JP2005289447A - Bottle body made of polyethylene terephthalate resin and method for heat-treating opening cylindrical part of preform - Google Patents

Bottle body made of polyethylene terephthalate resin and method for heat-treating opening cylindrical part of preform Download PDF

Info

Publication number
JP2005289447A
JP2005289447A JP2004107254A JP2004107254A JP2005289447A JP 2005289447 A JP2005289447 A JP 2005289447A JP 2004107254 A JP2004107254 A JP 2004107254A JP 2004107254 A JP2004107254 A JP 2004107254A JP 2005289447 A JP2005289447 A JP 2005289447A
Authority
JP
Japan
Prior art keywords
preform
temperature
core
polyethylene terephthalate
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004107254A
Other languages
Japanese (ja)
Other versions
JP4491815B2 (en
Inventor
Yukio Koshidaka
幸夫 腰高
Kazuhiko Shimizu
一彦 清水
Toshimasa Tanaka
敏正 田中
Takao Iizuka
高雄 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshino Kogyosho Co Ltd
Original Assignee
Yoshino Kogyosho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshino Kogyosho Co Ltd filed Critical Yoshino Kogyosho Co Ltd
Priority to JP2004107254A priority Critical patent/JP4491815B2/en
Publication of JP2005289447A publication Critical patent/JP2005289447A/en
Application granted granted Critical
Publication of JP4491815B2 publication Critical patent/JP4491815B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bottle body made of a polyethylene terephthalate (PET) resin having an opening cylindrical part with a high heat resistance capable of corresponding to a high temperature to the extent of retort treatment by solving a technical problem that a method for heat crystallization treatment of the opening cylindrical part is to be created to suppress deformation at a high temperature treatment to the extent of the retort treatment. <P>SOLUTION: A preform formed by inserting a cylindrical core having an outer diameter forming a gap of 0.02-0.2 mm to the inner peripheral face immediately after the heat crystallization treatment at a prescribed temperature for a prescribed time, is used to prepare the bottle body made of the PET resin by biaxially oriented blow molding. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、口筒部を熱結晶化処理したポリエチレンテレフタレート(以下PETと記す)系樹脂製の2次延伸ブロー成形壜体、およびプリフォーム口筒部の熱結晶化方法に関するものである。   The present invention relates to a secondary stretch blow-molded casing made of polyethylene terephthalate (hereinafter referred to as PET) -based resin in which a mouthpiece portion is subjected to thermal crystallization treatment, and a method for thermal crystallization of a preform mouthpiece portion.

特許文献1には、高温での充填、あるいは殺菌等の熱処理工程を要する製品、たとえばお茶、果汁飲料用等に使用されるPET樹脂製2軸延伸ブロー成形壜体についての記載がある。このようにお茶、果汁飲料等のように高温(80〜90℃程度)での充填あるいは熱処理工程のある製品向けのPET樹脂製壜体では熱結晶化処理により耐熱変形性が改良された所謂耐熱口筒部が使用される。   Patent Document 1 describes a PET resin biaxially stretched blow molded casing used for products requiring heat treatment such as filling at high temperature or sterilization, such as tea and fruit juice beverages. Thus, in a PET resin casing for products with a high temperature (about 80 to 90 ° C.) or heat treatment process such as tea and fruit juice beverages, the so-called heat resistance is improved by heat crystallization treatment. A mouth tube is used.

そして、特許文献2には口筒部に収縮を規制するためのコアを挿入し、熱結晶化処理をして、口筒部の寸法精度を高くするための方法についての記載がある。
特開平10−058527号公報 特公昭61−24170
Patent Document 2 describes a method for increasing the dimensional accuracy of the tube portion by inserting a core for restricting shrinkage into the tube portion and performing a thermal crystallization process.
Japanese Patent Laid-Open No. 10-058527 Shoko 61-24170

近年においては上記PET樹脂製壜体は、130℃程度での高温殺菌処理を要するレトルト食品向けへも使用が検討されるようになってきており、130℃程度にも至る高温での口筒部の変形を抑制するためには、口筒部の熱結晶化処理を口筒部の表面温度で180℃程度の高温で実施する必要があるが、このような高温での処理では結晶化による収縮量が大きくなると共に、口筒部が楕円状になる等のいびつな変形も顕著になり、外観上の問題、キャップによる密封性が不良になる等の問題が発生する。   In recent years, the use of the PET resin casing for retort foods requiring high-temperature sterilization at about 130 ° C. has been studied, and the mouthpiece at a temperature as high as about 130 ° C. In order to suppress the deformation, it is necessary to carry out the thermal crystallization process of the mouthpiece part at a high temperature of about 180 ° C. at the surface temperature of the mouthpiece part. As the amount increases, irregular deformation such as an elliptical shape of the mouth tube portion becomes prominent, and problems such as appearance problems and poor sealing performance due to the cap occur.

ここで、楕円状になる等のいびつな変形を抑制するためには上記のコアを挿入して変形の態様を規制しながら熱処理する方法が有効ではあるが、レトルト処理用途向けにプリフォームの口筒部をコアを挿入した状態で180℃程度の高温で処理して、2軸延伸ブロー成形で壜体を製造、食品を充填、キャッピング後レトルト処理するような場合には口筒部の口径がかなり縮径変形し、シール機能が損なわれる等の問題が解決しない。   Here, in order to suppress the distorted deformation such as an elliptical shape, a method of performing heat treatment while inserting the above-mentioned core and restricting the deformation mode is effective. In the case where the cylinder part is processed at a high temperature of about 180 ° C. with the core inserted, and the casing is manufactured by biaxial stretch blow molding, the food is filled, and the retort process is performed after capping, the diameter of the cylinder part is Problems such as considerable diameter reduction and loss of sealing function cannot be solved.

そこで、本発明は、上記した従来技術における問題点を解消すべく創案されたもので、レトルト処理程度の高温処理における変形を抑制するための口筒部の熱結晶化処理方法の創出を技術的課題とし、もってレトルト処理程度の高温にも対応可能な高い耐熱性を有する口筒部を有するPET系樹脂製壜体を提供することを目的とする。   Therefore, the present invention was devised in order to solve the above-described problems in the prior art, and technically the creation of a thermal crystallization treatment method for the mouth tube portion for suppressing deformation in high-temperature treatment such as retort treatment. It is an object of the present invention to provide a PET resin casing having a mouth tube portion having high heat resistance that can cope with a high temperature as high as a retort treatment.

上記技術的課題を解決する請求項1記載の発明の手段は、
熱結晶化処理した口筒部を有するプリフォームを用いて、2軸延伸ブロー成形してなるPET系樹脂製壜体にあって、
口筒部が、所定温度で所定時間の前記熱結晶化処理した直後に、内周面に対して0.02〜0.2mmの間隙を形成する外径を有した円柱状コアを挿入して形成されたこと、にある。
The means of the invention according to claim 1 for solving the technical problem is as follows:
In a PET-based resin casing formed by biaxial stretch blow molding using a preform having a mouth portion subjected to thermal crystallization treatment,
Immediately after the mouth tube portion is subjected to the thermal crystallization treatment at a predetermined temperature for a predetermined time, a cylindrical core having an outer diameter that forms a gap of 0.02 to 0.2 mm with respect to the inner peripheral surface is inserted. It has been formed.

本願発明者らはレトルト処理向け用途に係るPET樹脂製壜体の改良検討をする中で、口筒部の表面温度が180℃程度の高温で口筒部を熱結晶化処理すると、結晶化による収縮量が大きいために、その結果冷却後においてコアによる規制により、いびつな変形は抑制されるものの、収縮変形が抑制され大きな歪みが内部に残留し、この残留歪みがレトルト処理時の高温状態で開放されて、大きな収縮が発生すること、そして、一方コアを挿入しないで自然に収縮させた場合には、口筒部がいびつな変形状態となるものの、残留歪みが小さく、レトルト処理による後収縮を抑制できることを見出し、上記発明に至った。   While the inventors of the present application are studying the improvement of a PET resin casing for use in retort processing, if the mouth tube portion is thermally crystallized at a high temperature of about 180 ° C., the crystallization is caused by crystallization. Since the amount of shrinkage is large, distorted deformation is suppressed by the regulation by the core after cooling as a result, but shrinkage deformation is suppressed and large strain remains inside, and this residual strain is in a high temperature state during retort processing. When opened, large shrinkage occurs. On the other hand, when the core is naturally shrunk without inserting the core, the mouth tube part is deformed in an irregular shape, but the residual strain is small, and the post-shrinkage by retort processing Has been found to be able to be suppressed, and the present invention has been achieved.

請求項1記載の構成により、所定温度で所定時間の熱結晶化処理においては、口筒部を自然収縮させることができ、残留歪みの発生を抑制することができると共に、この口筒部では熱結晶化処理直後においても冷却による後収縮により縮径が進行し、口筒部がコア外周面に外接するようになり、冷却後の形状は挿入したコアで規制されるので、いびつな形状のない、そして残留歪の小さい状態で熱結晶化された口筒部とすることができる。この結果レトルト処理等の高温での厳しい条件下での殺菌処理等においても口筒部の変形を極く小さく抑制することが可能となる。   According to the configuration of the first aspect, in the thermal crystallization process at a predetermined temperature for a predetermined time, the mouth tube portion can be naturally contracted, the occurrence of residual strain can be suppressed, and the heat can be generated in the mouth tube portion. Immediately after the crystallization treatment, the diameter is reduced by post-shrinkage due to cooling, and the mouth tube part comes to circumscribe the core outer peripheral surface, and the shape after cooling is regulated by the inserted core, so there is no distorted shape. And it can be set as the mouth tube part thermally crystallized in the state with a small residual strain. As a result, deformation of the mouth tube portion can be suppressed to a very small level even in sterilization processing under severe conditions at high temperatures such as retort processing.

間隙の大きさをどの程度小さくするかは、口筒部の口径が大きいほど、また熱結晶化処理温度が高温であるほど小口径とする等、試験等をしながら適宜に決めることができるが、その範囲は0.02mm〜0.2mmの範囲とするのが良い。   How much the size of the gap is to be reduced can be determined as appropriate while conducting a test or the like, such as increasing the diameter of the tube portion and decreasing the diameter as the temperature of the thermal crystallization treatment increases. The range is preferably 0.02 mm to 0.2 mm.

すなわち、この間隙が0.02mm未満の場合は、コアの挿入がスムーズに実施できなくなる。   That is, when the gap is less than 0.02 mm, the core cannot be smoothly inserted.

また、0.2mmを超える場合には、熱結晶化処理後の後収縮におけるコアによる変形規制の効果が十分でなくなり熱結晶化処理後のプリフォームの口筒部が楕円状等のいびつな形状となってしまう。   In addition, when the thickness exceeds 0.2 mm, the effect of the deformation restriction by the core in the post-shrinkage after the thermal crystallization treatment is not sufficient, and the mouth portion of the preform after the thermal crystallization treatment is an irregular shape such as an ellipse. End up.

請求項2記載の発明の手段は、請求項1記載の発明において、挿入したコアの温度を90〜130℃に温調すること、にある。   According to a second aspect of the present invention, in the first aspect of the invention, the temperature of the inserted core is adjusted to 90 to 130 ° C.

請求項2記載の上記構成により、90〜130℃の温度範囲は、PET系樹脂の軟化点以上の温度で、かつ熱結晶化が進行するためには低温である温度範囲であり、口筒部がコアに外接した状態で口筒部の内周面近傍を、結晶化の進行を抑えた状態でかつ軟化温度以上で比較的変形のしやすい軟化状態としておくことができ、コアによる変形規制効果が十分に発揮されると共に、後収縮による内部歪みの累積を抑制することができ、冷却固化状態における残留歪みをより効果的に抑制することが可能となる。   According to the configuration of claim 2, the temperature range of 90 to 130 ° C. is a temperature range above the softening point of the PET-based resin and a temperature range that is low for thermal crystallization to proceed, and the mouthpiece portion With the core circumscribing the core, the vicinity of the inner peripheral surface of the mouth tube portion can be kept in a softened state in which the progress of crystallization is suppressed and is relatively easy to deform above the softening temperature. Can be sufficiently exerted, accumulation of internal strain due to post-shrinkage can be suppressed, and residual strain in the cooled and solidified state can be more effectively suppressed.

請求項3記載の発明の手段は、請求項1または2記載の発明において、レトルト処理を必要とする食品向け用途に使用されること、にある。   The means of the invention described in claim 3 resides in that the invention according to claim 1 or 2 is used for food applications that require retort treatment.

従来、PET系樹脂製壜体はレトルト向けの用途の使用は、特に口筒部の変形の問題で困難であったが、請求項3記載の構成によりレトルト処理条件においても変形の小さい実用上問題のない口筒部を有する壜体を提供することができる。   Conventionally, it has been difficult to use a PET-based resin casing for retort due to the problem of deformation of the mouth tube portion. However, the structure according to claim 3 has a practical problem that the deformation is small even under retort processing conditions. It is possible to provide a housing having a mouth tube portion without any gap.

なお、本発明に使用するポリエチレンテレフタレート系樹脂としては、主としてPETが使用されるが、PET樹脂の本質が損なわれない限り、エチレンテレフタレート単位を主体として、他のポリエステル単位を含む共重合ポリエステルも使用できると共に、たとえば耐熱性を向上させるためにナイロン系樹脂、ポリエチレンテレナフタレート樹脂等の樹脂をブレンドして使用することもできる。共重合ポリエステル形成用の成分としては、たとえばイソフタル酸、ナフタレン2,6ジカルボン酸、アジピン酸等のジカルボン酸成分、プロピレングリコール、1,4ブタンジオール、テトラメチレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノール、ジエチレングリコール等のグリコール成分を挙げることができる。   As the polyethylene terephthalate resin used in the present invention, PET is mainly used. However, as long as the essence of the PET resin is not impaired, a copolymer polyester mainly containing ethylene terephthalate units and containing other polyester units is also used. In addition, for example, in order to improve heat resistance, a resin such as nylon resin and polyethylene terephthalate resin can be blended and used. Examples of the component for forming the copolyester include dicarboxylic acid components such as isophthalic acid, naphthalene 2,6 dicarboxylic acid, and adipic acid, propylene glycol, 1,4 butanediol, tetramethylene glycol, neopentyl glycol, cyclohexanedimethanol, Mention may be made of glycol components such as diethylene glycol.

さらには、本発明のPET系樹脂製壜体は、PET樹脂製壜体としての本質が損なわれない限り、たとえば耐熱性、ガスバリア性の向上のためにPET樹脂/ナイロン樹脂/PET樹脂のようにナイロン樹脂等の中間層を有したものであっても良い。   Furthermore, as long as the essence as a PET resin casing is not impaired, the PET resin casing of the present invention is, for example, PET resin / nylon resin / PET resin for improving heat resistance and gas barrier properties. It may have an intermediate layer such as nylon resin.

請求項4記載の発明の方法は、PET系樹脂製プリフォームの口筒部を、所定温度で所定時間の熱結晶化処理した直後に、内周面に対して0.02〜0.2mmの間隙を形成する外径を有した円柱状コアを挿入することを特徴とするプリフォーム口筒部の熱結晶化方法である。   The method of the invention of claim 4 is characterized in that immediately after the mouth portion of the PET resin preform is subjected to thermal crystallization treatment at a predetermined temperature for a predetermined time, the inner peripheral surface is 0.02 to 0.2 mm. A method of thermal crystallization of a preform mouth tube portion, wherein a cylindrical core having an outer diameter forming a gap is inserted.

請求項4記載の上記方法により、所定温度で所定時間の熱結晶化処理においては、口筒部を自然収縮させることができ、残留歪みの発生を抑制することができると共に、この口筒部では熱結晶化処理直後においても冷却による後収縮により縮径が進行し、口筒部がコア外周面に外接するようになり、冷却後の形状は挿入したコアで規制されるので、いびつな形状のない、そして残留歪の小さい状態で熱結晶化された口筒部とすることができる。   According to the method of claim 4, in the thermal crystallization process at a predetermined temperature for a predetermined time, the mouth tube portion can be naturally contracted, and the occurrence of residual strain can be suppressed. Immediately after the thermal crystallization treatment, the diameter shrinks due to post-shrinkage due to cooling, and the mouth tube part comes to circumscribe the outer peripheral surface of the core, and the shape after cooling is regulated by the inserted core. There can be a mouth tube portion that is thermally crystallized with little residual strain.

間隙の大きさをどの程度小さくするかは、口筒部の口径が大きいほど、また熱結晶化処理温度が高温であるほど小口径とする等、試験等をしながら適宜に決めることができるが、その範囲は0.02mm〜0.2mmの範囲とするのが良い。   How much the size of the gap is to be reduced can be determined as appropriate while conducting a test or the like, such as increasing the diameter of the tube portion and decreasing the diameter as the temperature of the thermal crystallization treatment increases. The range is preferably 0.02 mm to 0.2 mm.

すなわち、この間隙が0.02mm未満の場合は、コアの挿入がスムーズに実施できなくなる。   That is, when the gap is less than 0.02 mm, the core cannot be smoothly inserted.

また、0.2mmを超える場合には、熱結晶化処理後の後収縮におけるコアによる変形規制の効果が十分でなくなり熱結晶化処理後のプリフォームの口筒部が楕円状等のいびつな形状となってしまう。   In addition, when the thickness exceeds 0.2 mm, the effect of the deformation restriction by the core in the post-shrinkage after the thermal crystallization treatment is not sufficient, and the mouth portion of the preform after the thermal crystallization treatment is an irregular shape such as an ellipse. End up.

請求項5記載の発明の方法は、請求項4記載の発明において、挿入したコアの温度を90〜130℃に温調すること、にある。   According to a fifth aspect of the present invention, there is provided the method according to the fourth aspect, wherein the temperature of the inserted core is adjusted to 90 to 130 ° C.

請求項5記載の上記方法により、90〜130℃の温度範囲は、PET系樹脂の軟化点以上の温度で、かつ熱結晶化が進行するためには低温である温度範囲であり、口筒部がコアに外接した状態で口筒部の内周面近傍を、結晶化の進行を抑えた状態でかつ軟化温度以上で比較的変形のしやすい軟化状態としておくことができ、コアによる変形規制効果が十分に発揮されると共に、後収縮による内部歪みの累積を抑制することができ、冷却固化状態における残留歪みをより効果的に抑制することが可能となる。   According to the method of claim 5, the temperature range of 90 to 130 ° C. is a temperature range above the softening point of the PET-based resin and a temperature range that is low for thermal crystallization to proceed, and the mouthpiece portion With the core circumscribing the core, the vicinity of the inner peripheral surface of the mouth tube portion can be kept in a softened state in which the progress of crystallization is suppressed and is relatively easy to deform above the softening temperature. Can be sufficiently exerted, accumulation of internal strain due to post-shrinkage can be suppressed, and residual strain in the cooled and solidified state can be more effectively suppressed.

本発明は上記した構成であり、以下に示す効果を奏する。
請求項1記載の発明にあっては、口筒部を所定温度で所定時間の前記熱結晶化処理した直後に、内周面に対して0.02〜0.2mmの間隙を形成する外径を有した円柱状コアを挿入して形成することにより、従来にない耐熱性を有した口筒部を有するPET系樹脂製壜体を提供することができる。
The present invention has the above-described configuration, and has the following effects.
In the first aspect of the invention, an outer diameter that forms a gap of 0.02 to 0.2 mm with respect to the inner peripheral surface immediately after the thermal crystallization treatment of the mouth tube portion at a predetermined temperature for a predetermined time. By inserting and forming the cylindrical core which has this, the PET-type resin housing which has the mouth tube part which has heat resistance which is not in the past can be provided.

請求項2記載の発明にあっては、挿入したコアの温度を90〜130℃の範囲に温調することにより、よりゆがみのない、高い耐熱性を有した口筒部を有するPET系樹脂製壜体を提供することができる。   In the invention according to claim 2, the temperature of the inserted core is adjusted to the range of 90 to 130 ° C., thereby making the product made of a PET resin having a mouth tube portion having high heat resistance without distortion. A housing can be provided.

請求項3記載の発明にあっては、レトルト処理条件においても変形の小さい実用上問題のない口筒部を有する壜体を提供することができる。   In the invention according to claim 3, it is possible to provide a casing having a mouth tube portion which is small in deformation and has no practical problem even under retort processing conditions.

請求項4記載の発明にあっては、所定温度で所定時間の熱結晶化処理した直後に、内周面に対して0.02〜0.2mmの間隙を形成する外径を有した円柱状コアを挿入する方法により、従来にない耐熱性を有した口筒部を有するPET系樹脂製プリフォームを提供することができる。   In the invention according to claim 4, a cylindrical shape having an outer diameter that forms a gap of 0.02 to 0.2 mm with respect to the inner peripheral surface immediately after the thermal crystallization treatment at a predetermined temperature for a predetermined time. By the method of inserting the core, it is possible to provide a PET resin preform having a mouth tube portion having unprecedented heat resistance.

請求項5記載の発明にあっては、挿入したコアの温度を90〜130℃の範囲に温調することにより、よりゆがみのない、高い耐熱性を有した口筒部を有するPET系樹脂製プリフォームを提供することができる。   In the invention according to claim 5, the temperature of the inserted core is controlled in the range of 90 to 130 ° C., so that it is made of a PET resin having a mouth tube portion having high heat resistance without distortion. A preform can be provided.

以下本発明の実施の形態を説明する。
図1は本発明のPET系樹脂製壜体を得るために、プリフォーム1における口筒部2を熱結晶化するための装置の一例を示す説明図である。射出成形したプリフォーム1をホルダー4に挿入し、ネックリング3を含めた口筒部2を赤外線ヒータ5で加熱して熱結晶化処理を行なう。この際加熱を周方向に亘って均一にするためにホルダー4を回転させながら加熱を実施する。このようにして口筒部2を熱結晶化したプリフォーム1を用いて二軸延伸ブロー成形してPET系樹脂製壜体を得る。
Embodiments of the present invention will be described below.
FIG. 1 is an explanatory view showing an example of an apparatus for thermally crystallizing the mouthpiece portion 2 in the preform 1 in order to obtain the PET resin casing of the present invention. The injection-molded preform 1 is inserted into a holder 4, and the mouth tube portion 2 including the neck ring 3 is heated by an infrared heater 5 to perform a thermal crystallization process. At this time, heating is performed while rotating the holder 4 in order to make the heating uniform in the circumferential direction. Biaxial stretch blow molding is performed using the preform 1 in which the mouth tube portion 2 is thermally crystallized in this manner to obtain a PET-based resin casing.

上記、熱結晶化処理の条件は一般に150〜220℃の温度で、1〜3分間行うが、この条件は壜体1に要求される耐熱性(殺菌処理温度等)等を考慮して選択され、要求される耐熱性が高いほど加熱温度を高くする必要がある。たとえば一般的な果汁飲料等では80〜90℃の温度で高温充填されるが、熱処理条件は口筒部の表面温度で150℃、2分程度であり、レトルト食品向けの場合には口筒部の表面温度で180℃、2分程度の処理が必要となる。   The above-mentioned conditions for the thermal crystallization treatment are generally performed at a temperature of 150 to 220 ° C. for 1 to 3 minutes, and this condition is selected in consideration of the heat resistance (such as sterilization treatment temperature) required for the casing 1. The higher the required heat resistance, the higher the heating temperature must be. For example, general fruit juice beverages are filled at a high temperature of 80 to 90 ° C., but the heat treatment condition is 150 ° C. for about 2 minutes at the surface temperature of the mouth tube portion. At a surface temperature of about 180 ° C. for about 2 minutes.

所定温度で所定時間の熱結晶化処理はコア6を挿入しないで実施するので、赤外線ヒータ5による加熱により熱結晶化が進行すると、結晶化に伴なう体積収縮で口筒部が規制のない自由な状態で収縮する。   Since the thermal crystallization treatment at a predetermined temperature for a predetermined time is performed without inserting the core 6, when thermal crystallization proceeds by heating with the infrared heater 5, the mouthpiece portion is not restricted due to volume shrinkage accompanying crystallization. Shrink in a free state.

図2は本発明の壜体を得るための方法を示す説明図であり、プリフォーム1の口筒部2にコア6を挿入した状態を示す。(a)は所定温度で所定時間の熱結晶化処理直後にコア6を挿入した状態、(b)は挿入後、冷却による後収縮により口筒部2が縮径してコア6に外接した状態を示す説明図である。(a)の状態では口筒部2内周面とコア6の外周面の間に間隙tが形成するようにしている。ここでコア6の温度は、高温の口筒部2に内接した状態においても、その温度が90〜130℃の範囲になるように冷却して調整しておく。   FIG. 2 is an explanatory view showing a method for obtaining the housing of the present invention, and shows a state where the core 6 is inserted into the mouth tube portion 2 of the preform 1. (A) is a state in which the core 6 is inserted immediately after the thermal crystallization treatment at a predetermined temperature for a predetermined time, and (b) is a state in which the diameter of the mouth tube portion 2 is reduced by post-contraction due to cooling and circumscribed to the core 6 after insertion. It is explanatory drawing which shows. In the state (a), a gap t is formed between the inner peripheral surface of the mouth tube portion 2 and the outer peripheral surface of the core 6. Here, the temperature of the core 6 is cooled and adjusted so that the temperature is in the range of 90 to 130 ° C. even in the state inscribed in the high-temperature mouth tube portion 2.

図2(a)の状態で、間隙tをその範囲も含めてどの程度とするかは、口筒部2口径、熱結晶化処理温度等の条件を考慮し決める。具体的には予備的な試験をして、プリフォーム間によるバラツキ、1ケのプリフォームの口筒部内径の場所によるばらつき、熱結晶化処理による熱収縮量のバラツキ等も評価して、コア6の外径を決めることにより、0.02mm〜0.2mmの範囲内で適宜決めることができる。   In the state of FIG. 2A, the extent of the gap t including the range is determined in consideration of conditions such as the diameter of the mouthpiece 2 and the temperature of the thermal crystallization treatment. Specifically, a preliminary test was conducted to evaluate the variation between preforms, the variation due to the location of the inner diameter of the mouth portion of one preform, the variation in thermal shrinkage due to thermal crystallization treatment, etc. By determining the outer diameter of 6, it can be appropriately determined within the range of 0.02 mm to 0.2 mm.

実施例
射出成形により、PET樹脂製であり口筒部2の呼び径が28mmのプリフォーム1を成形し、このプリフォーム1を図1の装置で、口筒部の表面温度180℃で2分間熱結晶化処理を実施し、この処理の直後、間隙tが0.04〜0.15mmになるような外径のコア6を、その温度が100〜120℃になるように制御しながら口筒部2に挿入して冷却した。そして上記条件で口筒部2を熱結晶化処理したプリフォーム1を常法により二軸延伸ブロー成形して内容量500mlの実施例の壜体を得た。なお、本実施例において口筒部2の密度は1.398g/cmであった。
Example A preform 1 made of PET resin and having a nominal diameter of 28 mm was formed by injection molding, and this preform 1 was formed with the apparatus shown in FIG. 1 at a surface temperature of the mouthpiece of 180 ° C. for 2 minutes. A thermal crystallization process is performed, and immediately after this process, the outer diameter core 6 having a gap t of 0.04 to 0.15 mm is controlled while the temperature is controlled to 100 to 120 ° C. Inserted into part 2 and cooled. Then, the preform 1 in which the mouth tube part 2 was thermally crystallized under the above conditions was biaxially stretched and blow molded by a conventional method to obtain a casing of an example having an internal volume of 500 ml. In the present example, the density of the mouthpiece portion 2 was 1.398 g / cm 3 .

比較例
実施例と同じプリフォーム1を用い、コア6をプリフォーム1の口筒部2に摺動状態で挿入後、実施例と同条件で熱結晶化処理を実施した。そしてこのプリフォーム1を常法により二軸延伸ブロー成形して内容量500mlの比較例の壜体を得た。なお、本比較例において口筒部2の密度は1.384g/cmであった。
Comparative Example Using the same preform 1 as in the example, the core 6 was inserted into the mouth tube part 2 of the preform 1 in a sliding state, and then thermal crystallization treatment was performed under the same conditions as in the example. The preform 1 was biaxially stretched and blow molded by a conventional method to obtain a comparative casing having an internal volume of 500 ml. In this comparative example, the density of the mouthpiece portion 2 was 1.384 g / cm 3 .

上記実施例と比較例の壜体に水を充填し、124℃、20分の条件で加圧水によるレトルト処理を実施し、その後室温でのレトルト処理前後における口径(内径と外径)の変化を測定した。   The casings of the above examples and comparative examples are filled with water, subjected to retort treatment with pressurized water under conditions of 124 ° C. for 20 minutes, and then the change in the diameter (inner diameter and outer diameter) before and after the retort treatment at room temperature is measured. did.

実施例において口筒部2の外径変化は−0.14mm、内径変化は−0.18mmであった。また比較例において口筒部2の外径変化は−0.41mm、内径変化は−0.42mmであった。ここで試験本数は各5本で、上記値は平均値でありマイナスは縮径していることを示す。   In the examples, the outer diameter change of the mouth tube portion 2 was −0.14 mm, and the inner diameter change was −0.18 mm. In the comparative example, the outer diameter change of the mouth tube portion 2 was −0.41 mm, and the inner diameter change was −0.42 mm. Here, the number of test pieces is 5, and the above values are average values, and minus indicates that the diameter is reduced.

上記結果からわかるように、レトルト処理により口径はいずれの場合も縮径しているが、実施例の壜体は、比較例の壜体に比較してその程度が略1/2〜1/3程度の大きさに抑制されており、キャップの螺合および螺脱性、シール性等実用的に全く問題のない範囲の変形(縮径)であった。一方比較例の壜体は、レトルト処理後キャップによるシール性に問題があるものとなった。   As can be seen from the above results, the diameter of the caliber is reduced in any case by the retort treatment, but the degree of the case of the example is about 1/2 to 1/3 compared to the case of the comparative example. The deformation (reduction in diameter) was within a range where there was no practical problem such as screwing and unscrewing of the cap and sealability. On the other hand, the casing of the comparative example has a problem in sealing performance by the cap after retort processing.

なお、上記実施例では主としてレトルト向けの壜体を例にして、本願発明の実施形態およびその作用効果を説明したが、本願発明は上記実施例に限定されるものではなく、本願発明の作用効果は100℃以上等の従来にない高温での熱処理を要する用途において一般的に発揮されるものである。   In the above embodiment, the embodiment of the invention of the present application and its operation and effects have been described mainly using a case for retort as an example. However, the present invention is not limited to the above embodiment, and the operation and effect of the present invention is Is generally exhibited in applications that require heat treatment at an unprecedented high temperature such as 100 ° C. or higher.

以上説明したように本発明のPET系樹脂製壜体はレトルト殺菌処理程度の高温の処理においても口筒部の変形を小さく抑えることができ、レトルト食品向け用途等に幅広い用途展開が期待される。   As described above, the PET-based resin casing of the present invention can suppress deformation of the mouth tube portion even in high-temperature processing such as retort sterilization, and is expected to be widely used for retort food applications. .

プリフォーム口筒部の熱結晶化処理のための装置の一例を示す説明図である。It is explanatory drawing which shows an example of the apparatus for the thermal crystallization process of a preform mouthpiece part. 本発明の熱結晶化処理におけるプリフォームの口筒部へのコアの挿入状態を示し、(a)は所定温度で所定時間の熱結晶化処理した直後コアを挿入した状態、(b)は口筒部が後収縮してコアに外接した状態を示す説明図である。FIG. 2 shows a state of inserting a core into a mouthpiece portion of a preform in the thermal crystallization process of the present invention, (a) shows a state in which a core is inserted immediately after thermal crystallization treatment at a predetermined temperature for a predetermined time, and (b) shows a mouth. It is explanatory drawing which shows the state which the cylinder part shrunk | retracted and circumscribed the core.

符号の説明Explanation of symbols

1 ;プリフォーム
2 ;口筒部
3 ;ネックリング
4 ;ホルダー
5 ;赤外線ヒータ
6 ;コア
t ;間隙
DESCRIPTION OF SYMBOLS 1; Preform 2; Mouth part 3; Neck ring 4; Holder 5; Infrared heater 6; Core t;

Claims (5)

熱結晶化処理した口筒部を有するプリフォームを用いて、2軸延伸ブロー成形してなるポリエチレンテレフタレート系樹脂製壜体にあって、該口筒部が、所定温度で所定時間の前記熱結晶化処理した直後に、内周面に対して0.02〜0.2mmの間隙を形成する外径を有した円柱状コアを挿入した状態で形成されたことを特徴とするポリエチレンテレフタレート系樹脂製壜体。 In a polyethylene terephthalate-based resin casing formed by biaxial stretching blow molding using a preform having a thermally-crystallized mouth tube portion, the mouth tube portion has the heat crystal at a predetermined temperature for a predetermined time. Made of polyethylene terephthalate resin, characterized in that it is formed in a state in which a cylindrical core having an outer diameter that forms a gap of 0.02 to 0.2 mm is inserted into the inner peripheral surface immediately after the conversion treatment Body. 挿入したコアの温度を90〜130℃に温調することを特徴とする請求項1記載のポリエチレンテレフタレート系樹脂製壜体。 The polyethylene terephthalate-based resin casing according to claim 1, wherein the temperature of the inserted core is adjusted to 90 to 130 ° C. レトルト処理を必要とする食品向け用途に使用されることを特徴とする請求項1または2記載のポリエチレンテレフタレート系樹脂製壜体。 The polyethylene terephthalate-based resin casing according to claim 1 or 2, which is used for food applications that require retort treatment. ポリエチレンテレフタレート系樹脂製プリフォームの口筒部を、所定温度で所定時間の熱結晶化処理した直後に、内周面に対して0.02〜0.2mmの間隙を形成する外径を有した円柱状コアを挿入することを特徴とするプリフォーム口筒部の熱結晶化方法。 Immediately after the thermal crystallization treatment of the polyethylene terephthalate-based resin preform at a predetermined temperature for a predetermined time, the outer diameter formed a gap of 0.02 to 0.2 mm with respect to the inner peripheral surface. A method for thermal crystallization of a preform mouthpiece, wherein a cylindrical core is inserted. 挿入したコアの温度を90〜130℃に温調することを特徴とする請求項4記載のプリフォーム口筒部の熱結晶化方法。 The method for thermal crystallization of a preform mouthpiece portion according to claim 4, wherein the temperature of the inserted core is adjusted to 90 to 130 ° C.
JP2004107254A 2004-03-31 2004-03-31 Method for thermal crystallization of preform mouthpiece Expired - Fee Related JP4491815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004107254A JP4491815B2 (en) 2004-03-31 2004-03-31 Method for thermal crystallization of preform mouthpiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004107254A JP4491815B2 (en) 2004-03-31 2004-03-31 Method for thermal crystallization of preform mouthpiece

Publications (2)

Publication Number Publication Date
JP2005289447A true JP2005289447A (en) 2005-10-20
JP4491815B2 JP4491815B2 (en) 2010-06-30

Family

ID=35322856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004107254A Expired - Fee Related JP4491815B2 (en) 2004-03-31 2004-03-31 Method for thermal crystallization of preform mouthpiece

Country Status (1)

Country Link
JP (1) JP4491815B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11254515A (en) * 1998-03-11 1999-09-21 Toppan Printing Co Ltd Method for molding plastic bottle
JP2001150522A (en) * 1999-11-26 2001-06-05 Toyo Seikan Kaisha Ltd Polyester container and method of manufacturing the same
JP2003341644A (en) * 2002-05-20 2003-12-03 Dainippon Printing Co Ltd Method for machining plug inserting tool, and plug crystallizing method using the tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11254515A (en) * 1998-03-11 1999-09-21 Toppan Printing Co Ltd Method for molding plastic bottle
JP2001150522A (en) * 1999-11-26 2001-06-05 Toyo Seikan Kaisha Ltd Polyester container and method of manufacturing the same
JP2003341644A (en) * 2002-05-20 2003-12-03 Dainippon Printing Co Ltd Method for machining plug inserting tool, and plug crystallizing method using the tool

Also Published As

Publication number Publication date
JP4491815B2 (en) 2010-06-30

Similar Documents

Publication Publication Date Title
CA2769873C (en) Synthetic resin bottle and process for manufacturing the same
JPH0456734B2 (en)
EP1301398A2 (en) Method for providing a thermally-processed commodity within a plastic container
US5445784A (en) Method of blow-molding biaxially-oriented polyethylene terephthalate resin bottle-shaped container
JP4525922B2 (en) Polyester resin container and molding method thereof
JP4491815B2 (en) Method for thermal crystallization of preform mouthpiece
JPS6124170B2 (en)
JP2007021962A (en) Two step blow molding process for flat container
JP4019308B2 (en) Biaxial stretch blow molding method
JPH09239852A (en) Manufacture of resin vessel
JPH0767732B2 (en) Biaxial stretch blow molding method
JPS5892535A (en) Plastic bottle
WO2005115724A1 (en) Method of thermal crystallization treatment for cylindrical mouthpart of preform
JPH11152122A (en) Biaxially stretched blow-molded bottle and its manufacture
JP2777790B2 (en) Biaxial stretch blow molding method
EP0109464B1 (en) Method of strengthening neck portion of bottle-shaped container of polyethylene terephthalate resin
JP3986667B2 (en) Polyethylene terephthalate resin bottle manufacturing method
JPH0622860B2 (en) Biaxial stretching blow molding method
JP2004074614A (en) Method for thermally crystallizing mouth neck of molded product of biaxially oriented blow-molded bottle, and jig used in the method
JP4552693B2 (en) Core member for heat treatment of synthetic resin molded products
JPH08244745A (en) Container with cap
JP2002145238A (en) Heat-resistant pet bottle and its production method
JP4121778B2 (en) A processing method of a plug insertion jig and a plug crystallization method using the plug insertion jig.
JPS58185227A (en) Manufacture of stretched polyester bottle
JP2963904B2 (en) Biaxial stretch blow molding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100224

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100326

R150 Certificate of patent or registration of utility model

Ref document number: 4491815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees