JP4489398B2 - Zoom lens and electronic imaging apparatus using the same - Google Patents

Zoom lens and electronic imaging apparatus using the same Download PDF

Info

Publication number
JP4489398B2
JP4489398B2 JP2003329512A JP2003329512A JP4489398B2 JP 4489398 B2 JP4489398 B2 JP 4489398B2 JP 2003329512 A JP2003329512 A JP 2003329512A JP 2003329512 A JP2003329512 A JP 2003329512A JP 4489398 B2 JP4489398 B2 JP 4489398B2
Authority
JP
Japan
Prior art keywords
lens
lens group
aperture
zoom
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003329512A
Other languages
Japanese (ja)
Other versions
JP2005099091A (en
Inventor
正仁 渡邉
あずさ 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2003329512A priority Critical patent/JP4489398B2/en
Priority to US10/945,396 priority patent/US7075732B2/en
Publication of JP2005099091A publication Critical patent/JP2005099091A/en
Application granted granted Critical
Publication of JP4489398B2 publication Critical patent/JP4489398B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/22Telecentric objectives or lens systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)
  • Lenses (AREA)
  • Studio Devices (AREA)

Description

本発明は、ズームレンズ及びそれを用いた電子撮像装置に関し、特に、ビデオカメラやデジタルカメラに適したズームレンズ及びそれを用いた電子撮像装置に関するものである。   The present invention relates to a zoom lens and an electronic image pickup apparatus using the same, and more particularly to a zoom lens suitable for a video camera and a digital camera and an electronic image pickup apparatus using the same.

近年、銀塩35mmフィルム(通称ライカ版)カメラに代わる次世代カメラとして、デジタルカメラ(電子カメラ)が注目されてきている。特に、ズーム比やF値等の仕様を高く設定するに有利であるとされる、最も物体側のレンズ群が正の屈折力を有するいわゆる正先行型ズームレンズは、各々のレンズ素子の厚みやデッドスペースが大きく、沈胴したときの厚みが厚くなりやすい(特許文献1)。負先行型で特に3群以下の構成のズームレンズは、その点有利である。高変倍化及び広角化を達成するために、各レンズ群の屈折力配置や群内のレンズ構成を適切に設定しなければならないが、負先行型で高変倍化を行うと、望遠端でのFナンバーが大きくなりやすく、回折の影響による結像性能劣化が顕著となり、高画質化が困難である。また、撮像素子の高画素化に伴い、画素の微細化による感度不足を補うために、光学系は望遠端においても十分な明るさを保つ必要がある。従来技術においては、例えば特許文献2に変倍比が3.5倍以上のものもある。
特開平11−258507号公報 特開2002−267930号公報
In recent years, digital cameras (electronic cameras) have attracted attention as next-generation cameras that replace silver salt 35 mm film (commonly known as Leica version) cameras. In particular, a so-called positive leading zoom lens in which the most object-side lens group has a positive refractive power, which is advantageous for setting high specifications such as a zoom ratio and an F value, has a thickness of each lens element. The dead space is large and the thickness when retracted tends to increase (Patent Document 1). A zoom lens having a negative leading type and particularly having three or less groups is advantageous in that respect. In order to achieve a high zoom ratio and a wide angle, it is necessary to appropriately set the refractive power arrangement of each lens group and the lens configuration in the lens group. The F-number at the same time tends to be large, the imaging performance deterioration due to the influence of diffraction becomes remarkable, and it is difficult to improve the image quality. In addition, with the increase in the number of pixels of the image sensor, the optical system needs to maintain sufficient brightness even at the telephoto end in order to compensate for the lack of sensitivity due to the miniaturization of the pixels. In the prior art, for example, Patent Document 2 has a zoom ratio of 3.5 times or more.
Japanese Patent Laid-Open No. 11-258507 JP 2002-267930 A

しかしながら、従来技術における負先行の高変倍ズームレンズにおいては、望遠端のFナンバーに対して広角端のFナンバーが小さくなりずぎるため、収差補正のために構成枚数が多くレンズ系の厚みが大きくならざるを得ない。このように、従来技術においては、十分な収差補正をしつつ高変倍化と沈胴時等での小型化を両立するのは困難であった。   However, in the negative leading high-magnification zoom lens in the prior art, the F-number at the wide-angle end is too small with respect to the F-number at the telephoto end. It must be large. As described above, in the prior art, it has been difficult to achieve both high zooming and downsizing when retracted while sufficiently correcting aberrations.

本発明は従来技術のこのような問題に鑑みてなされたものであり、その目的は、従来技術よりも変倍による開放Fナンバーの変動を小さくすることで収差補正を容易とし、かつ、小型化、高変倍化や広角化が可能で、ビデオカメラやデジタルカメラに適したズームレンズ及びそれを用いた電子撮像装置を提供することである。   The present invention has been made in view of such a problem of the prior art, and an object of the present invention is to make it easier to correct aberrations and reduce the size by reducing the fluctuation of the open F-number due to zooming compared to the prior art. It is an object of the present invention to provide a zoom lens suitable for a video camera and a digital camera, and an electronic imaging device using the same, which can achieve a high zoom ratio and a wide angle.

上記目的を達成する本発明の第1のズームレンズは、物体側より順に、負の屈折力の第1レンズ群、開口面積が可変の開口絞り、正の屈折力の第2レンズ群を有し、広角端から望遠端への変倍をする際に各レンズ群の間隔を変えることにより変倍し、変倍比が3.4倍以上を有し、前記開口絞りは変倍の際に第2レンズ群の移動方向と同方向に移動し、前記開口絞りの撮影時の開口部の最大面積が、望遠端よりも広角端にて小さくなるように構成し、以下の条件式(1)、(2)を満足することを特徴とするものである。   The first zoom lens of the present invention that achieves the above object has, in order from the object side, a first lens group having a negative refractive power, an aperture stop having a variable aperture area, and a second lens group having a positive refractive power. When zooming from the wide-angle end to the telephoto end, zooming is performed by changing the distance between the lens groups, and the zooming ratio is 3.4 or more. The two lens groups are moved in the same direction as the moving direction, and the maximum area of the aperture when photographing the aperture stop is configured to be smaller at the wide-angle end than at the telephoto end, and the following conditional expression (1): (2) is satisfied.

−2<f1 /√(fT ・fW )<−1 ・・・(1)
1.05<ST /SW <4 ・・・(2)
ただし、f1 :第1レンズ群の焦点距離、
W :広角端におけるズームレンズ全系の焦点距離、
T :望遠端におけるズームレンズ全系の焦点距離、
W :広角端での撮影時における開口絞りの開口部の最大面積、
T :望遠端での撮影時における開口絞りの開口部の最大面積、
である。
-2 <f 1 / √ (f T · f W ) <− 1 (1)
1.05 <S T / S W <4 (2)
Where f 1 is the focal length of the first lens group,
f W : focal length of the entire zoom lens system at the wide-angle end,
f T : the focal length of the entire zoom lens system at the telephoto end,
S W : Maximum area of the aperture of the aperture stop when shooting at the wide-angle end,
S T : Maximum area of the aperture of the aperture stop at the time of photographing at the telephoto end,
It is.

以下に、本発明の第1のズームレンズにおいて、上記のような構成をとる理由と作用を説明する。   Hereinafter, the reason and action of the first zoom lens according to the present invention having the above-described configuration will be described.

負の屈折力の第1レンズ群、開口面積が可変の開口絞り、変倍時に絞りの移動と同方向に移動する正の屈折力の第2レンズ群の順に配置することで、その部分をレトロフォーカスタイプに構成し、広画角化しやすく、正先行タイプのズームレンズと比較して、第1レンズ群の径が小さく構成できるので、鏡筒を大型化せず小型のズームレンズとすることが容易となる。   The first lens group having a negative refractive power, an aperture stop having a variable aperture area, and a second lens group having a positive refractive power that moves in the same direction as the movement of the stop during zooming are arranged in this order, thereby retrofitting the portion. Since it is configured as a focus type, it is easy to widen the angle of view, and the diameter of the first lens group can be made smaller than a zoom lens of the front-preceding type, it is possible to make a compact zoom lens without increasing the size of the lens barrel It becomes easy.

また、入射側から見た開口絞りの像が望遠側程拡大されるため、Fナンバーの変化を抑えやすくなる。   In addition, since the aperture stop image viewed from the incident side is enlarged toward the telephoto side, it is easy to suppress changes in the F number.

このとき、変倍比が3.4倍を越える高変倍ズームレンズとして構成すると、前述の通りFナンバーの変化が大きくなりすぎるため、小型のレンズ構成での収差補正が難しくなる。   At this time, if the zoom lens is configured as a zoom lens having a zoom ratio exceeding 3.4, the F number change becomes too large as described above, so that it is difficult to correct aberrations with a small lens configuration.

そこで、本発明においては、このような変倍比が3.4倍を越える高変倍の負先行ズームレンズの更なる小型、高性能化のため、開口絞りの撮影時の開口部の最大面積が、望遠端よりも広角端にて小さくなるように構成している。それにより、Fナンバーの変化を小さく抑えている。   Therefore, in the present invention, in order to further reduce the size and increase the performance of the high-magnification negative leading zoom lens having a zoom ratio exceeding 3.4, the maximum area of the aperture at the time of shooting the aperture stop. However, it is configured to be smaller at the wide-angle end than at the telephoto end. Thereby, the change of F number is suppressed small.

この変倍比に関し、下限値の変倍比3.4に満たないと、可変絞りの開口部の最大面積を一定にしても光学性能への影響は少なくなり、広角端にて絞りの開口面積を小さくすることのメリットが小さくなる。   If this zoom ratio is less than the lower limit zoom ratio of 3.4, even if the maximum aperture area of the variable aperture is kept constant, the effect on the optical performance is reduced, and the aperture area of the aperture is at the wide angle end. The merit of making it smaller becomes smaller.

また、付随的効果として、絞りよりも前方に位置する群の径は、広角端近辺の有効光束の影響が大きいが、広角端での絞りの開口面積が小さくなると、絞りよりも前のレンズ径を小さくできる効果もある。特に、径の小型化の影響は、絞りよりも前に負の屈折力のレンズ群が1群のみであると、その小型化の効果が大である。   Further, as an incidental effect, the diameter of the group located in front of the stop is greatly influenced by the effective light beam near the wide-angle end, but when the aperture area of the stop at the wide-angle end becomes small, the lens diameter before the stop is reduced. There is also an effect that can be reduced. In particular, the effect of miniaturizing the diameter is significant when there is only one lens unit having a negative refractive power before the stop.

本願発明は、その上で、条件式(1)と(2)を満たす構成としている。   In addition, the present invention is configured to satisfy the conditional expressions (1) and (2).

条件式(1)は、ズームレンズ全体をコンパクトにするために第1レンズ群の焦点距離をズームレンズの平均焦点距離にて規定したものである。   Conditional expression (1) defines the focal length of the first lens group by the average focal length of the zoom lens in order to make the entire zoom lens compact.

条件式(1)の上限値−1を越えて第1レンズ群の焦点距離が短くなると、望遠端での第2レンズ群の倍率が大きくなりすぎるために、製造誤差による性能劣化が大きくなりやすくなる。また、第2レンズ群の径も大きくなりやすくなる。一方、下限値の−2を越えて第1レンズ群の焦点距離が長くなると、広角端におけるレンズ系全長が大きくなり、第1レンズ群の径が大きくなりやすく、ボディ全体が大きくなったり、デザインへの制約が大きくなる。また、第1レンズ群に非球面を用いる場合、非球面レンズの加工が高コストとなる。   If the focal length of the first lens unit becomes shorter than the upper limit of -1 in conditional expression (1), the magnification of the second lens unit at the telephoto end becomes too large, and performance degradation due to manufacturing errors tends to increase. Become. Also, the diameter of the second lens group is likely to increase. On the other hand, if the focal length of the first lens unit is increased beyond the lower limit of −2, the total length of the lens system at the wide-angle end increases, the diameter of the first lens unit tends to increase, the entire body increases, and the design increases. The restrictions on are increased. Further, when an aspherical surface is used for the first lens group, processing of the aspherical lens becomes expensive.

条件式(2)は、広角端での撮影時における開口絞りの開口部の最大面積SW と望遠端での撮影時における開口絞りの開口部の最大面積ST との比を規定するものである。 Condition (2) defines the ratio of the maximum area S T of the aperture of the aperture stop at the time of shooting in the maximum area S W and the telephoto end of the opening of the aperture stop at the time of shooting at the wide-angle end is there.

上述のような負先行のズーム構成で高変倍比化をしようとすると、望遠側においては開放絞り面積(撮影時における開口絞りの開口部の最大面積)が小さいと、回折の影響で解像力が低下しやすいので、開放絞りの面積を大きくした方がよい。条件式(2)の下限値の1.05を越えてその開放絞りの面積の比が小さくなると、望遠端での開放絞り面積が小さくなり回折の影響が出やすくなるか、若しくは、広角端における開放絞り面積が大きくなりコマ収差の補正が困難となる。一方、上限値の4を越えると、広角端での開放絞りが小さくなりすぎ、光量調整の制限が大きくなる。   When attempting to achieve a high zoom ratio with the negative leading zoom configuration as described above, if the open aperture area (maximum area of the aperture stop aperture during shooting) is small on the telephoto side, the resolving power will be affected by diffraction. Since it tends to decrease, it is better to increase the area of the open aperture. When the lower limit of 1.05 in conditional expression (2) is exceeded and the ratio of the area of the aperture stop becomes small, the area of the aperture stop at the telephoto end becomes small and the influence of diffraction tends to occur, or at the wide angle end. The open aperture area becomes large and correction of coma aberration becomes difficult. On the other hand, when the upper limit of 4 is exceeded, the wide aperture end becomes too small and the restriction on the light amount adjustment becomes large.

なお、条件式(1)について、下限値を−1.7、さらには−1.6としてもよい。   In addition, regarding conditional expression (1), the lower limit value may be set to −1.7, and further to −1.6.

また、条件式(1)について、上限値を−1.2、さらには−1.35としてもよい。   In conditional expression (1), the upper limit value may be set to -1.2, and further to -1.35.

また、条件式(2)について、下限値を1.2、さらには1.3としてもよい。   In conditional expression (2), the lower limit value may be 1.2, or 1.3.

また、条件式(2)について、上限値を3、さらには2としてもよい。   In addition, regarding conditional expression (2), the upper limit may be set to 3, and further to 2.

また、変倍比に上限値を設けて、変倍比が5.5倍を越えないように構成するとよい。変倍比が5.5倍を越えるズームレンズとする場合、正レンズ群が先行するズームレンズとした方が高変倍比化が行いやすくなる。   Further, an upper limit value may be provided for the zoom ratio so that the zoom ratio does not exceed 5.5. When a zoom lens having a zoom ratio exceeding 5.5 times is used, it is easier to achieve a higher zoom ratio if the zoom lens is preceded by a positive lens group.

本発明の第2のズームレンズは、第1のズームレンズにおいて、前記第1レンズ群は少なくとも1枚の非球面を含む負レンズと正レンズからなり、前記第2レンズ群は少なくとも1面の非球面を有し、前記第2レンズ群の像側に第3レンズ群を有し、前記第3レンズ群を移動することにより近距離物点への合焦を行うことを特徴とするものである。   According to a second zoom lens of the present invention, in the first zoom lens, the first lens group includes a negative lens including at least one aspherical surface and a positive lens, and the second lens group includes at least one non-surface. It has a spherical surface, has a third lens group on the image side of the second lens group, and performs focusing on a short-distance object point by moving the third lens group. .

以下に、本発明の第2のズームレンズにおいて、上記のような構成をとる理由と作用を説明する。   Hereinafter, the reason and operation of the second zoom lens according to the present invention having the above-described configuration will be described.

広角端における画角を広くするためには、負の屈折力を持つ第1レンズ群に非球面を設けた負レンズを配するのがよい。そして、第1レンズ群の正レンズとにて色収差等の補正が行いやすくできる。また、第2レンズ群は主たる屈折力を持つことになるが、非球面を設けることで、軸上乃至軸外収差の補正が行いやすくなる。また、第3レンズ群によるリアフォーカス方式にすることで、鏡筒を簡素かつ小型に構成できる。   In order to widen the angle of view at the wide-angle end, it is preferable to dispose a negative lens provided with an aspheric surface in the first lens group having negative refractive power. Further, correction of chromatic aberration and the like can be easily performed with the positive lens of the first lens group. In addition, the second lens group has a main refractive power, but by providing an aspheric surface, it becomes easy to correct on-axis or off-axis aberrations. In addition, by adopting the rear focus method using the third lens group, the lens barrel can be configured simply and compactly.

本発明の第3のズームレンズは、第1、第2のズームレンズにおいて、前記開口絞りの開口形状は、望遠端での撮影時での最大開口形状は略円形であり、広角端での撮影時での最大開口形状は7枚以下の絞り羽根により形成される形状であることを特徴とするものである。   According to a third zoom lens of the present invention, in the first and second zoom lenses, the aperture shape of the aperture stop has a substantially circular maximum aperture shape at the time of photographing at the telephoto end, and photographing at the wide angle end. The maximum opening shape at the time is a shape formed by seven or less aperture blades.

以下に、本発明の第3のズームレンズにおいて、上記のような構成をとる理由と作用を説明する。   Hereinafter, the reason and action of the third zoom lens of the present invention having the above-described configuration will be described.

望遠端においては被写界深度が浅くなるため、ボケ味を美しくするためには、開放絞りの形状はなるべく円形に近い方が好ましい。具体的には、光軸を含む開口部の径の最小長÷最大長が0.95以上である略円形であることが好ましい。広角側では、開放絞りを望遠端よりも小さくするために、望遠端での開放絞りとなる円形開口に重ねるように絞り羽根を配置し、小さい開口部を形成するとよい。絞り羽根の枚数が多い方が広角端においても円形開口に近くなるのでボケ味の面では好ましいが、第1レンズ群、第2レンズ群間の絞り部材の厚みが厚くなると、沈胴時の厚さが厚くなったり、望遠側で第1レンズ群、第2レンズ群間を狭くできず、高変倍比化に不利となるので、羽根の枚数は7枚以下が好ましい。   Since the depth of field is shallow at the telephoto end, it is preferable that the shape of the wide aperture is as close to a circle as possible in order to make the blur beautiful. Specifically, it is preferably a substantially circular shape having a minimum length of the diameter of the opening including the optical axis divided by a maximum length of 0.95 or more. On the wide-angle side, in order to make the open stop smaller than the telephoto end, it is preferable to arrange the stop blades so as to overlap the circular opening that becomes the open stop at the telephoto end and form a small opening. A larger number of aperture blades is preferable in terms of blur because it is closer to a circular aperture at the wide-angle end, but if the aperture member between the first lens group and the second lens group is thick, the thickness when retracted is increased. The number of blades is preferably 7 or less because the distance between the first lens group and the second lens group cannot be reduced on the telephoto side, which is disadvantageous for a high zoom ratio.

本発明の第4のズームレンズは、第3のズームレンズにおいて、前記開口絞りの開口形状は、広角端では2枚の絞り羽根により形成される形状であることを特徴とするものである。   According to a fourth zoom lens of the present invention, in the third zoom lens, the aperture shape of the aperture stop is a shape formed by two aperture blades at the wide angle end.

以下に、本発明の第4のズームレンズにおいて、上記のような構成をとる理由と作用を説明する。   Hereinafter, the reason and operation of the fourth zoom lens according to the present invention having the above-described configuration will be described.

絞り羽根を2枚で構成することにより、絞り部材を簡単にでき、望遠端における第1レンズ群、第2レンズ群間の間隔を小さくしやすくなり、高変倍比化に有利となる。   By configuring the diaphragm blades with two, the diaphragm member can be simplified, and the distance between the first lens group and the second lens group at the telephoto end can be easily reduced, which is advantageous for achieving a high zoom ratio.

本発明の第5のズームレンズは、第1〜第4のズームレンズにおいて、以下の条件式(3)、(4)を満たすことを特徴とするものである。   The fifth zoom lens of the present invention is characterized in that, in the first to fourth zoom lenses, the following conditional expressions (3) and (4) are satisfied.

−0.01<MW /fW <−0.002 ・・・(3)
−0.006<MT /fW <0.015 ・・・(4)
ただし、MW :広角端での撮影時における開口絞りの開口部の最大面積と同じ面積を持つ光軸を中心とした円の開口比の0.7倍の位置でのd線での球面収差量、
T :望遠端での撮影時における開口絞りの開口部の最大面積と同じ面積を持つ光軸を中心とした円の開口比の0.7倍の位置でのd線での球面収差量、
W :広角端におけるズームレンズ全系の焦点距離、
である。
−0.01 <M W / f W <−0.002 (3)
−0.006 <M T / f W <0.015 (4)
However, M W : Spherical aberration at the d-line at a position 0.7 times the aperture ratio of a circle around the optical axis having the same area as the maximum area of the aperture of the aperture stop at the time of photographing at the wide angle end amount,
M T : spherical aberration at the d-line at a position 0.7 times the aperture ratio of a circle centered on the optical axis having the same area as the maximum area of the aperture of the aperture stop at the time of photographing at the telephoto end,
f W : focal length of the entire zoom lens system at the wide-angle end,
It is.

以下に、本発明の第5のズームレンズにおいて、上記のような構成をとる理由と作用を説明する。   Hereinafter, the reason and action of the fifth zoom lens according to the present invention having the above-described configuration will be described.

広角端から望遠端までバランス良く収差を抑えるためには、条件式(3)、(4)を同時に満足するように、広角端の球面収差をやや補正不足気味にし、望遠端では球面収差量を0近辺乃至補正過剰気味にするとよい。   In order to suppress the aberration in a balanced manner from the wide-angle end to the telephoto end, the spherical aberration at the wide-angle end is slightly undercorrected so that the conditional expressions (3) and (4) are satisfied at the same time. It is better to make it near 0 or overcorrected.

条件式(3)の下限値−0.01を越えて広角端での負の球面収差が大きくなると、広角端側での解像度の劣化が目立つようになる。   When the negative spherical aberration at the wide-angle end increases beyond the lower limit value −0.01 of conditional expression (3), the resolution at the wide-angle end becomes noticeable.

条件式(3)の上限値の−0.002を越えると、条件式(4)を満足するためにレンズ枚数が多くなりがちになる。   If the upper limit of −0.002 of conditional expression (3) is exceeded, the number of lenses tends to increase in order to satisfy conditional expression (4).

条件式(4)の下限値の−0.006を越えて望遠端での球面収差が補正不足になると、条件式(3)を満足する収差補正を行うためにはレンズ枚数が多くなりがちになる。   If the spherical aberration at the telephoto end is insufficiently corrected beyond the lower limit of −0.006 in conditional expression (4), the number of lenses tends to increase in order to perform aberration correction that satisfies conditional expression (3). Become.

条件式(4)の上限値の0.015を越えて望遠端での球面収差が補正過剰になると、望遠端側での解像度の劣化が目立つようになる。   If the spherical aberration at the telephoto end is excessively corrected beyond the upper limit of 0.015 in conditional expression (4), the resolution at the telephoto end becomes noticeable.

さらには、条件式(3)の下限値を−0.008、さらには−0.007としてもよい。   Furthermore, the lower limit value of conditional expression (3) may be set to -0.008, and further to -0.007.

又は、条件式(3)の上限値を−0.003としてもよい。   Or it is good also considering the upper limit of conditional expression (3) as -0.003.

又は、条件式(4)の下限値を−0.002、さらには0としてもよい。さらに0.003としてもよい。   Or it is good also considering the lower limit of conditional expression (4) as -0.002, and also 0. Furthermore, it may be 0.003.

条件式(4)の上限値を0.01、さらには0.008としてとよい。   The upper limit value of conditional expression (4) is preferably 0.01, and more preferably 0.008.

本発明の第6のズームレンズは、第1〜第5のズームレンズにおいて、前記第1レンズ群は、物体側から順に、物体側に凸面を向けた2枚以下の負メニスカスレンズと、物体側に凸面を向けた1枚の正メニスカスレンズとからなることを特徴とするものである。   According to a sixth zoom lens of the present invention, in the first to fifth zoom lenses, the first lens group includes, in order from the object side, two or less negative meniscus lenses having a convex surface facing the object side, and an object side. And a single positive meniscus lens having a convex surface facing the surface.

以下に、本発明の第6のズームレンズにおいて、上記のような構成をとる理由と作用を説明する。   Hereinafter, the reason and action of the sixth zoom lens according to the present invention having the above-described configuration will be described.

このように構成することにより、最軸外光束を緩やかに屈折させ、また、負レンズと正レンズを有する構成とすることで色収差等の補正も行いやすくなり、広画角なズームレンズを構成できる。   With this configuration, the most off-axis light beam is gently refracted, and the configuration having a negative lens and a positive lens facilitates correction of chromatic aberration and the like, and a wide-angle zoom lens can be configured. .

本発明の第7のズームレンズは、第1〜第6のズームレンズにおいて、前記第1レンズ群は物体側に凸面をむけた負メニスカスレンズを有し、かつ、その負レンズの全ては物体側の面がマルチコートであり、像側の面が単層コートであることを特徴とするものである。   According to a seventh zoom lens of the present invention, in the first to sixth zoom lenses, the first lens group includes a negative meniscus lens having a convex surface on the object side, and all of the negative lenses are on the object side. The surface is a multi-coat, and the image-side surface is a single-layer coat.

以下に、本発明の第7のズームレンズにおいて、上記のような構成をとる理由と作用を説明する。   Hereinafter, the reason and action of the seventh zoom lens according to the present invention having the above-described configuration will be described.

メニスカスレンズの曲率半径の大きい物体側の面にはマルチコートを施し、反射率を下げることにより、ゴースト光の影響を低減できる。曲率半径の小さい像面側の面は単層コートとした方が、レンズ周辺部の反射率を安定させやすい。   The effect of ghost light can be reduced by applying multi-coating to the object side surface of the meniscus lens having a large curvature radius to reduce the reflectance. It is easier to stabilize the reflectance at the periphery of the lens when the surface on the image surface side with a small radius of curvature is a single layer coat.

本発明の第8のズームレンズは、第1〜第7のズームレンズにおいて、前記第2レンズ群は、物体側から順に、物体側に凸面を向けた正レンズ、物体側に凸面を向けた正レンズ、負レンズ、正レンズの4枚のレンズからなることを特徴とするものである。   According to an eighth zoom lens of the present invention, in the first to seventh zoom lenses, the second lens group includes, in order from the object side, a positive lens having a convex surface directed toward the object side, and a positive lens having a convex surface directed toward the object side. It consists of four lenses, a lens, a negative lens, and a positive lens.

以下に、本発明の第8のズームレンズにおいて、上記のような構成をとる理由と作用を説明する。   Hereinafter, the reason and operation of the eighth zoom lens according to the present invention having the above-described configuration will be described.

第2レンズ群は主たる変倍を行うために移動するため、収差変動を抑えるために、第2群を、正レンズ成分、負レンズ成分、正レンズ成分として構成し、諸収差を補正しやすくすることが好ましい。   Since the second lens group moves to perform main magnification, in order to suppress aberration fluctuation, the second group is configured as a positive lens component, a negative lens component, and a positive lens component to facilitate correction of various aberrations. It is preferable.

さらに、主点を物体側寄りにして高変倍比化をしやすくするために、正レンズ成分を2枚の物体側に凸面を向けた正レンズとすることが好ましい。   Further, in order to make the principal point closer to the object side and to facilitate high zoom ratio, it is preferable that the positive lens component is a positive lens having a convex surface facing the object side.

したがって、第2レンズ群は、物体側から順に、物体側に凸面を向けた正レンズ、物体側に凸面を向けた正レンズ、負レンズ、正レンズの4枚のレンズとすると、少ないレンズ枚数ながら高変倍比化による収差変動を抑えることができる。   Therefore, the second lens group includes four lenses, a positive lens having a convex surface facing the object side, a positive lens having a convex surface facing the object side, a negative lens, and a positive lens in order from the object side. Aberration fluctuation due to high zoom ratio can be suppressed.

本発明の第9のズームレンズは、第8のズームレンズにおいて、前記第2レンズ群の前記負レンズが隣り合う何れかの正レンズと接合されていることを特徴とするものである。   According to a ninth zoom lens of the present invention, in the eighth zoom lens, the negative lens of the second lens group is cemented with any adjacent positive lens.

以下に、本発明の第9のズームレンズにおいて、上記のような構成をとる理由と作用を説明すると、さらに、色収差を良好に補正できる。   Hereinafter, the reason and action of the ninth zoom lens according to the present invention having the above-described configuration will be described. Further, chromatic aberration can be corrected satisfactorily.

本発明の第10のズームレンズは、第9のズームレンズにおいて、前記第2レンズ群の前記負レンズが隣り合う物体側の正レンズと接合され、かつ、像面側が凹面で空間に接してなることを特徴とするものである。   According to a tenth zoom lens of the present invention, in the ninth zoom lens, the negative lens of the second lens group is cemented with an adjacent positive lens on the object side, and the image surface side is a concave surface that is in contact with the space. It is characterized by this.

以下に、本発明の第10のズームレンズにおいて、上記のような構成をとる理由と作用を説明すると、色収差補正機能を確保しつつ、第2レンズ群の主点を物体側寄りに位置させやすくなる。   The reason and action of the tenth zoom lens according to the present invention will be described below. The principal point of the second lens group can be easily located closer to the object side while ensuring the chromatic aberration correction function. Become.

本発明の第11のズームレンズは、第1〜第10のズームレンズにおいて、前記第2レンズ群の像側に、2枚以下のレンズからなる正屈折力の第3レンズ群を配し、3群ズームレンズとして構成したことを特徴とするものである。   According to an eleventh zoom lens of the present invention, in the first to tenth zoom lenses, a third lens group having a positive refractive power including two or less lenses is disposed on the image side of the second lens group. The zoom lens is configured as a group zoom lens.

以下に、本発明の第11のズームレンズにおいて、上記のような構成をとる理由と作用を説明する。   Hereinafter, the reason and action of the eleventh zoom lens according to the present invention will be described.

このように構成すると、沈胴時の厚さの増大を抑えつつ、像側への射出光束を平行にしやすくなる。特に、電子撮像素子を有する電子撮像装置に用いるズームレンズに適したものである。第3レンズ群はレンズ1枚としても、小型化の点で好ましい。   If comprised in this way, it will become easy to collimate the emitted light beam to an image side, suppressing the increase in the thickness at the time of collapsing. In particular, it is suitable for a zoom lens used in an electronic imaging apparatus having an electronic imaging element. Even if the third lens group is a single lens, it is preferable in terms of miniaturization.

本発明の第12のズームレンズは、第1〜第11のズームレンズにおいて、前記第2レンズ群の像側に、正の屈折力の第3レンズ群を有する3群ズームレンズとして構成し、前記第3レンズ群を移動することにより近距離物点への合焦を行い、以下の条件式を満足することを特徴とする請求項1から11の何れか1項記載のズームレンズ。   A twelfth zoom lens according to the present invention is configured as a three-group zoom lens having a third lens group having a positive refractive power on the image side of the second lens group in the first to eleventh zoom lenses, The zoom lens according to any one of claims 1 to 11, wherein focusing on a short-distance object point is performed by moving the third lens group, and the following conditional expression is satisfied.

1.0<f2 /√(fT ・fW )<2.0 ・・・(5)
1.6<f3 /√(fT ・fW )<3.6 ・・・(6)
ただし、f2 :第2レンズ群の焦点距離、
3 :第3レンズ群の焦点距離、
である。
1.0 <f 2 / √ (f T · f W ) <2.0 (5)
1.6 <f 3 / √ (f T · f W ) <3.6 (6)
Where f 2 is the focal length of the second lens group,
f 3 : focal length of the third lens group,
It is.

以下に、本発明の第12のズームレンズにおいて、上記のような構成をとる理由と作用を説明する。   Hereinafter, the reason and action of the twelfth zoom lens according to the present invention having the above-described configuration will be described.

本発明は、特に、負の屈折力の第1レンズ群、正屈折力の第2レンズ群、正屈折力の第3レンズ群からなる構成とすると、小型化と高変倍比化、及び、テレセントリック状態を保ちやすく構成できるので、前述の条件を満足するように適度な屈折力を持たせるとよい。   In particular, when the present invention is constituted by a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a positive refractive power, the size reduction and the high zoom ratio can be achieved. Since the telecentric state can be easily maintained, it is preferable to give an appropriate refractive power so as to satisfy the above-described conditions.

第2レンズ群の焦点距離の条件式(5)の下限値の1.0を越えると、第2レンズ群の焦点距離が短くなりすぎ、収差が出やすく、上限値の2.0を越えると、第2レンズ群の移動量が大きくなり、小型化が難しくなる。   If the lower limit value 1.0 of the conditional expression (5) for the focal length of the second lens group is exceeded, the focal length of the second lens group becomes too short and aberrations tend to occur, and if the upper limit value of 2.0 is exceeded. The amount of movement of the second lens group becomes large and it is difficult to reduce the size.

さらには、条件式(5)の下限値を1.1、さらには1.3、さらには1.5としてよい。   Furthermore, the lower limit value of conditional expression (5) may be 1.1, further 1.3, or 1.5.

また、その上限値を、1.8、さらには1.7としてよい。   The upper limit value may be 1.8, or 1.7.

第3レンズ群の焦点距離の条件式(6)の下限値の1.6を越えると、高変倍比化したときの射出光束の角度変化が大きくなり、テレセントリック性の確保が難しくなり、上限値の3.6を越えると、第3レンズ群の移動でフォーカシングするときの移動量が大きくなり、移動機構を含めて小型化が難しくなる。   If the lower limit value 1.6 of the conditional expression (6) of the focal length of the third lens group is exceeded, the angle change of the emitted light beam becomes large when the zoom ratio is increased, and it becomes difficult to ensure telecentricity. When the value of 3.6 is exceeded, the amount of movement when focusing is performed by the movement of the third lens group, and it becomes difficult to reduce the size including the moving mechanism.

さらには、条件式(6)の下限値を1.8、さらには2.0、さらには2.5としてよい。   Furthermore, the lower limit value of conditional expression (6) may be 1.8, further 2.0, or 2.5.

また、その上限値を、3.2、さらには3.0としてよい。   Further, the upper limit value may be set to 3.2, or even 3.0.

本発明の第13のズームレンズは、第1〜第10のズームレンズにおいて、前記ズームレンズを3群以下の構成のズームレンズとして構成したことを特徴とするものである。   According to a thirteenth zoom lens of the present invention, in the first to tenth zoom lenses, the zoom lens is configured as a zoom lens having a configuration of three groups or less.

以下に、本発明の第13のズームレンズにおいて、上記のような構成をとる理由と作用を説明する。   Hereinafter, the reason and action of the thirteenth zoom lens according to the present invention having the above-described configuration will be described.

このように構成すると、移動機構を簡単にでき、沈胴時の厚さを小さくできる。特に、負、正、正構成の3群ズームレンズとすると、負・正タイプの2群ズームレンズを基本とし、最終正レンズ群にて瞳を遠ざけることができるので、小型の電子撮像装置に適するものとなる。   If comprised in this way, a moving mechanism can be simplified and the thickness at the time of retraction can be made small. Particularly, a negative, positive, and positive three-group zoom lens is basically a negative / positive type two-group zoom lens, and the pupil can be moved away from the final positive lens group, which is suitable for a small electronic imaging device. It will be a thing.

本発明の第14のズームレンズは、第1〜第13のズームレンズにおいて、広角端での前記第1レンズ群の最像側面と前記開口絞りとの間隔が以下の条件式を満足することを特徴とするものである。   In a fourteenth zoom lens according to the present invention, in the first to thirteenth zoom lenses, an interval between the most image side surface of the first lens unit at the wide angle end and the aperture stop satisfies the following conditional expression. It is a feature.

−3.0<D1S/f1 <−0.8 ・・・(7)
ただし、D1S:広角端での第1レンズ群の最像側面と開口絞りとの間隔、
である。
−3.0 <D 1S / f 1 <−0.8 (7)
Where D 1S is the distance between the most image side surface of the first lens unit and the aperture stop at the wide-angle end,
It is.

以下に、本発明の第14のズームレンズにおいて、上記のような構成をとる理由と作用を説明する。   The reason and action of the above-described configuration in the fourteenth zoom lens of the present invention will be described below.

この条件式(7)は全長の増大を抑え、高変倍比をしやすくするための条件である。その下限値の−3.0を越えると、広角端での全長が長くなるか、第1レンズ群の焦点距離が短くなり収差が出やすくなる。上限値の−0.8を越えると、広角端での面間隔が短くなり、高変倍比化が難しくなる。   Conditional expression (7) is a condition for suppressing an increase in the total length and facilitating a high zoom ratio. If the lower limit of −3.0 is exceeded, the total length at the wide-angle end becomes long, or the focal length of the first lens group becomes short, and aberration tends to occur. If the upper limit of −0.8 is exceeded, the surface spacing at the wide-angle end becomes short, and it becomes difficult to achieve a high zoom ratio.

さらには、条件式(5)の下限値を−2.5、さらには−2とすると、広角端での全長を短くできる。   Furthermore, when the lower limit value of the conditional expression (5) is −2.5, and further −2, the total length at the wide angle end can be shortened.

または、条件式(5)の上限値を−1.2、さらには−1.6とすると、より高変倍比化しやすくなる。   Alternatively, if the upper limit value of the conditional expression (5) is set to −1.2, and further −1.6, it becomes easier to achieve a higher zoom ratio.

本発明の第15の電子撮像装置は、第1〜第14のズームレンズ、及び、その像側に配された電子撮像素子を備えたことを特徴とするものである。   A fifteenth electronic imaging apparatus of the present invention is characterized by including the first to fourteenth zoom lenses and an electronic imaging device arranged on the image side thereof.

以下に、本発明の第15の電子撮像装置において、上記のような構成をとる理由と作用を説明すると、以上の本発明のズームレンズは、小型な電子撮像装置に用いることに適している。   Hereinafter, the reason and action of the fifteenth electronic image pickup apparatus of the present invention having the above configuration will be described. The zoom lens of the present invention described above is suitable for use in a small electronic image pickup apparatus.

本発明の第16の電子撮像装置は、第15の電子撮像装置において、広角端における撮影画角が70°以上であることを特徴とするものである。   According to a sixteenth electronic imaging device of the present invention, in the fifteenth electronic imaging device, a photographing field angle at a wide angle end is 70 ° or more.

以下に、本発明の第16の電子撮像装置において、上記のような構成をとる理由と作用を説明すると、変倍比の大きいズームレンズでかつ広角端の撮影画角を70°以上としたズームレンズでは、条件式(1)及び条件式(2)を満足することによる効果が高まるので好ましい。   Hereinafter, the reason and action of the above-described configuration in the sixteenth electronic imaging device of the present invention will be described. A zoom lens having a large zoom ratio and a wide field end shooting field angle of 70 ° or more. In a lens, since the effect by satisfying conditional expression (1) and conditional expression (2) increases, it is preferable.

本発明の第17の電子撮像装置は、下記の条件式(8)を満たすことを特徴とする第2、第11、第12のズームレンズ、及び、その像側に配された電子撮像素子を備えたことを特徴とするものである。   According to a seventeenth electronic imaging device of the present invention, there are provided second, eleventh and twelfth zoom lenses satisfying the following conditional expression (8), and an electronic imaging device arranged on the image side thereof: It is characterized by having.

11>D12>D31>D22>D21 ・・・(8)
ただし、D11:第1レンズ群の最物体側面の全変倍域における最大有効径、
12:第1レンズ群の最像側面の全変倍域における最大有効径、
31:第3レンズ群の最物体側面の全変倍域における最大有効径、
22:第2レンズ群の最像側面の全変倍域における最大有効径、
21:第2レンズ群の最物体側面の全変倍域における最大有効径、
である。
D 11> D 12> D 31 > D 22> D 21 ··· (8)
Where D 11 is the maximum effective diameter in the entire zoom range on the most object side surface of the first lens group,
D 12 : the maximum effective diameter in the entire zoom range on the most image side surface of the first lens unit,
D 31 : the maximum effective diameter in the entire variable magnification region on the most object side surface of the third lens group,
D 22 : the maximum effective diameter in the entire zoom range on the most image side surface of the second lens group,
D 21 : the maximum effective diameter in the entire zoom range on the most object side surface of the second lens group,
It is.

以下に、本発明の第17のズームレンズにおいて、上記のような構成をとる理由と作用を説明する。   The reason and action of the above-described configuration in the seventeenth zoom lens of the present invention will be described below.

第1レンズ群は、物体側程大きい径にした方が、群全体を小さく保ったまま広画角の光線を通すことができる。第2レンズ群以降は、像面側程大きい径とし、レンズの物体側で枠に接する構造とした方が、枠の内径とレンズの外径の製造誤差によるレンズの偏心に起因するコマ収差や像面湾曲を小さくすることができる。また、絞りから遠いレンズの外径は大きくした方が、撮影画像の周辺光量の低下を小さくできる。   When the first lens group has a larger diameter on the object side, it can pass light rays with a wide angle of view while keeping the entire group small. In the second and subsequent lens groups, coma aberration caused by lens eccentricity due to manufacturing errors between the inner diameter of the frame and the outer diameter of the lens is larger when the diameter is larger on the image surface side and is in contact with the frame on the object side of the lens. The curvature of field can be reduced. In addition, when the outer diameter of the lens far from the stop is increased, the decrease in the amount of peripheral light of the captured image can be reduced.

また、第2レンズ群の最大有効径が最像側にて大であると、第2レンズ群に入射した光束の第2レンズ群中のレンズ縁での反射が少なくできるので、それによるゴースト発生の低減も行いやすくなる。   Further, if the maximum effective diameter of the second lens group is large on the most image side, the reflection of the light beam incident on the second lens group at the lens edge in the second lens group can be reduced, thereby generating ghost. It is also easy to reduce the amount.

本発明の第18の電子撮像装置は、第15〜第17の電子撮像装置において、ズーム状態に応じた最大開口面積に対応する情報を持つ記憶手段と、前記記憶手段からの情報及びズーム状態の情報から前記開口絞りの撮影時の最大開口面積を制御する制御手段とを備えたことを特徴とするものである。   According to an eighteenth electronic imaging device of the present invention, in the fifteenth to seventeenth electronic imaging devices, storage means having information corresponding to a maximum aperture area corresponding to a zoom state, information from the storage means, and the zoom state And a control means for controlling the maximum aperture area at the time of photographing the aperture stop from information.

以下に、本発明の第18の電子撮像装置において、上記のような構成をとる理由と作用を説明すると、制御手段により、ズーム状態と記憶手段での情報を基にして撮影時の最大開口面積が制御される。   Hereinafter, the reason and action of the above-described configuration in the eighteenth electronic imaging device of the present invention will be described. The maximum opening area at the time of photographing based on the zoom state and information in the storage unit is controlled by the control unit. Is controlled.

以上の本発明によると、従来技術よりも変倍による開放Fナンバーの変動を小さくすることで収差補正が容易で、また、小型化、高変倍化や広角化が可能で、ビデオカメラやデジタルカメラに適したズームレンズとそれを用いた電子撮像装置を提供することができる。   According to the present invention described above, aberration correction can be easily performed by reducing the fluctuation of the open F-number due to zooming as compared with the prior art, and also miniaturization, high zooming, and widening of the angle can be achieved. A zoom lens suitable for a camera and an electronic imaging device using the zoom lens can be provided.

以下、本発明のズームレンズの実施例1〜7について説明する。実施例1〜7の無限遠物点合焦時の広角端(a)、中間状態(b)、望遠端(c)のレンズ断面図をそれぞれ図1〜図7に示す。図中、第1レンズ群はG1、開口絞りはS、第2レンズ群はG2、第3レンズ群はG3、IRカットコートを施したローパスフィルターを構成する平行平板はLF、電子撮像素子のカバーガラスの平行平板はCG、像面はIで示してある。なお、カバーガラスCGの表面に波長域制限用の多層膜を施してもよい。また、そのカバーガラスCGにローパスフィルター作用を持たせるようにしてもよい。   Examples 1 to 7 of the zoom lens according to the present invention will be described below. FIGS. 1 to 7 show lens cross-sectional views at the wide-angle end (a), the intermediate state (b), and the telephoto end (c) when focusing on an object point at infinity in Examples 1 to 7, respectively. In the figure, the first lens group is G1, the aperture stop is S, the second lens group is G2, the third lens group is G3, the parallel plate constituting the low-pass filter with IR cut coating is LF, and the electronic imaging device cover The parallel plate of glass is indicated by CG and the image plane is indicated by I. In addition, you may give the multilayer film for wavelength range limitation to the surface of the cover glass CG. Further, the cover glass CG may have a low-pass filter function.

実施例1の結像光学系は、図1に示すように、物体側から順に、負屈折力の第1レンズ群G1、開口絞りS、正屈折力の第2レンズ群G2、正屈折力の第3レンズ群G3から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は像側に凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。開口絞りSと第2レンズ群G2は一体に物体側に単調に移動し、第3レンズ群G3は物体側に凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。   As shown in FIG. 1, the imaging optical system of Embodiment 1 includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, a second lens group G2 having a positive refractive power, and a positive refractive power. Consists of the third lens group G3, and when zooming from the wide-angle end to the telephoto end, the first lens group G1 moves along a locus convex toward the image side, and at the telephoto end, the position of the wide-angle end Located closer to the image side. The aperture stop S and the second lens group G2 integrally move monotonically toward the object side, and the third lens group G3 moves along a locus convex toward the object side, and is located closer to the image side than the wide-angle end position at the telephoto end. To do.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズ2枚と、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズの接合レンズと、両凸正レンズからなり、第3レンズ群G3は両凸正レンズ1枚からなる。   In order from the object side, the first lens group G1 includes two negative meniscus lenses having a convex surface facing the object side, and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 has a convex surface facing the object side. A positive meniscus lens having a convex surface facing the object side, a cemented lens having a positive meniscus lens having a convex surface facing the object side, and a negative meniscus lens having a convex surface facing the object side, and a biconvex positive lens. The third lens group G3 is a biconvex positive lens. Consists of a single lens.

非球面は、第1レンズ群G1の2枚目の負メニスカスレンズの像側の面と、第2レンズ群G2の最も物体側の面と最も像側の面の3面に用いている。   The aspheric surfaces are used for the three surfaces of the second negative meniscus lens in the first lens group G1, the image side surface, and the most object side surface and the image side surface of the second lens group G2.

実施例2の結像光学系は、図2に示すように、物体側から順に、負屈折力の第1レンズ群G1、開口絞りS、正屈折力の第2レンズ群G2、正屈折力の第3レンズ群G3から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は像側に凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。開口絞りSと第2レンズ群G2は一体に物体側に単調に移動し、第3レンズ群G3は像側に移動する。   As shown in FIG. 2, the imaging optical system according to the second embodiment includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, a second lens group G2 having a positive refractive power, and a positive refractive power. Consists of the third lens group G3, and when zooming from the wide-angle end to the telephoto end, the first lens group G1 moves along a locus convex toward the image side, and at the telephoto end, the position of the wide-angle end Located closer to the image side. The aperture stop S and the second lens group G2 integrally move monotonically toward the object side, and the third lens group G3 moves toward the image side.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズ2枚と、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズの接合レンズと、両凸正レンズからなり、第3レンズ群G3は両凸正レンズ1枚からなる。   In order from the object side, the first lens group G1 includes two negative meniscus lenses having a convex surface facing the object side, and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 has a convex surface facing the object side. A positive meniscus lens having a convex surface facing the object side, a cemented lens having a positive meniscus lens having a convex surface facing the object side, and a negative meniscus lens having a convex surface facing the object side, and a biconvex positive lens. The third lens group G3 is a biconvex positive lens. Consists of a single lens.

非球面は、第1レンズ群G1の2枚目の負メニスカスレンズの像側の面と、第2レンズ群G2の最も物体側の面と、第3レンズ群G3の物体側の面の3面に用いている。   The aspherical surfaces are three surfaces: the image side surface of the second negative meniscus lens of the first lens group G1, the most object side surface of the second lens group G2, and the object side surface of the third lens group G3. Used for.

実施例3の結像光学系は、図3に示すように、物体側から順に、負屈折力の第1レンズ群G1、開口絞りS、正屈折力の第2レンズ群G2、正屈折力の第3レンズ群G3から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は像側に凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。開口絞りSと第2レンズ群G2は一体に物体側に単調に移動し、第3レンズ群G3は物体側に凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。   As shown in FIG. 3, the imaging optical system of Example 3 includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, a second lens group G2 having a positive refractive power, and a positive refractive power. Consists of the third lens group G3, and when zooming from the wide-angle end to the telephoto end, the first lens group G1 moves along a locus convex toward the image side, and at the telephoto end, the position of the wide-angle end Located closer to the image side. The aperture stop S and the second lens group G2 integrally move monotonically toward the object side, and the third lens group G3 moves along a locus convex toward the object side, and is located closer to the image side than the wide-angle end position at the telephoto end. To do.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズ2枚と、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズの接合レンズと、両凸正レンズからなり、第3レンズ群G3は両凸正レンズ1枚からなる。   In order from the object side, the first lens group G1 includes two negative meniscus lenses having a convex surface facing the object side, and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 has a convex surface facing the object side. A positive meniscus lens having a convex surface facing the object side, a cemented lens having a positive meniscus lens having a convex surface facing the object side, and a negative meniscus lens having a convex surface facing the object side, and a biconvex positive lens. The third lens group G3 is a biconvex positive lens. Consists of a single lens.

非球面は、第1レンズ群G1の2枚目の負メニスカスレンズの像側の面と、第2レンズ群G2の最も物体側の面の2面に用いている。   The aspheric surfaces are used for the two surfaces, the image side surface of the second negative meniscus lens of the first lens group G1 and the most object side surface of the second lens group G2.

実施例4の結像光学系は、図4に示すように、物体側から順に、負屈折力の第1レンズ群G1、開口絞りS、正屈折力の第2レンズ群G2、正屈折力の第3レンズ群G3から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は像側に凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。開口絞りSと第2レンズ群G2は一体に物体側に単調に移動し、第3レンズ群G3は物体側に凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。   As shown in FIG. 4, the imaging optical system of Example 4 includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, a second lens group G2 having a positive refractive power, and a positive refractive power. Consists of the third lens group G3, and when zooming from the wide-angle end to the telephoto end, the first lens group G1 moves along a locus convex toward the image side, and at the telephoto end, the position of the wide-angle end Located closer to the image side. The aperture stop S and the second lens group G2 integrally move monotonically toward the object side, and the third lens group G3 moves along a locus convex toward the object side, and is located closer to the image side than the wide-angle end position at the telephoto end. To do.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズ2枚と、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズの接合レンズと、両凸正レンズからなり、第3レンズ群G3は両凸正レンズ1枚からなる。   In order from the object side, the first lens group G1 includes two negative meniscus lenses having a convex surface facing the object side, and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 has a convex surface facing the object side. A positive meniscus lens having a convex surface facing the object side, a cemented lens having a positive meniscus lens having a convex surface facing the object side, and a negative meniscus lens having a convex surface facing the object side, and a biconvex positive lens. The third lens group G3 is a biconvex positive lens. Consists of a single lens.

非球面は、第1レンズ群G1の2枚目の負メニスカスレンズの像側の面と、第2レンズ群G2の最も物体側の正メニスカスレンズの物体側の面と、第2レンズ群G2の最も像側の両凸正レンズの物体側の面の3面に用いている。   The aspherical surfaces are the image side surface of the second negative meniscus lens in the first lens group G1, the object side surface of the most meniscus positive meniscus lens in the second lens group G2, and the second lens group G2. It is used for three surfaces on the object side of the biconvex positive lens closest to the image side.

実施例5の結像光学系は、図5に示すように、物体側から順に、負屈折力の第1レンズ群G1、開口絞りS、正屈折力の第2レンズ群G2、正屈折力の第3レンズ群G3から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は像側に凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。開口絞りSと第2レンズ群G2は一体に物体側に単調に移動し、第3レンズ群G3は物体側に凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。   As shown in FIG. 5, the imaging optical system of Example 5 includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, a second lens group G2 having a positive refractive power, and a positive refractive power. Consists of the third lens group G3, and when zooming from the wide-angle end to the telephoto end, the first lens group G1 moves along a locus convex toward the image side, and at the telephoto end, the position of the wide-angle end Located closer to the image side. The aperture stop S and the second lens group G2 integrally move monotonically toward the object side, and the third lens group G3 moves along a locus convex toward the object side, and is located closer to the image side than the wide-angle end position at the telephoto end. To do.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズ2枚と、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズの接合レンズと、両凸正レンズからなり、第3レンズ群G3は両凸正レンズ1枚からなる。   In order from the object side, the first lens group G1 includes two negative meniscus lenses having a convex surface facing the object side, and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 has a convex surface facing the object side. A positive meniscus lens having a convex surface facing the object side, a cemented lens having a positive meniscus lens having a convex surface facing the object side, and a negative meniscus lens having a convex surface facing the object side, and a biconvex positive lens. The third lens group G3 is a biconvex positive lens. Consists of a single lens.

非球面は、第1レンズ群G1の2枚目の負メニスカスレンズの像側の面と、第2レンズ群G2の最も物体側の正メニスカスレンズの物体側の面と、第2レンズ群G2の最も像側の両凸正レンズの物体側の面と、第3レンズ群G3の像側の面の4面に用いている。   The aspherical surfaces are the image side surface of the second negative meniscus lens in the first lens group G1, the object side surface of the most meniscus positive meniscus lens in the second lens group G2, and the second lens group G2. It is used on the object side surface of the biconvex positive lens closest to the image side and the image side surface of the third lens group G3.

実施例6の結像光学系は、図6に示すように、物体側から順に、負屈折力の第1レンズ群G1、開口絞りS、正屈折力の第2レンズ群G2、正屈折力の第3レンズ群G3から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は像側に凸の軌跡を描いて移動し、望遠端では広角端の位置より若干物体側に位置する。開口絞りSと第2レンズ群G2は一体に物体側に単調に移動し、第3レンズ群G3は像側に移動する。   As shown in FIG. 6, the imaging optical system of Example 6 includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, a second lens group G2 having a positive refractive power, and a positive refractive power. Consists of the third lens group G3, and when zooming from the wide-angle end to the telephoto end, the first lens group G1 moves along a locus convex toward the image side, and at the telephoto end, the position of the wide-angle end Located slightly closer to the object side. The aperture stop S and the second lens group G2 integrally move monotonically toward the object side, and the third lens group G3 moves toward the image side.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、両凸正レンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズの接合レンズと、両凸正レンズからなり、第3レンズ群G3は両凸正レンズ1枚からなる。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 includes a biconvex positive lens, A cemented lens of a positive meniscus lens having a convex surface facing the object side and a negative meniscus lens having a convex surface facing the object side, and a biconvex positive lens. The third lens group G3 is composed of one biconvex positive lens.

非球面は、第1レンズ群G1の負メニスカスレンズの像側の面と、第2レンズ群G2の最も物体側の両凸正レンズの両面の3面に用いている。   The aspheric surfaces are used for the three surfaces of the negative meniscus lens image-side surface of the first lens group G1 and both surfaces of the biconvex positive lens closest to the object side of the second lens group G2.

実施例7の結像光学系は、図7に示すように、物体側から順に、負屈折力の第1レンズ群G1、開口絞りS、正屈折力の第2レンズ群G2、正屈折力の第3レンズ群G3から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は像側に凸の軌跡を描いて移動し、望遠端では広角端の位置より若干像側に位置する。開口絞りSと第2レンズ群G2は一体に物体側に単調に移動し、第3レンズ群G3は像側に凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。   As shown in FIG. 7, the imaging optical system of Example 7 includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, a second lens group G2 having a positive refractive power, and a positive refractive power. Consists of the third lens group G3, and when zooming from the wide-angle end to the telephoto end, the first lens group G1 moves along a locus convex toward the image side, and at the telephoto end, the position of the wide-angle end Located slightly closer to the image side. The aperture stop S and the second lens group G2 integrally move monotonically toward the object side, and the third lens group G3 moves along a locus convex toward the image side, and is positioned closer to the image side than the wide-angle end position at the telephoto end. To do.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、両凸正レンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズの接合レンズと、物体側に凸面を向けた正メニスカスレンズからなり、第3レンズ群G3は両凸正レンズ1枚からなる。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 includes a biconvex positive lens, A positive meniscus lens having a positive meniscus lens having a convex surface facing the object side and a negative meniscus lens having a convex surface facing the object side, and a positive meniscus lens having a convex surface facing the object side, and the third lens group G3 is a biconvex positive lens 1. It consists of sheets.

非球面は、第1レンズ群G1の負メニスカスレンズの像側の面と、第2レンズ群G2の最も物体側の両凸正レンズの物体側の面の2面に用いている。   The aspheric surfaces are used for the two surfaces, the image side surface of the negative meniscus lens of the first lens group G1 and the object side surface of the biconvex positive lens closest to the object side of the second lens group G2.

各実施例において、第1レンズ群G1の負メニスカスレンズは、物体側面にマルチコートを施すと共に、像側面に単層コートを施している。   In each embodiment, the negative meniscus lens in the first lens group G1 has a multi-coat on the object side and a single-layer coat on the image side.

以下に、上記各実施例の数値データを示すが、記号は上記の外、fは全系焦点距離、FNOはFナンバー、2ωは画角、WEは広角端、STは中間状態、TEは望遠端、φS /2は絞り径、r1 、r2 …は各レンズ面の曲率半径、d1 、d2 …は各レンズ面間の間隔、nd1、nd2…は各レンズのd線の屈折率、νd1、νd2…は各レンズのアッベ数である。なお、非球面形状は、xを光の進行方向を正とした光軸とし、yを光軸と直交する方向にとると、下記の式にて表される。 Hereinafter, numerical data of each embodiment described above, but the symbols are outside the above, f is the focal length, F NO is the F-number, 2 [omega is field angle, WE denotes a wide angle end, ST intermediate state, TE is Telephoto end, φ S / 2 is the aperture diameter, r 1 , r 2 ... Is the radius of curvature of each lens surface, d 1 , d 2 ... Are the distances between the lens surfaces, n d1 , n d2 . The refractive index of the line, ν d1 , ν d2 ... Is the Abbe number of each lens. The aspherical shape is represented by the following expression, where x is an optical axis with the light traveling direction being positive, and y is a direction orthogonal to the optical axis.

x=(y2 /r)/[1+{1−(K+1)(y/r)2 1/2
+A44 +A66 +A88 + A1010
ただし、rは近軸曲率半径、Kは円錐係数、A4、A6、A8、A10 はそれぞれ4次、6次、8次、10次の非球面係数である。
x = (y 2 / r) / [1+ {1- (K + 1) (y / r) 2 } 1/2 ]
+ A 4 y 4 + A 6 y 6 + A 8 y 8 + A 10 y 10
Here, r is a paraxial radius of curvature, K is a conical coefficient, and A 4 , A 6 , A 8 , and A 10 are fourth-order, sixth-order, eighth-order, and tenth-order aspherical coefficients, respectively.


実施例1
1 = 36.860 d1 = 1.20 nd1 =1.74100 νd1 =52.64
2 = 11.241 d2 = 3.12
3 = 20.005 d3 = 1.30 nd2 =1.74330 νd2 =49.33
4 = 8.091 (非球面) d4 = 3.98
5 = 15.491 d5 = 3.01 nd3 =1.84666 νd3 =23.78
6 = 33.328 d6 = (可変)
7 = ∞(絞り) d7 = 0.80
8 = 16.975 (非球面) d8 = 1.58 nd4 =1.69350 νd4 =53.21
9 = 38.888 d9 = 0.28
10= 9.759 d10= 4.61 nd5 =1.72000 νd5 =43.69
11= 47.955 d11= 0.89 nd6 =1.84666 νd6 =23.78
12= 7.899 d12= 1.51
13= 22.430 d13= 2.80 nd7 =1.48749 νd7 =70.23
14= -19.802 (非球面) d14= (可変)
15= 20.122 d15= 2.85 nd8 =1.49700 νd8 =81.54
16= -152.133 d16= (可変)
17= ∞ d17= 1.30 nd9 =1.54771 νd9 =62.84
18= ∞ d18= 0.80
19= ∞ d19= 0.50 nd10=1.51633 νd10=64.14
20= ∞
非球面係数
第4面
K =-0.842
A4 =-6.74445×10-7
A6 =-2.55662×10-7
A8 =-4.63462×10-10
A10=-3.76434×10-11
第8面
K =-0.850
A4 =-1.89434×10-5
A6 =-7.45889×10-8
A8 = 0
A10= 0
第14面
K =-0.429
A4 = 6.19289×10-5
A6 = 6.31162×10-8
A8 = 4.88137×10-8
A10= 0
ズームデータ(∞)
WE ST TE
f (mm) 5.780 11.400 22.500
NO 2.85 3.41 4.86
2ω (°) 78.5 43.8 22.6
6 31.27 11.71 3.43
14 5.77 13.82 33.94
16 5.27 6.22 3.79
φS /2 3.60 3.90 4.25 。

Example 1
r 1 = 36.860 d 1 = 1.20 n d1 = 1.74100 ν d1 = 52.64
r 2 = 11.241 d 2 = 3.12
r 3 = 20.005 d 3 = 1.30 n d2 = 1.74330 ν d2 = 49.33
r 4 = 8.091 (aspherical surface) d 4 = 3.98
r 5 = 15.491 d 5 = 3.01 n d3 = 1.84666 ν d3 = 23.78
r 6 = 33.328 d 6 = (variable)
r 7 = ∞ (aperture) d 7 = 0.80
r 8 = 16.975 (aspherical surface) d 8 = 1.58 n d4 = 1.69350 ν d4 = 53.21
r 9 = 38.888 d 9 = 0.28
r 10 = 9.759 d 10 = 4.61 n d5 = 1.72000 ν d5 = 43.69
r 11 = 47.955 d 11 = 0.89 n d6 = 1.84666 ν d6 = 23.78
r 12 = 7.899 d 12 = 1.51
r 13 = 22.430 d 13 = 2.80 n d7 = 1.48749 ν d7 = 70.23
r 14 = -19.802 (aspherical surface) d 14 = (variable)
r 15 = 20.122 d 15 = 2.85 n d8 = 1.49700 ν d8 = 81.54
r 16 = -152.133 d 16 = (variable)
r 17 = ∞ d 17 = 1.30 n d9 = 1.54771 ν d9 = 62.84
r 18 = ∞ d 18 = 0.80
r 19 = ∞ d 19 = 0.50 n d10 = 1.51633 ν d10 = 64.14
r 20 = ∞
Aspheric coefficient 4th surface K = -0.842
A 4 = -6.74445 × 10 -7
A 6 = -2.55662 × 10 -7
A 8 = -4.63462 × 10 -10
A 10 = -3.76434 × 10 -11
8th surface K = -0.850
A 4 = -1.89434 × 10 -5
A 6 = -7.45889 × 10 -8
A 8 = 0
A 10 = 0
14th face K = -0.429
A 4 = 6.19289 × 10 -5
A 6 = 6.31162 × 10 -8
A 8 = 4.88137 × 10 -8
A 10 = 0
Zoom data (∞)
WE ST TE
f (mm) 5.780 11.400 22.500
F NO 2.85 3.41 4.86
2ω (°) 78.5 43.8 22.6
d 6 31.27 11.71 3.43
d 14 5.77 13.82 33.94
d 16 5.27 6.22 3.79
φ S / 2 3.60 3.90 4.25.


実施例2
1 = 35.867 d1 = 1.24 nd1 =1.78590 νd1 =44.20
2 = 11.136 d2 = 3.38
3 = 23.278 d3 = 1.30 nd2 =1.74330 νd2 =49.33
4 = 8.404 (非球面) d4 = 3.03
5 = 15.998 d5 = 3.11 nd3 =1.84666 νd3 =23.78
6 = 51.708 d6 = (可変)
7 = ∞(絞り) d7 = 0.80
8 = 18.343 (非球面) d8 = 2.11 nd4 =1.69350 νd4 =53.21
9 = 39.619 d9 = 0.05
10= 9.929 d10= 4.62 nd5 =1.72000 νd5 =43.69
11= 41.025 d11= 1.04 nd6 =1.84666 νd6 =23.78
12= 8.029 d12= 1.18
13= 26.936 d13= 2.19 nd7 =1.49700 νd7 =81.54
14= -15.731 d14= (可変)
15= 19.932 (非球面) d15= 3.34 nd8 =1.48749 νd8 =70.23
16= -135.370 d16= (可変)
17= ∞ d17= 1.30 nd9 =1.54771 νd9 =62.84
18= ∞ d18= 0.80
19= ∞ d19= 0.50 nd10=1.51633 νd10=64.14
20= ∞
非球面係数
第4面
K =-0.841
A4 =-3.18836×10-5
A6 =-2.83895×10-7
A8 = 3.42260×10-11
A10=-3.52479×10-11
第8面
K =-6.573
A4 = 7.72043×10-5
A6 =-8.85647×10-7
A8 = 0
A10= 0
第15面
K =-17.194
A4 = 2.23176×10-4
A6 =-2.70882×10-6
A8 = 1.96635×10-8
A10= 0
ズームデータ(∞)
WE ST TE
f (mm) 5.800 11.514 22.500
NO 2.84 3.42 4.80
2ω (°) 77.9 43.2 22.5
6 30.62 11.65 3.20
14 4.56 13.89 32.82
16 5.79 5.36 2.99
φS /2 3.45 3.8 4.15 。

Example 2
r 1 = 35.867 d 1 = 1.24 n d1 = 1.78590 ν d1 = 44.20
r 2 = 11.136 d 2 = 3.38
r 3 = 23.278 d 3 = 1.30 n d2 = 1.74330 ν d2 = 49.33
r 4 = 8.404 (aspherical surface) d 4 = 3.03
r 5 = 15.998 d 5 = 3.11 n d3 = 1.84666 ν d3 = 23.78
r 6 = 51.708 d 6 = (variable)
r 7 = ∞ (aperture) d 7 = 0.80
r 8 = 18.343 (aspherical) d 8 = 2.11 n d4 = 1.69350 ν d4 = 53.21
r 9 = 39.619 d 9 = 0.05
r 10 = 9.929 d 10 = 4.62 n d5 = 1.72000 ν d5 = 43.69
r 11 = 41.025 d 11 = 1.04 n d6 = 1.84666 ν d6 = 23.78
r 12 = 8.029 d 12 = 1.18
r 13 = 26.936 d 13 = 2.19 n d7 = 1.49700 ν d7 = 81.54
r 14 = -15.731 d 14 = (variable)
r 15 = 19.932 (aspherical surface) d 15 = 3.34 n d8 = 1.48749 ν d8 = 70.23
r 16 = -135.370 d 16 = (variable)
r 17 = ∞ d 17 = 1.30 n d9 = 1.54771 ν d9 = 62.84
r 18 = ∞ d 18 = 0.80
r 19 = ∞ d 19 = 0.50 n d10 = 1.51633 ν d10 = 64.14
r 20 = ∞
Aspheric coefficient 4th surface K = -0.841
A 4 = -3.18836 × 10 -5
A 6 = -2.83895 × 10 -7
A 8 = 3.42260 × 10 -11
A 10 = -3.52479 × 10 -11
The eighth side K = -6.573
A 4 = 7.72043 × 10 -5
A 6 = -8.85647 × 10 -7
A 8 = 0
A 10 = 0
15th page K = -17.194
A 4 = 2.23176 × 10 -4
A 6 = -2.70882 × 10 -6
A 8 = 1.96635 × 10 -8
A 10 = 0
Zoom data (∞)
WE ST TE
f (mm) 5.800 11.514 22.500
F NO 2.84 3.42 4.80
2ω (°) 77.9 43.2 22.5
d 6 30.62 11.65 3.20
d 14 4.56 13.89 32.82
d 16 5.79 5.36 2.99
φ S / 2 3.45 3.8 4.15.


実施例3
1 = 38.881 d1 = 1.21 nd1 =1.72916 νd1 =54.68
2 = 12.531 d2 = 3.50
3 = 21.795 d3 = 1.30 nd2 =1.74330 νd2 =49.33
4 = 8.298 (非球面) d4 = 4.02
5 = 16.122 d5 = 3.39 nd3 =1.84666 νd3 =23.78
6 = 36.855 d6 = (可変)
7 = ∞(絞り) d7 = 0.80
8 = 15.694 (非球面) d8 = 2.25 nd4 =1.74330 νd4 =49.33
9 = 34.961 d9 = 0.24
10= 9.281 d10= 2.99 nd5 =1.75700 νd5 =47.82
11= 28.352 d11= 1.46 nd6 =1.84666 νd6 =23.78
12= 7.211 d12= 1.27
13= 45.498 d13= 2.83 nd7 =1.48749 νd7 =70.23
14= -16.301 d14= (可変)
15= 19.658 d15= 2.70 nd8 =1.49700 νd8 =81.54
16= -120.480 d16= (可変)
17= ∞ d17= 1.30 nd9 =1.54771 νd9 =62.84
18= ∞ d18= 0.80
19= ∞ d19= 0.50 nd10=1.51633 νd10=64.14
20= ∞
非球面係数
第4面
K =-0.869
A4 = 7.72245×10-6
A6 = 2.93661×10-8
A8 =-1.62810×10-9
A10=-1.46177×10-11
第8面
K =-2.394
A4 = 2.73461×10-5
A6 =-1.11350×10-7
A8 = 0
A10= 0
ズームデータ(∞)
WE ST TE
f (mm) 5.840 11.501 22.504
NO 2.84 3.37 4.82
2ω (°) 77.8 43.6 22.7
6 31.46 11.93 3.64
14 3.53 12.82 33.10
16 6.99 7.12 3.66
φS /2 3.45 3.85 4.20 。

Example 3
r 1 = 38.881 d 1 = 1.21 n d1 = 1.72916 ν d1 = 54.68
r 2 = 12.531 d 2 = 3.50
r 3 = 21.795 d 3 = 1.30 n d2 = 1.74330 ν d2 = 49.33
r 4 = 8.298 (aspherical surface) d 4 = 4.02
r 5 = 16.122 d 5 = 3.39 n d3 = 1.84666 ν d3 = 23.78
r 6 = 36.855 d 6 = (variable)
r 7 = ∞ (aperture) d 7 = 0.80
r 8 = 15.694 (aspherical surface) d 8 = 2.25 n d4 = 1.74330 ν d4 = 49.33
r 9 = 34.961 d 9 = 0.24
r 10 = 9.281 d 10 = 2.99 n d5 = 1.75700 ν d5 = 47.82
r 11 = 28.352 d 11 = 1.46 n d6 = 1.84666 ν d6 = 23.78
r 12 = 7.211 d 12 = 1.27
r 13 = 45.498 d 13 = 2.83 n d7 = 1.48749 ν d7 = 70.23
r 14 = -16.301 d 14 = (variable)
r 15 = 19.658 d 15 = 2.70 n d8 = 1.49700 ν d8 = 81.54
r 16 = -120.480 d 16 = (variable)
r 17 = ∞ d 17 = 1.30 n d9 = 1.54771 ν d9 = 62.84
r 18 = ∞ d 18 = 0.80
r 19 = ∞ d 19 = 0.50 n d10 = 1.51633 ν d10 = 64.14
r 20 = ∞
Aspheric coefficient 4th surface K = -0.869
A 4 = 7.72245 × 10 -6
A 6 = 2.93661 × 10 -8
A 8 = -1.62810 × 10 -9
A 10 = -1.46177 × 10 -11
Surface 8 K = -2.394
A 4 = 2.73461 × 10 -5
A 6 = -1.11350 × 10 -7
A 8 = 0
A 10 = 0
Zoom data (∞)
WE ST TE
f (mm) 5.840 11.501 22.504
F NO 2.84 3.37 4.82
2ω (°) 77.8 43.6 22.7
d 6 31.46 11.93 3.64
d 14 3.53 12.82 33.10
d 16 6.99 7.12 3.66
φ S / 2 3.45 3.85 4.20.


実施例4
1 = 23.444 d1 = 1.20 nd1 =1.63930 νd1 =44.87
2 = 15.500 d2 = 3.60
3 = 35.523 d3 = 1.30 nd2 =1.74320 νd2 =49.34
4 = 8.249 (非球面) d4 = 3.89
5 = 13.662 d5 = 2.80 nd3 =1.84666 νd3 =23.78
6 = 22.847 d6 = (可変)
7 = ∞(絞り) d7 = 0.80
8 = 14.631 (非球面) d8 = 1.40 nd4 =1.77250 νd4 =49.60
9 = 34.012 d9 = 0.10
10= 10.239 d10= 3.19 nd5 =1.77250 νd5 =49.60
11= 26.955 d11= 1.83 nd6 =1.84666 νd6 =23.78
12= 7.358 d12= 1.71
13= 36.600 (非球面) d13= 3.14 nd7 =1.58313 νd7 =59.38
14= -21.350 d14= (可変)
15= 16.805 d15= 2.70 nd8 =1.49700 νd8 =81.54
16= -153.231 d16= (可変)
17= ∞ d17= 1.30 nd9 =1.54771 νd9 =62.84
18= ∞ d18= 0.80
19= ∞ d19= 0.50 nd10=1.51633 νd10=64.14
20= ∞
非球面係数
第4面
K =-0.595
A4 = 8.57632×10-6
A6 = 2.89918×10-8
A8 = 1.20170×10-9
A10=-2.23755×10-11
第8面
K =-2.293
A4 = 5.18474×10-5
A6 =-3.33636×10-7
A8 =-1.97514×10-9
A10= 0
第13面
K =-0.059
A4 = 9.11545×10-8
A6 = 8.13085×10-7
A8 =-1.60810×10-10
A10= 0
ズームデータ(∞)
WE ST TE
f (mm) 5.900 12.897 28.525
NO 2.80 3.60 4.90
2ω (°) 77.1 39.4 17.8
6 34.95 9.91 2.60
14 3.84 11.20 36.06
16 5.12 6.76 0.52
φS /2 3.27 3.32 4.37 。

Example 4
r 1 = 23.444 d 1 = 1.20 n d1 = 1.63930 ν d1 = 44.87
r 2 = 15.500 d 2 = 3.60
r 3 = 35.523 d 3 = 1.30 n d2 = 1.74320 ν d2 = 49.34
r 4 = 8.249 (aspherical surface) d 4 = 3.89
r 5 = 13.662 d 5 = 2.80 n d3 = 1.84666 ν d3 = 23.78
r 6 = 22.847 d 6 = (variable)
r 7 = ∞ (aperture) d 7 = 0.80
r 8 = 14.631 (aspherical surface) d 8 = 1.40 n d4 = 1.77250 ν d4 = 49.60
r 9 = 34.012 d 9 = 0.10
r 10 = 10.239 d 10 = 3.19 n d5 = 1.77250 ν d5 = 49.60
r 11 = 26.955 d 11 = 1.83 n d6 = 1.84666 ν d6 = 23.78
r 12 = 7.358 d 12 = 1.71
r 13 = 36.600 (aspherical surface) d 13 = 3.14 n d7 = 1.58313 ν d7 = 59.38
r 14 = -21.350 d 14 = (variable)
r 15 = 16.805 d 15 = 2.70 n d8 = 1.49700 ν d8 = 81.54
r 16 = -153.231 d 16 = (variable)
r 17 = ∞ d 17 = 1.30 n d9 = 1.54771 ν d9 = 62.84
r 18 = ∞ d 18 = 0.80
r 19 = ∞ d 19 = 0.50 n d10 = 1.51633 ν d10 = 64.14
r 20 = ∞
Aspheric coefficient 4th surface K = -0.595
A 4 = 8.57632 × 10 -6
A 6 = 2.89918 × 10 -8
A 8 = 1.20170 × 10 -9
A 10 = -2.23755 × 10 -11
8th surface K = -2.293
A 4 = 5.18474 × 10 -5
A 6 = -3.33636 × 10 -7
A 8 = -1.97514 × 10 -9
A 10 = 0
Surface 13 K = -0.059
A 4 = 9.11545 × 10 -8
A 6 = 8.13085 × 10 -7
A 8 = -1.60810 × 10 -10
A 10 = 0
Zoom data (∞)
WE ST TE
f (mm) 5.900 12.897 28.525
F NO 2.80 3.60 4.90
2ω (°) 77.1 39.4 17.8
d 6 34.95 9.91 2.60
d 14 3.84 11.20 36.06
d 16 5.12 6.76 0.52
φ S / 2 3.27 3.32 4.37.


実施例5
1 = 26.139 d1 = 1.20 nd1 =1.74320 νd1 =49.34
2 = 14.200 d2 = 3.30
3 = 26.285 d3 = 1.30 nd2 =1.74320 νd2 =49.34
4 = 8.448 (非球面) d4 = 3.66
5 = 13.750 d5 = 3.39 nd3 =1.84666 νd3 =23.78
6 = 23.170 d6 = (可変)
7 = ∞(絞り) d7 = 0.80
8 = 15.165 (非球面) d8 = 1.72 nd4 =1.78800 νd4 =47.37
9 = 33.388 d9 = 0.10
10= 9.515 d10= 2.96 nd5 =1.74320 νd5 =49.34
11= 26.822 d11= 1.58 nd6 =1.84666 νd6 =23.78
12= 7.283 d12= 1.63
13= 35.704 (非球面) d13= 3.10 nd7 =1.58313 νd7 =59.38
14= -19.396 d14= (可変)
15= 18.643 d15= 2.70 nd8 =1.49700 νd8 =81.54
16= -371.719 (非球面) d16= (可変)
17= ∞ d17= 1.30 nd9 =1.54771 νd9 =62.84
18= ∞ d18= 0.80
19= ∞ d19= 0.50 nd10=1.51633 νd10=64.14
20= ∞
非球面係数
第4面
K =-0.606
A4 = 5.96675×10-6
A6 =-5.12154×10-10
A8 = 1.15133×10-9
A10=-2.21290×10-11
第8面
K =-2.476
A4 = 4.45482×10-5
A6 =-4.22739×10-7
A8 =-1.96055×10-9
A10= 0
第13面
K =-0.199
A4 = 8.95360×10-6
A6 = 7.49249×10-7
A8 = 3.59024×10-10
A10= 0
第16面
K = 0.000
A4 = 1.54951×10-5
A6 =-4.91310×10-7
A8 = 1.39082×10-11
A10= 0
ズームデータ(∞)
WE ST TE
f (mm) 5.845 12.902 28.549
NO 2.80 3.50 4.90
2ω (°) 77.8 39.1 17.9
6 33.92 10.03 0.76
14 3.21 12.00 34.73
16 5.73 6.16 2.60
φS /2 3.26 3.49 4.16 。

Example 5
r 1 = 26.139 d 1 = 1.20 n d1 = 1.74320 ν d1 = 49.34
r 2 = 14.200 d 2 = 3.30
r 3 = 26.285 d 3 = 1.30 n d2 = 1.74320 ν d2 = 49.34
r 4 = 8.448 (aspherical surface) d 4 = 3.66
r 5 = 13.750 d 5 = 3.39 n d3 = 1.84666 ν d3 = 23.78
r 6 = 23.170 d 6 = (variable)
r 7 = ∞ (aperture) d 7 = 0.80
r 8 = 15.165 (aspherical surface) d 8 = 1.72 n d4 = 1.78800 ν d4 = 47.37
r 9 = 33.388 d 9 = 0.10
r 10 = 9.515 d 10 = 2.96 n d5 = 1.74320 ν d5 = 49.34
r 11 = 26.822 d 11 = 1.58 n d6 = 1.84666 ν d6 = 23.78
r 12 = 7.283 d 12 = 1.63
r 13 = 35.704 (aspherical surface) d 13 = 3.10 n d7 = 1.58313 ν d7 = 59.38
r 14 = -19.396 d 14 = (variable)
r 15 = 18.643 d 15 = 2.70 n d8 = 1.49700 ν d8 = 81.54
r 16 = -371.719 (aspherical surface) d 16 = (variable)
r 17 = ∞ d 17 = 1.30 n d9 = 1.54771 ν d9 = 62.84
r 18 = ∞ d 18 = 0.80
r 19 = ∞ d 19 = 0.50 n d10 = 1.51633 ν d10 = 64.14
r 20 = ∞
Aspheric coefficient 4th surface K = -0.606
A 4 = 5.96675 × 10 -6
A 6 = -5.12154 × 10 -10
A 8 = 1.15133 × 10 -9
A 10 = -2.21290 × 10 -11
8th surface K = -2.476
A 4 = 4.45482 × 10 -5
A 6 = -4.22739 × 10 -7
A 8 = -1.96055 × 10 -9
A 10 = 0
Surface 13 K = -0.199
A 4 = 8.95360 × 10 -6
A 6 = 7.49249 × 10 -7
A 8 = 3.59024 × 10 -10
A 10 = 0
16th surface K = 0.000
A 4 = 1.54951 × 10 -5
A 6 = -4.91310 × 10 -7
A 8 = 1.39082 × 10 -11
A 10 = 0
Zoom data (∞)
WE ST TE
f (mm) 5.845 12.902 28.549
F NO 2.80 3.50 4.90
2ω (°) 77.8 39.1 17.9
d 6 33.92 10.03 0.76
d 14 3.21 12.00 34.73
d 16 5.73 6.16 2.60
φ S / 2 3.26 3.49 4.16.


実施例6
1 = 21714.389 d1 = 1.30 nd1 =1.80610 νd1 =40.92
2 = 8.162 (非球面) d2 = 2.87
3 = 14.791 d3 = 2.40 nd2 =1.84666 νd2 =23.78
4 = 50.672 d4 = (可変)
5 = ∞(絞り) d5 = 0.80
6 = 13.330 (非球面) d6 = 1.90 nd3 =1.69350 νd3 =53.21
7 = -272.159 (非球面) d7 = 0.10
8 = 7.488 d8 = 2.10 nd4 =1.61800 νd4 =63.33
9 = 17.487 d9 = 2.27 nd5 =1.84666 νd5 =23.78
10= 5.383 d10= 1.50
11=12241145.775 d11= 1.15 nd6 =1.61800 νd6 =63.33
12= -25.461 d12= (可変)
13= 33.000 d13= 2.00 nd7 =1.61800 νd7 =63.33
14= -33.000 d14= (可変)
15= ∞ d15= 0.96 nd8 =1.54771 νd8 =62.84
16= ∞ d16= 0.60
17= ∞ d17= 0.50 nd9 =1.51633 νd9 =64.14
18= ∞
非球面係数
第2面
K =-0.744
A4 = 1.01099×10-11
A6 = 2.55746×10-7
A8 =-4.50803×10-9
A10= 0
第6面
K = 0.000
A4 =-1.07809×10-5
A6 =-3.65463×10-7
A8 = 0
A10= 0
第7面
K = 0.000
A4 = 5.59162×10-5
A6 =-1.63843×10-7
A8 = 0
A10= 0
ズームデータ(∞)
WE ST TE
f (mm) 7.952 14.692 27.270
NO 2.80 3.90 4.90
2ω (°) 60.8 33.9 18.5
4 22.28 9.82 2.20
12 4.16 13.63 27.21
14 5.64 4.00 2.80
φS /2 3.37 3.37 4.01 。

Example 6
r 1 = 21714.389 d 1 = 1.30 n d1 = 1.80610 ν d1 = 40.92
r 2 = 8.162 (aspherical surface) d 2 = 2.87
r 3 = 14.791 d 3 = 2.40 n d2 = 1.84666 ν d2 = 23.78
r 4 = 50.672 d 4 = (variable)
r 5 = ∞ (aperture) d 5 = 0.80
r 6 = 13.330 (aspherical surface) d 6 = 1.90 n d3 = 1.69350 ν d3 = 53.21
r 7 = -272.159 (aspherical surface) d 7 = 0.10
r 8 = 7.488 d 8 = 2.10 n d4 = 1.61800 ν d4 = 63.33
r 9 = 17.487 d 9 = 2.27 n d5 = 1.84666 ν d5 = 23.78
r 10 = 5.383 d 10 = 1.50
r 11 = 12241145.775 d 11 = 1.15 n d6 = 1.61800 ν d6 = 63.33
r 12 = -25.461 d 12 = (variable)
r 13 = 33.000 d 13 = 2.00 n d7 = 1.61800 ν d7 = 63.33
r 14 = -33.000 d 14 = (variable)
r 15 = ∞ d 15 = 0.96 n d8 = 1.54771 ν d8 = 62.84
r 16 = ∞ d 16 = 0.60
r 17 = ∞ d 17 = 0.50 n d9 = 1.51633 ν d9 = 64.14
r 18 = ∞
Aspheric coefficient 2nd surface K = -0.744
A 4 = 1.01099 × 10 -11
A 6 = 2.55746 × 10 -7
A 8 = -4.50803 × 10 -9
A 10 = 0
6th surface K = 0.000
A 4 = -1.07809 × 10 -5
A 6 = -3.65463 × 10 -7
A 8 = 0
A 10 = 0
Surface 7 K = 0.000
A 4 = 5.59162 × 10 -5
A 6 = -1.63843 × 10 -7
A 8 = 0
A 10 = 0
Zoom data (∞)
WE ST TE
f (mm) 7.952 14.692 27.270
F NO 2.80 3.90 4.90
2ω (°) 60.8 33.9 18.5
d 4 22.28 9.82 2.20
d 12 4.16 13.63 27.21
d 14 5.64 4.00 2.80
φ S / 2 3.37 3.37 4.01.


実施例7
1 = 110.048 d1 = 2.00 nd1 =1.80400 νd1 =46.57
2 = 8.847 (非球面) d2 = 3.52
3 = 15.019 d3 = 2.60 nd2 =1.80518 νd2 =25.42
4 = 34.932 d4 = (可変)
5 = ∞(絞り) d5 = 0.30
6 = 17.789 (非球面) d6 = 1.92 nd3 =1.69350 νd3 =53.21
7 = -62.142 d7 = 0.10
8 = 7.284 d8 = 2.30 nd4 =1.61800 νd4 =63.33
9 = 15.673 d9 = 2.50 nd5 =1.84666 νd5 =23.78
10= 5.221 d10= 2.60
11= 29.011 5 d11= 1.15 nd6 =1.51742 νd6 =52.43
12=482171.189 d12= (可変)
13= 26.000 d13= 2.47 nd7 =1.48749 νd7 =70.23
14= -26.000 d14= (可変)
15= ∞ d15= 0.96 nd8 =1.54771 νd8 =62.84
16= ∞ d16= 0.60
17= ∞ d17= 0.50 nd9 =1.51633 νd9 =64.14
18= ∞
非球面係数
第2面
K =-0.581
A4 =-9.74609×10-11
A6 = 6.60366×10-8
A8 =-1.64695×10-9
A10= 0
第6面
K = 0.000
A4 =-3.89622×10-5
A6 =-2.55361×10-7
A8 = 0
A10= 0
ズームデータ(∞)
WE ST TE
f (mm) 7.840 15.493 30.176
NO 2.80 3.85 4.90
2ω (°) 61.5 32.2 16.8
4 29.24 12.49 3.10
12 3.55 13.22 28.68
14 5.04 4.00 4.10
φS /2 3.64 3.75 4.50 。

Example 7
r 1 = 110.048 d 1 = 2.00 n d1 = 1.80400 ν d1 = 46.57
r 2 = 8.847 (aspherical surface) d 2 = 3.52
r 3 = 15.019 d 3 = 2.60 n d2 = 1.80518 ν d2 = 25.42
r 4 = 34.932 d 4 = (variable)
r 5 = ∞ (aperture) d 5 = 0.30
r 6 = 17.789 (aspherical surface) d 6 = 1.92 n d3 = 1.69350 ν d3 = 53.21
r 7 = -62.142 d 7 = 0.10
r 8 = 7.284 d 8 = 2.30 n d4 = 1.61800 ν d4 = 63.33
r 9 = 15.673 d 9 = 2.50 n d5 = 1.84666 ν d5 = 23.78
r 10 = 5.221 d 10 = 2.60
r 11 = 29.011 5 d 11 = 1.15 n d6 = 1.51742 ν d6 = 52.43
r 12 = 482171.189 d 12 = (variable)
r 13 = 26.000 d 13 = 2.47 n d7 = 1.48749 ν d7 = 70.23
r 14 = -26.000 d 14 = (variable)
r 15 = ∞ d 15 = 0.96 n d8 = 1.54771 ν d8 = 62.84
r 16 = ∞ d 16 = 0.60
r 17 = ∞ d 17 = 0.50 n d9 = 1.51633 ν d9 = 64.14
r 18 = ∞
Aspheric coefficient 2nd surface K = -0.581
A 4 = -9.74609 × 10 -11
A 6 = 6.60366 × 10 -8
A 8 = -1.64695 × 10 -9
A 10 = 0
6th surface K = 0.000
A 4 = -3.89622 × 10 -5
A 6 = -2.55361 × 10 -7
A 8 = 0
A 10 = 0
Zoom data (∞)
WE ST TE
f (mm) 7.840 15.493 30.176
F NO 2.80 3.85 4.90
2ω (°) 61.5 32.2 16.8
d 4 29.24 12.49 3.10
d 12 3.55 13.22 28.68
d 14 5.04 4.00 4.10
φ S / 2 3.64 3.75 4.50.

以上の実施例1〜7の無限遠物点合焦時の収差図をそれぞれ図8〜図14に示す。これらの収差図において、(a)は広角端、(b)は中間状態、(c)は望遠端における球面収差、非点収差、歪曲収差、倍率色収差を示す。   Aberration diagrams at the time of focusing on an object point at infinity in Examples 1 to 7 are shown in FIGS. In these aberration diagrams, (a) is a wide-angle end, (b) is an intermediate state, and (c) is spherical aberration, astigmatism, distortion, and lateral chromatic aberration at a telephoto end.

次に、上記各実施例における条件式(1)〜(7)の値、及び、条件式(8)に関するD11、D12、D31、D22、D21の値を示す。 Next, the values of conditional expressions (1) to (7) and the values of D 11 , D 12 , D 31 , D 22 , and D 21 related to conditional expression (8) in the above-described embodiments will be shown.

条件式 実施例1 実施例2 実施例3 実施例4 実施例5 実施例6 実施例7
(1) -1.41 -1.48 -1.54 -1.54 -1.50 -1.44 -1.48
(2) 1.39 1.45 1.48 1.79 1.64 1.41 1.53
(3) -0.005 -0.004 -0.006 -0.006 -0.006 -0.005 -0.006
(4) 0.006 0.001 0.006 -0.005 0.010 0.000 0.007
(5) 1.67 1.65 1.71 1.45 1.42 1.12 1.15
(6) 3.15 3.14 2.99 2.35 2.76 1.83 1.76
(7) -1.95 -1.82 -1.78 -1.75 -1.74 -1.05 -1.29
11 27.7 27.3 29.0 31.7 31.7 19.1 22.6
12 17.9 18.1 18.4 20.1 19.9 14.2 16.5
31 14.6 14.3 14.7 13.5 13.7 12.9 13.3
22 13.0 13.1 12.8 13.5 13.5 12.1 12.1
21 10.5 10.5 10.4 10.8 10.5 10.2 10.9
Conditional Example Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7
(1) -1.41 -1.48 -1.54 -1.54 -1.50 -1.44 -1.48
(2) 1.39 1.45 1.48 1.79 1.64 1.41 1.53
(3) -0.005 -0.004 -0.006 -0.006 -0.006 -0.005 -0.006
(4) 0.006 0.001 0.006 -0.005 0.010 0.000 0.007
(5) 1.67 1.65 1.71 1.45 1.42 1.12 1.15
(6) 3.15 3.14 2.99 2.35 2.76 1.83 1.76
(7) -1.95 -1.82 -1.78 -1.75 -1.74 -1.05 -1.29
D 11 27.7 27.3 29.0 31.7 31.7 19.1 22.6
D 12 17.9 18.1 18.4 20.1 19.9 14.2 16.5
D 31 14.6 14.3 14.7 13.5 13.7 12.9 13.3
D 22 13.0 13.1 12.8 13.5 13.5 12.1 12.1
D 21 10.5 10.5 10.4 10.8 10.5 10.2 10.9
.

以上の実施例1〜7において、フォーカシングは第3レンズ群G3の物体側への繰り出しで行っている。   In Examples 1 to 7 above, focusing is performed by extending the third lens group G3 to the object side.

また、上記数値データにおける絞り径φS /2は、絞り径を円形とした場合の半径の値である。 The aperture diameter φ S / 2 in the numerical data is a radius value when the aperture diameter is circular.

各実施例において、例えば絞りSの構成を、図15に示すように、円形形状の固定開口絞りS1と、それに隣接して配置した6枚の絞り羽根にて構成される六角形可変絞りS2とからなる構成としてもよい。その際に、広角端における絞り形状を、図16(a)に示すように、正六角形とした場合、その対角長を以下のような値にすると、上記の実施例1〜7における広角端の面積と概略等しく構成される。   In each embodiment, for example, as shown in FIG. 15, the configuration of the diaphragm S is a hexagonal variable diaphragm S <b> 2 composed of a circular fixed aperture diaphragm S <b> 1 and six diaphragm blades arranged adjacent thereto. It is good also as composition which consists of. At that time, when the aperture shape at the wide-angle end is a regular hexagon as shown in FIG. 16A, if the diagonal length is set to the following values, the wide-angle end in Examples 1 to 7 above The area is approximately equal to the area.

実施例番号 広角端正六角形対角長 SW 望遠端円形直径 ST
1 7.92 40.7 8.50 56.7
2 7.59 37.4 8.30 54.1
3 7.59 37.4 8.40 55.4
4 7.19 33.6 8.74 60
5 7.16 33.3 8.32 54.5
6 7.41 35.7 8.02 50.5
7 8.00 41.6 9.00 63.6 。
Example No. wide angle end regular hexagon the diagonal length S W telephoto end circle diameter S T
1 7.92 40.7 8.50 56.7
2 7.59 37.4 8.30 54.1
3 7.59 37.4 8.40 55.4
4 7.19 33.6 8.74 60
5 7.16 33.3 8.32 54.5
6 7.41 35.7 8.02 50.5
7 8.00 41.6 9.00 63.6.

この場合においても、望遠端においては、図16(c)に示すように、絞り羽根を退避させ、円形形状の固定開口絞りS1のみに軸上光束径を決める明るさ絞りの機能を担わせる。このようにすると、広角端から望遠端側になるにつれて、正六角形が拡大し、途中から正六角形の角が円形の開口絞りと重なる形状となり、望遠端側にて円形に近い形状となる。なお、図16(a)は広角端開放状態、図16(b)は途中開放状態、図16(c)は望遠端開放状態を示し、図の正六角形の開口が六角形可変絞りS2の開口部を、円形が円形形状固定開口絞りS1の開口部を示す。そして、図15(a)〜(c)の斜線部分が両開口部の重なる部分を示している。   Also in this case, at the telephoto end, as shown in FIG. 16C, the diaphragm blades are retracted, and only the circular fixed aperture stop S1 has the function of an aperture stop that determines the axial beam diameter. In this way, the regular hexagonal shape expands from the wide-angle end to the telephoto end side, and the regular hexagonal corner overlaps with the circular aperture stop in the middle, resulting in a shape close to a circle on the telephoto end side. 16A shows the wide-angle end open state, FIG. 16B shows the halfway open state, and FIG. 16C shows the telephoto end open state. The regular hexagonal opening in the figure is the opening of the hexagonal variable aperture S2. The circular portion indicates the opening of the fixed aperture stop S1 having a circular shape. And the shaded part in FIGS. 15A to 15C shows the part where both openings overlap.

このように、可変絞りは、光軸を挟んで配置される6枚の絞り羽根を移動させる構成とすることができる。六角形可変絞りS2の6枚の絞り羽根は、動力手段14(例えば、モーターMとギアG)にて制御させる。最大に退避した状態において、円形の開口部を持つ固定絞りS1が露呈される。このようにして、可変絞りの開口面積の変更を行うことができる。   Thus, the variable diaphragm can be configured to move the six diaphragm blades arranged across the optical axis. The six diaphragm blades of the hexagonal variable diaphragm S2 are controlled by the power unit 14 (for example, the motor M and the gear G). In the state of being retracted to the maximum, the fixed diaphragm S1 having a circular opening is exposed. In this way, the opening area of the variable diaphragm can be changed.

また、ズーム状態に対応する開放時の絞り位置を予めメモリー等の記憶手段11に記憶させておき、制御手段12にてズーミング状態情報13(図示しないズーム移動のためのヘリコイドの移動情報等)と記憶手段11の情報とから動力手段14を制御し、それにより可変絞りS2の開放状態を制御する構成としている。このように構成して、ズーム状態に応じてそれに適した開口面積とすることができる。   Further, the aperture position at the time of opening corresponding to the zoom state is stored in the storage means 11 such as a memory in advance, and the control means 12 performs zooming state information 13 (helicoid movement information for zoom movement not shown) and the like. The power unit 14 is controlled based on the information stored in the storage unit 11, and the open state of the variable aperture S2 is thereby controlled. By configuring in this way, an opening area suitable for the zoom state can be obtained.

また、複数の形状固定絞りを配置したターレット等の固定絞り部材をズームレンズの光路中に抜き差しして、最大開口面積を制御する構成としてもよい。   Further, a configuration may be adopted in which a fixed aperture member such as a turret in which a plurality of shape fixed apertures are arranged is inserted into and removed from the optical path of the zoom lens to control the maximum aperture area.

また、そのターレット等の固定絞り部材に形成した開口の形状を全て円形にして各々異なる面積とすると、簡易な構成ながら全ズーム状態の最小Fナンバー撮影時にきれいなボケを形成することができるようになる。   Further, if the openings formed in the fixed aperture member such as the turret are all circular and have different areas, it is possible to form a beautiful blur at the time of photographing the minimum F number in all zoom states with a simple configuration. .

また、開口部を抜き差しして制御する場合、ズーム状態に応じて最大面積に対応する開口部面積を持つ絞りが光軸上に配される構成としてもよい。   In the case where control is performed by inserting and removing the opening, a stop having an opening area corresponding to the maximum area may be arranged on the optical axis in accordance with the zoom state.

また、開口面積が固定の絞りを光路中に配するときは、シャッターを別途光路中に設けるようにしてもよい。   Further, when an aperture having a fixed aperture area is arranged in the optical path, a shutter may be separately provided in the optical path.

また、可変絞りは種々の構成が可能である。図17に、可変絞りを5枚の絞り羽根にて構成した例を示す。また、この可変絞りにてシャッターの役目を兼用させるようにしている。なお、図17において、各絞り羽根のサイズは説明のために短くして描いてあるが、実際は、絞り羽根の開口を形成するエッジ部分が図よりも長くなるように構成されるものである。   The variable aperture can have various configurations. FIG. 17 shows an example in which the variable diaphragm is composed of five diaphragm blades. In addition, this variable aperture also serves as a shutter. In FIG. 17, the size of each diaphragm blade is illustrated to be short for the sake of explanation. However, in actuality, the edge portion forming the aperture of the diaphragm blade is configured to be longer than the drawing.

また、開口形状は偶数枚の絞り羽根により形成される構成に限らず、例えばこの例のような5枚の絞り羽根にて、絞りによる開口形状を小さくしたときに概略五角形の開口形状をなすようにしてもよい。このように、本発明においては絞り羽根の枚数を奇数枚(例えば7枚等)としてもよい。   Also, the aperture shape is not limited to the configuration formed by an even number of aperture blades. For example, when the aperture shape by the aperture is reduced with 5 aperture blades as in this example, an approximately pentagonal aperture shape is formed. It may be. Thus, in the present invention, the number of aperture blades may be an odd number (for example, 7).

また、図17の例のように、開口形状が円形状に近くなるように、絞り羽根の光軸側のエッジ部分を凹形状の曲線にて構成するようにしてもよい。それにより、ボケ味がきれいになる。   Further, as in the example of FIG. 17, the edge portion on the optical axis side of the diaphragm blade may be configured with a concave curve so that the opening shape is close to a circular shape. Thereby, the bokeh becomes clean.

また、絞りは、撮影時におけるシャッターの役目を兼用させてもよい。それにより、部品点数の削減が行える。   The aperture may also serve as a shutter during shooting. Thereby, the number of parts can be reduced.

以下に、図17の具体的説明をする。図の(a)は遮蔽状態のとき、(b)は望遠端撮影時の開放状態のときの図を示すものである。それぞれの不透明な絞り羽根(遮蔽部材)15c、15d、15e、15f、15gが固定ピン22c、22d、22e、22f、22gを軸にして回動可能となっている。連結環23を動力手段14(例えば、モーターMとギアG)で回動させると、その連結環23に固定された突起部24c、24d、24e、24f、24gが遮蔽部材15c、15d、15e、15f、15gの基端を押し、それにより遮蔽部材15c、15d、15e、15f、15gが外側に退避する。最大に退避した状態にて、円形の開口部を持つ固定絞りが露呈される。このようにして、シャッター兼可変絞りの透過・遮蔽動作を行うことができる。   The specific description of FIG. 17 will be given below. In the figure, (a) shows a state in the shielding state, and (b) shows a diagram in the open state at the time of telephoto end photographing. The opaque diaphragm blades (shielding members) 15c, 15d, 15e, 15f, and 15g are rotatable about the fixing pins 22c, 22d, 22e, 22f, and 22g. When the connecting ring 23 is rotated by the power means 14 (for example, the motor M and the gear G), the protrusions 24c, 24d, 24e, 24f, and 24g fixed to the connecting ring 23 are shield members 15c, 15d, 15e, The base ends of 15f and 15g are pushed, whereby the shielding members 15c, 15d, 15e, 15f and 15g are retracted to the outside. In the state of being retracted to the maximum, a fixed diaphragm having a circular opening is exposed. In this way, the transmission / shielding operation of the shutter / variable aperture can be performed.

また、ズーム状態に対応する開放時の絞り位置を予めメモリー等の記憶手段11に記憶させておき、制御手段12にてズーミング状態情報13(図示しないズーム移動のためのヘリコイドの移動情報等)と記憶手段11の情報とから動力手段14を制御し、それにより可変絞りS2の開放状態を制御する構成としている。このように構成して、ズーム状態に応じてそれに適した開口面積とすることができる。   Further, the aperture position at the time of opening corresponding to the zoom state is stored in the storage means 11 such as a memory in advance, and the control means 12 performs zooming state information 13 (helicoid movement information for zoom movement not shown) and the like. The power unit 14 is controlled based on the information stored in the storage unit 11, and the open state of the variable aperture S2 is thereby controlled. By configuring in this way, an opening area suitable for the zoom state can be obtained.

なお、記憶手段11に記憶させておくデータは、全ズーム状態で連続的に開放面積を決定する構成としてもよいし、広角端近傍、望遠端近傍、中間状態近傍の3段階にてリニアに制御され、3段階の開放絞りとしてもよい。もちろん、2段階、5段階等の制御をするようにしてもよい。   The data stored in the storage means 11 may be configured to continuously determine the open area in all zoom states, or linearly controlled in three steps, near the wide-angle end, near the telephoto end, and near the intermediate state. Also, a three-stage open aperture may be used. Of course, control in two steps, five steps, etc. may be performed.

また、可変絞りの構成も、従来知られている種々の構成であってもよい。例えば、図18(a)に望遠端開放状態、(b)に広角端開放状態を示すように、円形の固定開口31の前方若しくは後方近傍に、2枚の絞り羽根32a、32bが移動して、開口形状を変更する構成としてもよい。このとき、絞り羽根32a、32bのエッジ形状としては、図示のように、光軸側に凹の形状とするとよい。この場合も、シャッターを兼用することができる。   Further, the variable diaphragm may have various conventionally known configurations. For example, as shown in FIG. 18A, the telephoto end is open, and in FIG. 18B, the wide-angle end is open, the two diaphragm blades 32a, 32b are moved in front of or behind the circular fixed opening 31. The configuration may be such that the opening shape is changed. At this time, as the edge shape of the diaphragm blades 32a and 32b, a concave shape on the optical axis side is preferable as shown in the figure. In this case, the shutter can also be used.

図18の可変絞り構成をさらに説明すると、2枚の可変絞り羽根32a、32bには、移動方向に設けれた図示しないガイド溝が設けられている。この2枚の可変絞り羽根32a、32bは、ズームレンズの光軸を中心として正方形の開口形状となるように、エッジ形状が形成されている。また、2枚の可変絞り32a、32bには、図示しないノコギリ歯状のギアを持ち、このギアがモーターMと回転ギアGに連結され、モーターMの動作により移動制御されるように構成されている。ズームレンズの光軸を中心にして円形の固定開口31が設けられた絞り基板には、図示しない固定ピンが設けられ、その固定ピンは、可変絞り羽根32a、32bのガイド溝に挟まれている。それにより、可変絞りの移動時のぶれを低減させている。撮影時の絞りの開口部の最大面積の制御方法は、図15、図17と同様であるので説明は省く。   18 will be further described. The two variable diaphragm blades 32a and 32b are provided with guide grooves (not shown) provided in the moving direction. The two variable aperture blades 32a and 32b are formed in an edge shape so as to have a square opening shape with the optical axis of the zoom lens as the center. Further, the two variable apertures 32a and 32b have sawtooth gears (not shown), which are connected to the motor M and the rotating gear G, and are configured to be moved and controlled by the operation of the motor M. Yes. A diaphragm substrate provided with a circular fixed opening 31 around the optical axis of the zoom lens is provided with a fixed pin (not shown), and the fixed pin is sandwiched between guide grooves of the variable diaphragm blades 32a and 32b. . Thereby, the shake at the time of movement of the variable aperture is reduced. Since the method for controlling the maximum area of the aperture of the diaphragm at the time of shooting is the same as in FIGS.

さて、以上のような本発明のズームレンズ、結像光学系で物体像を形成しその像をCCD等の撮像素子に受光させて撮影を行う撮影装置、とりわけデジタルカメラやビデオカメラ、情報処理装置の例であるパソコン、電話、特に持ち運びに便利な携帯電話等に用いることができる。以下に、その実施形態を例示する。   Now, an imaging apparatus, particularly a digital camera, a video camera, and an information processing apparatus, which forms an object image with the zoom lens and imaging optical system of the present invention as described above, and receives the image with an image pickup device such as a CCD. It can be used for personal computers, telephones, especially mobile phones that are easy to carry. The embodiment is illustrated below.

図19〜図21は、本発明によるズームレンズをデジタルカメラの撮影光学系41に組み込んだ構成の概念図を示す。図19はデジタルカメラ40の外観を示す前方斜視図、図20は同後方斜視図、図21はデジタルカメラ40の構成を示す断面図である。デジタルカメラ40は、この例の場合、撮影用光路42を有する撮影光学系41、ファインダー用光路44を有するファインダー光学系43、シャッター45、フラッシュ46、液晶表示モニター47等を含み、カメラ40の上部に配置されたシャッター45を押圧すると、それに連動して撮影光学系41、例えば実施例1のズームレンズを通して撮影が行われる。撮影光学系41によって形成された物体像が、IRカットコートを施したローパスフィルターLFとカバーガラスCGを介してCCD49の撮像面上に形成される。このCCD49で受光された物体像は、処理手段51を介し、電子画像としてカメラ背面に設けられた液晶表示モニター47に表示される。また、この処理手段51には記録手段52が接続され、撮影された電子画像を記録することもできる。なお、この記録手段52は処理手段51と別体に設けてもよいし、フロッピーディスクやメモリーカード、MO等により電子的に記録書込を行うように構成してもよい。また、CCD49に代わって銀塩フィルムを配置した銀塩カメラとして構成してもよい。   19 to 21 are conceptual diagrams of a configuration in which the zoom lens according to the present invention is incorporated in the photographing optical system 41 of the digital camera. 19 is a front perspective view showing the appearance of the digital camera 40, FIG. 20 is a rear perspective view thereof, and FIG. 21 is a cross-sectional view showing the configuration of the digital camera 40. In this example, the digital camera 40 includes a photographing optical system 41 having a photographing optical path 42, a finder optical system 43 having a finder optical path 44, a shutter 45, a flash 46, a liquid crystal display monitor 47, and the like. When the shutter 45 disposed in the position is pressed, photographing is performed through the photographing optical system 41, for example, the zoom lens of the first embodiment, in conjunction therewith. An object image formed by the photographing optical system 41 is formed on the imaging surface of the CCD 49 via a low-pass filter LF having an IR cut coat and a cover glass CG. The object image received by the CCD 49 is displayed as an electronic image on the liquid crystal display monitor 47 provided on the back of the camera via the processing means 51. Further, the processing means 51 is connected to a recording means 52 so that a photographed electronic image can be recorded. The recording means 52 may be provided separately from the processing means 51, or may be configured to perform recording / writing electronically using a floppy disk, memory card, MO, or the like. Further, it may be configured as a silver salt camera in which a silver salt film is arranged in place of the CCD 49.

さらに、ファインダー用光路44上にはファインダー用対物光学系53が配置してある。このファインダー用対物光学系53によって形成された物体像は、像正立部材であるポロプリズム55の視野枠57上に形成される。このポロプリズム55の後方には、正立正像にされた像を観察者眼球Eに導く接眼光学系59が配置されている。なお、撮影光学系41及びファインダー用対物光学系53の入射側、接眼光学系59の射出側にそれぞれカバー部材50が配置されている。   Further, a finder objective optical system 53 is disposed on the finder optical path 44. The object image formed by the finder objective optical system 53 is formed on the field frame 57 of the Porro prism 55 which is an image erecting member. Behind the Porro prism 55, an eyepiece optical system 59 for guiding the image formed into an erect image to the observer eyeball E is disposed. Note that cover members 50 are disposed on the incident side of the photographing optical system 41 and the finder objective optical system 53 and on the exit side of the eyepiece optical system 59, respectively.

このように構成されたデジタルカメラ40は、撮影光学系41が高性能で小型であるので、高性能・小型化が実現できる。   The digital camera 40 configured as described above can achieve high performance and downsizing since the photographing optical system 41 is high performance and small.

なお、図21の例では、カバー部材50として平行平面板を配置しているが、パワーを持ったレンズを用いてもよい。   In the example of FIG. 21, a parallel plane plate is disposed as the cover member 50, but a lens having power may be used.

次に、本発明のズームレンズが対物光学系として内蔵された情報処理装置の一例であるパソコンが図22〜図24に示される。図22はパソコン300のカバーを開いた前方斜視図、図23はパソコン300の撮影光学系303の断面図、図24は図22の状態の側面図である。図22〜図24に示されるように、パソコン300は、外部から繰作者が情報を入力するためのキーボード301と、図示を省略した情報処理手段や記録手段と、情報を操作者に表示するモニター302と、操作者自身や周辺の像を撮影するための撮影光学系303とを有している。ここで、モニター302は、図示しないバックライトにより背面から照明する透過型液晶表示素子や、前面からの光を反射して表示する反射型液晶表示素子や、CRTディスプレイ等であってよい。また、図中、撮影光学系303は、モニター302の右上に内蔵されているが、その場所に限らず、モニター302の周囲や、キーボード301の周囲のどこであってもよい。   Next, a personal computer which is an example of an information processing apparatus in which the zoom lens of the present invention is incorporated as an objective optical system is shown in FIGS. 22 is a front perspective view with the cover of the personal computer 300 opened, FIG. 23 is a sectional view of the photographing optical system 303 of the personal computer 300, and FIG. 24 is a side view of the state of FIG. As shown in FIGS. 22 to 24, the personal computer 300 includes a keyboard 301 for inputting information from the outside by an author, information processing means and recording means not shown, and a monitor for displaying information to the operator. 302 and a photographing optical system 303 for photographing the operator himself and surrounding images. Here, the monitor 302 may be a transmissive liquid crystal display element that is illuminated from the back by a backlight (not shown), a reflective liquid crystal display element that reflects and displays light from the front, a CRT display, or the like. Further, in the drawing, the photographing optical system 303 is built in the upper right of the monitor 302. However, the imaging optical system 303 is not limited to the place, and may be anywhere around the monitor 302 or the keyboard 301.

この撮影光学系303は、撮影光路304上に、本発明によるズームレンズ(図では略記)からなる対物レンズ112と、像を受光する撮像素子チップ162とを有している。これらはパソコン300に内蔵されている。   The photographic optical system 303 includes an objective lens 112 including a zoom lens (abbreviated in the drawing) according to the present invention and an image sensor chip 162 that receives an image on a photographic optical path 304. These are built in the personal computer 300.

ここで、撮像素子チップ162上には光学的ローパスフィルターFが付加的に貼り付けられて撮像ユニット160として一体に形成され、対物レンズ112の鏡枠113の後端にワンタッチで嵌め込まれて取り付け可能になっているため、対物レンズ112と撮像素子チップ162の中心合わせや面間隔の調整が不要であり、組立が簡単となっている。また、鏡枠113の先端には、対物レンズ112を保護するためのカバーガラス114が配置されている。なお、鏡枠113中のズームレンズの駆動機構は図示を省いてある。   Here, an optical low-pass filter F is additionally attached on the image sensor chip 162 to be integrally formed as an image pickup unit 160, and can be fitted and attached to the rear end of the lens frame 113 of the objective lens 112 with one touch. Therefore, the center alignment of the objective lens 112 and the image sensor chip 162 and the adjustment of the surface interval are unnecessary, and the assembly is simple. A cover glass 114 for protecting the objective lens 112 is disposed at the tip of the lens frame 113. The zoom lens driving mechanism in the lens frame 113 is not shown.

撮像素子チップ162で受光された物体像は、端子166を介して、パソコン300の処理手段に入力され、電子画像としてモニター302に表示される、図22には、その一例として、操作者の撮影された画像305が示されている。また、この画像305は、処理手段を介し、インターネットや電話を介して、遠隔地から通信相手のパソコンに表示されることも可能である。   The object image received by the image pickup device chip 162 is input to the processing means of the personal computer 300 via the terminal 166 and displayed on the monitor 302 as an electronic image. FIG. A rendered image 305 is shown. The image 305 can also be displayed on the personal computer of the communication partner from a remote location via the processing means, the Internet, or the telephone.

次に、本発明のズームレンズが撮影光学系として内蔵された情報処理装置の一例である電話、特に持ち運びに便利な携帯電話が図25に示される。図25(a)は携帯電話400の正面図、図25(b)は側面図、図25(c)は撮影光学系405の断面図である。図25(a)〜(c)に示されるように、携帯電話400は、操作者の声を情報として入力するマイク部401と、通話相手の声を出力するスピーカ部402と、操作者が情報を入力する入力ダイアル403と、操作者自身や通話相手等の撮影像と電話番号等の情報を表示するモニター404と、撮影光学系405と、通信電波の送信と受信を行うアンテナ406と、画像情報や通信情報、入力信号等の処理を行う処理手段(図示せず)とを有している。ここで、モニター404は液晶表示素子である。また、図中、各構成の配置位置は、特にこれらに限られない。この撮影光学系405は、撮影光路407上に配置された本発明によるズームレンズ(図では略記)からなる対物レンズ112と、物体像を受光する撮像素子チップ162とを有している。これらは、携帯電話400に内蔵されている。   Next, FIG. 25 shows a telephone which is an example of an information processing apparatus in which the zoom lens of the present invention is incorporated as a photographing optical system, particularly a mobile telephone which is convenient to carry. 25A is a front view of the mobile phone 400, FIG. 25B is a side view, and FIG. 25C is a cross-sectional view of the photographing optical system 405. As shown in FIGS. 25A to 25C, the mobile phone 400 includes a microphone unit 401 that inputs an operator's voice as information, a speaker unit 402 that outputs the voice of the other party, and an operator who receives information. An input dial 403 for inputting information, a monitor 404 for displaying information such as a photographed image and a telephone number of the operator and the other party, a photographing optical system 405, an antenna 406 for transmitting and receiving communication radio waves, and an image And processing means (not shown) for processing information, communication information, input signals, and the like. Here, the monitor 404 is a liquid crystal display element. In the drawing, the arrangement positions of the respective components are not particularly limited to these. The photographing optical system 405 includes an objective lens 112 including a zoom lens (abbreviated in the drawing) according to the present invention disposed on a photographing optical path 407, and an image sensor chip 162 that receives an object image. These are built in the mobile phone 400.

ここで、撮像素子チップ162上には光学的ローパスフィルターFが付加的に貼り付けられて撮像ユニット160として一体に形成され、対物レンズ112の鏡枠113の後端にワンタッチで嵌め込まれて取り付け可能になっているため、対物レンズ112と撮像素子チップ162の中心合わせや面間隔の調整が不要であり、組立が簡単となっている。また、鏡枠113の先端には、対物レンズ112を保護するためのカバーガラス114が配置されている。なお、鏡枠113中のズームレンズの駆動機構は図示を省いてある。   Here, an optical low-pass filter F is additionally attached on the image sensor chip 162 to be integrally formed as an image pickup unit 160, and can be fitted and attached to the rear end of the lens frame 113 of the objective lens 112 with one touch. Therefore, the center alignment of the objective lens 112 and the image sensor chip 162 and the adjustment of the surface interval are unnecessary, and the assembly is simple. A cover glass 114 for protecting the objective lens 112 is disposed at the tip of the lens frame 113. The zoom lens driving mechanism in the lens frame 113 is not shown.

撮影素子チップ162で受光された物体像は、端子166を介して、図示していない処理手段に入力され、電子画像としてモニター404に、又は、通信相手のモニターに、又は、両方に表示される。また、通信相手に画像を送信する場合、撮像素子チップ162で受光された物体像の情報を、送信可能な信号へと変換する信号処理機能が処理手段には含まれている。   The object image received by the imaging element chip 162 is input to the processing means (not shown) via the terminal 166 and displayed as an electronic image on the monitor 404, the monitor of the communication partner, or both. . Further, when transmitting an image to a communication partner, the processing means includes a signal processing function for converting information of an object image received by the image sensor chip 162 into a signal that can be transmitted.

本発明のズームレンズの実施例1の無限遠物点合焦時の広角端(a)、中間状態(b)、望遠端(c)でのレンズ断面図である。FIG. 2 is a lens cross-sectional view at the wide-angle end (a), the intermediate state (b), and the telephoto end (c) when focusing on an object point at infinity according to the first exemplary embodiment of the zoom lens of the present invention. 実施例2のズームレンズの図1と同様のレンズ断面図である。FIG. 6 is a lens cross-sectional view similar to FIG. 1 of a zoom lens according to Embodiment 2. 実施例3のズームレンズの図1と同様のレンズ断面図である。FIG. 6 is a lens cross-sectional view similar to FIG. 1 of a zoom lens according to Embodiment 3. 実施例4のズームレンズの図1と同様のレンズ断面図である。FIG. 6 is a lens cross-sectional view similar to FIG. 1 illustrating a zoom lens according to a fourth exemplary embodiment. 実施例5のズームレンズの図1と同様のレンズ断面図である。FIG. 6 is a lens cross-sectional view similar to FIG. 1 illustrating a zoom lens according to a fifth exemplary embodiment. 実施例6のズームレンズの図1と同様のレンズ断面図である。FIG. 6 is a lens cross-sectional view similar to FIG. 1 illustrating a zoom lens according to Example 6; 実施例7のズームレンズの図1と同様のレンズ断面図である。FIG. 10 is a lens cross-sectional view similar to FIG. 1 illustrating a zoom lens according to a seventh embodiment. 実施例1の無限遠物点合焦時の収差図である。FIG. 6 is an aberration diagram for Example 1 upon focusing on an object point at infinity. 実施例2の無限遠物点合焦時の収差図である。FIG. 6 is an aberration diagram for Example 2 upon focusing on an object point at infinity. 実施例3の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 3 upon focusing on an object point at infinity. 実施例4の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 4 upon focusing on an object point at infinity. 実施例5の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 5 upon focusing on an object point at infinity. 実施例6の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 6 upon focusing on an object point at infinity. 実施例7の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 7 upon focusing on an object point at infinity. 可変絞りを円形形状の固定開口絞りと六角形可変絞りとから構成した例を示す光軸を含む断面図である。It is sectional drawing containing the optical axis which shows the example which comprised the variable aperture stop from the circular shaped fixed aperture stop and the hexagonal variable aperture. 図15の構成において可変絞りの広角端開放状態(a)、途中開放状態(b)、望遠端開放状態(c)を示す図である。It is a figure which shows the wide-angle end open state (a), halfway open state (b), and telephoto end open state (c) of a variable stop in the structure of FIG. 可変絞りを5枚の絞り羽根にて構成した例を示す遮蔽状態のとき(a)と開放状態(b)のときを示す図である。It is a figure which shows the time of the shielding state which shows the example which comprised the variable aperture_diaphragm | restriction blade with five sheets (a), and the open state (b). 可変絞りを円形の固定開口と2枚の絞り羽根とから構成した例の望遠端開放状態(a)と広角端開放状態(b)を示す図である。It is a figure which shows the telephoto end open state (a) and wide-angle end open state (b) of the example which comprised the variable aperture_diaphragm | restriction opening and two aperture blades. 本発明によるズームレンズを組み込んだデジタルカメラの外観を示す前方斜視図である。It is a front perspective view which shows the external appearance of the digital camera incorporating the zoom lens by this invention. 図19のデジタルカメラの後方斜視図である。FIG. 20 is a rear perspective view of the digital camera of FIG. 19. 図19のデジタルカメラの断面図である。It is sectional drawing of the digital camera of FIG. 本発明によるズームレンズを対物光学系として組み込れたパソコンのカバーを開いた前方斜視図である。It is the front perspective view which opened the cover of the personal computer incorporating the zoom lens by this invention as an objective optical system. パソコンの撮影光学系の断面図である。It is sectional drawing of the imaging optical system of a personal computer. 図22の状態の側面図である。It is a side view of the state of FIG. 本発明によるズームレンズを対物光学系として組み込れた携帯電話の正面図(a)、側面図(b)、その撮影光学系の断面図(c)である。FIG. 2 is a front view (a), a side view (b), and a sectional view (c) of the photographing optical system of a mobile phone in which the zoom lens according to the present invention is incorporated as an objective optical system.

符号の説明Explanation of symbols

G1…第1レンズ群
G2…第2レンズ群
G3…第3レンズ群
S…開口絞り
LF…ローパスフィルター
CG…カバーガラス
I…像面
S1…円形形状の固定開口絞り
S2…六角形可変絞り
M…モーター
G…ギア
E…観察者眼球
F…光学的ローパスフィルター
11…記憶手段
12…制御手段
13…ズーミング状態情報
14…動力手段
15c、15d、15e、15f、15g…絞り羽根(遮蔽部材)
22c、22d、22e、22f、22g…固定ピン
23…連結環
24c、24d、24e、24f、24g…突起部
31…円形の固定開口
32a、32b…絞り羽根
40…デジタルカメラ
41…撮影光学系
42…撮影用光路
43…ファインダー光学系
44…ファインダー用光路
45…シャッター
46…フラッシュ
47…液晶表示モニター
49…CCD
50…カバー部材
51…処理手段
52…記録手段
53…ファインダー用対物光学系
55…ポロプリズム
57…視野枠
59…接眼光学系
112…対物レンズ
113…鏡枠
114…カバーガラス
160…撮像ユニット
162…撮像素子チップ
166…端子
300…パソコン
301…キーボード
302…モニター
303…撮影光学系
304…撮影光路
305…画像
400…携帯電話
401…マイク部
402…スピーカ部
403…入力ダイアル
404…モニター
405…撮影光学系
406…アンテナ
407…撮影光路
G1 ... 1st lens group G2 ... 2nd lens group G3 ... 3rd lens group S ... Aperture stop LF ... Low pass filter CG ... Cover glass I ... Image plane S1 ... Circular fixed aperture stop S2 ... Hexagonal variable stop M ... Motor G ... Gear E ... Observer eye F ... Optical low-pass filter 11 ... Storage means 12 ... Control means 13 ... Zooming state information 14 ... Power means 15c, 15d, 15e, 15f, 15g ... Aperture blade (shielding member)
22c, 22d, 22e, 22f, 22g... Fixing pin 23... Connection ring 24c, 24d, 24e, 24f, 24g... Projection 31. ... Photographing optical path 43 ... finder optical system 44 ... finder optical path 45 ... shutter 46 ... flash 47 ... liquid crystal display monitor 49 ... CCD
DESCRIPTION OF SYMBOLS 50 ... Cover member 51 ... Processing means 52 ... Recording means 53 ... Finder objective optical system 55 ... Porro prism 57 ... Field frame 59 ... Eyepiece optical system 112 ... Objective lens 113 ... Lens frame 114 ... Cover glass 160 ... Imaging unit 162 ... Image sensor chip 166 ... Terminal 300 ... Personal computer 301 ... Keyboard 302 ... Monitor 303 ... Shooting optical system 304 ... Shooting optical path 305 ... Image 400 ... Mobile phone 401 ... Microphone unit 402 ... Speaker unit 403 ... Input dial 404 ... Monitor 405 ... Shooting optics System 406 ... Antenna 407 ... Imaging optical path

Claims (20)

物体側より順に、負の屈折力の第1レンズ群、開口面積が可変の開口絞り、正の屈折力の第2レンズ群、正の屈折力の第3レンズ群からなる3群ズームレンズであって、広角端から望遠端への変倍をする際に各レンズ群の間隔を変えることにより変倍し、変倍比が3.4倍以上を有し、前記開口絞りは変倍の際に第2レンズ群の移動方向と同方向に移動し、前記開口絞りの撮影時の開口部の最大面積が、望遠端よりも広角端にて小さくなるように構成し、以下の条件式(1)、(2)を満足することを特徴とするズームレンズ。
−2<f1 /√(fT ・fW )<−1 ・・・(1)
1.2<ST /SW ・・・(2)
ただし、f1 :第1レンズ群の焦点距離、
W :広角端におけるズームレンズ全系の焦点距離、
T :望遠端におけるズームレンズ全系の焦点距離、
W :広角端での撮影時における開口絞りの開口部の最大面積、
T :望遠端での撮影時における開口絞りの開口部の最大面積、
である。
In order from the object side, a three-unit zoom lens including a first lens unit having a negative refractive power, an aperture stop having a variable aperture area, a second lens unit having a positive refractive power, and a third lens group having a positive refractive power. Thus, when zooming from the wide angle end to the telephoto end, zooming is performed by changing the distance between the lens groups, and the zooming ratio is 3.4 or more, and the aperture stop is used for zooming. It moves in the same direction as the movement direction of the second lens group, and the maximum area of the aperture when photographing the aperture stop is configured to be smaller at the wide-angle end than at the telephoto end. The following conditional expression (1) A zoom lens satisfying (2).
-2 <f 1 / √ (f T · f W ) <− 1 (1)
1.2 <S T / S W < 3 (2)
Where f 1 is the focal length of the first lens group,
f W : focal length of the entire zoom lens system at the wide-angle end,
f T : the focal length of the entire zoom lens system at the telephoto end,
S W : Maximum area of the aperture of the aperture stop when shooting at the wide-angle end,
S T : Maximum area of the aperture of the aperture stop at the time of photographing at the telephoto end,
It is.
以下の条件式(2)’を満足することを特徴とする請求項1記載のズームレンズ。The zoom lens according to claim 1, wherein the following conditional expression (2) ′ is satisfied.
1.2<S1.2 <S T T /S/ S W W <2 ・・・(2)’<2 (2) '
以下の条件式(2)''を満足することを特徴とする請求項1記載のズームレンズ。The zoom lens according to claim 1, wherein the following conditional expression (2) '' is satisfied.
1.2<S1.2 <S T T /S/ S W W ≦1.79 ・・・(2)''≦ 1.79 (2) ''
以下の条件式(2)"'を満足することを特徴とする請求項1記載のズームレンズ。The zoom lens according to claim 1, wherein the following conditional expression (2) ′ ′ is satisfied.
1.3<S1.3 <S T T /S/ S W W <3 ・・・(2)"'<3 (2) "'
前記第1レンズ群は少なくとも1枚の非球面を含む負レンズと正レンズからなり、前記第2レンズ群は少なくとも1面の非球面を有し、前記第3レンズ群を移動することにより近距離物点への合焦を行うことを特徴とする請求項1から4の何れか1項記載のズームレンズ。 The first lens group includes a negative lens and a positive lens including at least one aspherical surface, and the second lens group includes at least one aspherical surface, and is moved at a short distance by moving the third lens group. any one claim of the zoom lens of claims 1 4, characterized in that for focusing of the object point. 前記開口絞りの開口形状は、望遠端での撮影時での最大開口形状は略円形であり、広角端での撮影時での最大開口形状は7枚以下の絞り羽根により形成される形状であることを特徴とする請求項1から5の何れか1項記載のズームレンズ。 As for the aperture shape of the aperture stop, the maximum aperture shape at the time of photographing at the telephoto end is substantially circular, and the maximum aperture shape at the time of photographing at the wide angle end is a shape formed by seven or less aperture blades. any one claim of the zoom lens of claims 1 to 5, characterized in that. 前記開口絞りの開口形状は、広角端では2枚の絞り羽根により形成される形状であることを特徴とする請求項記載のズームレンズ。 7. The zoom lens according to claim 6, wherein the aperture shape of the aperture stop is a shape formed by two aperture blades at the wide angle end. 以下の条件式(3)、(4)を満たすことを特徴とする請求項1からの何れか1項記載のズームレンズ。
−0.01<MW /fW <−0.002 ・・・(3)
−0.006<MT /fW <0.015 ・・・(4)
ただし、MW :広角端での撮影時における開口絞りの開口部の最大面積と同じ面積を持つ光軸を中心とした円の開口比の0.7倍の位置でのd線での球面収差量、
T :望遠端での撮影時における開口絞りの開口部の最大面積と同じ面積を持つ光軸を中心とした円の開口比の0.7倍の位置でのd線での球面収差量、
W :広角端におけるズームレンズ全系の焦点距離、
である。
The zoom lens according to any one of claims 1 to 7 , wherein the following conditional expressions (3) and (4) are satisfied.
−0.01 <M W / f W <−0.002 (3)
−0.006 <M T / f W <0.015 (4)
However, M W : Spherical aberration at the d-line at a position 0.7 times the aperture ratio of a circle around the optical axis having the same area as the maximum area of the aperture of the aperture stop at the time of photographing at the wide angle end amount,
M T : spherical aberration at the d-line at a position 0.7 times the aperture ratio of a circle centered on the optical axis having the same area as the maximum area of the aperture of the aperture stop at the time of photographing at the telephoto end,
f W : focal length of the entire zoom lens system at the wide-angle end,
It is.
前記第1レンズ群は、物体側から順に、物体側に凸面を向けた2枚以下の負メニスカスレンズと、物体側に凸面を向けた1枚の正メニスカスレンズとからなることを特徴とする請求項1からの何れか1項記載のズームレンズ。 The first lens group includes, in order from the object side, two or less negative meniscus lenses having a convex surface directed toward the object side, and one positive meniscus lens having a convex surface directed toward the object side. Item 9. The zoom lens according to any one of Items 1 to 8 . 前記第1レンズ群は物体側に凸面を向けた負メニスカスレンズを有し、かつ、その負レンズの全ては物体側の面がマルチコートであり、像側の面が単層コートであることを特徴とする請求項1からの何れか1項記載のズームレンズ。 The first lens group has a negative meniscus lens having a convex surface facing the object side, and all of the negative lenses have a multi-coat on the object side and a single-layer coat on the image side. any one claim of the zoom lens of claim 1, wherein 9. 前記第2レンズ群は、物体側から順に、物体側に凸面を向けた正レンズ、物体側に凸面を向けた正レンズ、負レンズ、正レンズの4枚のレンズからなることを特徴とする請求項1から10の何れか1項記載のズームレンズ。 The second lens group includes four lenses in order from the object side: a positive lens having a convex surface facing the object side, a positive lens having a convex surface facing the object side, a negative lens, and a positive lens. Item 11. The zoom lens according to any one of Items 1 to 10 . 前記第2レンズ群の前記負レンズが隣り合う何れかの正レンズと接合されていることを特徴とする請求項11記載のズームレンズ。 The zoom lens according to claim 11 , wherein the negative lens of the second lens group is cemented with any adjacent positive lens. 前記第2レンズ群の前記負レンズが隣り合う物体側の正レンズと接合され、かつ、像面側が凹面で空間に接してなることを特徴とする請求項12記載のズームレンズ。 13. The zoom lens according to claim 12 , wherein the negative lens of the second lens group is cemented with an adjacent positive lens on the object side, and the image surface side is a concave surface in contact with the space. 前記第3レンズ群は2枚以下のレンズからなることを特徴とする請求項1から13の何れか1項記載のズームレンズ。 The third lens group is any one of claims zoom lens according to claim 1 to 13, characterized in that it consists of two or less lenses. 前記第3レンズ群を移動することにより近距離物点への合焦を行い、以下の条件式を満足することを特徴とする請求項1から14の何れか1項記載のズームレンズ。
1.0<f2 /√(fT ・fW )<2.0 ・・・(5)
1.6<f3 /√(fT ・fW )<3.6 ・・・(6)
ただし、f2 :第2レンズ群の焦点距離、
3 :第3レンズ群の焦点距離、
である。
The performed focusing on a close object by moving the third lens group, any one of claims zoom lens according to claim 1 to 14, characterized by satisfying the following conditional expression.
1.0 <f 2 / √ (f T · f W ) <2.0 (5)
1.6 <f 3 / √ (f T · f W ) <3.6 (6)
Where f 2 is the focal length of the second lens group,
f 3 : focal length of the third lens group,
It is.
広角端での前記第1レンズ群の最像側面と前記開口絞りとの間隔が以下の条件式を満足することを特徴とする請求項1から15の何れか1項記載のズームレンズ。
−3.0<D1S/f1 <−0.8 ・・・(7)
ただし、D1S:広角端での第1レンズ群の最像側面と開口絞りとの間隔、
である。
16. The zoom lens according to claim 1, wherein a distance between the most image side surface of the first lens unit at the wide-angle end and the aperture stop satisfies the following conditional expression.
−3.0 <D 1S / f 1 <−0.8 (7)
Where D 1S is the distance between the most image side surface of the first lens unit and the aperture stop at the wide-angle end,
It is.
請求項1から16の何れか1項記載のズームレンズ、及び、その像側に配された電子撮像素子を備えたことを特徴とする電子撮像装置。 Any one claim of the zoom lens of claims 1 16, and an electronic image pickup apparatus characterized by comprising an electronic image sensor disposed on the image side. 広角端における撮影画角が70°以上であることを特徴とする請求項17記載の電子撮像装置。 18. The electronic imaging apparatus according to claim 17 , wherein a photographing field angle at a wide angle end is 70 ° or more. 下記の条件式(8)を満たすことを特徴とする請求項1から16の何れか1項記載のズームレンズ、及び、その像側に配された電子撮像素子を備えたことを特徴とする電子撮像装置。
11>D12>D31>D22>D21 ・・・(8)
ただし、D11:第1レンズ群の最物体側面の全変倍域における最大有効径、
12:第1レンズ群の最像側面の全変倍域における最大有効径、
31:第3レンズ群の最物体側面の全変倍域における最大有効径、
22:第2レンズ群の最像側面の全変倍域における最大有効径、
21:第2レンズ群の最物体側面の全変倍域における最大有効径、
である。
The following conditional expression (8) is satisfied: An electronic device comprising: the zoom lens according to any one of claims 1 to 16 ; and an electronic image pickup device disposed on an image side thereof. Imaging device.
D 11> D 12> D 31 > D 22> D 21 ··· (8)
Where D 11 is the maximum effective diameter in the entire zoom range on the most object side surface of the first lens group,
D 12 : the maximum effective diameter in the entire zoom range on the most image side surface of the first lens unit,
D 31 : the maximum effective diameter in the entire variable magnification region on the most object side surface of the third lens group,
D 22 : the maximum effective diameter in the entire zoom range on the most image side surface of the second lens group,
D 21 : the maximum effective diameter in the entire zoom range on the most object side surface of the second lens group,
It is.
ズーム状態に応じた最大開口面積に対応する情報を持つ記憶手段と、前記記憶手段からの情報及びズーム状態の情報から前記開口絞りの撮影時の最大開口面積を制御する制御手段とを備えたことを特徴とする請求項17から19の何れか1項記載の電子撮像装置。 Storage means having information corresponding to the maximum opening area corresponding to the zoom state, and control means for controlling the maximum opening area at the time of photographing the aperture stop from information from the storage means and information on the zoom state electronic imaging device according to any one of 19 claims 17, wherein.
JP2003329512A 2003-09-22 2003-09-22 Zoom lens and electronic imaging apparatus using the same Expired - Lifetime JP4489398B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003329512A JP4489398B2 (en) 2003-09-22 2003-09-22 Zoom lens and electronic imaging apparatus using the same
US10/945,396 US7075732B2 (en) 2003-09-22 2004-09-21 Zoom optical system, and imaging system incorporating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003329512A JP4489398B2 (en) 2003-09-22 2003-09-22 Zoom lens and electronic imaging apparatus using the same

Publications (2)

Publication Number Publication Date
JP2005099091A JP2005099091A (en) 2005-04-14
JP4489398B2 true JP4489398B2 (en) 2010-06-23

Family

ID=34458735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003329512A Expired - Lifetime JP4489398B2 (en) 2003-09-22 2003-09-22 Zoom lens and electronic imaging apparatus using the same

Country Status (1)

Country Link
JP (1) JP4489398B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4792395B2 (en) * 2004-06-29 2011-10-12 パナソニック株式会社 Zoom lens system, imaging device and camera
EP2005234A1 (en) * 2006-04-10 2008-12-24 Alex Ning Ultra-wide angle objective lens
JP4923764B2 (en) * 2006-06-12 2012-04-25 株式会社ニコン Zoom lens and optical apparatus having the same
JP5349825B2 (en) * 2008-03-31 2013-11-20 Hoya株式会社 Zoom lens system and electronic imaging apparatus using the same
JP5410199B2 (en) 2008-11-26 2014-02-05 Hoya株式会社 Zoom lens system and electronic imaging apparatus using the same
JP5550475B2 (en) 2010-07-13 2014-07-16 キヤノン株式会社 Zoom lens and imaging device
JP5626647B2 (en) * 2010-12-27 2014-11-19 株式会社リコー Zoom lens and imaging device
KR20130013514A (en) 2011-07-28 2013-02-06 삼성전자주식회사 Zoom lens and photographing device having the same
KR101925056B1 (en) 2011-09-02 2018-12-04 삼성전자주식회사 Zoom lens and photographing apparatus
JP5284456B2 (en) * 2011-12-28 2013-09-11 キヤノン株式会社 Zoom lens and imaging apparatus having the same
CN104459962B (en) * 2014-12-17 2016-09-21 福建福光股份有限公司 Electronic 2.8-12 zoom, Power focus monitoring camera and control method thereof

Also Published As

Publication number Publication date
JP2005099091A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
JP5052581B2 (en) Zoom optical system and electronic imaging apparatus using the same
JP4938068B2 (en) Electronic imaging device
JP5846792B2 (en) Zoom lens and imaging apparatus using the same
JP5289922B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP4758134B2 (en) Compact zoom photographing optical system and electronic image pickup apparatus using the same
JP4819476B2 (en) Zoom lens and imaging apparatus using the same
JP2007156385A (en) Zoom optical system and image taking apparatus using the same
JP2007279184A (en) Zoom lens
JP2009265569A (en) Imaging optical system and electronic imaging apparatus having the same
JP5424553B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP4690052B2 (en) Zoom lens and imaging apparatus using the same
JP2011237737A (en) Image forming optical system and imaging apparatus having the same
JP2010197481A (en) Imaging optical system and electronic imaging apparatus having the same
JP2011232620A (en) Imaging optical system and electronic imaging apparatus equipped with the same
JP5450256B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP2012003077A (en) Imaging optical system and electronic imaging apparatus having the same
US7075732B2 (en) Zoom optical system, and imaging system incorporating the same
JP4605698B2 (en) Zoom lens and image pickup apparatus equipped with the same
JP4489398B2 (en) Zoom lens and electronic imaging apparatus using the same
JP4803952B2 (en) Electronic imaging device
JP2008203871A (en) Electronic imaging device
JP5717988B2 (en) Variable magnification optical system and imaging apparatus using the same
JP4884054B2 (en) Zoom lens
JP2006194975A (en) Zoom lens and imaging apparatus using the same
JP4605699B2 (en) Zoom lens and image pickup apparatus equipped with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100331

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4489398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350