP4491815B2 true JP4491815B2 (en) 2010-06-30

Family

ID=35322856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004107254A Expired - Fee Related JP4491815B2 (en) 2004-03-31 2004-03-31 Method for thermal crystallization of preform mouthpiece

Country Status (1)

Country Link
JP (1) JP4491815B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11254515A (en) * 1998-03-11 1999-09-21 Toppan Printing Co Ltd Method for molding plastic bottle
JP2001150522A (en) * 1999-11-26 2001-06-05 Toyo Seikan Kaisha Ltd Polyester container and method of manufacturing the same
JP2003341644A (en) * 2002-05-20 2003-12-03 Dainippon Printing Co Ltd Method for machining plug inserting tool, and plug crystallizing method using the tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11254515A (en) * 1998-03-11 1999-09-21 Toppan Printing Co Ltd Method for molding plastic bottle
JP2001150522A (en) * 1999-11-26 2001-06-05 Toyo Seikan Kaisha Ltd Polyester container and method of manufacturing the same
JP2003341644A (en) * 2002-05-20 2003-12-03 Dainippon Printing Co Ltd Method for machining plug inserting tool, and plug crystallizing method using the tool

Also Published As

Publication number Publication date
JP2005289447A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
EP0066982B1 (en) Method of strengthening the neck portion of a bottle-shaped container of biaxially-oriented polyethylene terephthalate resin
AU629216B2 (en) Method of blow-molding a biaxially oriented polyethylene terephthalate resin bottle-shaped container
CA2769873C (en) Synthetic resin bottle and process for manufacturing the same
US5445784A (en) Method of blow-molding biaxially-oriented polyethylene terephthalate resin bottle-shaped container
JP4491815B2 (en) Method for thermal crystallization of preform mouthpiece
JP4525922B2 (en) Polyester resin container and molding method thereof
JP4780443B2 (en) Flat container two-stage blow molding
JPS6124170B2 (en)
JP4019308B2 (en) Biaxial stretch blow molding method
JP3356035B2 (en) Biaxially stretch blow molded bottle and method for producing the same
WO2005115724A1 (en) Method of thermal crystallization treatment for cylindrical mouthpart of preform
JPH0767732B2 (en) Biaxial stretch blow molding method
JP2777790B2 (en) Biaxial stretch blow molding method
JPH0622860B2 (en) Biaxial stretching blow molding method
JP3986667B2 (en) Polyethylene terephthalate resin bottle manufacturing method
EP0109464B1 (en) Method of strengthening neck portion of bottle-shaped container of polyethylene terephthalate resin
JP2002145238A (en) Heat-resistant pet bottle and its production method
JPH1044226A (en) Method for crystallization of bung hole part
JP2963904B2 (en) Biaxial stretch blow molding method
JP4552693B2 (en) Core member for heat treatment of synthetic resin molded products
JP2004074614A (en) Method for thermally crystallizing mouth neck of molded product of biaxially oriented blow-molded bottle, and jig used in the method
JPS58185227A (en) Manufacture of stretched polyester bottle
JP4121778B2 (en) A processing method of a plug insertion jig and a plug crystallization method using the plug insertion jig.
JP2004131174A (en) Mouth cylindrical part for synthetic resin-made bottle body
JPS6255485B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100224

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100326

R150 Certificate of patent or registration of utility model

Ref document number: 4491815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees