JP4490547B2 - Novel peptide, its production method and use - Google Patents

Novel peptide, its production method and use Download PDF

Info

Publication number
JP4490547B2
JP4490547B2 JP2000095956A JP2000095956A JP4490547B2 JP 4490547 B2 JP4490547 B2 JP 4490547B2 JP 2000095956 A JP2000095956 A JP 2000095956A JP 2000095956 A JP2000095956 A JP 2000095956A JP 4490547 B2 JP4490547 B2 JP 4490547B2
Authority
JP
Japan
Prior art keywords
pro
peptide
inhibitory activity
peak
phe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000095956A
Other languages
Japanese (ja)
Other versions
JP2001278893A (en
Inventor
軍喜 船津
正史 上船
Original Assignee
株式会社 レオロジー機能食品研究所
坂元醸造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 レオロジー機能食品研究所, 坂元醸造株式会社 filed Critical 株式会社 レオロジー機能食品研究所
Priority to JP2000095956A priority Critical patent/JP4490547B2/en
Publication of JP2001278893A publication Critical patent/JP2001278893A/en
Application granted granted Critical
Publication of JP4490547B2 publication Critical patent/JP4490547B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、新規なアンジオテンシンI変換酵素阻害ペプチド、このペプチドを黒酢から製造する方法及びそのペプチドの用途に関する。
【0002】
【従来の技術】
アンジオテンシンI変換酵素(ACE) は、肺に多く含まれ、血管壁、脳、腎臓などにも存在し、アンジオテンシンI に作用してこれをアンジオテンシンIIに変換する酵素である。アンジオテンシンI は血圧上昇作用を示さないが、アンジオテンシンIIは抹消血管を収縮し、血圧を大きく上昇させることが知られている。また、血漿に含まれるキニノーゲンにタンパク質分解酵素カリクレインが作用して、血管を拡張して血圧を下げる働きを有するブラジキニンを生じるが、ACE はこのブラジキニンを分解し、不活性化してしまう。このようにACE は血圧に大きく作用する酵素である。
したがって、前記のようなACE の作用を阻害すれば、血圧の上昇を抑えることができ、高血圧症を予防、治療することができると考えられる。特に最近カプトプリルが合成され、その高血圧抑制効果が確認されてから、ACE 阻害物質の研究が盛んに行われるようになった。現在、天然タンパク質由来の、あるいは合成による各種のペプチド類がACE阻害効果を有することが報告されている。例えば、天然蛋白質由来のACE阻害ペプチドとしては、マムシ、牛乳カゼイン、魚類タンパク質、トウモロコシ、小麦グルテンに由来するものなどが知られている。
例えば特開平4-66594 号公報には、小麦グルテンのプロテアーゼ処理物からIle-Ala-Pro が、特開平4-139195号公報にはカツオブシのサーモライシン加水分解物からLeu-Tyr-Pro が、特開平4-69396 号公報はハカツオブシのサーモライシン加水分解物からIle-Lys-Pro がそれぞれ記載されている。また特開平5-306295号公報にはカツオ内臓の自己液化物から Ile-Arg-Proが記載されている。
【0003】
合成によるACE阻害効果を有するペプチドの代表的な例としてカプトプリルが挙げられるが、カプトプリルは強力な血圧降下作用を有するが高価であり、また、発疹や味覚障害の副作用が懸念されている。一方、天然蛋白質に由来するものは、食品から得られるものは経験的に低毒性で (副作用が少ない) 安全性の高い物であることが窺える。しかし、前記の天然蛋白質に由来するものは、その原料が特殊であったり、製造工程が非常に煩雑であったり、あるいは充分なACE阻害効果が得られない等の問題がある。
【0004】
【発明が解決しようとする課題】
このような事情から、安価に入手でき、製造が容易であり、安全性の高いACEの阻害剤が求められている。本発明は長年にわたり黒酢の成分と薬理作用との関係について探究していたところ、黒酢のジペプチドあるいはトリペプチドがACE阻害活性を呈することを見出し、本発明を完成するに至った。
すなわち、本発明の目的は、天然物から、安全性が高く、優れたACE阻害活性を有する新規ペプチドを得ることにある。
また本発明の目的はこのようなペプチドを有効成分とするACE阻害剤を提供することにある。
本発明のさらなる他の目的は黒酢からこのようなペプチドを製造する方法を提供することにある。
【0005】
【課題を解決するための手段】
すなわち、本発明は、次の式で示されるアンジオテンシンI変換酵素阻害ペプチド又はその塩に関する。
Ile-Tyr-Pro 、Phe-Phe 、Gln-Leu-Pro 又はAsn-Pro 。
また本発明は、前記ジペプチド、トリペプチドまたはその塩を有効成分とするアンジオテンシンI 変換酵素阻害剤に関する。
【0006】
さらに、本発明は、黒酢を活性炭で処理して活性炭非吸着成分を酸性において酢酸エチルで抽出し、抽出残存水層からペプチドを単離精製することよりなる黒酢から、Gln-Leu-Pro 、Asn-Pro またはその塩を製造する方法に関する。
また、本発明は、黒酢を活性炭で処理して活性炭吸着成分をエタノールで溶出し、これを酸性において酢酸エチルで抽出し、抽出液または抽出残存水層からペプチドを単離精製することよりなるIle-Tyr-Pro 、Phe-Phe 又はその塩の製造方法に関する。
本発明のこれらのジペプチドあるいはトリペプチドは、黒酢より得ることができる。そして、これらのペプチドの塩としては、そのC末端カルボキシル基をナトリウム塩、カリウム塩、アンモニウム塩等で置換したり、あるいはN末端のアミノ基等に塩酸、カルボン酸等の酸を付加して塩とすることができる。これらの塩は通常の塩の形成方法によって容易に得ることができる。
また、これらのペプチドまたはその塩は化学合成法で得ることもできる。
【0007】
代表的な黒酢は、鹿児島県薩摩地方で屋外に並べた醸造用カメに、米、こうじ等を天然の湧水で仕込み、太陽エネルギーで長時間かけて熟成して作られるものである。黒酢には、脂質代謝改善作用、赤血球変形能改善作用、血圧降下作用等があることが知られている。本発明の黒酢は、このような黒酢ばかりではなく通常黒酢として製造販売されているものからも製造することができる。
黒酢からペプチドを得る方法は、実施例において具体的に説明するが、一般的には、黒酢を、吸着剤 (例えば、活性炭) で処理し、黒酢中のペプチドを吸着させるかあるいは吸着させず、吸着剤あるいは吸着剤透過液をエタノール、蟻酸などの溶剤で溶出処理し、溶出された成分を酸性又はアルカリ性において酢酸エチルなどの溶剤で抽出する。抽出液あるいは抽出残存水層をゲル濾過クロマトグラフィー、イオン交換クロマトグラフィー、逆相高速液体クロマトグラフィー等を用いてペプチドを分離精製する。本発明のペプチドは、このようにして得られるが、この方法のみに限定されず、黒酢から周知のペプチドの単離方法であればどのような方法でも用いられ、高純度、高収率でさらには低コストに生理活性の高いペプチドを得ることができる。
【0008】
また、本発明のペプチドは、各種の化学合成法により、例えば、固相法または液相法を用いて製造することができる。この場合、ペプチド合成機を用いて行えば一連の反応操作が自動的に行われるので便利である。
【0009】
本発明のペプチドはアンジオテンシンI 変換酵素(ACE) 阻害作用を有する。したがって、高血圧の治療薬として有用である。ヒト及び種々の動物に投与でき、少量の投与によって顕著な血圧低下効果があられる。高血圧の症状にもよるが、投与量は成人の高血圧症の場合、1 日1〜10mgを数回に分けて投与するとよい。投与方法は、経口投与、非経口投与 (注射、塗布、貼付等) のいずれにも使用できる。また、投与形態は、錠剤、丸剤、顆粒剤、カプセル、散剤、水溶液、注射剤等の任意の形態が可能である。
【0010】
【発明の実施の形態】
次に実施例を挙げて本発明を具体的に説明する。
【実施例】
本実施例では逆相高速液体クロマトグラフィー(RP-HPLC) を次の条件で行った。
(1) RP-HPLC 条件1

Figure 0004490547
0〜5分はA液を 100%、B液は0%、5〜40分まではA液を30%、B液は70%になるように濃度勾配をかけて溶出し溶出画分を分取した。
【0011】
(2) RP-HPLC 条件2
装置、カラム、カラム温度、測定波長、及び流速は、前記RP-HPLC 条件1と同じ条件で、バッファー液は次のものを用いた。
Figure 0004490547
0〜5分はA液を 100%、B液は0%、5〜40分まではA液を30%、B液は70%になるように濃度勾配をかけて溶出し溶出画分を分取した。
【0012】
またACE阻害活性は次の方法で測定した。
ACE阻害活性は、Lieberman の方法を改良した山本らの方法 (日胸疾会誌、18(5) p297〜303 、1980) で行った。すなわち、試料に25mUのACEを50μl 加え、37℃で10分間反応させた後、12.5mM Hip-His-Leu溶液 (ホウ酸緩衝液−1.0MNaCl、pH8.3)を50μl 加え、37℃で60分間反応させた。0.5N HClを 125μl 加えて10分間放置して反応を停止させた後、 750μl の酢酸エチルにて馬尿酸を抽出し、そのうちの 250μl を採り遠心エバポレーターで減圧乾固した。これを、1500μl の1.0M NaCl溶液に溶解し、228nm における吸光度を測定した。各試料のACE阻害活性は、カプトプリルで完全に阻害しているものを 100%とした時の相対活性 (%) で表した。なお、ACE及びカプトプリルはシグマ社製、 Hip- His-Leu はペプチド研究所製のものを用いた。 Hipは、hippurylを示す。
【0013】
アミノ酸分析は次の方法で行った。
精製したペプチドをミリポア社製のWaters社 PICO-TAG ワークステーションを用いて気相加水分解法によって加水分解後、乾固した試料に用時調製した中和試薬10μl 加え再び減圧乾固した。これに用時調製したPTC 化用試薬を20μl 加えミキサーでよく振とう撹拌後、50℃、30分間反応させた。次いで、Waters PICO-TAG ワークステーションを用いて試料を減圧乾固した。これに後述のアミノ酸分析条件に示すA溶媒 100μl に溶解し、HPLCの分析に供した。
上記試薬としては、フェニルイソチオシアネート(PITC)溶液は5%PITC-n- ヘプタン溶液を用いた。中和試薬はメタノール:水:トリエチルアミン=2:2:1の割合で混合した溶液を用いた。PTC 化用試薬は5% PITC-n-ヘプタン溶液:トリエチルアミン:水:メタノール=1:1:1:7の割合で混合した溶液を用いた。試薬はすべて和光純薬のものを使用した。
【0014】
HPLCによるアミノ酸分析は次の条件で行った。
Figure 0004490547
0分はA溶媒89%、B溶媒11%でバッファーライズし、0〜2分はA溶媒を85%、B溶媒は15%、 2〜5.5 分まではA溶媒を85%、B溶媒は15%、 5.5〜9.0 分まではA溶媒を55%、B溶媒は45%になるように濃度勾配をかけ、 9.0〜19.0分でA溶媒を0%、B溶媒は 100%になるように濃度勾配をかけて溶出した。
【0015】
PICO-TAG アミノ酸分析におけるグラジエント溶出条件として次の条件を用いた。
Figure 0004490547
【0016】
アミノ酸配列は次の方法で決定した。
アミノ酸配列は ChangらのDABITC/PITC ダブルカップリング法を用いて決定した。
すなわち、試料乾燥品に50%ピリジンを80μl 加え、さらに DABITC を40μl 加え55℃、30分反応させた後、フェニルイソチオシアネート(PITC)を10μl 加え55℃、30分反応させた。これにn-ヘプタン:酢酸エチル=2:1を 500μl 加え遠心し、上層と下層が1:1になるまで上層を採取し捨てた。この操作を3回繰り返した後、デシケーターに入れ減圧乾固させた。乾燥標品にトリフルオロ酢酸(TFA) 30μl を加え55℃、10分反応させ、窒素ガスを吹き付けTFA を飛ばした後、水50μl 加え、さらに酢酸ブチル 200μl 加え抽出し、酢酸ブチル層を別チューブに移した。水層は減圧下で乾燥させた後、2残基目以降の構造解析に使用した。酢酸ブチル層は湯溶上で窒素ガスを吹き付け乾燥させ、TFA 10μl と水10μl を加え55℃、15分反応させた。反応終了後、デシケターに入れ乾燥させた。
乾燥した試料をエタノール 1μl で溶解し、ポリアミドシート上にスポットし、2 次元に展開し、展開後、シートに塩酸の蒸気を吹きかけ、アミノ酸の同定を行った。
【0017】
【実施例1】
黒酢から Phe-Phe の分離
黒酢 (坂元醸造 (株) 製) 1L を活性炭(和光純薬製) 15g に通して黒酢中のペプチドを活性炭に吸着させ、該活性炭をエタノールで溶出し、次いで蟻酸で溶出した。黒酢は、活性炭を透過した成分A、エタノールで溶出された成分B、及び蟻酸で溶出された成分Cに分画された。成分A、B及びCのそれぞれについて、ロータリーエバポレーターで濃縮した後、酸性において酢酸エチルで抽出し、水層部分を希アンモニア水にてpH8.0 に調整してアルカリ性において酢酸エチルで抽出した。つまり、成分Aを酸性下で酢酸エチルで抽出した画分A1 と、アルカリ性下で酢酸エチルで抽出された画分A2 と、さらに残存した水層部分の画分A3 に分画した。成分Bを、同様に画分B1 、画分B2 及び画分B3 に分画し、成分Cを、画分C1 、画分C2 及び画分C3 に分画した。
各画分のACE阻害活性を後述の方法で測定した。その結果を表1に示す。表1からACE阻害活性は、画分A3 、画分B1 及び画分B3 が高いことがわかる。そこで、これらの3画分について、さらに分画して高いACE阻害活性を示すペプチドがどのような構造を有するものか分析を進めた。
【0018】
【表1】
Figure 0004490547
【0019】
画分B1 を前述のRP-HPLC 条件1に示す条件で逆相高速液体クロマトグラフィーに供した。その結果を図1に示す。図1における1〜9のピークを分取して濃縮乾固した。また、各ピークのACE阻害活性を測定した。その結果を表2に示す。
【0020】
【表2】
RP-HPLC 条件1 で分離した画分B1 からの各ピークのACE 阻害活性
Figure 0004490547
【0021】
ACE阻害活性が強かったピークB1-5を 100μl の水に溶解し、さらにRP-HPLC 条件2に示す条件で逆相高速液体クロマトグラフィーに供した。その結果を図2に示す。
ピークB1-5はピーク5-a,5-b を有したので各ピークのACE阻害活性を測定した。その結果を表3に示す。その中でACE阻害活性が強かったピーク5-b画分の精製ペプチドのアミノ酸の種類及び配列をPICO-TAGアミノ酸分析システム (ミリポア社製) などを用いて求めた。その結果、ピーク5-b の構成アミノ酸は Pheで、そのアミノ酸配列はPhe-Phe であると決定された。
【0022】
【表3】
RP-HPLC条件1 で分離したB1-5 からの各ピークのACE 阻害活性
Figure 0004490547
【0023】
【実施例2】
黒酢から Gln-Leu-Pro の分離
実施例1と同様の方法で黒酢を分画し、得られた画分A3 をRP-HPLC 条件1で逆相高速液体クロマトグラフィーに供した。その結果を図3に示す。図3における1〜5のピークを分取して濃縮乾固した。また、各ピークのACE阻害活性を測定し、その結果を表4に示す。
【0024】
【表4】
RP-HPLC 条件1 で分離したA3 からの各ピークのACE 阻害活性
Figure 0004490547
【0025】
ACE阻害活性が強かったピークA3-5を 100μl の水に溶解し、さらにRP-HPLC 条件2で逆相高速液体クロマトグラフィーに供した。その結果を図4に示す。
ピークA3-5はピーク5-a 画分を有し、ACE阻害活性を測定した結果を表5に示す。
【0026】
【表5】
RP-HPLC条件2 で分離したA3-5 からのピーク5aの ACE阻害活性
Figure 0004490547
【0027】
ピーク5-a 画分の精製ペプチドのアミノ酸の種類及び配列をPICO-TAGアミノ酸分析システム (ミリポア社製) などを用いて求めた。その結果、ピーク5-a はGln 1, Pro 1, Leu 1 の組成を有し、そのアミノ酸配列はGln-Leu-Pro であると決定された。
【0028】
【実施例3】
黒酢から Asn-Pro の分離
実施例2の表4において、ACE阻害活性が強かったピークA3-3を 100μl の水に溶解し、さらにRP-HPLC 条件2で逆相高速液体クロマトグラフィーに供した。その結果を図5に示す。
ピーク5A3-3はピーク3-a,3-b,3-c を有した。それぞれのACE阻害活性を測定した結果を表6に示す。その中でACE阻害活性が強かったピーク3-a 画分の精製ペプチドのアミノ酸の種類及び配列をPICO-TAGアミノ酸分析システム (ミリポア社製) などを用いて求めた。その結果、ピーク3-a はAsn 1, Pro 1の組成を有し、そのアミノ酸配列は Asn-Proであると決定された。
【0029】
【表6】
RP-HPLC条件2 で分離したA3-3 からの各ピークのACE 阻害活性
Figure 0004490547
【0030】
【実施例4】
黒酢から Ile-Tyr-Pro の分離
実施例1の画分B3をBioGel P-10 カラム(2×26cm) を用い、脱イオン水中でゲル濾過を行った。ゲル濾過パターンを図6に示す。ACE阻害活性の強い画分B3Cを RP-PHLC条件1で逆相高速液体クロマトグラフィーに供した。その結果を図7に示す。図7に示すように多くのピークが得られ、その殆どにアンジオテンシン変換酵素阻害活性が認められた。そのち活性の強いピークのACE 阻害活性を表7に示す。
【0031】
【表7】
RP-HPLC 条件1で分離したB3-C からの各ピークの ACE阻害活性
Figure 0004490547
【0032】
ACE阻害活性の最も強いピークB3C-6 に含まれるペプチドの構造を調べるため、その精製を行った。図7で得られたピークB3C-6 をTFA-MeCN系を用いて RP-HPLC条件2で逆相高速液体クロマトグラフィーに供した。得られたピークを図8に示す。このうちピーク6-a のアミノ酸組成を分析した。その結果、Pro 1, Tyr 1, Ile 1 の組成を有し、そのアミノ酸配列はIle-Tyr-Pro と決定された。
【0033】
【実施例5】
実施例1〜4のいずれかによって得られたペプチド 5mgを、乳糖50mg、マンニトール20mg及びぶどう糖25mgと混合し、打錠を行って錠剤とした。この錠剤を高血圧症の患者に1日1〜2錠投与する。
【0034】
【発明の効果】
本発明により黒酢からジペプチド及びトリペプチドが提供される。
これらのペプチドは、新規であり、アンジオテンシンI変換酵素阻害活性を有し、次のIC50を有するのでアンジオテンシンI変換酵素阻害剤として、高血圧症の予防あるいは治療に用いられる。
Ile-Tyr-Pro 1.3 μM
Phe-Phe 2.8 μM
Asn-Pro 148 μM
Gln-Leu-Pro 174 μM
また、本発明によると黒酢からこれらのペプチドを効率よく単離することができる。
【図面の簡単な説明】
【図1】実施例1の画分B1をRP-HPLC 条件1で分離したチャートを示す。
【図2】実施例1の図1において高いACE阻害活性を示したピークB1-5をRP-HPLC 条件2で分離したチャートを示す。
【図3】実施例2の画分A3をRP-HPLC 条件1で分離したチャートを示す。
【図4】実施例2の図3において高いACE阻害活性を示したピークA3-5をRP-HPLC 条件2で分離したチャートを示す。
【図5】実施例2の図3において高いACE阻害活性を示したピークA3-3をRP-HPLC 条件2で分離したチャートを示す。
【図6】実施例4の画分B3のゲル濾過パターンを示す。
【符号の説明】
---------- ACE 阻害活性
────── 230 nmのOD
──- ──- 280 nmのOD
【図7】実施例4の画分B3C をRP-HPLC 条件1で分離したチャートを示す。
【図8】実施例4の図7において高いACE阻害活性を示したピークB3C-6 をRP-HPLC 条件2で分離したチャートを示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel angiotensin I converting enzyme-inhibiting peptide, a method for producing this peptide from black vinegar, and uses of the peptide.
[0002]
[Prior art]
Angiotensin I converting enzyme (ACE) is an enzyme that is abundant in the lung, is also present in the blood vessel wall, brain, kidney, etc., and acts on angiotensin I to convert it to angiotensin II. Angiotensin I does not show an effect of increasing blood pressure, but angiotensin II is known to contract peripheral blood vessels and greatly increase blood pressure. The proteolytic enzyme kallikrein acts on kininogen contained in plasma to produce bradykinin that dilates blood vessels and lowers blood pressure, but ACE degrades and inactivates bradykinin. Thus, ACE is an enzyme that greatly affects blood pressure.
Therefore, if the action of ACE as described above is inhibited, an increase in blood pressure can be suppressed and hypertension can be prevented and treated. In particular, since captopril was recently synthesized and its antihypertensive effect was confirmed, research on ACE inhibitors has been actively conducted. At present, it has been reported that various peptides derived from natural proteins or synthesized have an ACE inhibitory effect. For example, as ACE inhibitory peptides derived from natural proteins, those derived from viper, milk casein, fish protein, corn, wheat gluten and the like are known.
For example, Japanese Patent Laid-Open No. 4-66594 discloses Ile-Ala-Pro from a protease-treated wheat gluten, and Japanese Patent Laid-Open No. 4-139195 discloses Leu-Tyr-Pro from a thermolysin hydrolyzed bonito. Japanese Patent No. 4-69396 describes Ile-Lys-Pro from a thermolysin hydrolyzate of swordfish. Japanese Patent Application Laid-Open No. 5-306295 describes Ile-Arg-Pro from the self-liquefied bonito viscera.
[0003]
A typical example of a peptide having an ACE inhibitory effect by synthesis is captopril. Captopril has a strong blood pressure lowering action but is expensive, and there are concerns about side effects such as rash and taste disorders. On the other hand, those derived from natural proteins are empirically low-toxic (having few side effects) and highly safe. However, those derived from the above-mentioned natural proteins have problems that the raw materials are special, the production process is very complicated, or a sufficient ACE inhibitory effect cannot be obtained.
[0004]
[Problems to be solved by the invention]
Under such circumstances, there is a demand for an ACE inhibitor that can be obtained at low cost, is easy to manufacture, and has high safety. The present invention has been investigating the relationship between the components and the pharmacological action of black vinegar for many years. As a result, it was found that the dipeptide or tripeptide of black vinegar exhibits ACE inhibitory activity, and the present invention has been completed.
That is, an object of the present invention is to obtain a novel peptide having high safety and excellent ACE inhibitory activity from a natural product.
Another object of the present invention is to provide an ACE inhibitor containing such a peptide as an active ingredient.
Still another object of the present invention is to provide a method for producing such peptides from black vinegar.
[0005]
[Means for Solving the Problems]
That is, the present invention relates to an angiotensin I converting enzyme inhibitory peptide represented by the following formula or a salt thereof.
Ile-Tyr-Pro, Phe-Phe, Gln-Leu-Pro or Asn-Pro.
The present invention also relates to an angiotensin I converting enzyme inhibitor comprising the dipeptide, tripeptide or salt thereof as an active ingredient.
[0006]
Furthermore, the present invention relates to black vinegar obtained by treating black vinegar with activated carbon, extracting the non-adsorbed activated carbon component with ethyl acetate in acidity, and isolating and purifying the peptide from the extracted aqueous layer. Relates to a process for producing Asn-Pro or a salt thereof.
Further, the present invention comprises treating black vinegar with activated carbon, eluting the activated carbon adsorbing component with ethanol, extracting it with ethyl acetate in an acidic state, and isolating and purifying the peptide from the extract or the residual aqueous layer of extraction. The present invention relates to a method for producing Ile-Tyr-Pro, Phe-Phe or a salt thereof.
These dipeptides or tripeptides of the present invention can be obtained from black vinegar. As salts of these peptides, the C-terminal carboxyl group is substituted with sodium salt, potassium salt, ammonium salt or the like, or an acid such as hydrochloric acid or carboxylic acid is added to the N-terminal amino group or the like. It can be. These salts can be easily obtained by ordinary salt formation methods.
These peptides or salts thereof can also be obtained by chemical synthesis.
[0007]
A typical black vinegar is made by brewing turtles arranged outdoors in the Satsuma region of Kagoshima Prefecture with rice, koji, etc., using natural spring water and aging with solar energy for a long time. It is known that black vinegar has a lipid metabolism improving action, an erythrocyte deformability improving action, a blood pressure lowering action and the like. The black vinegar of the present invention can be produced not only from such black vinegar but also from what is usually produced and sold as black vinegar.
The method for obtaining a peptide from black vinegar will be described in detail in Examples, but generally, black vinegar is treated with an adsorbent (for example, activated carbon) to adsorb the peptide in black vinegar or adsorb it. Without elution, the adsorbent or adsorbent permeate is eluted with a solvent such as ethanol or formic acid, and the eluted components are extracted with a solvent such as ethyl acetate in an acidic or alkaline manner. The peptide is separated and purified using gel filtration chromatography, ion exchange chromatography, reverse phase high performance liquid chromatography, etc. from the extract or the remaining aqueous layer of extraction. The peptide of the present invention can be obtained in this way, but is not limited to this method, and any method can be used as long as it is a well-known method for isolating peptides from black vinegar, with high purity and high yield. Furthermore, a peptide having high physiological activity can be obtained at low cost.
[0008]
The peptide of the present invention can be produced by various chemical synthesis methods, for example, using a solid phase method or a liquid phase method. In this case, if a peptide synthesizer is used, a series of reaction operations are automatically performed, which is convenient.
[0009]
The peptide of the present invention has an angiotensin I converting enzyme (ACE) inhibitory action. Therefore, it is useful as a therapeutic agent for hypertension. It can be administered to humans and various animals, and has a significant blood pressure lowering effect when administered in small amounts. Depending on the symptoms of hypertension, in the case of hypertension in adults, the dosage should be 1-10 mg a day divided into several doses. The administration method can be used for both oral administration and parenteral administration (injection, application, sticking, etc.). The administration form can be any form such as tablet, pill, granule, capsule, powder, aqueous solution, injection and the like.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, an Example is given and this invention is demonstrated concretely.
【Example】
In this example, reverse phase high performance liquid chromatography (RP-HPLC) was performed under the following conditions.
(1) RP-HPLC condition 1
Figure 0004490547
Elution is carried out by applying a gradient so that 0 to 5 minutes is 100% solution A, 0% is solution B, 30% solution A is 5 to 40 minutes, and 70% is solution B. I took it.
[0011]
(2) RP-HPLC condition 2
The apparatus, column, column temperature, measurement wavelength, and flow rate were the same as those in the RP-HPLC condition 1, and the following buffer solution was used.
Figure 0004490547
Elution is carried out by applying a gradient so that 0 to 5 minutes is 100% solution A, 0% is solution B, 30% solution A is 5 to 40 minutes, and 70% is solution B. I took it.
[0012]
The ACE inhibitory activity was measured by the following method.
The ACE inhibitory activity was carried out by the method of Yamamoto et al. (Nissorrhea Society, 18 (5) p297-303, 1980) improved from the method of Lieberman. Specifically, 50 μl of 25 mU ACE was added to the sample, reacted at 37 ° C. for 10 minutes, 50 μl of 12.5 mM Hip-His-Leu solution (borate buffer solution—1.0 M NaCl, pH 8.3) was added, and 60 ° C. at 60 ° C. Reacted for 1 minute. After adding 125 μl of 0.5N HCl and allowing to stand for 10 minutes to stop the reaction, hippuric acid was extracted with 750 μl of ethyl acetate, 250 μl of which was collected and dried under reduced pressure using a centrifugal evaporator. This was dissolved in 1500 μl of 1.0 M NaCl solution, and the absorbance at 228 nm was measured. The ACE inhibitory activity of each sample was expressed as a relative activity (%) when the total inhibition with captopril was taken as 100%. ACE and captopril were manufactured by Sigma, and Hip-His-Leu was manufactured by Peptide Institute. Hip indicates hippuryl.
[0013]
The amino acid analysis was performed by the following method.
The purified peptide was hydrolyzed by a gas phase hydrolysis method using a Waters PICO-TAG workstation manufactured by Millipore, and then 10 μl of a neutralizing reagent prepared at the time of use was added to the dried sample, and the mixture was again dried under reduced pressure. To this was added 20 μl of the PTC reagent prepared at the time of use, and the mixture was stirred well with a mixer and reacted at 50 ° C. for 30 minutes. The sample was then dried in vacuo using a Waters PICO-TAG workstation. This was dissolved in 100 μl of the solvent A shown in the amino acid analysis conditions described later, and subjected to HPLC analysis.
As the reagent, a phenyl isothiocyanate (PITC) solution was a 5% PITC-n-heptane solution. As a neutralizing reagent, a mixed solution of methanol: water: triethylamine = 2: 2: 1 was used. As a PTC conversion reagent, a 5% PITC-n-heptane solution: triethylamine: water: methanol = 1: 1: 1: 7 mixed solution was used. All reagents used were from Wako Pure Chemical.
[0014]
Amino acid analysis by HPLC was performed under the following conditions.
Figure 0004490547
0 minutes is buffered with 89% A solvent and 11% B solvent, 0-2 minutes is 85% A solvent, B is 15%, 2 to 5.5 minutes is 85% A solvent, B is 15% %, 5.5 to 9.0 minutes apply a concentration gradient so that the solvent A is 55% and the solvent B is 45%, and the concentration gradient is 9.0% to 9.0% and the solvent B is 100% in 9.0 to 19.0 minutes. And eluted.
[0015]
PICO-TAG The following conditions were used as gradient elution conditions in amino acid analysis.
Figure 0004490547
[0016]
The amino acid sequence was determined by the following method.
The amino acid sequence was determined using the Chang et al. DABITC / PITC double coupling method.
Specifically, 80 μl of 50% pyridine was added to the dried sample, and 40 μl of DABITC was further added and reacted at 55 ° C. for 30 minutes, and then 10 μl of phenyl isothiocyanate (PITC) was added and reacted at 55 ° C. for 30 minutes. To this, 500 μl of n-heptane: ethyl acetate = 2: 1 was added and centrifuged, and the upper layer was collected and discarded until the upper layer and the lower layer became 1: 1. This operation was repeated three times, and then placed in a desiccator to dry under reduced pressure. Add 30 μl of trifluoroacetic acid (TFA) to the dried sample, react at 55 ° C. for 10 minutes, blow off nitrogen gas, blow off TFA, add 50 μl of water, and then add 200 μl of butyl acetate, and extract the butyl acetate layer in a separate tube. Moved. The aqueous layer was dried under reduced pressure and then used for structural analysis of the second and subsequent residues. The butyl acetate layer was dried by blowing nitrogen gas over hot water, and 10 µl of TFA and 10 µl of water were added and reacted at 55 ° C for 15 minutes. After completion of the reaction, it was put in a desiccator and dried.
The dried sample was dissolved in 1 μl of ethanol, spotted on a polyamide sheet, developed two-dimensionally, and after development, the vapor of hydrochloric acid was sprayed on the sheet to identify amino acids.
[0017]
[Example 1]
Separation of Phe-Phe from black vinegar <br/> 1 L of black vinegar (manufactured by Sakamoto Shuzo Co., Ltd.) is passed through 15 g of activated carbon (manufactured by Wako Pure Chemical Industries) to adsorb the peptide in black vinegar onto the activated carbon, And then with formic acid. Black vinegar was fractionated into component A that permeated activated carbon, component B eluted with ethanol, and component C eluted with formic acid. About each of component A, B, and C, after concentrating with a rotary evaporator, it extracted with ethyl acetate in acidity, the aqueous layer part was adjusted to pH 8.0 with dilute ammonia water, and extracted with ethyl acetate in alkali. That is, component A was fractionated into a fraction A1 extracted with ethyl acetate under acidity, a fraction A2 extracted with ethyl acetate under alkalinity, and a fraction A3 in the remaining aqueous layer. Component B was similarly fractionated into fraction B1, fraction B2 and fraction B3, and component C was fractionated into fraction C1, fraction C2 and fraction C3.
The ACE inhibitory activity of each fraction was measured by the method described below. The results are shown in Table 1. From Table 1, it can be seen that the ACE inhibitory activity is high in fraction A3, fraction B1 and fraction B3. Therefore, the analysis of these three fractions was further carried out to determine what structure the peptides that are further fractionated and show high ACE inhibitory activity have.
[0018]
[Table 1]
Figure 0004490547
[0019]
Fraction B1 was subjected to reverse phase high performance liquid chromatography under the conditions shown in RP-HPLC condition 1 above. The result is shown in FIG. The peaks 1 to 9 in FIG. 1 were collected and concentrated to dryness. Moreover, the ACE inhibitory activity of each peak was measured. The results are shown in Table 2.
[0020]
[Table 2]
ACE inhibitory activity of each peak from fraction B1 separated under RP-HPLC condition 1
Figure 0004490547
[0021]
Peak B1-5, which had strong ACE inhibitory activity, was dissolved in 100 μl of water and further subjected to reverse phase high performance liquid chromatography under the conditions shown in RP-HPLC condition 2. The result is shown in FIG.
Since peak B1-5 had peaks 5-a and 5-b, the ACE inhibitory activity of each peak was measured. The results are shown in Table 3. Among them, the amino acid type and sequence of the purified peptide of the peak 5-b fraction having strong ACE inhibitory activity were determined using a PICO-TAG amino acid analysis system (Millipore). As a result, the constituent amino acid of peak 5-b was Phe, and its amino acid sequence was determined to be Phe-Phe.
[0022]
[Table 3]
ACE inhibitory activity of each peak from B1-5 separated under RP-HPLC condition 1
Figure 0004490547
[0023]
[Example 2]
Separation of Gln-Leu-Pro from black vinegar The black vinegar was fractionated in the same manner as in Example 1, and the obtained fraction A3 was subjected to reverse phase high performance liquid chromatography under RP-HPLC condition 1. did. The result is shown in FIG. The peaks 1 to 5 in FIG. 3 were collected and concentrated to dryness. Moreover, the ACE inhibitory activity of each peak was measured, and the results are shown in Table 4.
[0024]
[Table 4]
ACE inhibitory activity of each peak from A3 separated under RP-HPLC condition 1
Figure 0004490547
[0025]
Peak A3-5, which had strong ACE inhibitory activity, was dissolved in 100 μl of water and further subjected to reverse phase high performance liquid chromatography under RP-HPLC condition 2. The result is shown in FIG.
Peak A3-5 has a peak 5-a fraction, and Table 5 shows the results of measuring ACE inhibitory activity.
[0026]
[Table 5]
ACE inhibitory activity of peak 5a from A3-5 isolated under RP-HPLC condition 2
Figure 0004490547
[0027]
The amino acid type and sequence of the purified peptide of the peak 5-a fraction were determined using a PICO-TAG amino acid analysis system (Millipore). As a result, the peak 5-a has a composition of Gln1, Pro1, Leu1, and its amino acid sequence was determined to be Gln-Leu-Pro.
[0028]
[Example 3]
Separation of Asn-Pro from black vinegar In Table 4 of Example 2, the peak A3-3 with strong ACE inhibitory activity was dissolved in 100 μl of water, and further reverse phase high performance liquid chromatography under RP-HPLC condition 2 It was used for graphy. The result is shown in FIG.
Peak 5A3-3 had peaks 3-a, 3-b, 3-c. Table 6 shows the results of measuring each ACE inhibitory activity. Among them, the amino acid type and sequence of the purified peptide of the peak 3-a fraction having strong ACE inhibitory activity were determined using a PICO-TAG amino acid analysis system (Millipore). As a result, peak 3-a has a composition of Asn 1 and Pro 1, and its amino acid sequence was determined to be Asn-Pro.
[0029]
[Table 6]
ACE inhibitory activity of each peak from A3-3 separated under RP-HPLC condition 2
Figure 0004490547
[0030]
[Example 4]
Separation of Ile-Tyr-Pro from black vinegar Fraction B3 of Example 1 was subjected to gel filtration in deionized water using a BioGel P-10 column (2 x 26 cm). The gel filtration pattern is shown in FIG. Fraction B3C with strong ACE inhibitory activity was subjected to reverse phase high performance liquid chromatography under RP-PHLC condition 1. The result is shown in FIG. As shown in FIG. 7, many peaks were obtained, most of which showed angiotensin converting enzyme inhibitory activity. Table 7 shows the ACE inhibitory activity of the strongest peak.
[0031]
[Table 7]
ACE inhibitory activity of each peak from B3-C separated under RP-HPLC condition 1
Figure 0004490547
[0032]
In order to examine the structure of the peptide contained in the peak B3C-6 having the strongest ACE inhibitory activity, purification was performed. The peak B3C-6 obtained in FIG. 7 was subjected to reverse phase high performance liquid chromatography under RP-HPLC condition 2 using a TFA-MeCN system. The obtained peak is shown in FIG. Of these, the amino acid composition of peak 6-a was analyzed. As a result, it had a composition of Pro1, Tyr1, Ile1, and its amino acid sequence was determined to be Ile-Tyr-Pro.
[0033]
[Example 5]
5 mg of the peptide obtained by any of Examples 1 to 4 was mixed with 50 mg of lactose, 20 mg of mannitol and 25 mg of glucose, and tableted to obtain tablets. This tablet is administered to patients with hypertension 1-2 tablets a day.
[0034]
【The invention's effect】
According to the present invention, dipeptides and tripeptides are provided from black vinegar.
These peptides are novel, have angiotensin I converting enzyme inhibitory activity, and have the following IC 50, and thus are used as angiotensin I converting enzyme inhibitors for the prevention or treatment of hypertension.
Ile-Tyr-Pro 1.3 μM
Phe-Phe 2.8 μM
Asn-Pro 148 μM
Gln-Leu-Pro 174 μM
Moreover, according to the present invention, these peptides can be efficiently isolated from black vinegar.
[Brief description of the drawings]
1 shows a chart obtained by separating fraction B1 of Example 1 under RP-HPLC condition 1. FIG.
2 shows a chart obtained by separating peak B1-5, which showed high ACE inhibitory activity in FIG. 1 of Example 1, under RP-HPLC condition 2. FIG.
FIG. 3 shows a chart obtained by separating fraction A3 of Example 2 under RP-HPLC condition 1.
4 shows a chart obtained by separating peak A3-5 showing high ACE inhibitory activity in FIG. 3 of Example 2 under RP-HPLC condition 2. FIG.
5 shows a chart obtained by separating peak A3-3, which showed high ACE inhibitory activity in FIG. 3 of Example 2, under RP-HPLC condition 2. FIG.
6 shows the gel filtration pattern of fraction B3 of Example 4. FIG.
[Explanation of symbols]
---------- ACE inhibitory activity ────── OD at 230 nm
──- ──- 280 nm OD
7 shows a chart obtained by separating fraction B3C of Example 4 under RP-HPLC condition 1. FIG.
8 shows a chart obtained by separating peak B3C-6, which showed high ACE inhibitory activity in FIG. 7 of Example 4, under RP-HPLC condition 2. FIG.

Claims (4)

次の式で表されるアンジオテンシンI変換酵素阻害ペプチド又はその塩。
Gln-Leu-Pro
An angiotensin I converting enzyme inhibitory peptide represented by the following formula or a salt thereof.
Gln-Leu-Pro
Phe-Phe 、Gln-Leu-Pro 又はAsn-Proまたはその塩を有効成分とするアンジオテンシンI変換酵素阻害剤。An angiotensin I converting enzyme inhibitor comprising Phe-Phe, Gln-Leu-Pro or Asn-Pro or a salt thereof as an active ingredient. 黒酢を活性炭で処理して活性炭非吸着成分を酸性において酢酸エチルで抽出し、抽出残存水層からペプチドを単離精製することを特徴とする黒酢から、Gln-Leu-Pro 、Asn-Pro またはその塩の製造法。The black vinegar is treated with activated carbon, the non-activated carbon adsorbed component is extracted with ethyl acetate in acidity, and the peptide is isolated and purified from the aqueous layer remaining after extraction. From Gln-Leu-Pro and Asn-Pro Or the manufacturing method of the salt. 黒酢を活性炭で処理して活性炭吸着成分をエタノールで溶出し、これを酸性において酢酸エチルで抽出し、抽出液または抽出残存水層からペプチドを単離精製することを特徴とするIle-Tyr-Pro 、Phe-Phe またはその塩の製造法。Ile-Tyr- is characterized in that black vinegar is treated with activated carbon and the activated carbon adsorbed components are eluted with ethanol, which is extracted with ethyl acetate in an acidic manner, and the peptide is isolated and purified from the extract or the remaining aqueous layer Pro, Phe-Phe or its production method.
JP2000095956A 2000-03-30 2000-03-30 Novel peptide, its production method and use Expired - Lifetime JP4490547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000095956A JP4490547B2 (en) 2000-03-30 2000-03-30 Novel peptide, its production method and use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000095956A JP4490547B2 (en) 2000-03-30 2000-03-30 Novel peptide, its production method and use

Publications (2)

Publication Number Publication Date
JP2001278893A JP2001278893A (en) 2001-10-10
JP4490547B2 true JP4490547B2 (en) 2010-06-30

Family

ID=18610784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000095956A Expired - Lifetime JP4490547B2 (en) 2000-03-30 2000-03-30 Novel peptide, its production method and use

Country Status (1)

Country Link
JP (1) JP4490547B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2546497A1 (en) * 2003-08-01 2005-02-10 Calpis Co., Ltd. Casein hydrolyzate, process for producing the same and use thereof
WO2005116055A1 (en) * 2004-05-24 2005-12-08 Yissum Research Development Company Of The Hebrew University Of Jerusalem Peptides, antibodies and compositions containing same useful for treating hiv virus infection
WO2011074731A1 (en) * 2009-12-18 2011-06-23 주식회사 연세 Peptide having a blood pressure-lowering ability
WO2019190333A1 (en) * 2018-03-27 2019-10-03 Sanford Limited Bioactive green-lipped mussel extracts and uses thereof

Also Published As

Publication number Publication date
JP2001278893A (en) 2001-10-10

Similar Documents

Publication Publication Date Title
JP5417405B2 (en) Method for producing angiotensin converting enzyme inhibitory antihypertensive peptide composition
JP4490547B2 (en) Novel peptide, its production method and use
WO2014002571A1 (en) Angiotensin-converting-enzyme inhibiting dipeptide
JP5456100B2 (en) Angiotensin converting enzyme inhibitory dipeptide
JP5456144B1 (en) Angiotensin converting enzyme inhibitory dipeptide
JP3430176B2 (en) Method for purifying angiotensin converting enzyme inhibitory peptide
JP3009718B2 (en) New peptides, their production methods and applications
JP3893579B2 (en) Novel tetrapeptide and angiotensin converting enzyme inhibitors
JPH08231588A (en) Angiotensinase inhibiting peptide and its production
JPH01226898A (en) Novel peptide and hypotensive agent containing said peptide
JPH06239888A (en) New peptide and sedative and ataractic food
CN102311484A (en) Hexapeptide for inhabiting angiotensin transferase and preparation method thereof
JP3009719B2 (en) New peptides, their production methods and applications
JP3009720B2 (en) New peptides, their production methods and applications
JPH03120225A (en) New peptide and antihypertensive agent containing same peptide
JP3012291B2 (en) Novel peptide, its production method and use
JPH08225593A (en) Novel tetrapeptide, pentapeptide and angiotensin-transferase inhibitor
JPS62187489A (en) Lysozyme occurring peptide
JP2965683B2 (en) Novel peptide, method for producing it and use
JP3220420B2 (en) Pentapeptide, its production method and its use
JP3364210B2 (en) Novel peptide
JP3885214B2 (en) Novel hexapeptide and angiotensin converting enzyme inhibitors
JP2965682B2 (en) New peptides, their production methods and applications
JP2862286B2 (en) Peptide having angiotensin converting enzyme inhibitory activity and method for producing the same
JP2920829B1 (en) Novel pentapeptide and angiotensin converting enzyme inhibitors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4490547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term