JP4490386B2 - Component concentration measuring device - Google Patents

Component concentration measuring device Download PDF

Info

Publication number
JP4490386B2
JP4490386B2 JP2006085629A JP2006085629A JP4490386B2 JP 4490386 B2 JP4490386 B2 JP 4490386B2 JP 2006085629 A JP2006085629 A JP 2006085629A JP 2006085629 A JP2006085629 A JP 2006085629A JP 4490386 B2 JP4490386 B2 JP 4490386B2
Authority
JP
Japan
Prior art keywords
light
subject
component concentration
laser beam
modulated laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006085629A
Other languages
Japanese (ja)
Other versions
JP2007259915A (en
Inventor
孝規 清倉
卓郎 田島
勇一 岡部
和則 長沼
純一 嶋田
真司 美野
博 輿水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Advanced Technology Corp
Nippon Telegraph and Telephone Corp
Original Assignee
NTT Advanced Technology Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Advanced Technology Corp, Nippon Telegraph and Telephone Corp filed Critical NTT Advanced Technology Corp
Priority to JP2006085629A priority Critical patent/JP4490386B2/en
Publication of JP2007259915A publication Critical patent/JP2007259915A/en
Application granted granted Critical
Publication of JP4490386B2 publication Critical patent/JP4490386B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

本発明は、人間又は動物の被検体の非侵襲な成分濃度測定装置に関する。   The present invention relates to a noninvasive component concentration measurement apparatus for a human or animal subject.

高齢化が進み、成人病に対する対応が大きな課題になりつつある。血糖値などの検査においては血液の採取が必要なために患者にとって大きな負担となるので、血液を採取しない非侵襲な成分濃度測定装置が注目されている。現在までに開発された非侵襲な成分濃度測定装置としては、皮膚内に電磁波を照射し、測定対象とする血液成分、例えば、血糖値の場合はグルコース分子に吸収され、局所的に加熱して熱膨張を起こして生体内から発生する音波を観測する光音響分光法(以下、「光音響分光法」を「PAS」と略記する。)が注目されている。   With the aging of society, dealing with adult diseases is becoming a major issue. In blood glucose level and other tests, blood collection is necessary, which places a heavy burden on the patient. Therefore, a non-invasive component concentration measurement apparatus that does not collect blood has attracted attention. As a non-invasive component concentration measuring device that has been developed so far, the skin is irradiated with electromagnetic waves and absorbed by blood molecules to be measured, for example, glucose molecules in the case of blood glucose levels, and heated locally. Photoacoustic spectroscopy (hereinafter, “photoacoustic spectroscopy” is abbreviated as “PAS”) that observes sound waves generated from the living body due to thermal expansion has attracted attention.

図15は光パルスを電磁波として用いたPASによる従来の血液成分濃度測定装置の構成例を示す図である(例えば、非特許文献1参照。)。本例では血液成分として血糖、すなわちグルコースを測定対象としている。図15において、駆動回路604はパルス状の励起電流をパルス光源616に供給し、パルス光源616はサブマイクロ秒の持続時間を有する光パルスを発生し、発生した光パルスは被検体610に照射される。被検体610の内部の各成分はそれぞれ光音響効果を生ずる固有の光の波長を有しており、照射した光パルスの光の波長で光音響効果を生ずる被検体610の内部の成分の濃度に応じた強度の超音波が発生する。図15の血液成分濃度測定装置はグルコースの濃度を測定するため、パルス光源616はグルコースが光音響効果を発生させる光の波長の光パルスを照射する。発生した超音波は被検体610の表面に伝達して超音波検出器613で検出される。超音波検出器613は検出した超音波を強度に比例した振幅の電気信号に変換する。   FIG. 15 is a diagram showing a configuration example of a conventional blood component concentration measuring apparatus using PAS using an optical pulse as an electromagnetic wave (see, for example, Non-Patent Document 1). In this example, blood glucose, that is, glucose is the measurement target as the blood component. In FIG. 15, a driving circuit 604 supplies a pulsed excitation current to a pulse light source 616, the pulse light source 616 generates a light pulse having a sub-microsecond duration, and the generated light pulse is applied to the subject 610. The Each component inside the subject 610 has a specific light wavelength that produces a photoacoustic effect, and the concentration of the component inside the subject 610 that produces the photoacoustic effect at the wavelength of the light of the irradiated light pulse. An ultrasonic wave with a corresponding intensity is generated. Since the blood component concentration measuring apparatus of FIG. 15 measures the concentration of glucose, the pulsed light source 616 irradiates the light pulse with the wavelength of light that causes the photoacoustic effect of glucose. The generated ultrasonic wave is transmitted to the surface of the subject 610 and detected by the ultrasonic detector 613. The ultrasonic detector 613 converts the detected ultrasonic wave into an electric signal having an amplitude proportional to the intensity.

前記電気信号の波形は波形観測器620で観測される。波形観測器620は上記励起電流に同期した信号でトリガされ、前記電気信号は画面上の一定位置に表示し、前記電気信号を積算・平均して測定することができる。このようにして得られた電気信号の振幅を解析して、被検体610の内部のグルコースの濃度が測定される。
オウル大学(University of Oulu、Finland)学位論文「Pulse photoacoustic techniqus and glucose determination in human blood and tissue」(IBS 951−42−6690−0、http://herkules.oulu.fi/isbn9514266900/、2002年)
The waveform of the electrical signal is observed by a waveform observer 620. The waveform observer 620 is triggered by a signal synchronized with the excitation current, the electric signal is displayed at a fixed position on the screen, and the electric signal can be measured by integrating and averaging. By analyzing the amplitude of the electrical signal thus obtained, the glucose concentration inside the subject 610 is measured.
University of Oulu (University of Oulu, Finland) thesis “Pulse photoacoustic technique and glucodesis in human blood and tissue” (IBS 951-42-6690-0, ul./200.

しかし、人体で発生した光音響信号である音波を音波検出器で効率よく検出するため、音波の波面を球面波ではなく平面波にする必要がある。そのため、光の照射面積が大きいほど検出距離を遠くしなければならず、音波検出器と音波の発生源との距離や照射面積に制約が生じる。例えば、生体の指先を被検体とした場合には、検出距離も短いため、照射面積を小さくする必要がある。   However, in order to efficiently detect a sound wave, which is a photoacoustic signal generated in a human body, with a sound wave detector, the wave surface of the sound wave needs to be a plane wave instead of a spherical wave. For this reason, the detection distance must be increased as the light irradiation area increases, and the distance and irradiation area between the sound wave detector and the sound wave generation source are limited. For example, when a biological fingertip is used as a subject, the detection distance is short, and thus the irradiation area needs to be reduced.

一方、生体の皮膚上に照射可能なレーザ出力の限界値がJIS規格で定められているため、照射点で生じさせることができる光音響信号の大きさにも限界がある。ここで、JISC6802によると、皮膚に対して非可視赤外光(波長が0.8μm以上)を連続照射する場合、1mm当たり1mWが最大許容量となる。そのため、生体の光の被照射部位によっては、発生させた光音響信号が微弱となり、雑音の影響を受け易くなる。 On the other hand, since the limit value of the laser output that can be irradiated on the skin of a living body is defined by the JIS standard, the size of the photoacoustic signal that can be generated at the irradiation point is also limited. Here, according to JISC6802, when invisible infrared light (wavelength of 0.8 μm or more) is continuously irradiated to the skin, 1 mW per 1 mm 2 is the maximum allowable amount. For this reason, the generated photoacoustic signal is weak depending on the portion of the living body irradiated with light, and is easily affected by noise.

被検体からの超音波を精度よく検出するために、図15のような従来の血液成分濃度測定装置では、超音波検出器613のように音響センサを被検体610に直接接触させていた。しかし、超音波検出器613を被検体610に接触させることで、接触部分に圧力が印加され、血液量が変化して血液成分濃度の測定結果に影響を与えてしまうという課題があった。さらに、接触部に傷があるような場合には超音波検出器613を被検体610に接触させることができず、血液成分濃度の測定ができないという課題もあった。   In order to accurately detect ultrasonic waves from the subject, in the conventional blood component concentration measuring apparatus as shown in FIG. 15, an acoustic sensor is brought into direct contact with the subject 610 like the ultrasonic detector 613. However, when the ultrasonic detector 613 is brought into contact with the subject 610, pressure is applied to the contact portion, and there is a problem that the blood volume changes and affects the measurement result of the blood component concentration. Furthermore, when the contact portion is scratched, the ultrasonic detector 613 cannot be brought into contact with the subject 610, and there is a problem that the blood component concentration cannot be measured.

本発明は上記課題を解決するためになされたもので、被検体と非接触で被検体の血液成分濃度の測定ができる成分濃度測定装置を提供することを目的とする。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a component concentration measuring apparatus capable of measuring a blood component concentration of a subject without contact with the subject.

前記目的を達成するために、本発明に係る成分濃度測定装置は、被検体に照射した光の反射光から超音波を検出する検出手段を備えることとした。ここで、被検体とは測定対象の人間や動物である。   In order to achieve the above object, the component concentration measuring apparatus according to the present invention includes a detecting means for detecting an ultrasonic wave from reflected light of light irradiated on a subject. Here, the subject is a human or animal to be measured.

本発明による課題を解決するための具体的手段について説明する。本発明は、レーザ光を一定周波数の変調信号により電気的に強度変調した変調レーザ光を被検体に向けて照射する光照射手段と、照射された前記変調レーザ光により発生する前記被検体内の超音波を前記被検体の表面の振動として検出する振動検出手段と、を備える成分濃度測定装置であって、前記振動検出手段は、前記被検体の表面に計測用ビームを照射する計測用ビーム照射手段と、前記被検体の表面で反射した前記計測用ビームの反射光の光軸位置を測定する光位置検出手段と、を有することを特徴とする成分濃度測定装置である。   Specific means for solving the problems according to the present invention will be described. The present invention provides a light irradiating means for irradiating a subject with a modulated laser light that is electrically intensity-modulated with a modulation signal of a constant frequency toward the subject, and the inside of the subject generated by the irradiated modulated laser light. Vibration detecting means for detecting ultrasonic waves as vibrations on the surface of the subject, wherein the vibration detecting means irradiates a measuring beam on the surface of the subject. And a light position detecting means for measuring an optical axis position of the reflected light of the measurement beam reflected by the surface of the subject.

前記光照射手段は、前記被検体から離れた位置から前記変調レーザ光を照射し、前記被検体内に光音響効果を発生させることができる。   The light irradiation means can irradiate the modulated laser light from a position away from the subject to generate a photoacoustic effect in the subject.

前記計測用ビーム照射手段は前記被検体から離れた位置から前記計測用ビームを前記被検体の表面に照射し、前記光位置検出手段は前記被検体から離れた位置で前記被検体の表面で反射した前記計測用ビームの反射光を受光することができる。前記光位置検出手段は前記反射光が受光面に照射した位置を測定することができる。   The measurement beam irradiating means irradiates the surface of the subject with the measurement beam from a position away from the subject, and the optical position detection means reflects on the surface of the subject at a position away from the subject. The reflected light of the measurement beam can be received. The light position detecting means can measure the position where the reflected light is irradiated on the light receiving surface.

前記被検体の表面は前記光音響効果で振動しているため、前記被検体の表面の振動で前記反射光の前記被検体の表面での反射角度は振動する。さらに、前記反射光の前記反射角度は前記被検体の表面の振動の大きさに応じて変化する。すなわち、前記光位置検出手段は前記反射光の反射角度の振動の大きさを前記反射光の受光位置の振動の振幅として測定する。   Since the surface of the subject vibrates due to the photoacoustic effect, the reflection angle of the reflected light on the surface of the subject vibrates due to the vibration of the surface of the subject. Further, the reflection angle of the reflected light changes according to the magnitude of vibration of the surface of the subject. That is, the light position detecting means measures the magnitude of vibration of the reflection angle of the reflected light as the amplitude of vibration of the light receiving position of the reflected light.

被検体の測定対象成分の濃度が高ければ前記被検体の表面の振動が大きくなるため、前記反射光の反射角度の変動は大きくなり、前記光位置検出手段における前記反射光の受光位置の振動の振幅が大きくなる。逆に、被検体の測定対象成分の濃度が低ければ前記被検体の表面の振動が小さくなるため、前記反射光の反射角度の変動は小さくなり、前記光位置検出手段における前記反射光の受光位置の振動の振幅が小さくなる。   If the concentration of the measurement target component of the subject is high, the vibration of the surface of the subject becomes large, so that the fluctuation of the reflection angle of the reflected light becomes large, and the vibration of the light receiving position of the reflected light in the light position detecting means becomes large. Amplitude increases. On the contrary, if the concentration of the measurement target component of the subject is low, the vibration of the surface of the subject is small, so that the variation in the reflection angle of the reflected light is small, and the light receiving position of the reflected light in the light position detecting means The amplitude of vibration becomes small.

予め、前記被検体の測定対象成分に光音響効果を生じさせる変調レーザ光の波長及び前記被検体の測定対象成分の濃度に対する前記反射光の前記光位置検出手段における受光位置の振幅データを取得しておくことで、前記成分濃度測定装置は前記反射光の受光位置の振動の振幅から被検体の測定対象成分の濃度を測定することができる。   The amplitude data of the light receiving position in the optical position detecting unit of the reflected light with respect to the wavelength of the modulated laser beam that causes a photoacoustic effect on the measurement target component of the subject and the concentration of the measurement target component of the subject are acquired in advance. Thus, the component concentration measuring apparatus can measure the concentration of the measurement target component of the subject from the amplitude of the vibration at the light receiving position of the reflected light.

従って、本発明は、前記被検体から離れた位置に前記光照射手段及び前記振動検出手段を備えることで、被検体と非接触で被検体の血液成分濃度の測定ができる成分濃度測定装置を提供することができる。   Therefore, the present invention provides a component concentration measuring apparatus that can measure the blood component concentration of a subject in a non-contact manner with the subject by providing the light irradiation means and the vibration detecting means at a position away from the subject. can do.

前記振動検出手段は、前記光位置検出手段の代替として積算光量測定手段を有してもよい。   The vibration detection unit may include an integrated light amount measurement unit as an alternative to the light position detection unit.

具体的には、本発明は、レーザ光を一定周波数の変調信号により電気的に強度変調した変調レーザ光を被検体に向けて照射する光照射手段と、照射された前記変調レーザ光により発生する前記被検体内の超音波を前記被検体の表面の振動として検出する振動検出手段と、を備える成分濃度測定装置であって、前記振動検出手段は、前記被検体の表面に計測用ビームを照射する計測用ビーム照射手段と、前記被検体の表面で反射した前記計測用ビームの反射光のピンホールを通じて受光する積算光量を測定する積算光量測定手段と、を有することを特徴とする成分濃度測定装置である。   Specifically, the present invention is generated by light irradiation means for irradiating a subject with modulated laser light that is electrically intensity-modulated with a modulation signal of a constant frequency toward the subject, and the irradiated modulated laser light. Vibration detecting means for detecting ultrasonic waves in the subject as vibrations on the surface of the subject, wherein the vibration detecting means irradiates a measurement beam on the surface of the subject. And a measuring beam irradiation unit for measuring the concentration of the light beam, and a measuring unit for measuring the total amount of light received through the pinhole of the reflected light of the measuring beam reflected from the surface of the subject. Device.

前記積算光量測定手段は受光面にピンホールを有しており、前記ピンホールを通過した光の光量を積算する。前記被検体の表面の振動により前記計測用ビームが反射した反射光の反射角度は振動しており、前記反射光は前記ピンホール上で振動することになる。前記反射光の前記ピンホール上における振動の振幅が大きければ前記ピンホールを通過する光の積算光量は少なくなり、逆に、前記反射光の前記ピンホール上における振動の振幅が小さければ前記ピンホールを通過する光の積算光量は多くなる。   The integrated light quantity measuring means has a pinhole on the light receiving surface, and integrates the light quantity of light passing through the pinhole. The reflection angle of the reflected light reflected by the measurement beam is vibrated by the vibration of the surface of the subject, and the reflected light vibrates on the pinhole. If the amplitude of vibration of the reflected light on the pinhole is large, the integrated light quantity of light passing through the pinhole is reduced. Conversely, if the amplitude of vibration of the reflected light on the pinhole is small, the pinhole is reduced. The accumulated light quantity of light passing through increases.

予め、前記被検体の測定対象成分に光音響効果を生じさせる変調レーザ光の波長及び前記被検体の測定対象成分の濃度に対する前記積算光量測定手段における積算光量データを取得しておくことで、前記成分濃度測定装置は前記反射光が前記ピンホールを通過した前記反射光の積算光量から被検体の測定対象成分の濃度を測定することができる。   By acquiring in advance the integrated light amount data in the integrated light amount measurement means for the wavelength of the modulated laser beam that causes a photoacoustic effect on the measurement target component of the subject and the concentration of the measurement target component of the subject, The component concentration measuring apparatus can measure the concentration of the measurement target component of the subject from the integrated light quantity of the reflected light that has passed through the pinhole.

従って、本発明は、前記被検体から離れた位置に前記光照射手段及び前記振動検出手段を備えることで、被検体と非接触で被検体の血液成分濃度の測定ができる成分濃度測定装置を提供することができる。   Therefore, the present invention provides a component concentration measuring apparatus that can measure the blood component concentration of a subject in a non-contact manner with the subject by providing the light irradiation means and the vibration detecting means at a position away from the subject. can do.

前記振動検出手段は、前記光位置検出手段の代替として計測用レーザ発振器及び干渉計を有してもよい。   The vibration detection unit may include a measurement laser oscillator and an interferometer as an alternative to the optical position detection unit.

具体的には、本発明は、レーザ光を一定周波数の変調信号により電気的に強度変調した変調レーザ光を被検体に向けて照射する光照射手段と、照射された前記変調レーザ光により発生する前記被検体内の超音波を前記被検体の表面の振動として検出する振動検出手段と、を備える成分濃度測定装置であって、前記振動検出手段は、計測用レーザ光を出射する計測用レーザ発振器と、前記計測用レーザ発振器からの前記計測用レーザ光を第一レーザ光と第二レーザ光とに2分岐し、前記第一レーザ光を前記被検体の表面に照射させ、前記第二レーザ光と前記被検体の表面で反射した前記第一レーザ光との位相差を測定する干渉計と、を有することを特徴とする成分濃度測定装置である。   Specifically, the present invention is generated by light irradiation means for irradiating a subject with modulated laser light that is electrically intensity-modulated with a modulation signal of a constant frequency toward the subject, and the irradiated modulated laser light. A component concentration measuring apparatus comprising: a vibration detecting unit configured to detect an ultrasonic wave in the subject as a vibration of the surface of the subject, wherein the vibration detecting unit emits a measuring laser beam. And the measurement laser beam from the measurement laser oscillator is bifurcated into a first laser beam and a second laser beam, the surface of the subject is irradiated with the first laser beam, and the second laser beam And an interferometer that measures a phase difference between the first laser beam reflected by the surface of the subject and the first laser beam.

前記干渉計は、前記計測用レーザ光を前記被検体から離れた位置から前記被検体の表面に照射する前記第一レーザ光と基準となる前記第二レーザ光とに2分岐し、前記被検体の表面で反射した前記第一レーザ光である反射光と前記第二レーザ光を干渉させて前記第一レーザ光と前記第二レーザ光との位相差を測定する。   The interferometer is bifurcated into the first laser beam that irradiates the surface of the subject from a position away from the subject and the second laser beam that serves as a reference, and the subject laser beam. The phase difference between the first laser beam and the second laser beam is measured by causing the reflected light, which is the first laser beam reflected on the surface of the laser beam, to interfere with the second laser beam.

前記被検体の表面は光音響効果により振動しており、前記反射光は前記被検体の表面の振動の大きさに基づき位相が変動する。前記被検体の表面の振動が大きければ、前記反射光と前記第二レーザ光との位相差は大きくなり、逆に、前記被検体の表面の振動が小さければ、前記反射光と前記第二レーザ光との位相差は小さくなる。   The surface of the subject vibrates due to a photoacoustic effect, and the phase of the reflected light varies based on the magnitude of the vibration of the surface of the subject. If the vibration of the surface of the subject is large, the phase difference between the reflected light and the second laser light is large. Conversely, if the vibration of the surface of the subject is small, the reflected light and the second laser are large. The phase difference from the light becomes small.

予め、前記被検体の測定対象成分に光音響効果を生じさせる変調レーザ光の波長及び前記被検体の測定対象成分の濃度に対する前記干渉計における前記反射光と前記第二レーザ光との位相差データを取得しておくことで、前記成分濃度測定装置は前記干渉計が測定した位相差から前記被検体の測定対象成分の濃度を測定することができる。   Phase difference data between the reflected light and the second laser light in the interferometer with respect to the wavelength of the modulated laser light that causes a photoacoustic effect on the measurement target component of the subject and the concentration of the measurement target component of the subject in advance The component concentration measuring apparatus can measure the concentration of the measurement target component of the subject from the phase difference measured by the interferometer.

従って、本発明は、前記被検体から離れた位置に前記光照射手段及び前記振動検出手段を備えることで、被検体と非接触で被検体の血液成分濃度の測定ができる成分濃度測定装置を提供することができる。   Therefore, the present invention provides a component concentration measuring apparatus that can measure the blood component concentration of a subject in a non-contact manner with the subject by providing the light irradiation means and the vibration detecting means at a position away from the subject. can do.

前記振動検出手段が前記計測用ビーム照射手段又は計測用レーザ発振器を有する成分濃度測定装置は、振動する前記被検体の表面に超音波整合材料を介して光反射体をさらに備えることが好ましい。   The component concentration measurement apparatus in which the vibration detection unit includes the measurement beam irradiation unit or the measurement laser oscillator preferably further includes a light reflector on the surface of the subject that vibrates via an ultrasonic matching material.

前記計測用ビーム又は前記計測用レーザ光に対して反射率の高い前記光反射体を前記被検体の表面に配置することで前記反射光の光強度が高まり、成分濃度測定の精度を向上させることができる。さらに、前記被検体の表面と前記光反射体との間に超音波整合材料を介しても良い。前記超音波整合材料は前記被検体と前記光反射体との音響インピーダンスを整合するため、振動の減衰を防ぐことができる。前記超音波整合材料により前記被検体の表面の振動を効率的に前記光反射体に伝達することができ、成分濃度測定の精度を向上させることができる。   By disposing the light reflector having a high reflectivity with respect to the measurement beam or the measurement laser light on the surface of the subject, the light intensity of the reflected light is increased and the accuracy of the component concentration measurement is improved. Can do. Furthermore, an ultrasonic matching material may be interposed between the surface of the subject and the light reflector. Since the ultrasonic matching material matches the acoustic impedance between the subject and the light reflector, vibration attenuation can be prevented. The ultrasonic matching material can efficiently transmit the vibration of the surface of the subject to the light reflector, thereby improving the accuracy of component concentration measurement.

従って、本願発明は、被検体と非接触で精度よく被検体の血液成分濃度の測定ができる成分濃度測定装置を提供することができる。   Therefore, the present invention can provide a component concentration measuring apparatus that can accurately measure the blood component concentration of a subject without contact with the subject.

前記振動検出手段は、前記計測用ビーム照射手段や計測用レーザ発振器を有さず、前記光照射手段からの前記変調レーザ光の一部が前記被検体の表面で反射した反射光を利用して、前記被検体表面の振動を測定してもよい。   The vibration detection unit does not include the measurement beam irradiation unit or the measurement laser oscillator, and uses reflected light obtained by reflecting a part of the modulated laser light from the light irradiation unit on the surface of the subject. The vibration of the subject surface may be measured.

具体的には、本発明は、レーザ光を一定周波数の変調信号により電気的に強度変調した変調レーザ光を被検体に向けて照射する光照射手段と、照射された前記変調レーザ光により発生する前記被検体内の超音波を前記被検体の表面の振動として検出する振動検出手段と、を備える成分濃度測定装置であって、前記振動検出手段は、前記変調レーザ光のうち前記被検体の表面で反射する反射光の光軸の位置を測定する光位置検出手段を有することを特徴とする成分濃度測定装置である。   Specifically, the present invention is generated by light irradiation means for irradiating a subject with modulated laser light that is electrically intensity-modulated with a modulation signal of a constant frequency toward the subject, and the irradiated modulated laser light. Vibration detecting means for detecting ultrasonic waves in the subject as vibrations on the surface of the subject, wherein the vibration detecting means is a surface of the subject out of the modulated laser light. It is a component concentration measuring apparatus characterized by having an optical position detecting means for measuring the position of the optical axis of the reflected light reflected by.

前記被検体の表面は光音響効果により振動しており、前記変調レーザ光の前記反射光も前記計測用ビームの反射光と同様に前記被検体の表面の振動で反射角度が振動する。前記振動検出手段は前記光位置検出手段を有するため、前記成分濃度測定装置は振動検出手段における前記反射光の受光位置の振動の振幅から被検体の測定対象成分の濃度を測定することができる。   The surface of the subject vibrates due to a photoacoustic effect, and the reflection angle of the reflected light of the modulated laser light also vibrates due to the vibration of the surface of the subject, similar to the reflected light of the measurement beam. Since the vibration detection unit includes the light position detection unit, the component concentration measurement apparatus can measure the concentration of the measurement target component of the subject from the amplitude of the vibration at the light receiving position of the reflected light in the vibration detection unit.

従って、本発明は、前記被検体から離れた位置に前記光照射手段及び前記振動検出手段を備えることで、被検体と非接触で被検体の血液成分濃度の測定ができる成分濃度測定装置を提供することができる。   Therefore, the present invention provides a component concentration measuring apparatus that can measure the blood component concentration of a subject in a non-contact manner with the subject by providing the light irradiation means and the vibration detecting means at a position away from the subject. can do.

また、前記光照射手段からの前記変調レーザ光の一部が前記被検体の表面で反射した反射光を前記積算光量測定手段で測定してもよい。   In addition, reflected light obtained by reflecting a part of the modulated laser light from the light irradiation means on the surface of the subject may be measured by the integrated light quantity measurement means.

具体的には、本発明は、レーザ光を一定周波数の変調信号により電気的に強度変調した変調レーザ光を被検体に向けて照射する光照射手段と、照射された前記変調レーザ光により発生する前記被検体内の超音波を前記被検体の表面の振動として検出する振動検出手段と、を備える成分濃度測定装置であって、前記振動検出手段は、前記変調レーザ光のうち前記被検体の表面で反射する反射光のピンホールを通じて受光する積算光量を測定する積算光量測定手段を有することを特徴とする成分濃度測定装置である。   Specifically, the present invention is generated by light irradiation means for irradiating a subject with modulated laser light that is electrically intensity-modulated with a modulation signal of a constant frequency toward the subject, and the irradiated modulated laser light. Vibration detecting means for detecting ultrasonic waves in the subject as vibrations on the surface of the subject, wherein the vibration detecting means is a surface of the subject out of the modulated laser light. A component concentration measuring device comprising an integrated light amount measuring means for measuring an integrated light amount received through a pinhole of reflected light reflected by the light source.

前記積算光量測定手段は前記反射光の反射角度の振動を前記ピンホールを通過した光の積算光量として測定することができる。すなわち、前記成分濃度測定装置は前記ピンホールを通過した前記反射光の積算光量から被検体の測定対象成分の濃度を測定することができる。   The integrated light quantity measuring means can measure the vibration of the reflection angle of the reflected light as the integrated light quantity of the light that has passed through the pinhole. That is, the component concentration measuring apparatus can measure the concentration of the measurement target component of the subject from the integrated light amount of the reflected light that has passed through the pinhole.

従って、本発明は、前記被検体から離れた位置に前記光照射手段及び前記振動検出手段を備えることで、被検体と非接触で被検体の血液成分濃度の測定ができる成分濃度測定装置を提供することができる。   Therefore, the present invention provides a component concentration measuring apparatus that can measure the blood component concentration of a subject in a non-contact manner with the subject by providing the light irradiation means and the vibration detecting means at a position away from the subject. can do.

前記変調レーザ光を2分岐し、一方を光音響効果用として利用、他方を被検体の表面の振動の計測用として利用しても良い。   The modulated laser beam may be branched into two, one being used for the photoacoustic effect and the other being used for measuring the vibration of the surface of the subject.

具体的には、本発明は、レーザ光を一定周波数の変調信号により電気的に強度変調した変調レーザ光を第一変調レーザ光と第二変調レーザ光とに2分岐して前記第一変調レーザ光を被検体の表面に超音波整合材料を介して配置した光反射体に向けて照射し、前記第二変調レーザ光を前記光反射体と異なる位置の前記被検体の表面に照射する光照射手段と、照射された前記第二変調レーザ光により発生する前記被検体内の超音波を前記被検体の表面の振動として検出する振動検出手段と、を備える成分濃度測定装置であって、前記振動検出手段は、前記光反射体で反射する前記第一変調レーザ光の反射光の光軸位置を測定する光位置検出手段を有することを特徴とする成分濃度測定装置である。   Specifically, in the present invention, the first modulated laser is obtained by bifurcating a modulated laser beam obtained by electrically modulating the intensity of the laser beam with a modulation signal having a constant frequency into a first modulated laser beam and a second modulated laser beam. Light irradiation for irradiating light onto a light reflector disposed on the surface of the subject via an ultrasonic matching material and for irradiating the surface of the subject at a position different from the light reflector with the second modulated laser light And a vibration detecting means for detecting ultrasonic waves in the subject generated by the irradiated second modulated laser light as vibrations on the surface of the subject, wherein the vibration The detection means is a component concentration measurement device comprising optical position detection means for measuring the optical axis position of the reflected light of the first modulated laser light reflected by the light reflector.

前記被検体の表面は前記第二変調レーザ光による光音響効果で振動しており、前記第一変調レーザ光の前記反射光も前記計測用ビームの反射光と同様に前記被検体の表面の振動で反射角度が振動する。前記振動検出手段は前記光位置検出手段を有するため、前記成分濃度測定装置は振動検出手段における前記反射光の受光位置の振動の振幅から被検体の測定対象成分の濃度を測定することができる。   The surface of the subject is vibrated by the photoacoustic effect of the second modulated laser light, and the reflected light of the first modulated laser light is also vibrated on the surface of the subject, similarly to the reflected light of the measurement beam. The reflection angle vibrates. Since the vibration detection unit includes the light position detection unit, the component concentration measurement apparatus can measure the concentration of the measurement target component of the subject from the amplitude of the vibration at the light receiving position of the reflected light in the vibration detection unit.

さらに、前記被検体の表面には前記第一変調レーザ光に対して反射率の高い前記光反射体が配置されているため、前記反射光の光強度が高まる。また、前記被検体の表面と前記光反射体との間に超音波整合材料を介しているため、前記被検体の表面の振動を効率的に前記光反射体に伝達することができ、成分濃度測定の精度を向上させることができる。   Furthermore, since the light reflector having a high reflectance with respect to the first modulated laser light is disposed on the surface of the subject, the light intensity of the reflected light is increased. Further, since an ultrasonic matching material is interposed between the surface of the subject and the light reflector, vibration of the surface of the subject can be efficiently transmitted to the light reflector, and the component concentration Measurement accuracy can be improved.

従って、本発明は、前記被検体から離れた位置に前記光照射手段及び前記振動検出手段を備えることで、被検体と非接触で被検体の血液成分濃度の測定ができる成分濃度測定装置を提供することができる。   Therefore, the present invention provides a component concentration measuring apparatus that can measure the blood component concentration of a subject in a non-contact manner with the subject by providing the light irradiation means and the vibration detecting means at a position away from the subject. can do.

また、前記被検体の表面に配置した光反射体で反射した前記第一変調レーザ光の反射光を前記積算光量測定手段で測定してもよい。   The reflected light of the first modulated laser beam reflected by the light reflector disposed on the surface of the subject may be measured by the integrated light quantity measuring unit.

具体的には、本発明は、レーザ光を一定周波数の変調信号により電気的に強度変調した変調レーザ光を第一変調レーザ光と第二変調レーザ光とに2分岐して前記第一変調レーザ光を被検体の表面に超音波整合材料を介して配置した光反射体に向けて照射し、前記第二変調レーザ光を前記光反射体と異なる位置の前記被検体の表面に照射する光照射手段と、照射された前記第二変調レーザ光により発生する前記被検体内の超音波を前記被検体の表面の振動として検出する振動検出手段と、を備える成分濃度測定装置であって、前記振動検出手段は、前記光反射体で反射する前記第一変調レーザ光の反射光のピンホールを通じて受光する積算光量を測定する積算光量測定手段を有することを特徴とする成分濃度測定装置である。   Specifically, in the present invention, the first modulated laser is obtained by bifurcating a modulated laser beam obtained by electrically modulating the intensity of the laser beam with a modulation signal having a constant frequency into a first modulated laser beam and a second modulated laser beam. Light irradiation for irradiating light onto a light reflector disposed on the surface of the subject via an ultrasonic matching material and for irradiating the surface of the subject at a position different from the light reflector with the second modulated laser light And a vibration detecting means for detecting ultrasonic waves in the subject generated by the irradiated second modulated laser light as vibrations on the surface of the subject, wherein the vibration The detection means includes an integrated light quantity measuring means for measuring an integrated light quantity received through a pinhole of the reflected light of the first modulated laser light reflected by the light reflector.

前記積算光量測定手段は前記反射光の反射角度の振動を前記ピンホールを通過した光の積算光量として測定することができる。すなわち、前記成分濃度測定装置は前記反射光が前記ピンホールを通過した前記反射光の積算光量から被検体の測定対象成分の濃度を測定することができる。   The integrated light quantity measuring means can measure the vibration of the reflection angle of the reflected light as the integrated light quantity of the light that has passed through the pinhole. That is, the component concentration measuring apparatus can measure the concentration of the measurement target component of the subject from the integrated light amount of the reflected light that has passed through the pinhole.

従って、本発明は、前記被検体から離れた位置に前記光照射手段及び前記振動検出手段を備えることで、被検体と非接触で被検体の血液成分濃度の測定ができる成分濃度測定装置を提供することができる。   Therefore, the present invention provides a component concentration measuring apparatus that can measure the blood component concentration of a subject in a non-contact manner with the subject by providing the light irradiation means and the vibration detecting means at a position away from the subject. can do.

前記光位置検出手段を有する振動検出手段を備える成分濃度測定装置は、前記振動検出手段において、前記光位置検出手段から出力される前記反射光の光軸位置の光軸位置測定信号を前記光照射手段の前記変調信号で同期検波することが好ましい。   The component concentration measurement apparatus including the vibration detection unit having the optical position detection unit is configured to emit an optical axis position measurement signal of the optical axis position of the reflected light output from the optical position detection unit in the vibration detection unit. It is preferable to perform synchronous detection with the modulation signal of the means.

前記光照射手段の前記変調信号を用いて、前記光位置検出手段から出力される前記光軸位置測定信号を同期検波することで、前記被検体の表面の振動を高精度に検出することができる。   By using the modulation signal of the light irradiation means and synchronously detecting the optical axis position measurement signal output from the light position detection means, vibration of the surface of the subject can be detected with high accuracy. .

従って、本発明は、被検体と非接触で精度よく被検体の血液成分濃度の測定ができる成分濃度測定装置を提供することができる。   Therefore, the present invention can provide a component concentration measuring apparatus that can accurately measure the blood component concentration of a subject without contact with the subject.

本発明は、被検体と非接触で被検体の血液成分濃度の測定ができる成分濃度測定装置を提供することができる。   The present invention can provide a component concentration measuring apparatus capable of measuring the blood component concentration of a subject without contact with the subject.

添付の図面を参照して本発明の実施の形態を説明する。以下に説明する実施の形態は本発明の構成の例であり、本発明は、以下の実施の形態に制限されるものではない。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiment described below is an example of the configuration of the present invention, and the present invention is not limited to the following embodiment.

(実施の形態1)
本実施形態は、レーザ光を一定周波数の変調信号により電気的に強度変調した変調レーザ光を被検体に向けて照射する光照射手段と、照射された前記変調レーザ光により発生する前記被検体内の超音波を前記被検体の表面の振動として検出する振動検出手段と、を備える成分濃度測定装置であって、前記振動検出手段は、前記被検体の表面に計測用ビームを照射する計測用ビーム照射手段と、前記被検体の表面で反射した前記計測用ビームの反射光の光軸位置を測定する光位置検出手段と、を有することを特徴とする成分濃度測定装置である。
(Embodiment 1)
In the present embodiment, a light irradiating means for irradiating the subject with modulated laser light that is electrically intensity-modulated with a modulation signal having a constant frequency toward the subject, and the inside of the subject generated by the irradiated modulated laser light. And a vibration detecting means for detecting the ultrasonic wave as vibration of the surface of the subject, wherein the vibration detecting means irradiates the measuring beam to the surface of the subject. An apparatus for measuring a concentration of a component, comprising: irradiation means; and optical position detection means for measuring an optical axis position of reflected light of the measurement beam reflected by the surface of the subject.

本実施形態に係る成分濃度測定装置201の概略図を図1に示す。図1の成分濃度測定装置201は光照射手段11及び振動検出手段12を備える。図1及び以下で説明する図4、5、7、10、11、12、13及び14において被検体900は人体の指先として記載しているが、血液などの体液の成分濃度分析をする箇所としては指先のみに限らず他の箇所、例えば目の角膜とすることもできる。   A schematic diagram of a component concentration measuring apparatus 201 according to this embodiment is shown in FIG. The component concentration measuring apparatus 201 in FIG. 1 includes light irradiation means 11 and vibration detection means 12. In FIG. 1 and FIGS. 4, 5, 7, 10, 11, 12, 13, and 14 described below, the subject 900 is described as a fingertip of a human body. Is not limited to the fingertips, but may be other parts, for example, the cornea of the eye.

光照射手段11は光源13及び発振器18から構成される。   The light irradiation means 11 includes a light source 13 and an oscillator 18.

発振器18は一定の周波数の変調信号E1を出力する。例えば、前記周波数は100kHz以上10MHz以下が例示できる。   The oscillator 18 outputs a modulation signal E1 having a constant frequency. For example, the frequency may be 100 kHz or more and 10 MHz or less.

光源13はレーザ光源と駆動回路を内蔵している。前記駆動回路は変調信号E1を基に前記レーザ光源を駆動して、前記レーザ光源から変調信号E1に基づいて強度変調した変調レーザ光L1を出力させる。前記レーザ光源は半導体レーザであることが例示できる。また、前記レーザ光源から出力されるレーザ光は、被検体900の測定対象成分が吸収しやすい波長であることが望ましい。前記レーザ光源として半導体レーザを使用した場合、半導体レーザをヒーター又はペルチェ素子により加熱又は冷却することにより発生する光の波長を変化させることができる。例えば、測定対象とする成分がグルコースの場合、前記レーザ光の波長は1608nmであることが例示される。   The light source 13 includes a laser light source and a drive circuit. The drive circuit drives the laser light source based on the modulation signal E1, and outputs a modulated laser beam L1 whose intensity is modulated based on the modulation signal E1 from the laser light source. It can be exemplified that the laser light source is a semiconductor laser. In addition, it is desirable that the laser light output from the laser light source has a wavelength that is easily absorbed by the measurement target component of the subject 900. When a semiconductor laser is used as the laser light source, the wavelength of light generated by heating or cooling the semiconductor laser with a heater or a Peltier element can be changed. For example, when the component to be measured is glucose, the wavelength of the laser light is 1608 nm.

従って、光照射手段11は、被検体900から離れた位置から発振器18の変調信号E1に基づく光源13からの変調レーザ光L1を被検体900の表面の変調レーザ照射点Aに向けて照射することができる。   Therefore, the light irradiation unit 11 irradiates the modulated laser beam L1 from the light source 13 based on the modulation signal E1 of the oscillator 18 from a position away from the subject 900 toward the modulated laser irradiation point A on the surface of the subject 900. Can do.

振動検出手段12は計測用ビーム照射手段14及び光位置検出手段17から構成される。   The vibration detection unit 12 includes a measurement beam irradiation unit 14 and an optical position detection unit 17.

計測用ビーム照射手段14は、計測用ビーム光源及びコリメータを内蔵する。   The measuring beam irradiation means 14 incorporates a measuring beam light source and a collimator.

前記計測用ビーム光源は被検体900の表面において反射しやすい波長の光を発生させる光源である。被検体900が人体であれば、500nm以上600nm以下の波長の光が皮膚上で反射しやすい。前記計測用ビーム光源として前記波長の光を発生させる可視光レーザや前記波長の光を透過させるフィルタ付のランプが例示できる。一方、前記コリメータは入射光を平行光に変換するレンズ等の光学部品を組み合わせた光学系をもつ。   The measurement beam light source is a light source that generates light having a wavelength that is easily reflected on the surface of the subject 900. If the subject 900 is a human body, light having a wavelength of 500 nm to 600 nm is likely to be reflected on the skin. Examples of the measurement light source include a visible light laser that generates light having the wavelength and a lamp with a filter that transmits light having the wavelength. On the other hand, the collimator has an optical system in which optical components such as a lens that converts incident light into parallel light are combined.

計測用ビーム照射手段14は前記計測用ビーム光源から出力された光を前記コリメータで平行光に変換して計測用ビームB1を照射する。   The measurement beam irradiation means 14 converts the light output from the measurement beam light source into parallel light by the collimator and irradiates the measurement beam B1.

光位置検出手段17は後述する素子のように受光面に入射する光の振動の振幅を測定することができる。さらに、光位置検出手段17は計測点Pで反射した計測用ビームB1である反射光B2を受光できる位置に配置される。   The optical position detection means 17 can measure the amplitude of vibration of light incident on the light receiving surface like an element described later. Further, the optical position detecting means 17 is arranged at a position where it can receive the reflected light B2, which is the measurement beam B1 reflected at the measurement point P.

従って、振動検出手段12は、被検体900から離れた位置から計測用ビーム照射手段14からの計測用ビームB1を被検体900の計測点Pに照射し、被検体900から離れた位置で計測用ビームB1の反射光B2の光位置検出手段17における受光面上の振幅を測定することができる。   Therefore, the vibration detection unit 12 irradiates the measurement point P of the subject 900 with the measurement beam B1 from the measurement beam irradiation unit 14 from a position away from the subject 900, and performs measurement at a position away from the subject 900. The amplitude of the reflected light B2 of the beam B1 on the light receiving surface in the light position detecting means 17 can be measured.

光位置検出手段17として下に説明する撮像素子(CCDイメージセンサ)及び位置検出素子(PSD)が例示できる。   Examples of the optical position detection means 17 include an image pickup element (CCD image sensor) and a position detection element (PSD) described below.

CCDイメージセンサは受光面としてフォトダイオード(PD)を二次元に配列したものである。図2にCCDイメージセンサの構造の概念図を示す。PD21は光電変換した電荷を各PDに対応する垂直転送CCD23にトランスファーゲート22を通じて一定のタイミングで転送する。垂直転送CCD23はPD21からの電荷を水平転送CCD24へ移動させる。続いて、受光位置特定回路25は水平転送CCD24に転送パルスを与え電荷を順次読み出す。受光位置特定回路25は読み出しした電荷から光が照射されたPD21を特定することができる。   The CCD image sensor is a two-dimensional array of photodiodes (PD) as a light receiving surface. FIG. 2 shows a conceptual diagram of the structure of the CCD image sensor. The PD 21 transfers the photoelectrically converted charges to the vertical transfer CCD 23 corresponding to each PD through the transfer gate 22 at a fixed timing. The vertical transfer CCD 23 moves the charge from the PD 21 to the horizontal transfer CCD 24. Subsequently, the light receiving position specifying circuit 25 gives a transfer pulse to the horizontal transfer CCD 24 to sequentially read out the charges. The light receiving position specifying circuit 25 can specify the PD 21 irradiated with light from the read charges.

なお、反射光B2の光軸位置は発振器18からの変調信号E1の周波数で振動しているため、前記振動の周波数が高すぎる場合、CCDイメージセンサは瞬間の反射光B2の光軸位置を特定できないが、振動の振幅を測定することができる。   Since the optical axis position of the reflected light B2 vibrates at the frequency of the modulation signal E1 from the oscillator 18, the CCD image sensor specifies the optical axis position of the instantaneous reflected light B2 when the vibration frequency is too high. Although not possible, the amplitude of vibration can be measured.

従って、CCDイメージセンサは、反射光B2の光軸位置の振動から振幅値を測定することができる。   Therefore, the CCD image sensor can measure the amplitude value from the vibration of the optical axis position of the reflected light B2.

PSDはPINフォトダイオードの原理を応用し、連続的に受光面に照射した光の位置を特定する半導体素子である。図3にPSDの動作原理を表した図を示す。n型シリコン基板31の上に光の入射で電子及び正孔のキャリアを発生させる真性半導体層32を形成し、さらに真性半導体層32の上にp型半導体層33を形成する。p型半導体層33の両端に電極34a及び34bを形成する。また、シリコン基板31の裏面には接地用電極35を形成する。電極34aと電極34bとの間のp型半導体層33が受光面となる。   The PSD is a semiconductor element that applies the principle of a PIN photodiode and identifies the position of light irradiated on the light receiving surface continuously. FIG. 3 is a diagram showing the operating principle of PSD. An intrinsic semiconductor layer 32 that generates electron and hole carriers upon incidence of light is formed on an n-type silicon substrate 31, and a p-type semiconductor layer 33 is formed on the intrinsic semiconductor layer 32. Electrodes 34 a and 34 b are formed on both ends of the p-type semiconductor layer 33. A ground electrode 35 is formed on the back surface of the silicon substrate 31. The p-type semiconductor layer 33 between the electrode 34a and the electrode 34b becomes a light receiving surface.

図3のPSDは以下の説明のように動作して受光位置を特定する。PSDの受光面に光Cが入射すると、入射位置の下の真性半導体層32にキャリアが発生する。キャリアのうち正孔はp型半導体層33へ吸収され、電極34a及び電極34bへ移動する。このとき、電極34aに到達する正孔の量D、電極34bに到達する正孔の量E、光Cの入射位置から電極34aまでの距離Xa及び光Cの入射位置から電極34bまでの距離Xbは数式(1)の関係があるため、電極34a及び電極34bから出力する電流比から光Cの受光位置を特定することができる。

Figure 0004490386
The PSD shown in FIG. 3 operates as described below to identify the light receiving position. When the light C is incident on the light receiving surface of the PSD, carriers are generated in the intrinsic semiconductor layer 32 below the incident position. Of the carriers, holes are absorbed by the p-type semiconductor layer 33 and move to the electrodes 34a and 34b. At this time, the amount D of holes reaching the electrode 34a, the amount E of holes reaching the electrode 34b, the distance Xa from the incident position of the light C to the electrode 34a, and the distance Xb from the incident position of the light C to the electrode 34b Since there is a relationship of Formula (1), the light receiving position of the light C can be specified from the current ratio output from the electrode 34a and the electrode 34b.
Figure 0004490386

なお、図3のPSDは説明のために一次元PSDを示しているが、光位置検出手段17としては二次元PSDを利用することが好ましい。   The PSD in FIG. 3 shows a one-dimensional PSD for explanation, but it is preferable to use a two-dimensional PSD as the optical position detection means 17.

成分濃度測定装置201は以下のようにして被検体900内の測定対象成分の濃度を測定する。光照射手段11は被検体900の変調レーザ照射点Aに向けて変調レーザ光L1を照射する。変調レーザ光L1は被検体900の内部まで到達するため、測定対象成分の光音響効果で被検体900の内部が発振器18から出力される電気信号の周波数で振動する。測定対象成分の濃度が高いほど光音響効果が大きいため、被検体900の測定対象成分の濃度が高い場合、振動量は大きくなる。逆に、被検体900の測定対象成分の濃度が低い場合、振動量は小さくなる。前記振動は伝達して被検体900の表面を振動させる。   The component concentration measuring apparatus 201 measures the concentration of the measurement target component in the subject 900 as follows. The light irradiation means 11 irradiates the modulated laser beam L 1 toward the modulated laser irradiation point A of the subject 900. Since the modulated laser light L1 reaches the inside of the subject 900, the inside of the subject 900 vibrates at the frequency of the electrical signal output from the oscillator 18 by the photoacoustic effect of the measurement target component. Since the photoacoustic effect is greater as the concentration of the measurement target component is higher, the amount of vibration increases when the concentration of the measurement target component of the subject 900 is higher. Conversely, when the concentration of the measurement target component of the subject 900 is low, the vibration amount is small. The vibration is transmitted to vibrate the surface of the subject 900.

計測用ビーム照射手段14は被検体900から離れた位置から計測用ビームB1を計測点Pに照射する。図1において計測点Pは変調レーザ照射点Aの反対側に記載しているが、被検体900の表面はいずれも振動しているため、任意の場所を計測点Pとしてよい。   The measurement beam irradiation means 14 irradiates the measurement point P with the measurement beam B 1 from a position away from the subject 900. In FIG. 1, the measurement point P is shown on the opposite side of the modulated laser irradiation point A, but any surface may be used as the measurement point P because the surface of the subject 900 vibrates.

反射光B2は計測点Pの振動により反射する方向が計測点Pの振動の周波数、すなわち変調信号E1の周波数で振動する。被検体900の測定対象成分の濃度が高い場合、反射光B2の光軸方向の振動の振幅は大きくなり、逆に測定対象成分の濃度が低い場合、反射光B2の光軸方向の振動の振幅は小さくなる。予め、測定対象成分の濃度と光位置検出手段17で測定した反射光B2の振動の振幅との関係のデータを取得しておくことで、成分濃度測定装置201は前記振幅値から被検体900の測定対象成分の濃度を算出することができる。   The direction in which the reflected light B2 is reflected by the vibration at the measurement point P vibrates at the frequency of the vibration at the measurement point P, that is, the frequency of the modulation signal E1. When the concentration of the measurement target component of the subject 900 is high, the amplitude of the vibration of the reflected light B2 in the optical axis direction increases. Conversely, when the concentration of the measurement target component is low, the amplitude of the vibration of the reflected light B2 in the optical axis direction. Becomes smaller. By acquiring in advance data on the relationship between the concentration of the component to be measured and the amplitude of the vibration of the reflected light B2 measured by the light position detecting means 17, the component concentration measuring apparatus 201 determines the object 900 from the amplitude value. The concentration of the measurement target component can be calculated.

従って、成分濃度測定装置201は光を利用して振動を検出するため、振動検出手段12を被検体900に接触せずに被検体900の測定対象成分の濃度を測定することができる。   Therefore, since the component concentration measurement apparatus 201 detects vibration using light, the concentration of the measurement target component of the subject 900 can be measured without bringing the vibration detection means 12 into contact with the subject 900.

なお、光源13は2波長の変調レーザ光L1を出力できる構造としてもよい。具体的には、光源13は、変調信号E1を2分岐して第一信号及び第二信号とする分岐回路と、前記分岐回路で分岐された前記第二信号を受信して位相を180°変換する移相回路と、互いに異なる波長のレーザ光を出力する二つのレーザ光源と、前記分岐回路からの前記第一信号及び前記移相回路からの前記第二信号に基づき前記レーザ光源をそれぞれ駆動する二つの駆動回路と、前記二つのレーザ光源からの強度変調されたレーザ光を合波して変調レーザ光L1を外部に出力する合波部と、を備える。   The light source 13 may have a structure capable of outputting two-wavelength modulated laser light L1. Specifically, the light source 13 receives the second signal branched from the branch circuit by bifurcating the modulation signal E1 into the first signal and the second signal, and converts the phase by 180 °. The laser light source is driven based on the phase shift circuit, the two laser light sources that output laser beams having different wavelengths, and the first signal from the branch circuit and the second signal from the phase shift circuit, respectively. Two drive circuits, and a combining unit that combines the intensity-modulated laser beams from the two laser light sources and outputs the modulated laser beam L1 to the outside.

光源13は異なる2波長の光をそれぞれ同一周波数で逆位相の電気信号で強度変調して合成するため、2波長の光が交互に現れる変調レーザ光L1を出力することができる。2波長の光が交互に現れる変調レーザ光L1で成分濃度を測定する基本原理を以下に説明する。   Since the light source 13 synthesizes light of two different wavelengths by intensity modulation with electrical signals of the same frequency and opposite phase, it is possible to output modulated laser light L1 in which light of two wavelengths appears alternately. The basic principle of measuring the component concentration with the modulated laser beam L1 in which light of two wavelengths appears alternately will be described below.

異なる2波長の光の中の、第一の光の波長を、例えば被検体の測定対象の成分による吸光度が被検体の大部分を占める水による吸光度と顕著に異なる波長に設定し、第二の光の波長を水が第一の光の波長におけるのと合い等しい吸光度を示す波長に設定する。上記の波長の設定方法を、血液中のグルコースの濃度を測定する場合を例として図16により説明する。   Of the two different wavelengths of light, the wavelength of the first light is set to a wavelength that is significantly different from, for example, the absorbance due to the water that accounts for the majority of the analyte, with the absorbance due to the analyte being measured. The wavelength of light is set to a wavelength that exhibits an absorbance equal to that of water at the wavelength of the first light. The above wavelength setting method will be described with reference to FIG. 16, taking as an example the case of measuring the concentration of glucose in blood.

図16は常温における水とグルコース水溶液の吸光度特性を示す。図16において、縦軸は吸光度を示し、横軸は光の波長を示している。また、図16において、実線は水の吸光度特性を示し、破線はグルコース水溶液の吸光度特性を示している。図16に示す波長λはグルコースによる吸光度が水による吸光度と顕著に異なる波長であり、波長λは、水がλにおける吸光度と合い等しい吸光度を示す波長である。従って、例えば、第一の光の波長をλと設定し、第二の光の波長をλと設定することができる。 FIG. 16 shows the absorbance characteristics of water and an aqueous glucose solution at room temperature. In FIG. 16, the vertical axis indicates the absorbance, and the horizontal axis indicates the wavelength of light. In FIG. 16, the solid line indicates the absorbance characteristic of water, and the broken line indicates the absorbance characteristic of the glucose aqueous solution. The wavelength λ 1 shown in FIG. 16 is a wavelength at which the absorbance due to glucose is significantly different from the absorbance due to water, and the wavelength λ 2 is a wavelength at which water has the same absorbance as that at λ 1 . Thus, for example, the wavelength of the first light can be set to λ 1 and the wavelength of the second light can be set to λ 2 .

以下の説明においては、一例として、第一の光の波長を測定対象の成分による吸光度が水による吸光度と顕著に異なる波長λに設定し、第二の光の波長を水が第一の光の波長λにおけるのと合い等しい吸光度を示す波長λに設定した場合を説明する。 In the following description, as an example, the wavelength of the first light is set to a wavelength λ 1 where the absorbance of the component to be measured is significantly different from the absorbance of water, and the wavelength of the second light is set to the first light. The case where the wavelength λ 2 is set to be equal to that at the wavelength λ 1 will be described.

上記のように設定した異なる2波長の光の各々を、同一周波数で逆位相の信号により強度変調してパルス状の光として出射し、出射された異なる2波長の光が被検体の成分に吸収されて発生する超音波を検出して、検出した超音波の大きさから、被検体の測定対象の成分の濃度を測定する。上記のように強度変調された異なる2波長の光を出射した場合、第一の光を測定対象の成分と水の両方が吸収して被検体から発生する第一の超音波と、第二の光を被検体の大部分を占める水が吸収して被検体から発生する第二の超音波とは、周波数が等しくかつ逆位相である。従って、第一の超音波と第二の超音波は被検体内で重畳し、超音波の差として、第一の超音波の中の測定対象の成分が吸収して被検体から発生する超音波の大きさのみが残留する。そこで、残留した超音波により、第一の光を測定対象の成分が吸収して被検体から発生する超音波のみを測定することができる。上記の測定においては、測定対象の成分と水の両方が吸収して発生する超音波と水が吸収して発生する超音波を個別に測定して差を演算するよりも、測定対象の成分が吸収して被検体から発生する超音波を正確に測定することができる。   Each of the two different wavelengths of light set as described above is intensity-modulated with a signal of the opposite phase at the same frequency and emitted as pulsed light, and the emitted two different wavelengths of light are absorbed by the component of the subject. Then, the generated ultrasonic wave is detected, and the concentration of the component to be measured of the subject is measured from the magnitude of the detected ultrasonic wave. When light of two different wavelengths whose intensity is modulated as described above is emitted, the first ultrasonic wave generated from the subject by the absorption of the first light by both the component to be measured and water, and the second The second ultrasonic wave generated from the subject by absorbing light that occupies most of the subject has the same frequency and an opposite phase. Therefore, the first ultrasonic wave and the second ultrasonic wave are superimposed in the subject, and the ultrasonic wave generated from the subject by absorption of the component to be measured in the first ultrasonic wave as a difference between the ultrasonic waves. Only the size of remains. Therefore, it is possible to measure only the ultrasonic waves generated from the subject by absorbing the first light by the component to be measured by the remaining ultrasonic waves. In the above measurement, rather than measuring the difference between the ultrasonic wave generated by absorption of both the component to be measured and water and the ultrasonic wave generated by water absorption, It is possible to accurately measure ultrasonic waves that are absorbed and generated from the subject.

さらに、成分濃度測定の誤差の要因を除いて、高精度に測定する方法を以下に説明する。波長λの光及び波長λの光の各々に対する、被検体の大部分を占める水の吸収係数をα (w)及びα (w)として、被検体の測定対象の成分のモル吸収係数をα (g)及びα (g)とすれば、波長λの光及び波長λの光の各々により被検体から発生する超音波の大きさs及びsを含む連立方程式は数式(2)で表される。

Figure 0004490386
Furthermore, a method for measuring with high accuracy, excluding the cause of error in component concentration measurement, will be described below. For each of the light of wavelength λ 1 and the light of wavelength λ 2 , the absorption coefficient of water occupying most of the subject is α 1 (w) and α 2 (w) , and the molar absorption of the component to be measured of the subject If the coefficients are α 1 (g) and α 2 (g) , simultaneous equations including the magnitudes s 1 and s 2 of the ultrasonic waves generated from the subject by the light of wavelength λ 1 and the light of wavelength λ 2 , respectively. Is expressed by Equation (2).
Figure 0004490386

上記の、数式(2)を解いて、被検体の測定対象の成分濃度Mを求めることができる。ここで、Cは制御あるいは予想困難な係数、すなわち、光照射手段、被検体及び振動検出手段の位置関係、振動検出手段の感度、被検体において光により超音波が発生される位置と振動検出手段との間の距離、被検体の比熱及び熱膨張係数、被検体の内部の超音波の速度、波長λの光及び波長λの光の変調周波数、水の吸収係数及び被検体の成分のモル吸収係数、などに依存する未知定数である。さらに数式(2)でCを消去すると次の数式(3)が得られる。

Figure 0004490386
By solving Equation (2) above, the component concentration M of the subject to be measured can be obtained. Here, C is a coefficient that is difficult to control or predict, that is, the positional relationship between the light irradiation means, the subject and the vibration detection means, the sensitivity of the vibration detection means, the position where the ultrasonic wave is generated by the light in the subject and the vibration detection means. the distance between the specific heat and thermal expansion coefficient of the object, the inside of the subject ultrasound speed, the wavelength lambda 1 and the light wavelength lambda 2 of the light modulation frequencies, the components of the absorption coefficient and the subject water It is an unknown constant that depends on the molar absorption coefficient. Further, when C is eliminated by Expression (2), the following Expression (3) is obtained.
Figure 0004490386

ここで、波長λの光及び波長λの光の各々に対する、被検体の大部分を占める水の吸収係数α (w)及びα (w)が等しくなるように選択されているので、α (w)=α (w)が成立し、さらに、s≒sであることを用いれば、成分濃度Mは数式(4)で表される。

Figure 0004490386
Here, the absorption coefficients α 1 (w) and α 2 (w) of water occupying most of the subject for each of the light of wavelength λ 1 and the light of wavelength λ 2 are selected to be equal. , Α 1 (w) = α 2 (w) , and if it is further used that s 1 ≈s 2 , the component concentration M is expressed by Equation (4).
Figure 0004490386

上記の数式(4)に、既知の係数として、α (w)、α (g)及びα (g)を代入し、さらに、波長λの光及び波長λの光の各々により被検体から発生する超音波の大きさs及びsを測定して代入することにより、被検体の成分濃度Mを算出することができる。上記の数式(4)においては、2つの超音波の大きさs及びsを個別に測定するよりも、それらの差s−sを測定して、別に測定した超音波の大きさsで除する方が、被検体の成分濃度を高精度に測定することができる。 Substituting α 1 (w) , α 1 (g), and α 2 (g) as known coefficients into the above equation (4), and further by the light of wavelength λ 1 and the light of wavelength λ 2 , respectively. The component concentration M of the subject can be calculated by measuring and substituting the magnitudes s 1 and s 2 of the ultrasonic waves generated from the subject. In the above formula (4), rather than separately measuring the two ultrasonic magnitudes s 1 and s 2 , the difference s 1 -s 2 is measured, and the ultrasonic magnitude measured separately is measured. Write divided by s 2 is able to measure the component concentration of the analyte with high accuracy.

すなわち、まず、波長λの光及び波長λの光を、互いに逆位相の変調信号により強度変調して、1の光束に合波して出射することにより、被検体から発生する超音波の大きさs及び超音波の大きさsが相互に重畳して生じる超音波の差(s−s)を測定する。次に、波長λの光を出射して、被検体から発生する超音波の大きさsを測定する。上記のように測定した(s−s)とsにより、(s−s)÷sを演算することにより、数式(4)により、被検体の測定対象の成分濃度を高精度に測定することができる。 That is, first, the light of wavelength λ 1 and the light of wavelength λ 2 are intensity-modulated by modulation signals having opposite phases to each other, combined into one light beam, and emitted, so that the ultrasonic wave generated from the subject is emitted. The difference (s 1 −s 2 ) between the ultrasonic waves generated by superimposing the size s 1 and the ultrasonic size s 2 on each other is measured. Next, light of wavelength λ 2 is emitted, and the magnitude s 2 of the ultrasonic wave generated from the subject is measured. By calculating (s 1 -s 2 ) ÷ s 2 from (s 1 -s 2 ) and s 2 measured as described above, the component concentration of the measurement target of the subject is increased by Equation (4). It can be measured with high accuracy.

例えば、測定対象とする成分がグルコースの場合には、波長λをグルコースの特徴的な吸収を示す波長である1608nmに設定する。波長が1608nmの光を照射した場合、グルコースだけでなく水も光を吸収している。そこで、波長λを波長λ時に水が吸収する光量と等しい光量を吸収する波長である1381nmに設定する。 For example, when the component to be measured is glucose, the wavelength λ 1 is set to 1608 nm, which is a wavelength indicating the characteristic absorption of glucose. When light having a wavelength of 1608 nm is irradiated, not only glucose but also water absorbs light. Therefore, the wavelength λ 2 is set to 1381 nm, which is a wavelength that absorbs the same amount of light as water absorbs at the wavelength λ 1 .

従って、変調レーザ光L1を2波長とすることで被検体900の測定対象成分の濃度を高精度に測定することができる。   Therefore, the concentration of the measurement target component of the subject 900 can be measured with high accuracy by setting the modulated laser beam L1 to two wavelengths.

また、本実施形態は、前記振動検出手段において、前記光位置検出手段から出力される前記反射光の光軸位置の光軸位置測定信号を前記光照射手段の前記変調信号で同期検波してもよい。   Further, in the present embodiment, the vibration detection unit may detect synchronously the optical axis position measurement signal of the optical axis position of the reflected light output from the optical position detection unit with the modulation signal of the light irradiation unit. Good.

図1の成分濃度測定装置201において、光位置検出手段17は発振器18からの変調信号E2を利用して反射光B2を同期検波してもよい。反射光B2の振動と発振器18の変調信号E2とは周波数が等しいため、遅延回路を利用して変調信号E2を遅延させることで、光位置検出手段17は反射光B2の振動を変調信号E2で同期検波することができる。光位置検出手段17は反射光B2の振動を同期検波することで、S/N比が向上するため、反射光B2の振動の振幅値を精度良く測定できる。   In the component concentration measuring apparatus 201 of FIG. 1, the optical position detecting means 17 may synchronously detect the reflected light B2 using the modulation signal E2 from the oscillator 18. Since the vibration of the reflected light B2 and the modulation signal E2 of the oscillator 18 have the same frequency, the optical position detection means 17 uses the delay circuit to delay the modulation signal E2, so that the optical position detection means 17 detects the vibration of the reflected light B2 with the modulation signal E2. Synchronous detection can be performed. Since the S / N ratio is improved by synchronously detecting the vibration of the reflected light B2, the optical position detecting means 17 can accurately measure the amplitude value of the vibration of the reflected light B2.

従って、成分濃度測定装置201は発振器18からの変調信号E2を利用して反射光B2を同期検波することで、被検体900の測定対象成分の濃度を高精度に測定することができる。   Therefore, the component concentration measuring apparatus 201 can measure the concentration of the measurement target component of the subject 900 with high accuracy by synchronously detecting the reflected light B2 using the modulation signal E2 from the oscillator 18.

(実施の形態2)
本実施形態は、振動する前記被検体の表面に超音波整合材料を介して光反射体をさらに備えてもよい。
(Embodiment 2)
In the present embodiment, a light reflector may further be provided on the surface of the subject that vibrates via an ultrasonic matching material.

本実施形態に係る成分濃度測定装置202の概略図を図4に示す。図4の成分濃度測定装置202は光照射手段11、振動検出手段12、光反射体41及び超音波整合材料42を備える。図4において図1で使用した符号と同じ符号は同一手段、部品、信号又は光を示す。成分濃度測定装置202は図1の成分濃度測定装置201で説明したように発振器18からの変調信号E2を利用して反射光B2を同期検波している。成分濃度測定装置202と図1の成分濃度測定装置201との違いは光反射体41及び超音波整合材料42をさらに備えていることである。   FIG. 4 shows a schematic diagram of the component concentration measuring apparatus 202 according to the present embodiment. 4 includes a light irradiation unit 11, a vibration detection unit 12, a light reflector 41, and an ultrasonic matching material. 4, the same reference numerals as those used in FIG. 1 indicate the same means, components, signals, or light. The component concentration measuring device 202 synchronously detects the reflected light B2 using the modulation signal E2 from the oscillator 18 as described in the component concentration measuring device 201 of FIG. The difference between the component concentration measuring apparatus 202 and the component concentration measuring apparatus 201 of FIG. 1 is that the light reflecting body 41 and the ultrasonic matching material 42 are further provided.

光反射体41は被検体900の表面より計測用ビームB1を反射しやすい素材で構成される。例えば、光反射体41として鏡や鏡面状態の金属板等が例示できる。光反射体41は計測用ビームB1を反射しやすいため、計測用ビームB1の光強度を低くすることができ、計測用ビーム照射手段14を小型化、すなわち成分濃度測定装置202を小型化することができる。   The light reflector 41 is made of a material that easily reflects the measurement beam B <b> 1 from the surface of the subject 900. For example, the light reflector 41 may be a mirror, a mirror-like metal plate, or the like. Since the light reflector 41 easily reflects the measurement beam B1, the light intensity of the measurement beam B1 can be reduced, and the measurement beam irradiation means 14 can be downsized, that is, the component concentration measuring device 202 can be downsized. Can do.

さらに、光反射体41を備えることで被検体900の表面での反射率を考慮した波長の計測用ビームB1を使用しなくてもよいため、計測用ビーム照射手段14として汎用の小型ライトを使用することができ、成分濃度測定装置202の製造コストを低減することができる。   Furthermore, since the light reflector 41 is provided, it is not necessary to use the measurement beam B1 having a wavelength in consideration of the reflectance on the surface of the subject 900. Therefore, a general-purpose small light is used as the measurement beam irradiation means 14. It is possible to reduce the manufacturing cost of the component concentration measuring apparatus 202.

超音波整合材料42は被検体900と光反射体41との音響インピーダンスを整合することができる。被検体900の表面の振動は光反射体41へ減衰せずに伝導するため、被検体900の測定対象成分の濃度を高精度に測定することができる。   The ultrasonic matching material 42 can match the acoustic impedance between the subject 900 and the light reflector 41. Since the vibration of the surface of the subject 900 is transmitted to the light reflector 41 without being attenuated, the concentration of the measurement target component of the subject 900 can be measured with high accuracy.

従って、成分濃度測定装置202は図1の成分濃度測定装置201と同様に動作し、同様の効果を得ることができる。   Therefore, the component concentration measuring apparatus 202 operates in the same manner as the component concentration measuring apparatus 201 of FIG. 1 and can obtain the same effect.

(実施の形態3)
本実施形態は、レーザ光を一定周波数の変調信号により電気的に強度変調した変調レーザ光を被検体に向けて照射する光照射手段と、照射された前記変調レーザ光により発生する前記被検体内の超音波を前記被検体の表面の振動として検出する振動検出手段と、を備える成分濃度測定装置であって、前記振動検出手段は、前記被検体の表面に計測用ビームを照射する計測用ビーム照射手段と、前記被検体の表面で反射した前記計測用ビームの反射光のピンホールを通じて受光する積算光量を測定する積算光量測定手段と、を有することを特徴とする成分濃度測定装置である。
(Embodiment 3)
In the present embodiment, a light irradiating means for irradiating the subject with modulated laser light that is electrically intensity-modulated with a modulation signal having a constant frequency toward the subject, and the inside of the subject generated by the irradiated modulated laser light. And a vibration detecting means for detecting the ultrasonic wave as vibration of the surface of the subject, wherein the vibration detecting means irradiates the measuring beam to the surface of the subject. A component concentration measuring apparatus comprising: an irradiating unit; and an integrated light amount measuring unit that measures an integrated light amount received through a pinhole of reflected light of the measurement beam reflected by the surface of the subject.

本実施形態に係る成分濃度測定装置203の概略図を図5に示す。図5の成分濃度測定装置203は光照射手段11及び振動検出手段52を備える。図5において図1で使用した符号と同じ符号は同一手段、部品、信号又は光を示す。成分濃度測定装置203と図1の成分濃度測定装置201との違いは振動検出手段12の代替として振動検出手段52を備えていることである。   FIG. 5 shows a schematic diagram of the component concentration measuring apparatus 203 according to the present embodiment. The component concentration measuring apparatus 203 in FIG. 5 includes light irradiation means 11 and vibration detection means 52. 5, the same reference numerals as those used in FIG. 1 indicate the same means, components, signals, or light. The difference between the component concentration measuring apparatus 203 and the component concentration measuring apparatus 201 of FIG. 1 is that a vibration detecting means 52 is provided as an alternative to the vibration detecting means 12.

振動検出手段52は計測用ビーム照射手段14、光検出器55及びピンホール57から構成される。   The vibration detection means 52 includes the measurement beam irradiation means 14, a photodetector 55, and a pinhole 57.

光検出器55は光電変換素子と周辺回路とで構成される。例えば、前記光電変換素子としてPDが例示できる。前記周辺回路としてPDが光を受光した時間を計測する回路又は受光した光の積算光量を計測する回路が例示できる。   The photodetector 55 includes a photoelectric conversion element and a peripheral circuit. For example, PD can be exemplified as the photoelectric conversion element. Examples of the peripheral circuit include a circuit that measures the time when the PD receives light or a circuit that measures the integrated light quantity of the received light.

ピンホール57は遮光板の中央に反射光B2の径に略等しい直径0.1μm以上1μm以下の孔を有する。   The pinhole 57 has a hole with a diameter of 0.1 μm or more and 1 μm or less substantially equal to the diameter of the reflected light B2 in the center of the light shielding plate.

成分濃度測定装置203は、図1の成分濃度測定装置201で説明したように光源13及び計測用ビーム照射手段14を配置する。ピンホール57は変調レーザ光L1を照射しない場合、すなわち被検体900の表面が振動していない場合に反射光B2の光軸とピンホール57の孔の中心とが一致する位置に配置される。光検出器55はピンホール57の孔を通過した光を受光できる位置に配置される。   The component concentration measuring device 203 includes the light source 13 and the measurement beam irradiation means 14 as described in the component concentration measuring device 201 of FIG. The pinhole 57 is disposed at a position where the optical axis of the reflected light B2 coincides with the center of the hole of the pinhole 57 when the modulated laser beam L1 is not irradiated, that is, when the surface of the subject 900 is not vibrating. The photodetector 55 is arranged at a position where it can receive light that has passed through the hole of the pinhole 57.

従って、振動検出手段52は、被検体900から離れた位置から計測用ビーム照射手段14からの計測用ビームB1を被検体900の計測点Pに照射し、被検体900から離れた位置で計測用ビームB1の反射光B2がピンホール57を通過した光の積算光量又は受光時間を測定することができる。   Therefore, the vibration detection unit 52 irradiates the measurement point P of the subject 900 with the measurement beam B1 from the measurement beam irradiation unit 14 from a position away from the subject 900, and performs measurement at a position away from the subject 900. It is possible to measure the integrated light amount or the light receiving time of the light that the reflected light B2 of the beam B1 has passed through the pinhole 57.

成分濃度測定装置203は以下のようにして被検体900内の測定対象成分の濃度を測定する。図1の成分濃度測定装置201で説明したように変調レーザ光L1により被検体900の表面は振動し、反射光B2は計測点Pの振動により反射する方向が変調信号E1の周波数で振動する。   The component concentration measuring apparatus 203 measures the concentration of the measurement target component in the subject 900 as follows. As described with reference to the component concentration measurement apparatus 201 in FIG. 1, the surface of the subject 900 vibrates due to the modulated laser light L1, and the reflected light B2 vibrates at the frequency of the modulation signal E1 due to the vibration of the measurement point P.

反射光B2の振動量と光検出器55が受光する光強度との関係を図6に示す。反射光B2の振動が無い場合、反射光B2は常時ピンホール57の孔を通過するため、光検出器55が受光する光の照度は、図6(1)のように一定の値となる。反射光B2の振動がある場合、反射光B2の光軸B3はピンホール57の孔の中心と一致しない時間が生ずる。光軸B3とピンホール57の孔の中心とが一致しない時間はピンホール57の孔を通過できる反射光B2の照度が下がる。すなわち、光検出器55が受光する光の照度は、図6(2)のように反射光B2の振動の周波数で変動する。反射光B2の振動の振幅が大きいほど反射光B2の光軸はピンホール57の孔の中心から離れ、光検出器55の受光できる光量は下がることになる。反射光B2の振動の振幅が一定以上大きい場合、ピンホール57の孔を反射光B2が通過できない時間があるため、図6(3)のように反射光B2の振動の周波数で光検出器55には受光できない時間が生ずる。   The relationship between the amount of vibration of the reflected light B2 and the light intensity received by the photodetector 55 is shown in FIG. When there is no vibration of the reflected light B2, since the reflected light B2 always passes through the hole of the pinhole 57, the illuminance of the light received by the photodetector 55 becomes a constant value as shown in FIG. When the reflected light B <b> 2 vibrates, a time occurs when the optical axis B <b> 3 of the reflected light B <b> 2 does not coincide with the center of the pinhole 57. During the time when the optical axis B3 and the center of the hole of the pinhole 57 do not coincide with each other, the illuminance of the reflected light B2 that can pass through the hole of the pinhole 57 decreases. That is, the illuminance of light received by the photodetector 55 varies with the frequency of vibration of the reflected light B2 as shown in FIG. The greater the amplitude of vibration of the reflected light B2, the farther the optical axis of the reflected light B2 is from the center of the hole of the pinhole 57, and the lower the amount of light that the photodetector 55 can receive. When the amplitude of the vibration of the reflected light B2 is larger than a certain level, there is a time during which the reflected light B2 cannot pass through the hole of the pinhole 57. Therefore, as shown in FIG. There is a time during which no light can be received.

具体的には、前記周辺回路が積算光量を測定する回路であって、被検体900の測定対象成分の濃度が高い場合、光検出器55が受光する積算光量は減少する。逆に測定対象成分の濃度が低い場合、光検出器55が受光する積算光量は増加する。   Specifically, when the peripheral circuit is a circuit for measuring the integrated light quantity and the concentration of the measurement target component of the subject 900 is high, the integrated light quantity received by the photodetector 55 decreases. Conversely, when the concentration of the measurement target component is low, the integrated light amount received by the photodetector 55 increases.

また、前記周辺回路が光を受光した時間を計測する回路であって、被検体900の測定対象成分の濃度が高い場合、光検出器55が受光する時間は減少する。逆に測定対象成分の濃度が低い場合、光検出器55が受光する時間は増加する。なお、この場合、反射光B2の振動の振幅は、反射光B2がピンホール57の孔を通過できないほど大きいことが必要である。   In addition, when the peripheral circuit is a circuit that measures the time when light is received and the concentration of the measurement target component of the subject 900 is high, the time that the photodetector 55 receives light decreases. Conversely, when the concentration of the measurement target component is low, the time for which the photodetector 55 receives light increases. In this case, the amplitude of vibration of the reflected light B2 needs to be so large that the reflected light B2 cannot pass through the hole of the pinhole 57.

予め、測定対象成分の濃度と光検出器55で測定したピンホール57を通過した光の積算光量又は受光時間との関係のデータを取得しておくことで、成分濃度測定装置203は前記積算光量又は前記受光時間から被検体900の測定対象成分の濃度を算出することができる。   The component concentration measuring device 203 obtains data on the relationship between the concentration of the component to be measured and the integrated light amount or the light receiving time of the light passing through the pinhole 57 measured by the photodetector 55 in advance, so that the component concentration measuring device 203 Alternatively, the concentration of the measurement target component of the subject 900 can be calculated from the light reception time.

従って、成分濃度測定装置203は光を利用して振動を検出するため、振動検出手段52を被検体900に接触せずに被検体900の測定対象成分の濃度を測定することができる。   Therefore, since the component concentration measuring device 203 detects vibration using light, the concentration of the measurement target component of the subject 900 can be measured without bringing the vibration detecting means 52 into contact with the subject 900.

また、図1の成分濃度測定装置201で説明したように変調レーザ光L1に2波長の光を利用することで成分濃度測定装置203は被検体900の測定対象成分の濃度を高精度に測定することができる。   Further, as described in the component concentration measuring apparatus 201 in FIG. 1, the component concentration measuring apparatus 203 measures the concentration of the measurement target component of the subject 900 with high accuracy by using light of two wavelengths for the modulated laser light L1. be able to.

さらに、計測用ビームB1の反射率を高めるため、図4の成分濃度測定装置202で説明したように被検体900の表面に超音波整合材料42を介して光反射体41を配置しても良い。   Furthermore, in order to increase the reflectance of the measurement beam B1, the light reflector 41 may be disposed on the surface of the subject 900 via the ultrasonic matching material 42 as described in the component concentration measuring apparatus 202 in FIG. .

なお、光検出器55は図5に示すように発振器18からの変調信号E2を利用してピンホール57を通過した光を同期検波してもよい。成分濃度測定装置203は反射光B2を同期検波することで、被検体900の測定対象成分の濃度を高精度に測定することができる。   Note that the photodetector 55 may synchronously detect light that has passed through the pinhole 57 using the modulation signal E2 from the oscillator 18 as shown in FIG. The component concentration measurement apparatus 203 can measure the concentration of the measurement target component of the subject 900 with high accuracy by synchronously detecting the reflected light B2.

(実施の形態4)
本実施形態は、レーザ光を一定周波数の変調信号により電気的に強度変調した変調レーザ光を被検体に向けて照射する光照射手段と、照射された前記変調レーザ光により発生する前記被検体内の超音波を前記被検体の表面の振動として検出する振動検出手段と、を備える成分濃度測定装置であって、前記振動検出手段は、計測用レーザ光を出射する計測用レーザ発振器と、前記計測用レーザ発振器からの前記計測用レーザ光を第一レーザ光と第二レーザ光とに2分岐し、前記第一レーザ光を前記被検体の表面に照射させ、前記第二レーザ光と前記被検体の表面で反射した前記第一レーザ光との位相差を測定する干渉計と、を有することを特徴とする成分濃度測定装置である。
(Embodiment 4)
In the present embodiment, a light irradiating means for irradiating the subject with modulated laser light that is electrically intensity-modulated with a modulation signal having a constant frequency toward the subject, and the inside of the subject generated by the irradiated modulated laser light. And a vibration concentration detecting device for detecting the ultrasonic wave as a vibration of the surface of the subject, wherein the vibration detecting means emits a measurement laser beam and the measurement The measurement laser light from the laser oscillator for use is bifurcated into a first laser light and a second laser light, the surface of the subject is irradiated with the first laser light, and the second laser light and the subject And an interferometer for measuring a phase difference with the first laser beam reflected on the surface of the component concentration measuring apparatus.

本実施形態に係る成分濃度測定装置204の概略図を図7に示す。図7の成分濃度測定装置204は光照射手段11及び振動検出手段72を備える。図7において図1で使用した符号と同じ符号は同一手段、部品、信号又は光を示す。成分濃度測定装置204と図1の成分濃度測定装置201との違いは振動検出手段12の代替として振動検出手段72を備えていることである。   FIG. 7 shows a schematic diagram of the component concentration measuring apparatus 204 according to the present embodiment. The component concentration measuring apparatus 204 in FIG. 7 includes the light irradiation means 11 and the vibration detection means 72. In FIG. 7, the same reference numerals as those used in FIG. 1 indicate the same means, components, signals, or light. The difference between the component concentration measuring apparatus 204 and the component concentration measuring apparatus 201 in FIG. 1 is that a vibration detecting means 72 is provided as an alternative to the vibration detecting means 12.

振動検出手段72は計測用レーザ発振器74、干渉計75から構成される。   The vibration detection means 72 includes a measurement laser oscillator 74 and an interferometer 75.

計測用レーザ発振器74は被検体900の表面において反射しやすい波長の光を発生させる。被検体900が人体であれば、500nm以上600nm以下の波長の光が皮膚上で反射しやすいため、前記波長の光を発生させるレーザ光源が例示できる。計測用レーザ発振器74は干渉計75に計測用レーザ光L7を結合する。計測用レーザ光L7を干渉計75に結合する手段として光ファイバが例示できる。   The measurement laser oscillator 74 generates light having a wavelength that is easily reflected on the surface of the subject 900. If the subject 900 is a human body, light having a wavelength of 500 nm or more and 600 nm or less is likely to be reflected on the skin, and thus a laser light source that generates light of the wavelength can be exemplified. The measurement laser oscillator 74 couples the measurement laser beam L 7 to the interferometer 75. An optical fiber can be exemplified as means for coupling the measurement laser beam L7 to the interferometer 75.

干渉計75は、計測用レーザ発振器74からの計測用レーザ光L7を第一レーザ光と第二レーザ光とに2分岐し、前記第一レーザ光を照射レーザ光S7として被検体900の表面の計測点Pに照射させ、前記第一レーザ光が被検体900の計測点Pで反射した反射光R7と前記第二レーザ光との位相差を測定する。なお、図7において、照射レーザ光S7と反射光R7とを別の光軸で記載しているが、干渉計75の種類によっては光軸が重なる場合もある。干渉計75は、コリメータ、ビームスプリッタ等の複数の光学系及び光検出器から構成される。干渉計75としてマイケルソン干渉計やマッハツェンダ干渉計が例示できる。   The interferometer 75 bifurcates the measurement laser beam L7 from the measurement laser oscillator 74 into a first laser beam and a second laser beam, and uses the first laser beam as an irradiation laser beam S7. A measurement point P is irradiated, and the phase difference between the reflected light R7 reflected from the measurement point P of the subject 900 and the second laser light is measured. In FIG. 7, the irradiation laser light S7 and the reflected light R7 are described with different optical axes, but the optical axes may overlap depending on the type of the interferometer 75. The interferometer 75 includes a plurality of optical systems such as a collimator and a beam splitter, and a photodetector. Examples of the interferometer 75 include a Michelson interferometer and a Mach-Zehnder interferometer.

図8にマイケルソン干渉計を利用した干渉計75を、図9にマッハツェンダ干渉計を利用した干渉計75を示す。いずれの図も図7で使用した符号と同じ符号は同一手段、部品、信号又は光を示す。   FIG. 8 shows an interferometer 75 using a Michelson interferometer, and FIG. 9 shows an interferometer 75 using a Mach-Zehnder interferometer. In each figure, the same reference numerals as those used in FIG. 7 indicate the same means, components, signals, or light.

図8のマイケルソン干渉計75mはコリメータ81、ビームスプリッタ83、反射鏡85、光検出器87及びアパーチャ89から構成される。   8 includes a collimator 81, a beam splitter 83, a reflecting mirror 85, a photodetector 87, and an aperture 89.

コリメータ81は、結合された測定用レーザ光L7を平行光L8に変換する。   The collimator 81 converts the combined measurement laser light L7 into parallel light L8.

ビームスプリッタ83は、ハーフミラーを有し、平行光L8を2分岐する。ビームスプリッタ83は2分岐した平行光L8の一方を前記第二レーザ光である参照光D8として透過させ、他方を平行光L8の光軸に対して90度屈折させる。参照光D8は反射鏡85へ到達し、反射され再びビームスプリッタ83へ到達する。   The beam splitter 83 has a half mirror and branches the parallel light L8 into two. The beam splitter 83 transmits one of the bifurcated parallel light L8 as the reference light D8 that is the second laser light, and refracts the other 90 degrees with respect to the optical axis of the parallel light L8. The reference light D8 reaches the reflecting mirror 85, is reflected, and reaches the beam splitter 83 again.

一方、ビームスプリッタ83で屈折した光はアパーチャ89で光径を定められ、照射レーザ光S7として被検体900を照射する。照射レーザ光S7は被検体900で反射して反射光R7として再びアパーチャ89を通り、ビームスプリッタ83に到達する。なお、図8において照射レーザ光S7と反射光R7とは光路が等しいため符号H8として表示している。   On the other hand, the light refracted by the beam splitter 83 has its light diameter determined by the aperture 89, and irradiates the subject 900 as the irradiation laser light S7. The irradiation laser beam S7 is reflected by the subject 900, passes through the aperture 89 again as reflected light R7, and reaches the beam splitter 83. In FIG. 8, the irradiation laser light S7 and the reflected light R7 have the same optical path, and are therefore indicated as H8.

ビームスプリッタ83に到達した参照光D8及び反射光R7は干渉光G8として光検出器87に到達する。反射光R7は被検体900の表面の振動で位相が変化するため反射光R7と参照光D8とは干渉する。具体的には、反射光R7の位相は被検体900の表面の振動の周波数、すなわち超音波の周波数で時間的に変化するため、被検体900の表面の振動の大きさに比例して反射光R7と参照光D8との位相差の変化の幅が広がる。光検出器87は反射光R7と参照光D8との位相差を干渉光G8の光強度の変化として測定する。   The reference light D8 and the reflected light R7 that have reached the beam splitter 83 reach the photodetector 87 as interference light G8. Since the phase of the reflected light R7 changes due to the vibration of the surface of the subject 900, the reflected light R7 and the reference light D8 interfere with each other. Specifically, since the phase of the reflected light R7 changes with time depending on the vibration frequency of the surface of the subject 900, that is, the frequency of the ultrasonic wave, the reflected light is proportional to the magnitude of the vibration of the surface of the subject 900. The range of change in phase difference between R7 and reference light D8 is widened. The photodetector 87 measures the phase difference between the reflected light R7 and the reference light D8 as a change in the light intensity of the interference light G8.

なお、干渉計75としてマイケルソン干渉計75mを利用する場合、被検体900の計測点Pに微小コーナーキューブ80を図4で説明した超音波整合材料42を介して配置することが望ましい。微小コーナーキューブ80は図4で説明した光反射体41の一つの例である。微小コーナーキューブ80に入射した光の反射光は入射した光の方向へ出射する。従って、微小コーナーキューブ80を配置することで照射レーザ光S7と被検体900の表面との角度が変化しても反射光R7はアパーチャ89の方向へ戻るため、安定して被検体900の測定対象成分の濃度を高精度に測定することができる。   When the Michelson interferometer 75m is used as the interferometer 75, it is desirable to arrange the minute corner cube 80 at the measurement point P of the subject 900 via the ultrasonic matching material 42 described with reference to FIG. The small corner cube 80 is an example of the light reflector 41 described with reference to FIG. The reflected light of the light incident on the small corner cube 80 is emitted in the direction of the incident light. Accordingly, even if the angle between the irradiation laser beam S7 and the surface of the subject 900 is changed by arranging the small corner cube 80, the reflected light R7 returns to the direction of the aperture 89, so that the subject 900 is stably measured. The concentration of the component can be measured with high accuracy.

図9のマッハツェンダ干渉計75nはコリメータ81、ビームスプリッタ83、ビームスプリッタ84、アパーチャ89、反射鏡85及び光検出器87から構成される。図9において図8で使用した符号と同じ符号は同一手段、部品、信号又は光を示す。図8のマイケルソン干渉計75mと同様にマッハツェンダ干渉計75nは照射レーザ光S7を被検体900に照射する。被検体900で反射した反射光R7はビームスプリッタ84に到達し、反射鏡85で反射した参照光D8とともに干渉光G8として光検出器87に到達する。図8のマイケルソン干渉計75mで説明したように反射光R7と参照光D8とは干渉している。光検出器87は反射光R7と参照光D8との位相差を測定する。   The Mach-Zehnder interferometer 75n shown in FIG. 9 includes a collimator 81, a beam splitter 83, a beam splitter 84, an aperture 89, a reflecting mirror 85, and a photodetector 87. 9, the same reference numerals as those used in FIG. 8 indicate the same means, parts, signals, or light. Similar to the Michelson interferometer 75m of FIG. 8, the Mach-Zehnder interferometer 75n irradiates the subject 900 with the irradiation laser light S7. The reflected light R7 reflected by the subject 900 reaches the beam splitter 84, and reaches the photodetector 87 as interference light G8 together with the reference light D8 reflected by the reflecting mirror 85. As described with reference to the Michelson interferometer 75m in FIG. 8, the reflected light R7 and the reference light D8 interfere with each other. The photodetector 87 measures the phase difference between the reflected light R7 and the reference light D8.

従って、振動検出手段72は、被検体900から離れた位置の計測用レーザ発振器74から計測用レーザ光L7を用いて、被検体900から離れた位置の干渉計75で被検体900の計測点Pに照射する照射レーザ光S7の反射光R7と参照光D8との位相差を測定することができる。   Therefore, the vibration detecting means 72 uses the measurement laser light L7 from the measurement laser oscillator 74 at a position away from the subject 900 and the measurement point P of the subject 900 with the interferometer 75 at a position away from the subject 900. The phase difference between the reflected light R7 and the reference light D8 of the irradiation laser light S7 applied to the laser beam can be measured.

成分濃度測定装置204は以下のようにして被検体900内の測定対象成分の濃度を測定する。図1の成分濃度測定装置201で説明したように変調レーザ光L1により被検体900の表面は振動しており、干渉計75からの照射レーザ光S7の位相を変化させて反射光R7として反射させる。干渉計75は反射光R7と参照光D8との位相差を測定する。   The component concentration measuring apparatus 204 measures the concentration of the measurement target component in the subject 900 as follows. As described with reference to the component concentration measurement apparatus 201 in FIG. 1, the surface of the subject 900 is vibrated by the modulated laser light L1, and the phase of the irradiation laser light S7 from the interferometer 75 is changed and reflected as reflected light R7. . The interferometer 75 measures the phase difference between the reflected light R7 and the reference light D8.

具体的には、マイケルソン干渉計又はマッハツェンダ干渉計の場合、被検体900の測定対象成分の濃度が高い場合、前記位相差は大きくなる。逆に測定対象成分の濃度が低い場合、前記位相差は小さくなる。   Specifically, in the case of a Michelson interferometer or a Mach-Zehnder interferometer, the phase difference increases when the concentration of the measurement target component of the subject 900 is high. Conversely, when the concentration of the measurement target component is low, the phase difference is small.

予め、測定対象成分の濃度と干渉計75が測定する前記位相差とのデータを取得しておくことで、成分濃度測定装置204は前記位相差から被検体900の測定対象成分の濃度を算出することができる。   By acquiring in advance data on the concentration of the measurement target component and the phase difference measured by the interferometer 75, the component concentration measurement device 204 calculates the concentration of the measurement target component of the subject 900 from the phase difference. be able to.

従って、成分濃度測定装置204は光を利用して振動を検出するため、振動検出手段72を被検体900に接触せずに被検体900の測定対象成分の濃度を測定することができる。   Therefore, since the component concentration measuring apparatus 204 detects vibration using light, the concentration of the measurement target component of the subject 900 can be measured without bringing the vibration detecting means 72 into contact with the subject 900.

また、図1の成分濃度測定装置201で説明したように変調レーザ光L1に2波長の光を利用することで成分濃度測定装置204は被検体900の測定対象成分の濃度を高精度に測定することができる。   Further, as described in the component concentration measuring apparatus 201 of FIG. 1, the component concentration measuring apparatus 204 measures the concentration of the measurement target component of the subject 900 with high accuracy by using light of two wavelengths for the modulated laser light L1. be able to.

さらに、反射光R7の反射効率を高めるため、図4の成分濃度測定装置202で説明したように被検体900の表面に超音波整合材料42を介して光反射体41を配置しても良い。   Furthermore, in order to increase the reflection efficiency of the reflected light R7, the light reflector 41 may be disposed on the surface of the subject 900 via the ultrasonic matching material 42 as described in the component concentration measuring apparatus 202 in FIG.

(実施の形態5)
本実施形態は、レーザ光を一定周波数の変調信号により電気的に強度変調した変調レーザ光を被検体に向けて照射する光照射手段と、照射された前記変調レーザ光により発生する前記被検体内の超音波を前記被検体の表面の振動として検出する振動検出手段と、を備える成分濃度測定装置であって、前記振動検出手段は、前記変調レーザ光のうち前記被検体の表面で反射する反射光の光軸の位置を測定する光位置検出手段を有することを特徴とする成分濃度測定装置である。
(Embodiment 5)
In the present embodiment, a light irradiating means for irradiating the subject with modulated laser light that is electrically intensity-modulated with a modulation signal having a constant frequency toward the subject, and the inside of the subject generated by the irradiated modulated laser light. Vibration detecting means for detecting the ultrasonic wave as vibration of the surface of the subject, wherein the vibration detecting means is a reflection of the modulated laser beam reflected by the surface of the subject. It is a component concentration measuring apparatus having an optical position detecting means for measuring the position of the optical axis of light.

本実施形態に係る成分濃度測定装置205の概略図を図10に示す。図10の成分濃度測定装置205は光照射手段101及び振動検出手段として光位置検出手段17を備える。図10において図1で使用した符号と同じ符号は同一手段、部品、信号又は光を示す。成分濃度測定装置205と図1の成分濃度測定装置201との違いは成分濃度測定装置205には計測用ビーム照射手段14を備えず、光源13からの変調レーザ光L1が被検体900で反射した反射光B4を光位置検出手段17が受光していることである。なお、成分濃度測定装置205は図1の成分濃度測定装置201で説明したように発振器18からの変調信号E2を利用して反射光B4を同期検波している。   FIG. 10 shows a schematic diagram of the component concentration measuring apparatus 205 according to the present embodiment. 10 includes a light irradiation means 101 and a light position detection means 17 as vibration detection means. 10, the same reference numerals as those used in FIG. 1 indicate the same means, parts, signals, or light. The difference between the component concentration measuring device 205 and the component concentration measuring device 201 of FIG. 1 is that the component concentration measuring device 205 does not include the measurement beam irradiation means 14, and the modulated laser beam L 1 from the light source 13 is reflected by the subject 900. That is, the reflected light B4 is received by the optical position detector 17. The component concentration measuring device 205 synchronously detects the reflected light B4 using the modulation signal E2 from the oscillator 18 as described in the component concentration measuring device 201 in FIG.

成分濃度測定装置205は以下のようにして被検体900内の測定対象成分の濃度を測定する。図1の成分濃度測定装置201で説明したように変調レーザ光L1の照射による光音響効果で被検体900の表面は振動する。変調レーザ光L1の一部は被検体900の表面で反射するため、反射光B4は反射光B2と同様に反射する方向が計測点Pの振動の周波数、すなわち変調信号E1の周波数で振動する。図1の成分濃度測定装置201で説明したように光位置検出手段17は反射光B4を受光して光位置検出手段17の受光面上における反射光B4の振動の振幅を測定する。予め、測定対象成分の濃度と反射光B4の振動の振幅との関係のデータを取得しておくことで、成分濃度測定装置205は前記振幅値から被検体900の測定対象成分の濃度を算出することができる。   The component concentration measuring apparatus 205 measures the concentration of the measurement target component in the subject 900 as follows. As described with reference to the component concentration measuring apparatus 201 in FIG. 1, the surface of the subject 900 vibrates due to the photoacoustic effect caused by irradiation with the modulated laser light L1. Since part of the modulated laser light L1 is reflected by the surface of the subject 900, the reflected light B4 vibrates at the frequency of the measurement point P, that is, the frequency of the modulation signal E1, in the same direction as the reflected light B2. As described with reference to the component concentration measurement apparatus 201 in FIG. 1, the optical position detection unit 17 receives the reflected light B4 and measures the amplitude of vibration of the reflected light B4 on the light receiving surface of the optical position detection unit 17. By acquiring in advance data on the relationship between the concentration of the measurement target component and the amplitude of the vibration of the reflected light B4, the component concentration measurement device 205 calculates the concentration of the measurement target component of the subject 900 from the amplitude value. be able to.

従って、成分濃度測定装置205は光を利用して振動を検出するため、振動検出手段を被検体900に接触せずに被検体900の測定対象成分の濃度を測定することができる。   Therefore, since the component concentration measuring device 205 detects vibration using light, the concentration of the measurement target component of the subject 900 can be measured without contacting the vibration detecting means with the subject 900.

また、図1の成分濃度測定装置201で説明したように変調レーザ光L1に2波長の光を利用することで成分濃度測定装置205は被検体900の測定対象成分の濃度を高精度に測定することができる。   Further, as described in the component concentration measuring apparatus 201 in FIG. 1, the component concentration measuring apparatus 205 measures the concentration of the measurement target component of the subject 900 with high accuracy by using light of two wavelengths for the modulated laser light L1. be able to.

(実施の形態6)
本実施形態は、レーザ光を一定周波数の変調信号により電気的に強度変調した変調レーザ光を被検体に向けて照射する光照射手段と、照射された前記変調レーザ光により発生する前記被検体内の超音波を前記被検体の表面の振動として検出する振動検出手段と、を備える成分濃度測定装置であって、前記振動検出手段は、前記変調レーザ光のうち前記被検体の表面で反射する反射光のピンホールを通じて受光する積算光量を測定する積算光量測定手段を有することを特徴とする成分濃度測定装置である。
(Embodiment 6)
In the present embodiment, a light irradiating means for irradiating the subject with modulated laser light that is electrically intensity-modulated with a modulation signal having a constant frequency toward the subject, and the inside of the subject generated by the irradiated modulated laser light. Vibration detecting means for detecting the ultrasonic wave as vibration of the surface of the subject, wherein the vibration detecting means is a reflection of the modulated laser beam reflected by the surface of the subject. The component concentration measuring apparatus includes an integrated light amount measuring unit that measures an integrated light amount received through a pinhole of light.

本実施形態に係る成分濃度測定装置206の概略図を図11に示す。図11の成分濃度測定装置206は光照射手段101及び振動検出手段112を備える。振動検出手段112は光検出器55及びピンホール57から構成される。図11において図1及び5で使用した符号と同じ符号は同一手段、部品、信号又は光を示す。成分濃度測定装置206と図5の成分濃度測定装置203との違いは成分濃度測定装置206には計測用ビーム照射手段14を備えず、光源13からの変調レーザ光L1が被検体900で反射した反射光B4を振動検出手段112が受光していることである。なお、成分濃度測定装置206は図1の成分濃度測定装置201で説明したように発振器18からの変調信号E2を利用してピンホール57を通過した光を同期検波している。   FIG. 11 shows a schematic diagram of the component concentration measuring apparatus 206 according to this embodiment. The component concentration measuring apparatus 206 in FIG. 11 includes light irradiation means 101 and vibration detection means 112. The vibration detection means 112 includes a photodetector 55 and a pinhole 57. In FIG. 11, the same reference numerals as those used in FIGS. 1 and 5 indicate the same means, components, signals or light. The difference between the component concentration measuring device 206 and the component concentration measuring device 203 in FIG. 5 is that the component concentration measuring device 206 does not include the measurement beam irradiation means 14, and the modulated laser beam L 1 from the light source 13 is reflected by the subject 900. That is, the vibration detecting means 112 receives the reflected light B4. The component concentration measuring device 206 synchronously detects the light that has passed through the pinhole 57 using the modulation signal E2 from the oscillator 18 as described in the component concentration measuring device 201 in FIG.

成分濃度測定装置206は以下のようにして被検体900内の測定対象成分の濃度を測定する。図10の成分濃度測定装置205で説明したように変調レーザ光L1の一部は被検体900の表面で反射して反射光B4となる。図5の成分濃度測定装置203の振動検出手段52で説明したように振動検出手段112はピンホール57を通過する反射光B4を受光し、積算光量又は受光時間を測定する。予め、測定対象成分の濃度と光検出器55が受光する積算光量又は受光時間との関係のデータを取得しておくことで、成分濃度測定装置206は前記振幅値から被検体900の測定対象成分の濃度を算出することができる。   The component concentration measuring device 206 measures the concentration of the measurement target component in the subject 900 as follows. As described with reference to the component concentration measuring apparatus 205 in FIG. 10, a part of the modulated laser light L1 is reflected by the surface of the subject 900 to become reflected light B4. As described with reference to the vibration detection means 52 of the component concentration measurement apparatus 203 in FIG. 5, the vibration detection means 112 receives the reflected light B4 that passes through the pinhole 57 and measures the integrated light amount or the light reception time. By acquiring in advance data on the relationship between the concentration of the measurement target component and the integrated light amount or light reception time received by the photodetector 55, the component concentration measurement device 206 can determine the measurement target component of the subject 900 from the amplitude value. Concentration can be calculated.

従って、成分濃度測定装置206は光を利用して振動を検出するため、振動検出手段112を被検体900に接触せずに被検体900の測定対象成分の濃度を測定することができる。   Therefore, since the component concentration measuring device 206 detects vibration using light, the concentration of the measurement target component of the subject 900 can be measured without bringing the vibration detecting means 112 into contact with the subject 900.

(実施の形態7)
本実施形態は、レーザ光を一定周波数の変調信号により電気的に強度変調した変調レーザ光を第一変調レーザ光と第二変調レーザ光とに2分岐して前記第一変調レーザ光を被検体の表面に超音波整合材料を介して配置した光反射体に向けて照射し、前記第二変調レーザ光を前記光反射体と異なる位置の前記被検体の表面に照射する光照射手段と、照射された前記第二変調レーザ光により発生する前記被検体内の超音波を前記被検体の表面の振動として検出する振動検出手段と、を備える成分濃度測定装置であって、前記振動検出手段は、前記光反射体で反射する前記第一変調レーザ光の反射光の光軸位置を測定する光位置検出手段を有することを特徴とする成分濃度測定装置である。
(Embodiment 7)
In the present embodiment, a modulated laser beam obtained by electrically modulating the intensity of a laser beam with a modulation signal having a constant frequency is branched into a first modulated laser beam and a second modulated laser beam, and the first modulated laser beam is used as a subject. A light irradiating means for irradiating the surface of the subject with the second modulated laser light at a position different from the light reflector; Vibration detecting means for detecting ultrasonic waves in the subject generated by the second modulated laser light as vibration of the surface of the subject, wherein the vibration detecting means comprises: It is a component concentration measuring apparatus characterized by having an optical position detecting means for measuring the optical axis position of the reflected light of the first modulated laser light reflected by the light reflector.

本実施形態に係る成分濃度測定装置207の概略図を図12に示す。図12の成分濃度測定装置207は光照射手段121及び振動検出手段として光位置検出手段17を備える。図12において図1、図4及び図10で使用した符号と同じ符号は同一手段、部品、信号又は光を示す。成分濃度測定装置207と図10の成分濃度測定装置205との違いは、成分濃度測定装置207には光学素子123及び光反射体41が配置されていることである。光学素子123としてプリズムやビームスプリッタが例示できる。   FIG. 12 shows a schematic diagram of the component concentration measuring apparatus 207 according to the present embodiment. The component concentration measuring apparatus 207 of FIG. 12 includes a light irradiation means 121 and a light position detection means 17 as a vibration detection means. 12, the same reference numerals as those used in FIGS. 1, 4 and 10 indicate the same means, parts, signals or light. The difference between the component concentration measuring device 207 and the component concentration measuring device 205 in FIG. 10 is that the optical element 123 and the light reflector 41 are arranged in the component concentration measuring device 207. Examples of the optical element 123 include a prism and a beam splitter.

被検体900の表面には図4の成分濃度測定装置202で説明した光反射体41を超音波整合材料42を介して配置する。なお、光反射体41は被検体900の表面より第一変調レーザ光L5を反射しやすい素材で構成される。   The light reflector 41 described with reference to the component concentration measuring apparatus 202 in FIG. 4 is disposed on the surface of the subject 900 via the ultrasonic matching material 42. The light reflector 41 is made of a material that easily reflects the first modulated laser light L5 from the surface of the subject 900.

光学素子123は、光源13からの変調レーザ光L1を第一変調レーザ光L5と第二変調レーザ光L6とに2分岐する。さらに、光学素子123は、第一変調レーザ光L5を光反射体41へ照射し、第二変調レーザ光L6を光反射体41が配置されている箇所以外の被検体900の表面に照射する。   The optical element 123 splits the modulated laser beam L1 from the light source 13 into a first modulated laser beam L5 and a second modulated laser beam L6. Furthermore, the optical element 123 irradiates the light reflector 41 with the first modulated laser light L5 and irradiates the surface of the subject 900 other than the portion where the light reflector 41 is disposed with the second modulated laser light L6.

成分濃度測定装置207は以下のようにして被検体900内の測定対象成分の濃度を測定する。図1の成分濃度測定装置201で説明したように第二変調レーザ光L6の照射による光音響効果で被検体900の表面は振動する。被検体900の表面の振動は超音波整合材料42を介して光反射体41を振動させる。第一変調レーザ光L5は光反射体41で反射して反射光B6となる。反射光B6は反射光B2と同様に反射する方向が計測点Pの振動の周波数、すなわち変調信号E1の周波数で振動する。図1の成分濃度測定装置201で説明したように光位置検出手段17は反射光B6を受光して光位置検出手段17の受光面上における反射光B6の振動の振幅を測定する。ゆえに、成分濃度測定装置207は、図1の成分濃度測定装置201で説明したように反射光B6の振動の振幅から被検体900の測定対象成分の濃度を算出することができる。なお、図12の成分濃度測定装置207は図1の成分濃度測定装置201で説明したように発振器18からの変調信号E2を利用して反射光B6を同期検波している。   The component concentration measuring device 207 measures the concentration of the measurement target component in the subject 900 as follows. As described with reference to the component concentration measurement apparatus 201 in FIG. 1, the surface of the subject 900 vibrates due to the photoacoustic effect caused by the irradiation with the second modulated laser light L6. The vibration of the surface of the subject 900 causes the light reflector 41 to vibrate via the ultrasonic matching material 42. The first modulated laser light L5 is reflected by the light reflector 41 to become reflected light B6. The direction in which the reflected light B6 is reflected vibrates at the frequency of vibration at the measurement point P, that is, the frequency of the modulation signal E1, in the same manner as the reflected light B2. As described with reference to the component concentration measuring apparatus 201 in FIG. 1, the optical position detector 17 receives the reflected light B6 and measures the amplitude of vibration of the reflected light B6 on the light receiving surface of the optical position detector 17. Therefore, the component concentration measuring apparatus 207 can calculate the concentration of the measurement target component of the subject 900 from the amplitude of the vibration of the reflected light B6 as described in the component concentration measuring apparatus 201 in FIG. The component concentration measuring device 207 in FIG. 12 synchronously detects the reflected light B6 using the modulation signal E2 from the oscillator 18 as described in the component concentration measuring device 201 in FIG.

従って、成分濃度測定装置207は光を利用して振動を検出するため、振動検出手段を被検体900に接触せずに被検体900の測定対象成分の濃度を測定することができる。   Therefore, since the component concentration measuring device 207 detects vibration using light, the concentration of the measurement target component of the subject 900 can be measured without contacting the vibration detecting means with the subject 900.

また、図1の成分濃度測定装置201で説明したように変調レーザ光L1に2波長の光を利用することで成分濃度測定装置207は被検体900の測定対象成分の濃度を高精度に測定することができる。   Further, as described in the component concentration measuring apparatus 201 of FIG. 1, the component concentration measuring apparatus 207 measures the concentration of the measurement target component of the subject 900 with high accuracy by using light of two wavelengths for the modulated laser light L1. be able to.

(実施の形態8)
本実施形態は、レーザ光を一定周波数の変調信号により電気的に強度変調した変調レーザ光を第一変調レーザ光と第二変調レーザ光とに2分岐して前記第一変調レーザ光を被検体の表面に超音波整合材料を介して配置した光反射体に向けて照射し、前記第二変調レーザ光を前記光反射体と異なる位置の前記被検体の表面に照射する光照射手段と、照射された前記第二変調レーザ光により発生する前記被検体内の超音波を前記被検体の表面の振動として検出する振動検出手段と、を備える成分濃度測定装置であって、前記振動検出手段は、前記光反射体で反射する前記第一変調レーザ光の反射光のピンホールを通じて受光する積算光量を測定する積算光量測定手段を有することを特徴とする成分濃度測定装置である。
(Embodiment 8)
In the present embodiment, a modulated laser beam obtained by electrically modulating the intensity of a laser beam with a modulation signal having a constant frequency is branched into a first modulated laser beam and a second modulated laser beam, and the first modulated laser beam is used as a subject. A light irradiating means for irradiating the surface of the subject with the second modulated laser light at a position different from the light reflector; Vibration detecting means for detecting ultrasonic waves in the subject generated by the second modulated laser light as vibration of the surface of the subject, wherein the vibration detecting means comprises: The component concentration measuring apparatus includes an integrated light amount measuring unit that measures an integrated light amount received through a pinhole of the reflected light of the first modulated laser light reflected by the light reflector.

本実施形態に係る成分濃度測定装置208の概略図を図13に示す。図13の成分濃度測定装置208は光照射手段121及び振動検出手段112を備える。図13において図1、図4、図5、図11及び図12で使用した符号と同じ符号は同一手段、部品、信号又は光を示す。成分濃度測定装置208と図11の成分濃度測定装置206との違いは、成分濃度測定装置208には図12の成分濃度測定装置207で説明したように光学素子123及び光反射体41が配置されていることである。   A schematic diagram of the component concentration measuring apparatus 208 according to the present embodiment is shown in FIG. 13 includes a light irradiation unit 121 and a vibration detection unit 112. In FIG. 13, the same reference numerals as those used in FIGS. 1, 4, 5, 11, and 12 indicate the same means, components, signals, or light. The difference between the component concentration measuring device 208 and the component concentration measuring device 206 in FIG. 11 is that the optical element 123 and the light reflector 41 are arranged in the component concentration measuring device 208 as described in the component concentration measuring device 207 in FIG. It is that.

成分濃度測定装置208は以下のようにして被検体900内の測定対象成分の濃度を測定する。図12の成分濃度測定装置207で説明したように反射光B6の光軸は振動する。図5の成分濃度測定装置203の振動検出手段52で説明したように振動検出手段112はピンホール57を通過する反射光B6を受光し、積算光量又は受光時間を測定する。ゆえに、成分濃度測定装置208は、図5の成分濃度測定装置203で説明したように前記積算光量又は受光時間から被検体900の測定対象成分の濃度を算出することができる。なお、図13の成分濃度測定装置208は図1の成分濃度測定装置201で説明したように発振器18からの変調信号E2を利用して反射光B6を同期検波している。   The component concentration measuring device 208 measures the concentration of the measurement target component in the subject 900 as follows. As described in the component concentration measuring apparatus 207 in FIG. 12, the optical axis of the reflected light B6 vibrates. As described in the vibration detecting means 52 of the component concentration measuring apparatus 203 in FIG. 5, the vibration detecting means 112 receives the reflected light B6 passing through the pinhole 57 and measures the integrated light quantity or the light receiving time. Therefore, the component concentration measuring device 208 can calculate the concentration of the measurement target component of the subject 900 from the integrated light amount or the light receiving time as described in the component concentration measuring device 203 of FIG. The component concentration measuring device 208 in FIG. 13 synchronously detects the reflected light B6 using the modulation signal E2 from the oscillator 18 as described in the component concentration measuring device 201 in FIG.

従って、成分濃度測定装置208は光を利用して振動を検出するため、振動検出手段を被検体900に接触せずに被検体900の測定対象成分の濃度を測定することができる。   Accordingly, since the component concentration measuring device 208 detects vibration using light, the concentration of the measurement target component of the subject 900 can be measured without contacting the vibration detecting means with the subject 900.

また、図12の成分濃度測定装置207及び図13の成分濃度測定装置208は図1の成分濃度測定装置201で説明したように変調レーザ光L1に2波長の光を利用してもよい。   Further, the component concentration measuring device 207 in FIG. 12 and the component concentration measuring device 208 in FIG. 13 may use light of two wavelengths for the modulated laser light L1 as described in the component concentration measuring device 201 in FIG.

(実施の形態9)
本実施形態に係る成分濃度測定装置209の概略図を図14に示す。図14の成分濃度測定装置209は光照射手段121及び振動検出手段として干渉計75を備える。図14において図1、図4、図7、図11、図12及び図13で使用した符号と同じ符号は同一手段、部品、信号又は光を示す。成分濃度測定装置209と図12の成分濃度測定装置207との違いは、成分濃度測定装置209には光位置検出手段17の代替として図7の成分濃度測定装置204で説明した干渉計75が配置されていることである。
(Embodiment 9)
A schematic diagram of a component concentration measuring apparatus 209 according to this embodiment is shown in FIG. The component concentration measuring apparatus 209 in FIG. 14 includes a light irradiation unit 121 and an interferometer 75 as a vibration detection unit. 14, the same reference numerals as those used in FIGS. 1, 4, 7, 11, 12, and 13 indicate the same means, components, signals, or light. The difference between the component concentration measuring device 209 and the component concentration measuring device 207 in FIG. 12 is that the interferometer 75 described in the component concentration measuring device 204 in FIG. 7 is arranged in the component concentration measuring device 209 as an alternative to the optical position detecting means 17. It has been done.

成分濃度測定装置209は以下のようにして被検体900内の測定対象成分の濃度を測定する。干渉計75は光学素子123から照射される第一変調レーザ光L5を計測用レーザ光として受け、光反射体41へ向けて照射レーザ光S7を照射する。図12の成分濃度測定装置207で説明したように光反射体41は振動しており、図7の成分濃度測定装置204で説明したように干渉計75は反射光R7と図示しない参照光との位相差を測定する。ゆえに、成分濃度測定装置209は干渉計75が測定した前記位相差から被検体900の測定対象成分の濃度を算出することができる。   The component concentration measuring apparatus 209 measures the concentration of the measurement target component in the subject 900 as follows. The interferometer 75 receives the first modulated laser light L5 emitted from the optical element 123 as the measurement laser light, and irradiates the light reflector 41 with the irradiation laser light S7. The light reflector 41 vibrates as described in the component concentration measuring apparatus 207 in FIG. 12, and the interferometer 75 generates a reflected light R7 and a reference light (not shown) as described in the component concentration measuring apparatus 204 in FIG. Measure the phase difference. Therefore, the component concentration measurement apparatus 209 can calculate the concentration of the measurement target component of the subject 900 from the phase difference measured by the interferometer 75.

従って、成分濃度測定装置209は光を利用して振動を検出するため、振動検出手段を被検体900に接触せずに被検体900の測定対象成分の濃度を測定することができる。   Therefore, since the component concentration measurement apparatus 209 detects vibration using light, the concentration of the measurement target component of the subject 900 can be measured without contacting the vibration detection means with the subject 900.

本発明の成分濃度測定装置は、日常の健康管理や美容上のチェックに利用することができる。また、人間ばかりでなく、動物についても健康管理に利用することができる。さらに、本発明の成分濃度測定装置は、液体中の成分濃度を測定することができるため、例えば果実の糖度測定にも適用することができる。   The component concentration measuring apparatus of the present invention can be used for daily health management and cosmetic check. Moreover, not only humans but also animals can be used for health management. Furthermore, since the component concentration measuring apparatus of this invention can measure the component density | concentration in a liquid, it can be applied also to the sugar content measurement of a fruit, for example.

本発明の一の実施形態に係る成分濃度測定装置の概略図である。It is the schematic of the component concentration measuring apparatus which concerns on one Embodiment of this invention. CCDイメージセンサの構造の概念図である。It is a conceptual diagram of the structure of a CCD image sensor. PSDの動作原理を表した図である。It is a figure showing the principle of operation of PSD. 本発明の他の実施形態に係る成分濃度測定装置の概略図である。It is the schematic of the component concentration measuring apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る成分濃度測定装置の概略図である。It is the schematic of the component concentration measuring apparatus which concerns on other embodiment of this invention. 反射光B2の振動量と光検出器55が受光する光強度との関係を示す図である。It is a figure which shows the relationship between the vibration amount of reflected light B2, and the light intensity which the photodetector 55 receives. 本発明の他の実施形態に係る成分濃度測定装置の概略図である。It is the schematic of the component concentration measuring apparatus which concerns on other embodiment of this invention. マイケルソン干渉計の構造を示す概略図である。It is the schematic which shows the structure of a Michelson interferometer. マッハツェンダ干渉計の構造を示す概略図である。It is the schematic which shows the structure of a Mach-Zehnder interferometer. 本発明の他の実施形態に係る成分濃度測定装置の概略図である。It is the schematic of the component concentration measuring apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る成分濃度測定装置の概略図である。It is the schematic of the component concentration measuring apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る成分濃度測定装置の概略図である。It is the schematic of the component concentration measuring apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る成分濃度測定装置の概略図である。It is the schematic of the component concentration measuring apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る成分濃度測定装置の概略図である。It is the schematic of the component concentration measuring apparatus which concerns on other embodiment of this invention. 従来の血液成分濃度測定装置の構成例を示す図である。It is a figure which shows the structural example of the conventional blood component concentration measuring apparatus. 常温における水とグルコース水溶液の吸光度特性を示した図である。It is the figure which showed the light absorbency characteristic of the water and glucose aqueous solution in normal temperature.

符号の説明Explanation of symbols

201〜209 成分濃度測定装置
11、101、121 光照射手段
12、52、72、112 振動検出手段
13 光源
14 計測用ビーム照射手段
17 光位置検出手段
18 発振器
21 PD
22 トランスファーゲート
23 垂直転送CCD
24 水平転送CCD
25 受光位置特定回路
31 n型シリコン基板
32 真性半導体層
33 p型半導体層
34a、34b 電極
35 接地用電極
41 光反射体
42 超音波整合材料
55 光検出器
57 ピンホール
74 計測用レーザ発振器
75 干渉計
75m マイケルソン干渉計
75n マッハツェンダ干渉計
80 微小コーナーキューブ
81 コリメータ
83、84 ビームスプリッタ
85 反射鏡
87 光検出器
89 アパーチャ
123 光学素子
604 駆動回路
610 被検体
613 超音波検出器
616 パルス光源
620 波形観測器
900 被検体
L1 変調レーザ光
L5 第一変調レーザ光
L6 第二変調レーザ光
L7 計測用レーザ光
B1 計測用ビーム
B2、B4、B6 反射光
B3 反射光の光軸
E1、E2 変調信号
S7 照射レーザ光
R7 反射光
L8 平行光
H8 照射レーザ光S7+反射光R7
D8 参照光
G8 干渉光
A 変調レーザ照射点
C 光
D、E 正孔の量
P 計測点
Xa、Xb 距離

201-209 Component concentration measuring apparatus 11, 101, 121 Light irradiation means 12, 52, 72, 112 Vibration detection means 13 Light source 14 Measurement beam irradiation means 17 Optical position detection means 18 Oscillator 21 PD
22 Transfer gate 23 Vertical transfer CCD
24 Horizontal transfer CCD
25 Light receiving position specifying circuit 31 n-type silicon substrate 32 intrinsic semiconductor layer 33 p-type semiconductor layers 34a and 34b electrode 35 grounding electrode 41 light reflector 42 ultrasonic matching material 55 photodetector 57 pinhole 74 laser oscillator 75 for measurement interference Total 75 m Michelson interferometer 75 n Mach-Zehnder interferometer 80 Minute corner cube 81 Collimator 83, 84 Beam splitter 85 Reflector 87 Photo detector 89 Aperture 123 Optical element 604 Drive circuit 610 Subject 613 Ultrasonic detector 616 Pulse light source 620 Waveform observation Instrument 900 Subject L1 Modulated laser light L5 First modulated laser light L6 Second modulated laser light L7 Measuring laser light B1 Measuring beams B2, B4, B6 Reflected light B3 Reflected light optical axes E1, E2 Modulated signal S7 Irradiation laser Light R7 Reflected light L8 Parallel light H8 Irradiation laser S7 + reflected light R7
D8 Reference light G8 Interference light A Modulated laser irradiation point C Light D, E Hole quantity P Measurement point Xa, Xb Distance

Claims (9)

レーザ光を一定周波数の変調信号により電気的に強度変調した変調レーザ光を被検体に向けて照射する光照射手段と、
照射された前記変調レーザ光により発生する前記被検体内の超音波を前記被検体の表面の振動として検出する振動検出手段と、
を備える成分濃度測定装置であって、
前記振動検出手段は、前記被検体の表面に計測用ビームを照射する計測用ビーム照射手段と、
前記被検体の表面で反射した前記計測用ビームの反射光の光軸位置を測定する光位置検出手段と、
を有することを特徴とする成分濃度測定装置。
A light irradiating means for irradiating the subject with a modulated laser beam obtained by electrically modulating the intensity of the laser beam with a modulation signal having a constant frequency;
Vibration detecting means for detecting ultrasonic waves in the subject generated by the irradiated modulated laser light as vibrations on the surface of the subject;
A component concentration measuring device comprising:
The vibration detecting means includes a measuring beam irradiating means for irradiating the surface of the subject with a measuring beam;
Optical position detection means for measuring the optical axis position of the reflected light of the measurement beam reflected by the surface of the subject;
A component concentration measuring apparatus comprising:
レーザ光を一定周波数の変調信号により電気的に強度変調した変調レーザ光を被検体に向けて照射する光照射手段と、
照射された前記変調レーザ光により発生する前記被検体内の超音波を前記被検体の表面の振動として検出する振動検出手段と、
を備える成分濃度測定装置であって、
前記振動検出手段は、前記被検体の表面に計測用ビームを照射する計測用ビーム照射手段と、
前記被検体の表面で反射した前記計測用ビームの反射光のピンホールを通じて受光する積算光量を測定する積算光量測定手段と、
を有することを特徴とする成分濃度測定装置。
A light irradiating means for irradiating the subject with a modulated laser beam obtained by electrically modulating the intensity of the laser beam with a modulation signal having a constant frequency;
Vibration detecting means for detecting ultrasonic waves in the subject generated by the irradiated modulated laser light as vibrations on the surface of the subject;
A component concentration measuring device comprising:
The vibration detecting means includes a measuring beam irradiating means for irradiating the surface of the subject with a measuring beam;
Integrated light quantity measuring means for measuring the integrated light quantity received through the pinhole of the reflected light of the measurement beam reflected by the surface of the subject;
A component concentration measuring apparatus comprising:
レーザ光を一定周波数の変調信号により電気的に強度変調した変調レーザ光を被検体に向けて照射する光照射手段と、
照射された前記変調レーザ光により発生する前記被検体内の超音波を前記被検体の表面の振動として検出する振動検出手段と、
を備える成分濃度測定装置であって、
前記振動検出手段は、計測用レーザ光を出射する計測用レーザ発振器と、
前記計測用レーザ発振器からの前記計測用レーザ光を第一レーザ光と第二レーザ光とに2分岐し、前記第一レーザ光を前記被検体の表面に照射させ、前記第二レーザ光と前記被検体の表面で反射した前記第一レーザ光との位相差を測定する干渉計と、
を有することを特徴とする成分濃度測定装置。
A light irradiating means for irradiating the subject with a modulated laser beam obtained by electrically modulating the intensity of the laser beam with a modulation signal having a constant frequency;
Vibration detecting means for detecting ultrasonic waves in the subject generated by the irradiated modulated laser light as vibrations on the surface of the subject;
A component concentration measuring device comprising:
The vibration detection means includes a measurement laser oscillator that emits measurement laser light, and
The measurement laser beam from the measurement laser oscillator is bifurcated into a first laser beam and a second laser beam, the surface of the subject is irradiated with the first laser beam, and the second laser beam and the second laser beam An interferometer for measuring a phase difference with the first laser beam reflected from the surface of the subject;
A component concentration measuring apparatus comprising:
振動する前記被検体の表面に超音波整合材料を介して光反射体をさらに備えることを特徴とする請求項1から3のいずれかの成分濃度測定装置。   4. The component concentration measuring apparatus according to claim 1, further comprising a light reflector on the surface of the subject that vibrates via an ultrasonic matching material. レーザ光を一定周波数の変調信号により電気的に強度変調した変調レーザ光を被検体に向けて照射する光照射手段と、
照射された前記変調レーザ光により発生する前記被検体内の超音波を前記被検体の表面の振動として検出する振動検出手段と、
を備える成分濃度測定装置であって、
前記振動検出手段は、前記変調レーザ光のうち前記被検体の表面で反射する反射光の光軸位置を測定する光位置検出手段を有することを特徴とする成分濃度測定装置。
A light irradiating means for irradiating the subject with a modulated laser beam obtained by electrically modulating the intensity of the laser beam with a modulation signal having a constant frequency;
Vibration detecting means for detecting ultrasonic waves in the subject generated by the irradiated modulated laser light as vibrations on the surface of the subject;
A component concentration measuring device comprising:
The vibration detecting means includes an optical position detecting means for measuring an optical axis position of reflected light reflected from the surface of the subject in the modulated laser light.
レーザ光を一定周波数の変調信号により電気的に強度変調した変調レーザ光を被検体に向けて照射する光照射手段と、
照射された前記変調レーザ光により発生する前記被検体内の超音波を前記被検体の表面の振動として検出する振動検出手段と、
を備える成分濃度測定装置であって、
前記振動検出手段は、前記変調レーザ光のうち前記被検体の表面で反射する反射光のピンホールを通じて受光する積算光量を測定する積算光量測定手段を有することを特徴とする成分濃度測定装置。
A light irradiating means for irradiating the subject with a modulated laser beam obtained by electrically modulating the intensity of the laser beam with a modulation signal having a constant frequency;
Vibration detecting means for detecting ultrasonic waves in the subject generated by the irradiated modulated laser light as vibrations on the surface of the subject;
A component concentration measuring device comprising:
The vibration detecting means includes integrated light quantity measuring means for measuring an integrated light quantity that is received through a pinhole of reflected light reflected from the surface of the subject in the modulated laser light.
レーザ光を一定周波数の変調信号により電気的に強度変調した変調レーザ光を第一変調レーザ光と第二変調レーザ光とに2分岐して前記第一変調レーザ光を被検体の表面に超音波整合材料を介して配置した光反射体に向けて照射し、前記第二変調レーザ光を前記光反射体と異なる位置の前記被検体の表面に照射する光照射手段と、
照射された前記第二変調レーザ光により発生する前記被検体内の超音波を前記被検体の表面の振動として検出する振動検出手段と、
を備える成分濃度測定装置であって、
前記振動検出手段は、前記光反射体で反射する前記第一変調レーザ光の反射光の光軸位置を測定する光位置検出手段を有することを特徴とする成分濃度測定装置。
A modulated laser beam obtained by electrically modulating the intensity of the laser beam with a modulation signal having a constant frequency is branched into a first modulated laser beam and a second modulated laser beam, and the first modulated laser beam is ultrasonically applied to the surface of the subject. Light irradiation means for irradiating a light reflector disposed through a matching material and irradiating the surface of the subject at a position different from the light reflector with the second modulated laser light;
Vibration detecting means for detecting ultrasonic waves in the subject generated by the irradiated second modulated laser light as vibrations on the surface of the subject;
A component concentration measuring device comprising:
The component concentration measuring apparatus according to claim 1, wherein the vibration detecting means includes an optical position detecting means for measuring an optical axis position of the reflected light of the first modulated laser light reflected by the light reflector.
レーザ光を一定周波数の変調信号により電気的に強度変調した変調レーザ光を第一変調レーザ光と第二変調レーザ光とに2分岐して前記第一変調レーザ光を被検体の表面に超音波整合材料を介して配置した光反射体に向けて照射し、前記第二変調レーザ光を前記光反射体と異なる位置の前記被検体の表面に照射する光照射手段と、
照射された前記第二変調レーザ光により発生する前記被検体内の超音波を前記被検体の表面の振動として検出する振動検出手段と、
を備える成分濃度測定装置であって、
前記振動検出手段は、前記光反射体で反射する前記第一変調レーザ光の反射光のピンホールを通じて受光する積算光量を測定する積算光量測定手段を有することを特徴とする成分濃度測定装置。
A modulated laser beam obtained by electrically modulating the intensity of the laser beam with a modulation signal having a constant frequency is branched into a first modulated laser beam and a second modulated laser beam, and the first modulated laser beam is ultrasonically applied to the surface of the subject. A light irradiation means for irradiating a light reflector disposed through a matching material and irradiating the surface of the subject at a position different from the light reflector with the second modulated laser light;
Vibration detecting means for detecting ultrasonic waves in the subject generated by the irradiated second modulated laser light as vibrations on the surface of the subject;
A component concentration measuring device comprising:
The component concentration measuring apparatus according to claim 1, wherein the vibration detecting unit includes an integrated light amount measuring unit that measures an integrated light amount received through a pinhole of the reflected light of the first modulated laser light reflected by the light reflector.
前記振動検出手段において、前記光位置検出手段から出力される前記反射光の光軸位置の光軸位置測定信号を前記光照射手段の前記変調信号で同期検波することを特徴とする請求項1、5又は7に記載の成分濃度測定装置。


The said vibration detection means carries out synchronous detection of the optical axis position measurement signal of the optical axis position of the said reflected light output from the said optical position detection means with the said modulation signal of the said light irradiation means, The said 1st aspect is characterized by the above-mentioned. 8. The component concentration measuring apparatus according to 5 or 7.


JP2006085629A 2006-03-27 2006-03-27 Component concentration measuring device Expired - Fee Related JP4490386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006085629A JP4490386B2 (en) 2006-03-27 2006-03-27 Component concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006085629A JP4490386B2 (en) 2006-03-27 2006-03-27 Component concentration measuring device

Publications (2)

Publication Number Publication Date
JP2007259915A JP2007259915A (en) 2007-10-11
JP4490386B2 true JP4490386B2 (en) 2010-06-23

Family

ID=38633515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006085629A Expired - Fee Related JP4490386B2 (en) 2006-03-27 2006-03-27 Component concentration measuring device

Country Status (1)

Country Link
JP (1) JP4490386B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4829934B2 (en) * 2008-07-11 2011-12-07 キヤノン株式会社 Inspection device
JP5692988B2 (en) * 2009-10-19 2015-04-01 キヤノン株式会社 Acoustic wave measuring device
CN102946809A (en) * 2010-02-01 2013-02-27 松下电器产业株式会社 Ultrasonic probe and ultrasonic examination device using same
JP5208255B2 (en) * 2011-09-15 2013-06-12 キヤノン株式会社 measuring device
FI20135401L (en) * 2013-04-19 2014-10-20 Garuda Oy Measuring procedure and measuring arrangement for utilizing electromagnetic waves
JP6334165B2 (en) * 2013-12-27 2018-05-30 株式会社東芝 Photoacoustic measuring device and photoacoustic measuring method
JP2016007256A (en) * 2014-06-23 2016-01-18 株式会社東芝 Photoacoustic measuring device and photoacoustic measuring method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005107592A1 (en) * 2004-05-06 2005-11-17 Nippon Telegraph And Telephone Corporation Component concentration measuring device and method of controlling component concentration measuring device
JP2007155397A (en) * 2005-12-01 2007-06-21 Nippon Telegr & Teleph Corp <Ntt> Component concentration measuring method, component concentration measuring device, and component concentration measuring device control method
JP2007229320A (en) * 2006-03-03 2007-09-13 Nippon Telegr & Teleph Corp <Ntt> Component concentration measuring apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09173323A (en) * 1995-12-27 1997-07-08 Hitachi Ltd Non-invasive biochemical measuring instrument

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005107592A1 (en) * 2004-05-06 2005-11-17 Nippon Telegraph And Telephone Corporation Component concentration measuring device and method of controlling component concentration measuring device
JP2007155397A (en) * 2005-12-01 2007-06-21 Nippon Telegr & Teleph Corp <Ntt> Component concentration measuring method, component concentration measuring device, and component concentration measuring device control method
JP2007229320A (en) * 2006-03-03 2007-09-13 Nippon Telegr & Teleph Corp <Ntt> Component concentration measuring apparatus

Also Published As

Publication number Publication date
JP2007259915A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
EP2335579B1 (en) Component concentration measuring device and method of controlling component concentration measuring device
JP4490386B2 (en) Component concentration measuring device
JP4422626B2 (en) Biological imaging device
US20070255141A1 (en) Noninvasive glucose sensing methods and systems
US7526329B2 (en) Multiple reference non-invasive analysis system
WO2007034802A1 (en) Elasticity/viscosity measuring device
AU2008325237A1 (en) Optical sensor for determining the concentration of an analyte
JP2007216001A (en) Object information analyzing apparatus, endoscope system and object information analyzing method
JP4531632B2 (en) Biological component concentration measuring apparatus and biological component concentration measuring apparatus control method
JP2007259913A (en) Apparatus and method for measuring component concentration
JP4902508B2 (en) Component concentration measuring apparatus and component concentration measuring apparatus control method
JP4490385B2 (en) Component concentration measuring device
JP4945415B2 (en) Component concentration measuring apparatus and component concentration measuring apparatus control method
JP5313016B2 (en) Component concentration analyzer and component concentration analysis method
RU2813964C2 (en) Device and method of analyzing substance
JP7127530B2 (en) Component concentration measuring device
JP7110972B2 (en) Component concentration measuring device
JP2008125543A (en) Constituent concentration measuring apparatus
US20200232915A1 (en) Speckle based sensing of acoustic excitation in solutions
JP2008237655A (en) Component concentration measuring apparatus
JP2023141373A (en) Non contact type eyeball physical property measurement device
US20160183806A1 (en) Photoacoustic apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees